[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 4182 2019-08-22 15:20:23Z knoop $ |
---|
[4182] | 27 | ! Corrected "Former revisions" section |
---|
[4181] | 28 | ! |
---|
[4182] | 29 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
[3832] | 30 | ! loop reordering for performance optimization |
---|
[4171] | 31 | ! |
---|
| 32 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
| 33 | ! loop reordering for performance optimization |
---|
| 34 | ! |
---|
[3832] | 35 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
[3634] | 36 | ! OpenACC port for SPEC |
---|
[4171] | 37 | ! |
---|
[4182] | 38 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 39 | ! Initial revision |
---|
| 40 | ! |
---|
| 41 | ! |
---|
[1216] | 42 | ! Description: |
---|
| 43 | ! ------------ |
---|
[1682] | 44 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 45 | !> is carried out in transpose_xy |
---|
[1216] | 46 | !------------------------------------------------------------------------------! |
---|
[4181] | 47 | |
---|
| 48 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 49 | |
---|
[1682] | 50 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
[1216] | 51 | |
---|
[4171] | 52 | |
---|
[1320] | 53 | USE indices, & |
---|
| 54 | ONLY: nx |
---|
[1216] | 55 | |
---|
[1320] | 56 | USE kinds |
---|
| 57 | |
---|
| 58 | USE transpose_indices, & |
---|
[3241] | 59 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
[1320] | 60 | |
---|
[1216] | 61 | IMPLICIT NONE |
---|
| 62 | |
---|
[4171] | 63 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 64 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 65 | |
---|
| 66 | |
---|
[4171] | 67 | INTEGER(iwp) :: i !< |
---|
| 68 | INTEGER(iwp) :: j !< |
---|
| 69 | INTEGER(iwp) :: k !< |
---|
[1] | 70 | ! |
---|
[1216] | 71 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 72 | !-- by MPI contiguous |
---|
| 73 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 74 | !$OMP DO |
---|
[3690] | 75 | #if __acc_fft_device |
---|
[3634] | 76 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 77 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 78 | #endif |
---|
[3832] | 79 | DO k = nzb_x, nzt_x |
---|
[4171] | 80 | DO j = nys_x, nyn_x |
---|
| 81 | DO i = 0, nx |
---|
[1216] | 82 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 83 | ENDDO |
---|
| 84 | ENDDO |
---|
| 85 | ENDDO |
---|
| 86 | !$OMP END PARALLEL |
---|
| 87 | |
---|
| 88 | END SUBROUTINE resort_for_xy |
---|
| 89 | |
---|
| 90 | |
---|
| 91 | !------------------------------------------------------------------------------! |
---|
[1] | 92 | ! Description: |
---|
| 93 | ! ------------ |
---|
[1682] | 94 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 95 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 96 | !> elements along y reside on the same PE. |
---|
[1] | 97 | !------------------------------------------------------------------------------! |
---|
[1682] | 98 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 99 | |
---|
[1682] | 100 | |
---|
[1320] | 101 | USE cpulog, & |
---|
| 102 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 103 | |
---|
| 104 | USE indices, & |
---|
| 105 | ONLY: nx, ny |
---|
[4171] | 106 | |
---|
[1320] | 107 | USE kinds |
---|
| 108 | |
---|
[1] | 109 | USE pegrid |
---|
| 110 | |
---|
[1320] | 111 | USE transpose_indices, & |
---|
| 112 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 113 | |
---|
[1] | 114 | IMPLICIT NONE |
---|
| 115 | |
---|
[4171] | 116 | INTEGER(iwp) :: i !< |
---|
| 117 | INTEGER(iwp) :: j !< |
---|
| 118 | INTEGER(iwp) :: k !< |
---|
| 119 | INTEGER(iwp) :: l !< |
---|
| 120 | INTEGER(iwp) :: ys !< |
---|
[1] | 121 | |
---|
[4171] | 122 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 123 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 124 | |
---|
| 125 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 126 | #if __acc_fft_device |
---|
[3634] | 127 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 128 | #endif |
---|
[1111] | 129 | |
---|
| 130 | |
---|
[1106] | 131 | IF ( numprocs /= 1 ) THEN |
---|
| 132 | |
---|
| 133 | #if defined( __parallel ) |
---|
[1] | 134 | ! |
---|
[1106] | 135 | !-- Transpose array |
---|
[1318] | 136 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 137 | |
---|
| 138 | #if __acc_fft_device |
---|
[3657] | 139 | #ifndef __cuda_aware_mpi |
---|
[3634] | 140 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 141 | #else |
---|
| 142 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 143 | #endif |
---|
[3690] | 144 | #endif |
---|
| 145 | |
---|
[1106] | 146 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 147 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 148 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 149 | comm1dy, ierr ) |
---|
[3690] | 150 | |
---|
| 151 | #if __acc_fft_device |
---|
[3657] | 152 | #ifndef __cuda_aware_mpi |
---|
[3634] | 153 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 154 | #else |
---|
| 155 | !$ACC END HOST_DATA |
---|
| 156 | #endif |
---|
[3690] | 157 | #endif |
---|
| 158 | |
---|
[1106] | 159 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 160 | |
---|
| 161 | ! |
---|
[1106] | 162 | !-- Reorder transposed array |
---|
[1111] | 163 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 164 | !$OMP DO |
---|
[1106] | 165 | DO l = 0, pdims(2) - 1 |
---|
| 166 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 167 | #if __acc_fft_device |
---|
[3634] | 168 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 169 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 170 | #endif |
---|
[1106] | 171 | DO i = nxl_y, nxr_y |
---|
| 172 | DO k = nzb_y, nzt_y |
---|
| 173 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 174 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 175 | ENDDO |
---|
[1] | 176 | ENDDO |
---|
| 177 | ENDDO |
---|
| 178 | ENDDO |
---|
[683] | 179 | !$OMP END PARALLEL |
---|
[1] | 180 | #endif |
---|
| 181 | |
---|
[1106] | 182 | ELSE |
---|
| 183 | |
---|
| 184 | ! |
---|
| 185 | !-- Reorder transposed array |
---|
| 186 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 187 | !$OMP DO |
---|
[3690] | 188 | #if __acc_fft_device |
---|
[3634] | 189 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 190 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 191 | #endif |
---|
[1106] | 192 | DO k = nzb_y, nzt_y |
---|
| 193 | DO i = nxl_y, nxr_y |
---|
| 194 | DO j = 0, ny |
---|
| 195 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 196 | ENDDO |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
| 199 | !$OMP END PARALLEL |
---|
| 200 | |
---|
| 201 | ENDIF |
---|
| 202 | |
---|
[1] | 203 | END SUBROUTINE transpose_xy |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | !------------------------------------------------------------------------------! |
---|
| 207 | ! Description: |
---|
| 208 | ! ------------ |
---|
[1682] | 209 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 210 | !> is carried out in transpose_xz |
---|
[1216] | 211 | !------------------------------------------------------------------------------! |
---|
[1682] | 212 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 213 | |
---|
[1682] | 214 | |
---|
[1320] | 215 | USE indices, & |
---|
| 216 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 217 | |
---|
[1320] | 218 | USE kinds |
---|
| 219 | |
---|
[1216] | 220 | IMPLICIT NONE |
---|
| 221 | |
---|
[4171] | 222 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 223 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 224 | |
---|
[4171] | 225 | INTEGER(iwp) :: i !< |
---|
| 226 | INTEGER(iwp) :: j !< |
---|
| 227 | INTEGER(iwp) :: k !< |
---|
[1216] | 228 | ! |
---|
| 229 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 230 | !-- by MPI contiguous. |
---|
| 231 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 232 | !-- backward direction!!! |
---|
| 233 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 234 | !$OMP DO |
---|
[3690] | 235 | #if __acc_fft_device |
---|
[3634] | 236 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 237 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 238 | #endif |
---|
[4171] | 239 | DO i = nxl, nxr |
---|
| 240 | DO j = nys, nyn |
---|
| 241 | DO k = 1, nz |
---|
[1216] | 242 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | ENDDO |
---|
| 246 | !$OMP END PARALLEL |
---|
| 247 | |
---|
| 248 | END SUBROUTINE resort_for_xz |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | !------------------------------------------------------------------------------! |
---|
| 252 | ! Description: |
---|
| 253 | ! ------------ |
---|
[1682] | 254 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 255 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 256 | !> elements along z reside on the same PE. |
---|
[1] | 257 | !------------------------------------------------------------------------------! |
---|
[1682] | 258 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 259 | |
---|
[1682] | 260 | |
---|
[1320] | 261 | USE cpulog, & |
---|
| 262 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 263 | |
---|
[1320] | 264 | USE indices, & |
---|
[3241] | 265 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
[1320] | 266 | |
---|
| 267 | USE kinds |
---|
| 268 | |
---|
[1324] | 269 | USE pegrid |
---|
[1320] | 270 | |
---|
| 271 | USE transpose_indices, & |
---|
| 272 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 273 | |
---|
[1] | 274 | IMPLICIT NONE |
---|
| 275 | |
---|
[4171] | 276 | INTEGER(iwp) :: i !< |
---|
| 277 | INTEGER(iwp) :: j !< |
---|
| 278 | INTEGER(iwp) :: k !< |
---|
| 279 | INTEGER(iwp) :: l !< |
---|
| 280 | INTEGER(iwp) :: xs !< |
---|
[1] | 281 | |
---|
[4171] | 282 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 283 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 284 | |
---|
[4171] | 285 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 286 | #if __acc_fft_device |
---|
[3634] | 287 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 288 | #endif |
---|
[1111] | 289 | |
---|
[1320] | 290 | |
---|
[1] | 291 | ! |
---|
| 292 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 293 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 294 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 295 | |
---|
| 296 | #if defined( __parallel ) |
---|
[1] | 297 | ! |
---|
| 298 | !-- Reorder input array for transposition |
---|
[1111] | 299 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 300 | !$OMP DO |
---|
[1] | 301 | DO l = 0, pdims(1) - 1 |
---|
| 302 | xs = 0 + l * nnx |
---|
[3690] | 303 | #if __acc_fft_device |
---|
[3634] | 304 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 305 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 306 | #endif |
---|
[1003] | 307 | DO k = nzb_x, nzt_x |
---|
[164] | 308 | DO i = xs, xs + nnx - 1 |
---|
[1003] | 309 | DO j = nys_x, nyn_x |
---|
[1111] | 310 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 311 | ENDDO |
---|
| 312 | ENDDO |
---|
| 313 | ENDDO |
---|
| 314 | ENDDO |
---|
[683] | 315 | !$OMP END PARALLEL |
---|
[1] | 316 | |
---|
| 317 | ! |
---|
| 318 | !-- Transpose array |
---|
[1318] | 319 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 320 | |
---|
| 321 | #if __acc_fft_device |
---|
[3657] | 322 | #ifndef __cuda_aware_mpi |
---|
[3634] | 323 | !$ACC UPDATE HOST(work) |
---|
[3657] | 324 | #else |
---|
| 325 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 326 | #endif |
---|
[3690] | 327 | #endif |
---|
| 328 | |
---|
[622] | 329 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 330 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 331 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 332 | comm1dx, ierr ) |
---|
[3690] | 333 | |
---|
| 334 | #if __acc_fft_device |
---|
[3657] | 335 | #ifndef __cuda_aware_mpi |
---|
[3634] | 336 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 337 | #else |
---|
| 338 | !$ACC END HOST_DATA |
---|
| 339 | #endif |
---|
[3694] | 340 | #endif |
---|
| 341 | |
---|
[1] | 342 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 343 | #endif |
---|
| 344 | |
---|
[1] | 345 | ELSE |
---|
[1106] | 346 | |
---|
[1] | 347 | ! |
---|
| 348 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 349 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 350 | !$OMP DO |
---|
[3690] | 351 | #if __acc_fft_device |
---|
[3634] | 352 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 353 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 354 | #endif |
---|
[1003] | 355 | DO i = nxl, nxr |
---|
| 356 | DO j = nys, nyn |
---|
| 357 | DO k = 1, nz |
---|
[164] | 358 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 359 | ENDDO |
---|
| 360 | ENDDO |
---|
| 361 | ENDDO |
---|
[683] | 362 | !$OMP END PARALLEL |
---|
[1] | 363 | |
---|
[164] | 364 | ENDIF |
---|
| 365 | |
---|
[1] | 366 | END SUBROUTINE transpose_xz |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | !------------------------------------------------------------------------------! |
---|
| 370 | ! Description: |
---|
| 371 | ! ------------ |
---|
[1682] | 372 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 373 | !> is carried out in transpose_yx |
---|
[1216] | 374 | !------------------------------------------------------------------------------! |
---|
[1682] | 375 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 376 | |
---|
[1682] | 377 | |
---|
[1320] | 378 | USE indices, & |
---|
| 379 | ONLY: nx |
---|
[1216] | 380 | |
---|
[1320] | 381 | USE kinds |
---|
| 382 | |
---|
| 383 | USE transpose_indices, & |
---|
| 384 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 385 | |
---|
[1216] | 386 | IMPLICIT NONE |
---|
| 387 | |
---|
[4171] | 388 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 389 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 390 | |
---|
| 391 | |
---|
[4171] | 392 | INTEGER(iwp) :: i !< |
---|
| 393 | INTEGER(iwp) :: j !< |
---|
| 394 | INTEGER(iwp) :: k !< |
---|
[1216] | 395 | ! |
---|
| 396 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 397 | !-- by MPI contiguous |
---|
| 398 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 399 | !$OMP DO |
---|
[3690] | 400 | #if __acc_fft_device |
---|
[3634] | 401 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 402 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 403 | #endif |
---|
[4171] | 404 | DO k = nzb_x, nzt_x |
---|
| 405 | DO j = nys_x, nyn_x |
---|
| 406 | DO i = 0, nx |
---|
[1216] | 407 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 408 | ENDDO |
---|
| 409 | ENDDO |
---|
| 410 | ENDDO |
---|
| 411 | !$OMP END PARALLEL |
---|
| 412 | |
---|
| 413 | END SUBROUTINE resort_for_yx |
---|
| 414 | |
---|
| 415 | |
---|
| 416 | !------------------------------------------------------------------------------! |
---|
| 417 | ! Description: |
---|
| 418 | ! ------------ |
---|
[1682] | 419 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 420 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 421 | !> elements along x reside on the same PE. |
---|
[1] | 422 | !------------------------------------------------------------------------------! |
---|
[1682] | 423 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 424 | |
---|
[1682] | 425 | |
---|
[1320] | 426 | USE cpulog, & |
---|
| 427 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 428 | |
---|
[1320] | 429 | USE indices, & |
---|
| 430 | ONLY: nx, ny |
---|
| 431 | |
---|
| 432 | USE kinds |
---|
| 433 | |
---|
[1324] | 434 | USE pegrid |
---|
[1320] | 435 | |
---|
| 436 | USE transpose_indices, & |
---|
| 437 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 438 | |
---|
[1] | 439 | IMPLICIT NONE |
---|
| 440 | |
---|
[4171] | 441 | INTEGER(iwp) :: i !< |
---|
| 442 | INTEGER(iwp) :: j !< |
---|
| 443 | INTEGER(iwp) :: k !< |
---|
| 444 | INTEGER(iwp) :: l !< |
---|
| 445 | INTEGER(iwp) :: ys !< |
---|
[1] | 446 | |
---|
[4171] | 447 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 448 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 449 | |
---|
[4171] | 450 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 451 | #if __acc_fft_device |
---|
[3634] | 452 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 453 | #endif |
---|
[1111] | 454 | |
---|
[1320] | 455 | |
---|
[1106] | 456 | IF ( numprocs /= 1 ) THEN |
---|
| 457 | |
---|
[1] | 458 | #if defined( __parallel ) |
---|
| 459 | ! |
---|
[1106] | 460 | !-- Reorder input array for transposition |
---|
[1111] | 461 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 462 | !$OMP DO |
---|
[1106] | 463 | DO l = 0, pdims(2) - 1 |
---|
| 464 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 465 | #if __acc_fft_device |
---|
[3634] | 466 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 467 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 468 | #endif |
---|
[1106] | 469 | DO i = nxl_y, nxr_y |
---|
| 470 | DO k = nzb_y, nzt_y |
---|
| 471 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 472 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 473 | ENDDO |
---|
| 474 | ENDDO |
---|
| 475 | ENDDO |
---|
| 476 | ENDDO |
---|
| 477 | !$OMP END PARALLEL |
---|
| 478 | |
---|
| 479 | ! |
---|
| 480 | !-- Transpose array |
---|
[1318] | 481 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 482 | |
---|
| 483 | #if __acc_fft_device |
---|
[3657] | 484 | #ifndef __cuda_aware_mpi |
---|
[3634] | 485 | !$ACC UPDATE HOST(work) |
---|
[3657] | 486 | #else |
---|
| 487 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 488 | #endif |
---|
[3690] | 489 | #endif |
---|
| 490 | |
---|
[1106] | 491 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 492 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 493 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 494 | comm1dy, ierr ) |
---|
[3690] | 495 | |
---|
| 496 | #if __acc_fft_device |
---|
[3657] | 497 | #ifndef __cuda_aware_mpi |
---|
[3634] | 498 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 499 | #else |
---|
| 500 | !$ACC END HOST_DATA |
---|
| 501 | #endif |
---|
[3690] | 502 | #endif |
---|
| 503 | |
---|
[1106] | 504 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 505 | #endif |
---|
| 506 | |
---|
| 507 | ELSE |
---|
| 508 | |
---|
| 509 | ! |
---|
| 510 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 511 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 512 | !$OMP DO |
---|
[3690] | 513 | #if __acc_fft_device |
---|
[3634] | 514 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 515 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 516 | #endif |
---|
[1003] | 517 | DO i = nxl_y, nxr_y |
---|
| 518 | DO k = nzb_y, nzt_y |
---|
[1106] | 519 | DO j = 0, ny |
---|
| 520 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | ENDDO |
---|
[683] | 524 | !$OMP END PARALLEL |
---|
[1] | 525 | |
---|
[1106] | 526 | ENDIF |
---|
[1] | 527 | |
---|
| 528 | END SUBROUTINE transpose_yx |
---|
| 529 | |
---|
| 530 | |
---|
| 531 | !------------------------------------------------------------------------------! |
---|
| 532 | ! Description: |
---|
| 533 | ! ------------ |
---|
[1682] | 534 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 535 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 536 | !> elements along x reside on the same PE. |
---|
| 537 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 538 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 539 | !------------------------------------------------------------------------------! |
---|
[1682] | 540 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 541 | |
---|
[1682] | 542 | |
---|
[1320] | 543 | USE cpulog, & |
---|
[3241] | 544 | ONLY: cpu_log, log_point_s |
---|
[1] | 545 | |
---|
[1320] | 546 | USE indices, & |
---|
| 547 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 548 | |
---|
| 549 | USE kinds |
---|
| 550 | |
---|
[1324] | 551 | USE pegrid |
---|
[1320] | 552 | |
---|
| 553 | USE transpose_indices, & |
---|
| 554 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 555 | |
---|
[1] | 556 | IMPLICIT NONE |
---|
| 557 | |
---|
[4171] | 558 | INTEGER(iwp) :: i !< |
---|
| 559 | INTEGER(iwp) :: j !< |
---|
| 560 | INTEGER(iwp) :: k !< |
---|
| 561 | INTEGER(iwp) :: l !< |
---|
| 562 | INTEGER(iwp) :: m !< |
---|
| 563 | INTEGER(iwp) :: xs !< |
---|
[1] | 564 | |
---|
[4171] | 565 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 566 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 567 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 568 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 569 | #if defined( __parallel ) |
---|
| 570 | |
---|
| 571 | ! |
---|
| 572 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 573 | !-- by MPI contiguous |
---|
[1003] | 574 | DO k = 1, nz |
---|
| 575 | DO j = nys, nyn |
---|
| 576 | DO i = nxl, nxr |
---|
[164] | 577 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 578 | ENDDO |
---|
| 579 | ENDDO |
---|
| 580 | ENDDO |
---|
| 581 | |
---|
| 582 | ! |
---|
| 583 | !-- Transpose array |
---|
| 584 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 585 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 586 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 587 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 588 | comm1dx, ierr ) |
---|
| 589 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 590 | |
---|
| 591 | ! |
---|
| 592 | !-- Reorder transposed array |
---|
| 593 | m = 0 |
---|
| 594 | DO l = 0, pdims(1) - 1 |
---|
| 595 | xs = 0 + l * nnx |
---|
[1003] | 596 | DO j = nys_x, nyn_x |
---|
| 597 | DO k = 1, nz |
---|
[1] | 598 | DO i = xs, xs + nnx - 1 |
---|
| 599 | m = m + 1 |
---|
[164] | 600 | f_out(i,j,k) = work(m) |
---|
[1] | 601 | ENDDO |
---|
| 602 | ENDDO |
---|
| 603 | ENDDO |
---|
| 604 | ENDDO |
---|
| 605 | |
---|
| 606 | #endif |
---|
| 607 | |
---|
| 608 | END SUBROUTINE transpose_yxd |
---|
| 609 | |
---|
| 610 | |
---|
| 611 | !------------------------------------------------------------------------------! |
---|
| 612 | ! Description: |
---|
| 613 | ! ------------ |
---|
[1682] | 614 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 615 | !> is carried out in transpose_yz |
---|
[1216] | 616 | !------------------------------------------------------------------------------! |
---|
[1682] | 617 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 618 | |
---|
[1682] | 619 | |
---|
[1320] | 620 | USE indices, & |
---|
| 621 | ONLY: ny |
---|
[1216] | 622 | |
---|
[1320] | 623 | USE kinds |
---|
| 624 | |
---|
| 625 | USE transpose_indices, & |
---|
| 626 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 627 | |
---|
[1216] | 628 | IMPLICIT NONE |
---|
| 629 | |
---|
[4171] | 630 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 631 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 632 | |
---|
[4171] | 633 | INTEGER(iwp) :: i !< |
---|
| 634 | INTEGER(iwp) :: j !< |
---|
| 635 | INTEGER(iwp) :: k !< |
---|
[1216] | 636 | |
---|
| 637 | ! |
---|
| 638 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 639 | !-- by MPI contiguous |
---|
| 640 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 641 | !$OMP DO |
---|
[3690] | 642 | #if __acc_fft_device |
---|
[3634] | 643 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 644 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 645 | #endif |
---|
[4171] | 646 | DO k = nzb_y, nzt_y |
---|
| 647 | DO i = nxl_y, nxr_y |
---|
| 648 | DO j = 0, ny |
---|
[1216] | 649 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 650 | ENDDO |
---|
| 651 | ENDDO |
---|
| 652 | ENDDO |
---|
| 653 | !$OMP END PARALLEL |
---|
| 654 | |
---|
| 655 | END SUBROUTINE resort_for_yz |
---|
| 656 | |
---|
| 657 | |
---|
| 658 | !------------------------------------------------------------------------------! |
---|
| 659 | ! Description: |
---|
| 660 | ! ------------ |
---|
[1682] | 661 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 662 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 663 | !> elements along z reside on the same PE. |
---|
[1] | 664 | !------------------------------------------------------------------------------! |
---|
[1682] | 665 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 666 | |
---|
[1682] | 667 | |
---|
[1320] | 668 | USE cpulog, & |
---|
| 669 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 670 | |
---|
[1320] | 671 | USE indices, & |
---|
| 672 | ONLY: ny, nz |
---|
| 673 | |
---|
| 674 | USE kinds |
---|
| 675 | |
---|
[1324] | 676 | USE pegrid |
---|
[1320] | 677 | |
---|
| 678 | USE transpose_indices, & |
---|
| 679 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 680 | |
---|
[1] | 681 | IMPLICIT NONE |
---|
| 682 | |
---|
[4171] | 683 | INTEGER(iwp) :: i !< |
---|
| 684 | INTEGER(iwp) :: j !< |
---|
| 685 | INTEGER(iwp) :: k !< |
---|
| 686 | INTEGER(iwp) :: l !< |
---|
| 687 | INTEGER(iwp) :: zs !< |
---|
[1] | 688 | |
---|
[4171] | 689 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 690 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 691 | |
---|
[4171] | 692 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 693 | #if __acc_fft_device |
---|
[3634] | 694 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 695 | #endif |
---|
[1111] | 696 | |
---|
[1320] | 697 | |
---|
[1] | 698 | ! |
---|
| 699 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 700 | !-- of the data is necessary and no transposition has to be done. |
---|
| 701 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 702 | |
---|
[683] | 703 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 704 | !$OMP DO |
---|
[3690] | 705 | #if __acc_fft_device |
---|
[3634] | 706 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 707 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 708 | #endif |
---|
[1003] | 709 | DO j = 0, ny |
---|
| 710 | DO k = nzb_y, nzt_y |
---|
| 711 | DO i = nxl_y, nxr_y |
---|
[164] | 712 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 713 | ENDDO |
---|
| 714 | ENDDO |
---|
| 715 | ENDDO |
---|
[683] | 716 | !$OMP END PARALLEL |
---|
[1] | 717 | |
---|
[1106] | 718 | ELSE |
---|
| 719 | |
---|
| 720 | #if defined( __parallel ) |
---|
[1] | 721 | ! |
---|
[1106] | 722 | !-- Transpose array |
---|
[1318] | 723 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 724 | |
---|
| 725 | #if __acc_fft_device |
---|
[3657] | 726 | #ifndef __cuda_aware_mpi |
---|
[3634] | 727 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 728 | #else |
---|
| 729 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 730 | #endif |
---|
[3690] | 731 | #endif |
---|
| 732 | |
---|
[1106] | 733 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 734 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 735 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 736 | comm1dx, ierr ) |
---|
[3690] | 737 | |
---|
| 738 | #if __acc_fft_device |
---|
[3657] | 739 | #ifndef __cuda_aware_mpi |
---|
[3634] | 740 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 741 | #else |
---|
| 742 | !$ACC END HOST_DATA |
---|
| 743 | #endif |
---|
[3690] | 744 | #endif |
---|
| 745 | |
---|
[1106] | 746 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 747 | |
---|
| 748 | ! |
---|
[1106] | 749 | !-- Reorder transposed array |
---|
[1111] | 750 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 751 | !$OMP DO |
---|
[1106] | 752 | DO l = 0, pdims(1) - 1 |
---|
| 753 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 754 | #if __acc_fft_device |
---|
[3634] | 755 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 756 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 757 | #endif |
---|
[1106] | 758 | DO j = nys_z, nyn_z |
---|
| 759 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 760 | DO i = nxl_z, nxr_z |
---|
[1111] | 761 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 762 | ENDDO |
---|
[1] | 763 | ENDDO |
---|
| 764 | ENDDO |
---|
| 765 | ENDDO |
---|
[683] | 766 | !$OMP END PARALLEL |
---|
[1] | 767 | #endif |
---|
| 768 | |
---|
[1106] | 769 | ENDIF |
---|
| 770 | |
---|
[1] | 771 | END SUBROUTINE transpose_yz |
---|
| 772 | |
---|
| 773 | |
---|
| 774 | !------------------------------------------------------------------------------! |
---|
| 775 | ! Description: |
---|
| 776 | ! ------------ |
---|
[1682] | 777 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 778 | !> is carried out in transpose_zx |
---|
[1216] | 779 | !------------------------------------------------------------------------------! |
---|
[1682] | 780 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 781 | |
---|
[1682] | 782 | |
---|
[1320] | 783 | USE indices, & |
---|
| 784 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 785 | |
---|
[1320] | 786 | USE kinds |
---|
| 787 | |
---|
[1216] | 788 | IMPLICIT NONE |
---|
| 789 | |
---|
[4171] | 790 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 791 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 792 | |
---|
[4171] | 793 | INTEGER(iwp) :: i !< |
---|
| 794 | INTEGER(iwp) :: j !< |
---|
| 795 | INTEGER(iwp) :: k !< |
---|
[1216] | 796 | |
---|
| 797 | ! |
---|
| 798 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 799 | !-- by MPI contiguous |
---|
| 800 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 801 | !$OMP DO |
---|
[3690] | 802 | #if __acc_fft_device |
---|
[3634] | 803 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 804 | !$ACC PRESENT(f_in, f_inv) |
---|
[3690] | 805 | #endif |
---|
[3832] | 806 | DO i = nxl, nxr |
---|
[4171] | 807 | DO j = nys, nyn |
---|
| 808 | DO k = 1,nz |
---|
[1216] | 809 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 810 | ENDDO |
---|
| 811 | ENDDO |
---|
| 812 | ENDDO |
---|
| 813 | !$OMP END PARALLEL |
---|
| 814 | |
---|
| 815 | END SUBROUTINE resort_for_zx |
---|
| 816 | |
---|
| 817 | |
---|
| 818 | !------------------------------------------------------------------------------! |
---|
| 819 | ! Description: |
---|
| 820 | ! ------------ |
---|
[1682] | 821 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 822 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 823 | !> elements along x reside on the same PE. |
---|
[1] | 824 | !------------------------------------------------------------------------------! |
---|
[1682] | 825 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 826 | |
---|
[1682] | 827 | |
---|
[1320] | 828 | USE cpulog, & |
---|
| 829 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 830 | |
---|
[1320] | 831 | USE indices, & |
---|
| 832 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 833 | |
---|
| 834 | USE kinds |
---|
| 835 | |
---|
[1324] | 836 | USE pegrid |
---|
[1320] | 837 | |
---|
| 838 | USE transpose_indices, & |
---|
| 839 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 840 | |
---|
[1] | 841 | IMPLICIT NONE |
---|
| 842 | |
---|
[4171] | 843 | INTEGER(iwp) :: i !< |
---|
| 844 | INTEGER(iwp) :: j !< |
---|
| 845 | INTEGER(iwp) :: k !< |
---|
| 846 | INTEGER(iwp) :: l !< |
---|
| 847 | INTEGER(iwp) :: xs !< |
---|
[1] | 848 | |
---|
[4171] | 849 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 850 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 851 | |
---|
[4171] | 852 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 853 | #if __acc_fft_device |
---|
[3634] | 854 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 855 | #endif |
---|
[1] | 856 | |
---|
[1320] | 857 | |
---|
[1] | 858 | ! |
---|
| 859 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 860 | !-- of the data is necessary and no transposition has to be done. |
---|
| 861 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 862 | |
---|
[683] | 863 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 864 | !$OMP DO |
---|
[3690] | 865 | #if __acc_fft_device |
---|
[3634] | 866 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 867 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 868 | #endif |
---|
[1003] | 869 | DO k = 1, nz |
---|
| 870 | DO i = nxl, nxr |
---|
| 871 | DO j = nys, nyn |
---|
[164] | 872 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 873 | ENDDO |
---|
| 874 | ENDDO |
---|
| 875 | ENDDO |
---|
[683] | 876 | !$OMP END PARALLEL |
---|
[1] | 877 | |
---|
[1106] | 878 | ELSE |
---|
| 879 | |
---|
| 880 | #if defined( __parallel ) |
---|
[1] | 881 | ! |
---|
[1106] | 882 | !-- Transpose array |
---|
[1318] | 883 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 884 | |
---|
| 885 | #if __acc_fft_device |
---|
[3657] | 886 | #ifndef __cuda_aware_mpi |
---|
[3634] | 887 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 888 | #else |
---|
| 889 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 890 | #endif |
---|
[3690] | 891 | #endif |
---|
| 892 | |
---|
[1106] | 893 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 894 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 895 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 896 | comm1dx, ierr ) |
---|
[3690] | 897 | |
---|
| 898 | #if __acc_fft_device |
---|
[3657] | 899 | #ifndef __cuda_aware_mpi |
---|
[3634] | 900 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 901 | #else |
---|
| 902 | !$ACC END HOST_DATA |
---|
| 903 | #endif |
---|
[3690] | 904 | #endif |
---|
| 905 | |
---|
[1106] | 906 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 907 | |
---|
| 908 | ! |
---|
[1106] | 909 | !-- Reorder transposed array |
---|
[1111] | 910 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 911 | !$OMP DO |
---|
[1106] | 912 | DO l = 0, pdims(1) - 1 |
---|
| 913 | xs = 0 + l * nnx |
---|
[3690] | 914 | #if __acc_fft_device |
---|
[3634] | 915 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 916 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 917 | #endif |
---|
[1106] | 918 | DO k = nzb_x, nzt_x |
---|
| 919 | DO i = xs, xs + nnx - 1 |
---|
| 920 | DO j = nys_x, nyn_x |
---|
[1111] | 921 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 922 | ENDDO |
---|
[1] | 923 | ENDDO |
---|
| 924 | ENDDO |
---|
| 925 | ENDDO |
---|
[683] | 926 | !$OMP END PARALLEL |
---|
[1] | 927 | #endif |
---|
| 928 | |
---|
[1106] | 929 | ENDIF |
---|
| 930 | |
---|
[1] | 931 | END SUBROUTINE transpose_zx |
---|
| 932 | |
---|
| 933 | |
---|
| 934 | !------------------------------------------------------------------------------! |
---|
| 935 | ! Description: |
---|
| 936 | ! ------------ |
---|
[1682] | 937 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 938 | !> is carried out in transpose_zy |
---|
[1216] | 939 | !------------------------------------------------------------------------------! |
---|
[1682] | 940 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 941 | |
---|
[1682] | 942 | |
---|
[1320] | 943 | USE indices, & |
---|
| 944 | ONLY: ny |
---|
[1216] | 945 | |
---|
[1320] | 946 | USE kinds |
---|
| 947 | |
---|
| 948 | USE transpose_indices, & |
---|
| 949 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 950 | |
---|
[1216] | 951 | IMPLICIT NONE |
---|
| 952 | |
---|
[4171] | 953 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 954 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 955 | |
---|
| 956 | |
---|
[4171] | 957 | INTEGER(iwp) :: i !< |
---|
| 958 | INTEGER(iwp) :: j !< |
---|
| 959 | INTEGER(iwp) :: k !< |
---|
[1216] | 960 | |
---|
| 961 | ! |
---|
| 962 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 963 | !-- by MPI contiguous |
---|
| 964 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 965 | !$OMP DO |
---|
[3690] | 966 | #if __acc_fft_device |
---|
[3634] | 967 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 968 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 969 | #endif |
---|
[4171] | 970 | DO k = nzb_y, nzt_y |
---|
| 971 | DO i = nxl_y, nxr_y |
---|
| 972 | DO j = 0, ny |
---|
[1216] | 973 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 974 | ENDDO |
---|
| 975 | ENDDO |
---|
| 976 | ENDDO |
---|
| 977 | !$OMP END PARALLEL |
---|
| 978 | |
---|
| 979 | END SUBROUTINE resort_for_zy |
---|
| 980 | |
---|
| 981 | |
---|
| 982 | !------------------------------------------------------------------------------! |
---|
[3241] | 983 | ! Description:cpu_log_nowait |
---|
[1216] | 984 | ! ------------ |
---|
[1682] | 985 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 986 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 987 | !> elements along y reside on the same PE. |
---|
[1] | 988 | !------------------------------------------------------------------------------! |
---|
[1682] | 989 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 990 | |
---|
[1682] | 991 | |
---|
[1320] | 992 | USE cpulog, & |
---|
| 993 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 994 | |
---|
[1320] | 995 | USE indices, & |
---|
| 996 | ONLY: ny, nz |
---|
| 997 | |
---|
| 998 | USE kinds |
---|
| 999 | |
---|
[1324] | 1000 | USE pegrid |
---|
[1320] | 1001 | |
---|
| 1002 | USE transpose_indices, & |
---|
| 1003 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 1004 | |
---|
[1] | 1005 | IMPLICIT NONE |
---|
| 1006 | |
---|
[4171] | 1007 | INTEGER(iwp) :: i !< |
---|
| 1008 | INTEGER(iwp) :: j !< |
---|
| 1009 | INTEGER(iwp) :: k !< |
---|
| 1010 | INTEGER(iwp) :: l !< |
---|
| 1011 | INTEGER(iwp) :: zs !< |
---|
[1] | 1012 | |
---|
[4171] | 1013 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 1014 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 1015 | |
---|
[1682] | 1016 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 1017 | #if __acc_fft_device |
---|
[3634] | 1018 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 1019 | #endif |
---|
[1111] | 1020 | |
---|
[1] | 1021 | ! |
---|
| 1022 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 1023 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 1024 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 1025 | |
---|
| 1026 | #if defined( __parallel ) |
---|
[1] | 1027 | ! |
---|
| 1028 | !-- Reorder input array for transposition |
---|
[1111] | 1029 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 1030 | !$OMP DO |
---|
[1] | 1031 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 1032 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 1033 | #if __acc_fft_device |
---|
[3634] | 1034 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1035 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 1036 | #endif |
---|
[1003] | 1037 | DO j = nys_z, nyn_z |
---|
| 1038 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 1039 | DO i = nxl_z, nxr_z |
---|
[1111] | 1040 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | ENDDO |
---|
[683] | 1045 | !$OMP END PARALLEL |
---|
[1] | 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- Transpose array |
---|
[1318] | 1049 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 1050 | |
---|
| 1051 | #if __acc_fft_device |
---|
[3657] | 1052 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1053 | !$ACC UPDATE HOST(work) |
---|
[3657] | 1054 | #else |
---|
| 1055 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 1056 | #endif |
---|
[3690] | 1057 | #endif |
---|
| 1058 | |
---|
[622] | 1059 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 1060 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 1061 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 1062 | comm1dx, ierr ) |
---|
[3690] | 1063 | |
---|
| 1064 | #if __acc_fft_device |
---|
[3657] | 1065 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1066 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 1067 | #else |
---|
| 1068 | !$ACC END HOST_DATA |
---|
| 1069 | #endif |
---|
[3690] | 1070 | #endif |
---|
| 1071 | |
---|
[1] | 1072 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 1073 | #endif |
---|
[1] | 1074 | |
---|
| 1075 | ELSE |
---|
| 1076 | ! |
---|
[1106] | 1077 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 1078 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1079 | !$OMP DO |
---|
[3690] | 1080 | #if __acc_fft_device |
---|
[3634] | 1081 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1082 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 1083 | #endif |
---|
[1003] | 1084 | DO k = nzb_y, nzt_y |
---|
| 1085 | DO j = 0, ny |
---|
| 1086 | DO i = nxl_y, nxr_y |
---|
[164] | 1087 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 1088 | ENDDO |
---|
| 1089 | ENDDO |
---|
| 1090 | ENDDO |
---|
[683] | 1091 | !$OMP END PARALLEL |
---|
[1106] | 1092 | |
---|
| 1093 | ENDIF |
---|
| 1094 | |
---|
[1] | 1095 | END SUBROUTINE transpose_zy |
---|
| 1096 | |
---|
| 1097 | |
---|
| 1098 | !------------------------------------------------------------------------------! |
---|
| 1099 | ! Description: |
---|
| 1100 | ! ------------ |
---|
[1682] | 1101 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1102 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1103 | !> elements along y reside on the same PE. |
---|
| 1104 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 1105 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 1106 | !------------------------------------------------------------------------------! |
---|
[1682] | 1107 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 1108 | |
---|
[1682] | 1109 | |
---|
[1320] | 1110 | USE cpulog, & |
---|
[3241] | 1111 | ONLY: cpu_log, log_point_s |
---|
[1] | 1112 | |
---|
[1320] | 1113 | USE indices, & |
---|
| 1114 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 1115 | |
---|
| 1116 | USE kinds |
---|
| 1117 | |
---|
[1324] | 1118 | USE pegrid |
---|
[1320] | 1119 | |
---|
| 1120 | USE transpose_indices, & |
---|
[3241] | 1121 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
[1320] | 1122 | |
---|
[1] | 1123 | IMPLICIT NONE |
---|
| 1124 | |
---|
[4171] | 1125 | INTEGER(iwp) :: i !< |
---|
| 1126 | INTEGER(iwp) :: j !< |
---|
| 1127 | INTEGER(iwp) :: k !< |
---|
| 1128 | INTEGER(iwp) :: l !< |
---|
| 1129 | INTEGER(iwp) :: m !< |
---|
| 1130 | INTEGER(iwp) :: ys !< |
---|
[1] | 1131 | |
---|
[4171] | 1132 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 1133 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1134 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 1135 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 1136 | |
---|
[1] | 1137 | #if defined( __parallel ) |
---|
| 1138 | |
---|
| 1139 | ! |
---|
| 1140 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1141 | !-- by MPI contiguous |
---|
[1003] | 1142 | DO i = nxl, nxr |
---|
| 1143 | DO j = nys, nyn |
---|
| 1144 | DO k = 1, nz |
---|
[164] | 1145 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1146 | ENDDO |
---|
| 1147 | ENDDO |
---|
| 1148 | ENDDO |
---|
| 1149 | |
---|
| 1150 | ! |
---|
| 1151 | !-- Move data to different array, because memory location of work1 is |
---|
| 1152 | !-- needed further below (work1 = work2). |
---|
| 1153 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1154 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1155 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1156 | DO k = 1, nz |
---|
| 1157 | DO i = nxl, nxr |
---|
| 1158 | DO j = nys, nyn |
---|
[164] | 1159 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1160 | ENDDO |
---|
| 1161 | ENDDO |
---|
| 1162 | ENDDO |
---|
| 1163 | RETURN |
---|
| 1164 | ENDIF |
---|
| 1165 | |
---|
| 1166 | ! |
---|
| 1167 | !-- Transpose array |
---|
| 1168 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1169 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1170 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1171 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1172 | comm1dy, ierr ) |
---|
| 1173 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1174 | |
---|
| 1175 | ! |
---|
| 1176 | !-- Reorder transposed array |
---|
| 1177 | m = 0 |
---|
| 1178 | DO l = 0, pdims(2) - 1 |
---|
| 1179 | ys = 0 + l * nny |
---|
[1003] | 1180 | DO k = nzb_yd, nzt_yd |
---|
| 1181 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1182 | DO j = ys, ys + nny - 1 |
---|
| 1183 | m = m + 1 |
---|
[164] | 1184 | f_out(j,i,k) = work(m) |
---|
[1] | 1185 | ENDDO |
---|
| 1186 | ENDDO |
---|
| 1187 | ENDDO |
---|
| 1188 | ENDDO |
---|
| 1189 | |
---|
| 1190 | #endif |
---|
| 1191 | |
---|
| 1192 | END SUBROUTINE transpose_zyd |
---|