[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 3832 2019-03-28 13:16:58Z schwenkel $ |
---|
[3832] | 27 | ! loop reordering for performance optimization |
---|
| 28 | ! |
---|
| 29 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
[3634] | 30 | ! OpenACC port for SPEC |
---|
| 31 | ! |
---|
| 32 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 33 | ! unused variables removed |
---|
| 34 | ! |
---|
| 35 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 36 | ! Corrected "Former revisions" section |
---|
| 37 | ! |
---|
| 38 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 39 | ! Change in file header (GPL part) |
---|
[1321] | 40 | ! |
---|
[2716] | 41 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
| 42 | ! |
---|
[2119] | 43 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 44 | ! OpenACC directives removed |
---|
| 45 | ! |
---|
[2001] | 46 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 47 | ! Forced header and separation lines into 80 columns |
---|
| 48 | ! |
---|
[1683] | 49 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 50 | ! Code annotations made doxygen readable |
---|
| 51 | ! |
---|
[1325] | 52 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
| 53 | ! Bugfix: ONLY statement for module pegrid removed |
---|
| 54 | ! |
---|
[1321] | 55 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 56 | ! ONLY-attribute added to USE-statements, |
---|
| 57 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 58 | ! kinds are defined in new module kinds, |
---|
| 59 | ! old module precision_kind is removed, |
---|
| 60 | ! revision history before 2012 removed, |
---|
| 61 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 62 | ! all variable declaration statements |
---|
[198] | 63 | ! |
---|
[1319] | 64 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 65 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
| 66 | ! required for solving the Poisson equation (poisfft), |
---|
| 67 | ! module interfaces removed |
---|
| 68 | ! |
---|
[1258] | 69 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 70 | ! openacc loop and loop vector clauses removed |
---|
| 71 | ! |
---|
[1217] | 72 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 73 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
| 74 | ! routines resort_for_... |
---|
| 75 | ! |
---|
[1112] | 76 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 77 | ! openACC directives added, |
---|
| 78 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
| 79 | ! |
---|
[1107] | 80 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 81 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 82 | ! (non-parallel) mode |
---|
| 83 | ! |
---|
[1093] | 84 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 85 | ! unused variables removed |
---|
| 86 | ! |
---|
[1037] | 87 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 88 | ! code put under GPL (PALM 3.9) |
---|
| 89 | ! |
---|
[1004] | 90 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 91 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 92 | ! |
---|
[1] | 93 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 94 | ! Initial revision |
---|
| 95 | ! |
---|
[3690] | 96 | |
---|
| 97 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 98 | |
---|
[1216] | 99 | !------------------------------------------------------------------------------! |
---|
| 100 | ! Description: |
---|
| 101 | ! ------------ |
---|
[1682] | 102 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 103 | !> is carried out in transpose_xy |
---|
[1216] | 104 | !------------------------------------------------------------------------------! |
---|
[1682] | 105 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
| 106 | |
---|
[1216] | 107 | |
---|
[1320] | 108 | USE indices, & |
---|
| 109 | ONLY: nx |
---|
[1216] | 110 | |
---|
[1320] | 111 | USE kinds |
---|
| 112 | |
---|
| 113 | USE transpose_indices, & |
---|
[3241] | 114 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
[1320] | 115 | |
---|
[1216] | 116 | IMPLICIT NONE |
---|
| 117 | |
---|
[1682] | 118 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 119 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 120 | |
---|
| 121 | |
---|
[1682] | 122 | INTEGER(iwp) :: i !< |
---|
| 123 | INTEGER(iwp) :: j !< |
---|
| 124 | INTEGER(iwp) :: k !< |
---|
[1] | 125 | ! |
---|
[1216] | 126 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 127 | !-- by MPI contiguous |
---|
| 128 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 129 | !$OMP DO |
---|
[3690] | 130 | #if __acc_fft_device |
---|
[3634] | 131 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 132 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 133 | #endif |
---|
[3832] | 134 | DO k = nzb_x, nzt_x |
---|
| 135 | DO i = 0, nx |
---|
[1216] | 136 | DO j = nys_x, nyn_x |
---|
| 137 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 138 | ENDDO |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | !$OMP END PARALLEL |
---|
| 142 | |
---|
| 143 | END SUBROUTINE resort_for_xy |
---|
| 144 | |
---|
| 145 | |
---|
| 146 | !------------------------------------------------------------------------------! |
---|
[1] | 147 | ! Description: |
---|
| 148 | ! ------------ |
---|
[1682] | 149 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 150 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 151 | !> elements along y reside on the same PE. |
---|
[1] | 152 | !------------------------------------------------------------------------------! |
---|
[1682] | 153 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 154 | |
---|
[1682] | 155 | |
---|
[1320] | 156 | USE cpulog, & |
---|
| 157 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 158 | |
---|
| 159 | USE indices, & |
---|
| 160 | ONLY: nx, ny |
---|
| 161 | |
---|
| 162 | USE kinds |
---|
| 163 | |
---|
[1] | 164 | USE pegrid |
---|
| 165 | |
---|
[1320] | 166 | USE transpose_indices, & |
---|
| 167 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 168 | |
---|
[1] | 169 | IMPLICIT NONE |
---|
| 170 | |
---|
[1682] | 171 | INTEGER(iwp) :: i !< |
---|
| 172 | INTEGER(iwp) :: j !< |
---|
| 173 | INTEGER(iwp) :: k !< |
---|
| 174 | INTEGER(iwp) :: l !< |
---|
| 175 | INTEGER(iwp) :: ys !< |
---|
[1320] | 176 | |
---|
[1682] | 177 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 178 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1] | 179 | |
---|
[1682] | 180 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 181 | #if __acc_fft_device |
---|
[3634] | 182 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 183 | #endif |
---|
[1111] | 184 | |
---|
| 185 | |
---|
[1106] | 186 | IF ( numprocs /= 1 ) THEN |
---|
| 187 | |
---|
| 188 | #if defined( __parallel ) |
---|
[1] | 189 | ! |
---|
[1106] | 190 | !-- Transpose array |
---|
[1318] | 191 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 192 | |
---|
| 193 | #if __acc_fft_device |
---|
[3657] | 194 | #ifndef __cuda_aware_mpi |
---|
[3634] | 195 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 196 | #else |
---|
| 197 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 198 | #endif |
---|
[3690] | 199 | #endif |
---|
| 200 | |
---|
[1106] | 201 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 202 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 203 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 204 | comm1dy, ierr ) |
---|
[3690] | 205 | |
---|
| 206 | #if __acc_fft_device |
---|
[3657] | 207 | #ifndef __cuda_aware_mpi |
---|
[3634] | 208 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 209 | #else |
---|
| 210 | !$ACC END HOST_DATA |
---|
| 211 | #endif |
---|
[3690] | 212 | #endif |
---|
| 213 | |
---|
[1106] | 214 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 215 | |
---|
| 216 | ! |
---|
[1106] | 217 | !-- Reorder transposed array |
---|
[1111] | 218 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 219 | !$OMP DO |
---|
[1106] | 220 | DO l = 0, pdims(2) - 1 |
---|
| 221 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 222 | #if __acc_fft_device |
---|
[3634] | 223 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 224 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 225 | #endif |
---|
[1106] | 226 | DO i = nxl_y, nxr_y |
---|
| 227 | DO k = nzb_y, nzt_y |
---|
| 228 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 229 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 230 | ENDDO |
---|
[1] | 231 | ENDDO |
---|
| 232 | ENDDO |
---|
| 233 | ENDDO |
---|
[683] | 234 | !$OMP END PARALLEL |
---|
[1] | 235 | #endif |
---|
| 236 | |
---|
[1106] | 237 | ELSE |
---|
| 238 | |
---|
| 239 | ! |
---|
| 240 | !-- Reorder transposed array |
---|
| 241 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 242 | !$OMP DO |
---|
[3690] | 243 | #if __acc_fft_device |
---|
[3634] | 244 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 245 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 246 | #endif |
---|
[1106] | 247 | DO k = nzb_y, nzt_y |
---|
| 248 | DO i = nxl_y, nxr_y |
---|
| 249 | DO j = 0, ny |
---|
| 250 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | ENDDO |
---|
| 254 | !$OMP END PARALLEL |
---|
| 255 | |
---|
| 256 | ENDIF |
---|
| 257 | |
---|
[1] | 258 | END SUBROUTINE transpose_xy |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | !------------------------------------------------------------------------------! |
---|
| 262 | ! Description: |
---|
| 263 | ! ------------ |
---|
[1682] | 264 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 265 | !> is carried out in transpose_xz |
---|
[1216] | 266 | !------------------------------------------------------------------------------! |
---|
[1682] | 267 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 268 | |
---|
[1682] | 269 | |
---|
[1320] | 270 | USE indices, & |
---|
| 271 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 272 | |
---|
[1320] | 273 | USE kinds |
---|
| 274 | |
---|
[1216] | 275 | IMPLICIT NONE |
---|
| 276 | |
---|
[1682] | 277 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 278 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 279 | |
---|
[1682] | 280 | INTEGER(iwp) :: i !< |
---|
| 281 | INTEGER(iwp) :: j !< |
---|
| 282 | INTEGER(iwp) :: k !< |
---|
[1216] | 283 | ! |
---|
| 284 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 285 | !-- by MPI contiguous. |
---|
| 286 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 287 | !-- backward direction!!! |
---|
| 288 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 289 | !$OMP DO |
---|
[3690] | 290 | #if __acc_fft_device |
---|
[3634] | 291 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 292 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 293 | #endif |
---|
[1216] | 294 | DO k = 1, nz |
---|
| 295 | DO i = nxl, nxr |
---|
| 296 | DO j = nys, nyn |
---|
| 297 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 298 | ENDDO |
---|
| 299 | ENDDO |
---|
| 300 | ENDDO |
---|
| 301 | !$OMP END PARALLEL |
---|
| 302 | |
---|
| 303 | END SUBROUTINE resort_for_xz |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | !------------------------------------------------------------------------------! |
---|
| 307 | ! Description: |
---|
| 308 | ! ------------ |
---|
[1682] | 309 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 310 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 311 | !> elements along z reside on the same PE. |
---|
[1] | 312 | !------------------------------------------------------------------------------! |
---|
[1682] | 313 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 314 | |
---|
[1682] | 315 | |
---|
[1320] | 316 | USE cpulog, & |
---|
| 317 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 318 | |
---|
[1320] | 319 | USE indices, & |
---|
[3241] | 320 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
[1320] | 321 | |
---|
| 322 | USE kinds |
---|
| 323 | |
---|
[1324] | 324 | USE pegrid |
---|
[1320] | 325 | |
---|
| 326 | USE transpose_indices, & |
---|
| 327 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 328 | |
---|
[1] | 329 | IMPLICIT NONE |
---|
| 330 | |
---|
[1682] | 331 | INTEGER(iwp) :: i !< |
---|
| 332 | INTEGER(iwp) :: j !< |
---|
| 333 | INTEGER(iwp) :: k !< |
---|
| 334 | INTEGER(iwp) :: l !< |
---|
| 335 | INTEGER(iwp) :: xs !< |
---|
[1] | 336 | |
---|
[1682] | 337 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 338 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 339 | |
---|
[1682] | 340 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 341 | #if __acc_fft_device |
---|
[3634] | 342 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 343 | #endif |
---|
[1111] | 344 | |
---|
[1320] | 345 | |
---|
[1] | 346 | ! |
---|
| 347 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 348 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 349 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 350 | |
---|
| 351 | #if defined( __parallel ) |
---|
[1] | 352 | ! |
---|
| 353 | !-- Reorder input array for transposition |
---|
[1111] | 354 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 355 | !$OMP DO |
---|
[1] | 356 | DO l = 0, pdims(1) - 1 |
---|
| 357 | xs = 0 + l * nnx |
---|
[3690] | 358 | #if __acc_fft_device |
---|
[3634] | 359 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 360 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 361 | #endif |
---|
[1003] | 362 | DO k = nzb_x, nzt_x |
---|
[164] | 363 | DO i = xs, xs + nnx - 1 |
---|
[1003] | 364 | DO j = nys_x, nyn_x |
---|
[1111] | 365 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 366 | ENDDO |
---|
| 367 | ENDDO |
---|
| 368 | ENDDO |
---|
| 369 | ENDDO |
---|
[683] | 370 | !$OMP END PARALLEL |
---|
[1] | 371 | |
---|
| 372 | ! |
---|
| 373 | !-- Transpose array |
---|
[1318] | 374 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 375 | |
---|
| 376 | #if __acc_fft_device |
---|
[3657] | 377 | #ifndef __cuda_aware_mpi |
---|
[3634] | 378 | !$ACC UPDATE HOST(work) |
---|
[3657] | 379 | #else |
---|
| 380 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 381 | #endif |
---|
[3690] | 382 | #endif |
---|
| 383 | |
---|
[622] | 384 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 385 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 386 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 387 | comm1dx, ierr ) |
---|
[3690] | 388 | |
---|
| 389 | #if __acc_fft_device |
---|
[3657] | 390 | #ifndef __cuda_aware_mpi |
---|
[3634] | 391 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 392 | #else |
---|
| 393 | !$ACC END HOST_DATA |
---|
| 394 | #endif |
---|
[3694] | 395 | #endif |
---|
| 396 | |
---|
[1] | 397 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 398 | #endif |
---|
| 399 | |
---|
[1] | 400 | ELSE |
---|
[1106] | 401 | |
---|
[1] | 402 | ! |
---|
| 403 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 404 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 405 | !$OMP DO |
---|
[3690] | 406 | #if __acc_fft_device |
---|
[3634] | 407 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 408 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 409 | #endif |
---|
[1003] | 410 | DO i = nxl, nxr |
---|
| 411 | DO j = nys, nyn |
---|
| 412 | DO k = 1, nz |
---|
[164] | 413 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | ENDDO |
---|
[683] | 417 | !$OMP END PARALLEL |
---|
[1] | 418 | |
---|
[164] | 419 | ENDIF |
---|
| 420 | |
---|
[1] | 421 | END SUBROUTINE transpose_xz |
---|
| 422 | |
---|
| 423 | |
---|
| 424 | !------------------------------------------------------------------------------! |
---|
| 425 | ! Description: |
---|
| 426 | ! ------------ |
---|
[1682] | 427 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 428 | !> is carried out in transpose_yx |
---|
[1216] | 429 | !------------------------------------------------------------------------------! |
---|
[1682] | 430 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 431 | |
---|
[1682] | 432 | |
---|
[1320] | 433 | USE indices, & |
---|
| 434 | ONLY: nx |
---|
[1216] | 435 | |
---|
[1320] | 436 | USE kinds |
---|
| 437 | |
---|
| 438 | USE transpose_indices, & |
---|
| 439 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 440 | |
---|
[1216] | 441 | IMPLICIT NONE |
---|
| 442 | |
---|
[1682] | 443 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 444 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 445 | |
---|
| 446 | |
---|
[1682] | 447 | INTEGER(iwp) :: i !< |
---|
| 448 | INTEGER(iwp) :: j !< |
---|
| 449 | INTEGER(iwp) :: k !< |
---|
[1216] | 450 | ! |
---|
| 451 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 452 | !-- by MPI contiguous |
---|
| 453 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 454 | !$OMP DO |
---|
[3690] | 455 | #if __acc_fft_device |
---|
[3634] | 456 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 457 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 458 | #endif |
---|
[1216] | 459 | DO i = 0, nx |
---|
| 460 | DO k = nzb_x, nzt_x |
---|
| 461 | DO j = nys_x, nyn_x |
---|
| 462 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 463 | ENDDO |
---|
| 464 | ENDDO |
---|
| 465 | ENDDO |
---|
| 466 | !$OMP END PARALLEL |
---|
| 467 | |
---|
| 468 | END SUBROUTINE resort_for_yx |
---|
| 469 | |
---|
| 470 | |
---|
| 471 | !------------------------------------------------------------------------------! |
---|
| 472 | ! Description: |
---|
| 473 | ! ------------ |
---|
[1682] | 474 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 475 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 476 | !> elements along x reside on the same PE. |
---|
[1] | 477 | !------------------------------------------------------------------------------! |
---|
[1682] | 478 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 479 | |
---|
[1682] | 480 | |
---|
[1320] | 481 | USE cpulog, & |
---|
| 482 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 483 | |
---|
[1320] | 484 | USE indices, & |
---|
| 485 | ONLY: nx, ny |
---|
| 486 | |
---|
| 487 | USE kinds |
---|
| 488 | |
---|
[1324] | 489 | USE pegrid |
---|
[1320] | 490 | |
---|
| 491 | USE transpose_indices, & |
---|
| 492 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 493 | |
---|
[1] | 494 | IMPLICIT NONE |
---|
| 495 | |
---|
[1682] | 496 | INTEGER(iwp) :: i !< |
---|
| 497 | INTEGER(iwp) :: j !< |
---|
| 498 | INTEGER(iwp) :: k !< |
---|
| 499 | INTEGER(iwp) :: l !< |
---|
| 500 | INTEGER(iwp) :: ys !< |
---|
[1] | 501 | |
---|
[1682] | 502 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 503 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 504 | |
---|
[1682] | 505 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 506 | #if __acc_fft_device |
---|
[3634] | 507 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 508 | #endif |
---|
[1111] | 509 | |
---|
[1320] | 510 | |
---|
[1106] | 511 | IF ( numprocs /= 1 ) THEN |
---|
| 512 | |
---|
[1] | 513 | #if defined( __parallel ) |
---|
| 514 | ! |
---|
[1106] | 515 | !-- Reorder input array for transposition |
---|
[1111] | 516 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 517 | !$OMP DO |
---|
[1106] | 518 | DO l = 0, pdims(2) - 1 |
---|
| 519 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 520 | #if __acc_fft_device |
---|
[3634] | 521 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 522 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 523 | #endif |
---|
[1106] | 524 | DO i = nxl_y, nxr_y |
---|
| 525 | DO k = nzb_y, nzt_y |
---|
| 526 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 527 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 528 | ENDDO |
---|
| 529 | ENDDO |
---|
| 530 | ENDDO |
---|
| 531 | ENDDO |
---|
| 532 | !$OMP END PARALLEL |
---|
| 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Transpose array |
---|
[1318] | 536 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 537 | |
---|
| 538 | #if __acc_fft_device |
---|
[3657] | 539 | #ifndef __cuda_aware_mpi |
---|
[3634] | 540 | !$ACC UPDATE HOST(work) |
---|
[3657] | 541 | #else |
---|
| 542 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 543 | #endif |
---|
[3690] | 544 | #endif |
---|
| 545 | |
---|
[1106] | 546 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 547 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 548 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 549 | comm1dy, ierr ) |
---|
[3690] | 550 | |
---|
| 551 | #if __acc_fft_device |
---|
[3657] | 552 | #ifndef __cuda_aware_mpi |
---|
[3634] | 553 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 554 | #else |
---|
| 555 | !$ACC END HOST_DATA |
---|
| 556 | #endif |
---|
[3690] | 557 | #endif |
---|
| 558 | |
---|
[1106] | 559 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 560 | #endif |
---|
| 561 | |
---|
| 562 | ELSE |
---|
| 563 | |
---|
| 564 | ! |
---|
| 565 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 566 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 567 | !$OMP DO |
---|
[3690] | 568 | #if __acc_fft_device |
---|
[3634] | 569 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 570 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 571 | #endif |
---|
[1003] | 572 | DO i = nxl_y, nxr_y |
---|
| 573 | DO k = nzb_y, nzt_y |
---|
[1106] | 574 | DO j = 0, ny |
---|
| 575 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 576 | ENDDO |
---|
| 577 | ENDDO |
---|
| 578 | ENDDO |
---|
[683] | 579 | !$OMP END PARALLEL |
---|
[1] | 580 | |
---|
[1106] | 581 | ENDIF |
---|
[1] | 582 | |
---|
| 583 | END SUBROUTINE transpose_yx |
---|
| 584 | |
---|
| 585 | |
---|
| 586 | !------------------------------------------------------------------------------! |
---|
| 587 | ! Description: |
---|
| 588 | ! ------------ |
---|
[1682] | 589 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 590 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 591 | !> elements along x reside on the same PE. |
---|
| 592 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 593 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 594 | !------------------------------------------------------------------------------! |
---|
[1682] | 595 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 596 | |
---|
[1682] | 597 | |
---|
[1320] | 598 | USE cpulog, & |
---|
[3241] | 599 | ONLY: cpu_log, log_point_s |
---|
[1] | 600 | |
---|
[1320] | 601 | USE indices, & |
---|
| 602 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 603 | |
---|
| 604 | USE kinds |
---|
| 605 | |
---|
[1324] | 606 | USE pegrid |
---|
[1320] | 607 | |
---|
| 608 | USE transpose_indices, & |
---|
| 609 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 610 | |
---|
[1] | 611 | IMPLICIT NONE |
---|
| 612 | |
---|
[1682] | 613 | INTEGER(iwp) :: i !< |
---|
| 614 | INTEGER(iwp) :: j !< |
---|
| 615 | INTEGER(iwp) :: k !< |
---|
| 616 | INTEGER(iwp) :: l !< |
---|
| 617 | INTEGER(iwp) :: m !< |
---|
| 618 | INTEGER(iwp) :: xs !< |
---|
[1] | 619 | |
---|
[1682] | 620 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 621 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 622 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 623 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 624 | #if defined( __parallel ) |
---|
| 625 | |
---|
| 626 | ! |
---|
| 627 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 628 | !-- by MPI contiguous |
---|
[1003] | 629 | DO k = 1, nz |
---|
| 630 | DO j = nys, nyn |
---|
| 631 | DO i = nxl, nxr |
---|
[164] | 632 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 633 | ENDDO |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | |
---|
| 637 | ! |
---|
| 638 | !-- Transpose array |
---|
| 639 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 640 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 641 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 642 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 643 | comm1dx, ierr ) |
---|
| 644 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 645 | |
---|
| 646 | ! |
---|
| 647 | !-- Reorder transposed array |
---|
| 648 | m = 0 |
---|
| 649 | DO l = 0, pdims(1) - 1 |
---|
| 650 | xs = 0 + l * nnx |
---|
[1003] | 651 | DO j = nys_x, nyn_x |
---|
| 652 | DO k = 1, nz |
---|
[1] | 653 | DO i = xs, xs + nnx - 1 |
---|
| 654 | m = m + 1 |
---|
[164] | 655 | f_out(i,j,k) = work(m) |
---|
[1] | 656 | ENDDO |
---|
| 657 | ENDDO |
---|
| 658 | ENDDO |
---|
| 659 | ENDDO |
---|
| 660 | |
---|
| 661 | #endif |
---|
| 662 | |
---|
| 663 | END SUBROUTINE transpose_yxd |
---|
| 664 | |
---|
| 665 | |
---|
| 666 | !------------------------------------------------------------------------------! |
---|
| 667 | ! Description: |
---|
| 668 | ! ------------ |
---|
[1682] | 669 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 670 | !> is carried out in transpose_yz |
---|
[1216] | 671 | !------------------------------------------------------------------------------! |
---|
[1682] | 672 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 673 | |
---|
[1682] | 674 | |
---|
[1320] | 675 | USE indices, & |
---|
| 676 | ONLY: ny |
---|
[1216] | 677 | |
---|
[1320] | 678 | USE kinds |
---|
| 679 | |
---|
| 680 | USE transpose_indices, & |
---|
| 681 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 682 | |
---|
[1216] | 683 | IMPLICIT NONE |
---|
| 684 | |
---|
[1682] | 685 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 686 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 687 | |
---|
[1682] | 688 | INTEGER(iwp) :: i !< |
---|
| 689 | INTEGER(iwp) :: j !< |
---|
| 690 | INTEGER(iwp) :: k !< |
---|
[1216] | 691 | |
---|
| 692 | ! |
---|
| 693 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 694 | !-- by MPI contiguous |
---|
| 695 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 696 | !$OMP DO |
---|
[3690] | 697 | #if __acc_fft_device |
---|
[3634] | 698 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 699 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 700 | #endif |
---|
[1216] | 701 | DO j = 0, ny |
---|
| 702 | DO k = nzb_y, nzt_y |
---|
| 703 | DO i = nxl_y, nxr_y |
---|
| 704 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 705 | ENDDO |
---|
| 706 | ENDDO |
---|
| 707 | ENDDO |
---|
| 708 | !$OMP END PARALLEL |
---|
| 709 | |
---|
| 710 | END SUBROUTINE resort_for_yz |
---|
| 711 | |
---|
| 712 | |
---|
| 713 | !------------------------------------------------------------------------------! |
---|
| 714 | ! Description: |
---|
| 715 | ! ------------ |
---|
[1682] | 716 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 717 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 718 | !> elements along z reside on the same PE. |
---|
[1] | 719 | !------------------------------------------------------------------------------! |
---|
[1682] | 720 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 721 | |
---|
[1682] | 722 | |
---|
[1320] | 723 | USE cpulog, & |
---|
| 724 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 725 | |
---|
[1320] | 726 | USE indices, & |
---|
| 727 | ONLY: ny, nz |
---|
| 728 | |
---|
| 729 | USE kinds |
---|
| 730 | |
---|
[1324] | 731 | USE pegrid |
---|
[1320] | 732 | |
---|
| 733 | USE transpose_indices, & |
---|
| 734 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 735 | |
---|
[1] | 736 | IMPLICIT NONE |
---|
| 737 | |
---|
[1682] | 738 | INTEGER(iwp) :: i !< |
---|
| 739 | INTEGER(iwp) :: j !< |
---|
| 740 | INTEGER(iwp) :: k !< |
---|
| 741 | INTEGER(iwp) :: l !< |
---|
| 742 | INTEGER(iwp) :: zs !< |
---|
[1] | 743 | |
---|
[1682] | 744 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 745 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 746 | |
---|
[1682] | 747 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 748 | #if __acc_fft_device |
---|
[3634] | 749 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 750 | #endif |
---|
[1111] | 751 | |
---|
[1320] | 752 | |
---|
[1] | 753 | ! |
---|
| 754 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 755 | !-- of the data is necessary and no transposition has to be done. |
---|
| 756 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 757 | |
---|
[683] | 758 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 759 | !$OMP DO |
---|
[3690] | 760 | #if __acc_fft_device |
---|
[3634] | 761 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 762 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 763 | #endif |
---|
[1003] | 764 | DO j = 0, ny |
---|
| 765 | DO k = nzb_y, nzt_y |
---|
| 766 | DO i = nxl_y, nxr_y |
---|
[164] | 767 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 768 | ENDDO |
---|
| 769 | ENDDO |
---|
| 770 | ENDDO |
---|
[683] | 771 | !$OMP END PARALLEL |
---|
[1] | 772 | |
---|
[1106] | 773 | ELSE |
---|
| 774 | |
---|
| 775 | #if defined( __parallel ) |
---|
[1] | 776 | ! |
---|
[1106] | 777 | !-- Transpose array |
---|
[1318] | 778 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 779 | |
---|
| 780 | #if __acc_fft_device |
---|
[3657] | 781 | #ifndef __cuda_aware_mpi |
---|
[3634] | 782 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 783 | #else |
---|
| 784 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 785 | #endif |
---|
[3690] | 786 | #endif |
---|
| 787 | |
---|
[1106] | 788 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 789 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 790 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 791 | comm1dx, ierr ) |
---|
[3690] | 792 | |
---|
| 793 | #if __acc_fft_device |
---|
[3657] | 794 | #ifndef __cuda_aware_mpi |
---|
[3634] | 795 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 796 | #else |
---|
| 797 | !$ACC END HOST_DATA |
---|
| 798 | #endif |
---|
[3690] | 799 | #endif |
---|
| 800 | |
---|
[1106] | 801 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 802 | |
---|
| 803 | ! |
---|
[1106] | 804 | !-- Reorder transposed array |
---|
[1111] | 805 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 806 | !$OMP DO |
---|
[1106] | 807 | DO l = 0, pdims(1) - 1 |
---|
| 808 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 809 | #if __acc_fft_device |
---|
[3634] | 810 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 811 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 812 | #endif |
---|
[1106] | 813 | DO j = nys_z, nyn_z |
---|
| 814 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 815 | DO i = nxl_z, nxr_z |
---|
[1111] | 816 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 817 | ENDDO |
---|
[1] | 818 | ENDDO |
---|
| 819 | ENDDO |
---|
| 820 | ENDDO |
---|
[683] | 821 | !$OMP END PARALLEL |
---|
[1] | 822 | #endif |
---|
| 823 | |
---|
[1106] | 824 | ENDIF |
---|
| 825 | |
---|
[1] | 826 | END SUBROUTINE transpose_yz |
---|
| 827 | |
---|
| 828 | |
---|
| 829 | !------------------------------------------------------------------------------! |
---|
| 830 | ! Description: |
---|
| 831 | ! ------------ |
---|
[1682] | 832 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 833 | !> is carried out in transpose_zx |
---|
[1216] | 834 | !------------------------------------------------------------------------------! |
---|
[1682] | 835 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 836 | |
---|
[1682] | 837 | |
---|
[1320] | 838 | USE indices, & |
---|
| 839 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 840 | |
---|
[1320] | 841 | USE kinds |
---|
| 842 | |
---|
[1216] | 843 | IMPLICIT NONE |
---|
| 844 | |
---|
[1682] | 845 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 846 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 847 | |
---|
[1682] | 848 | INTEGER(iwp) :: i !< |
---|
| 849 | INTEGER(iwp) :: j !< |
---|
| 850 | INTEGER(iwp) :: k !< |
---|
[1216] | 851 | |
---|
| 852 | ! |
---|
| 853 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 854 | !-- by MPI contiguous |
---|
| 855 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 856 | !$OMP DO |
---|
[3690] | 857 | #if __acc_fft_device |
---|
[3634] | 858 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 859 | !$ACC PRESENT(f_in, f_inv) |
---|
[3690] | 860 | #endif |
---|
[3832] | 861 | DO i = nxl, nxr |
---|
| 862 | DO k = 1,nz |
---|
[1216] | 863 | DO j = nys, nyn |
---|
| 864 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 865 | ENDDO |
---|
| 866 | ENDDO |
---|
| 867 | ENDDO |
---|
| 868 | !$OMP END PARALLEL |
---|
| 869 | |
---|
| 870 | END SUBROUTINE resort_for_zx |
---|
| 871 | |
---|
| 872 | |
---|
| 873 | !------------------------------------------------------------------------------! |
---|
| 874 | ! Description: |
---|
| 875 | ! ------------ |
---|
[1682] | 876 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 877 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 878 | !> elements along x reside on the same PE. |
---|
[1] | 879 | !------------------------------------------------------------------------------! |
---|
[1682] | 880 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 881 | |
---|
[1682] | 882 | |
---|
[1320] | 883 | USE cpulog, & |
---|
| 884 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 885 | |
---|
[1320] | 886 | USE indices, & |
---|
| 887 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 888 | |
---|
| 889 | USE kinds |
---|
| 890 | |
---|
[1324] | 891 | USE pegrid |
---|
[1320] | 892 | |
---|
| 893 | USE transpose_indices, & |
---|
| 894 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 895 | |
---|
[1] | 896 | IMPLICIT NONE |
---|
| 897 | |
---|
[1682] | 898 | INTEGER(iwp) :: i !< |
---|
| 899 | INTEGER(iwp) :: j !< |
---|
| 900 | INTEGER(iwp) :: k !< |
---|
| 901 | INTEGER(iwp) :: l !< |
---|
| 902 | INTEGER(iwp) :: xs !< |
---|
[1] | 903 | |
---|
[1682] | 904 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 905 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 906 | |
---|
[1682] | 907 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 908 | #if __acc_fft_device |
---|
[3634] | 909 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 910 | #endif |
---|
[1] | 911 | |
---|
[1320] | 912 | |
---|
[1] | 913 | ! |
---|
| 914 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 915 | !-- of the data is necessary and no transposition has to be done. |
---|
| 916 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 917 | |
---|
[683] | 918 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 919 | !$OMP DO |
---|
[3690] | 920 | #if __acc_fft_device |
---|
[3634] | 921 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 922 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 923 | #endif |
---|
[1003] | 924 | DO k = 1, nz |
---|
| 925 | DO i = nxl, nxr |
---|
| 926 | DO j = nys, nyn |
---|
[164] | 927 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 928 | ENDDO |
---|
| 929 | ENDDO |
---|
| 930 | ENDDO |
---|
[683] | 931 | !$OMP END PARALLEL |
---|
[1] | 932 | |
---|
[1106] | 933 | ELSE |
---|
| 934 | |
---|
| 935 | #if defined( __parallel ) |
---|
[1] | 936 | ! |
---|
[1106] | 937 | !-- Transpose array |
---|
[1318] | 938 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 939 | |
---|
| 940 | #if __acc_fft_device |
---|
[3657] | 941 | #ifndef __cuda_aware_mpi |
---|
[3634] | 942 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 943 | #else |
---|
| 944 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 945 | #endif |
---|
[3690] | 946 | #endif |
---|
| 947 | |
---|
[1106] | 948 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 949 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 950 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 951 | comm1dx, ierr ) |
---|
[3690] | 952 | |
---|
| 953 | #if __acc_fft_device |
---|
[3657] | 954 | #ifndef __cuda_aware_mpi |
---|
[3634] | 955 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 956 | #else |
---|
| 957 | !$ACC END HOST_DATA |
---|
| 958 | #endif |
---|
[3690] | 959 | #endif |
---|
| 960 | |
---|
[1106] | 961 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 962 | |
---|
| 963 | ! |
---|
[1106] | 964 | !-- Reorder transposed array |
---|
[1111] | 965 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 966 | !$OMP DO |
---|
[1106] | 967 | DO l = 0, pdims(1) - 1 |
---|
| 968 | xs = 0 + l * nnx |
---|
[3690] | 969 | #if __acc_fft_device |
---|
[3634] | 970 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 971 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 972 | #endif |
---|
[1106] | 973 | DO k = nzb_x, nzt_x |
---|
| 974 | DO i = xs, xs + nnx - 1 |
---|
| 975 | DO j = nys_x, nyn_x |
---|
[1111] | 976 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 977 | ENDDO |
---|
[1] | 978 | ENDDO |
---|
| 979 | ENDDO |
---|
| 980 | ENDDO |
---|
[683] | 981 | !$OMP END PARALLEL |
---|
[1] | 982 | #endif |
---|
| 983 | |
---|
[1106] | 984 | ENDIF |
---|
| 985 | |
---|
[1] | 986 | END SUBROUTINE transpose_zx |
---|
| 987 | |
---|
| 988 | |
---|
| 989 | !------------------------------------------------------------------------------! |
---|
| 990 | ! Description: |
---|
| 991 | ! ------------ |
---|
[1682] | 992 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 993 | !> is carried out in transpose_zy |
---|
[1216] | 994 | !------------------------------------------------------------------------------! |
---|
[1682] | 995 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 996 | |
---|
[1682] | 997 | |
---|
[1320] | 998 | USE indices, & |
---|
| 999 | ONLY: ny |
---|
[1216] | 1000 | |
---|
[1320] | 1001 | USE kinds |
---|
| 1002 | |
---|
| 1003 | USE transpose_indices, & |
---|
| 1004 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 1005 | |
---|
[1216] | 1006 | IMPLICIT NONE |
---|
| 1007 | |
---|
[1682] | 1008 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 1009 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 1010 | |
---|
| 1011 | |
---|
[1682] | 1012 | INTEGER(iwp) :: i !< |
---|
| 1013 | INTEGER(iwp) :: j !< |
---|
| 1014 | INTEGER(iwp) :: k !< |
---|
[1216] | 1015 | |
---|
| 1016 | ! |
---|
| 1017 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1018 | !-- by MPI contiguous |
---|
| 1019 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1020 | !$OMP DO |
---|
[3690] | 1021 | #if __acc_fft_device |
---|
[3634] | 1022 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1023 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 1024 | #endif |
---|
[3832] | 1025 | DO j = 0, ny |
---|
| 1026 | DO k = nzb_y, nzt_y |
---|
[1216] | 1027 | DO i = nxl_y, nxr_y |
---|
| 1028 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 1029 | ENDDO |
---|
| 1030 | ENDDO |
---|
| 1031 | ENDDO |
---|
| 1032 | !$OMP END PARALLEL |
---|
| 1033 | |
---|
| 1034 | END SUBROUTINE resort_for_zy |
---|
| 1035 | |
---|
| 1036 | |
---|
| 1037 | !------------------------------------------------------------------------------! |
---|
[3241] | 1038 | ! Description:cpu_log_nowait |
---|
[1216] | 1039 | ! ------------ |
---|
[1682] | 1040 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1041 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1042 | !> elements along y reside on the same PE. |
---|
[1] | 1043 | !------------------------------------------------------------------------------! |
---|
[1682] | 1044 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 1045 | |
---|
[1682] | 1046 | |
---|
[1320] | 1047 | USE cpulog, & |
---|
| 1048 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 1049 | |
---|
[1320] | 1050 | USE indices, & |
---|
| 1051 | ONLY: ny, nz |
---|
| 1052 | |
---|
| 1053 | USE kinds |
---|
| 1054 | |
---|
[1324] | 1055 | USE pegrid |
---|
[1320] | 1056 | |
---|
| 1057 | USE transpose_indices, & |
---|
| 1058 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 1059 | |
---|
[1] | 1060 | IMPLICIT NONE |
---|
| 1061 | |
---|
[1682] | 1062 | INTEGER(iwp) :: i !< |
---|
| 1063 | INTEGER(iwp) :: j !< |
---|
| 1064 | INTEGER(iwp) :: k !< |
---|
| 1065 | INTEGER(iwp) :: l !< |
---|
| 1066 | INTEGER(iwp) :: zs !< |
---|
[1] | 1067 | |
---|
[1682] | 1068 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 1069 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 1070 | |
---|
[1682] | 1071 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 1072 | #if __acc_fft_device |
---|
[3634] | 1073 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 1074 | #endif |
---|
[1111] | 1075 | |
---|
[1] | 1076 | ! |
---|
| 1077 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 1078 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 1079 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 1080 | |
---|
| 1081 | #if defined( __parallel ) |
---|
[1] | 1082 | ! |
---|
| 1083 | !-- Reorder input array for transposition |
---|
[1111] | 1084 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 1085 | !$OMP DO |
---|
[1] | 1086 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 1087 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 1088 | #if __acc_fft_device |
---|
[3634] | 1089 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1090 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 1091 | #endif |
---|
[1003] | 1092 | DO j = nys_z, nyn_z |
---|
| 1093 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 1094 | DO i = nxl_z, nxr_z |
---|
[1111] | 1095 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 1096 | ENDDO |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDDO |
---|
| 1099 | ENDDO |
---|
[683] | 1100 | !$OMP END PARALLEL |
---|
[1] | 1101 | |
---|
| 1102 | ! |
---|
| 1103 | !-- Transpose array |
---|
[1318] | 1104 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 1105 | |
---|
| 1106 | #if __acc_fft_device |
---|
[3657] | 1107 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1108 | !$ACC UPDATE HOST(work) |
---|
[3657] | 1109 | #else |
---|
| 1110 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 1111 | #endif |
---|
[3690] | 1112 | #endif |
---|
| 1113 | |
---|
[622] | 1114 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 1115 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 1116 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 1117 | comm1dx, ierr ) |
---|
[3690] | 1118 | |
---|
| 1119 | #if __acc_fft_device |
---|
[3657] | 1120 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1121 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 1122 | #else |
---|
| 1123 | !$ACC END HOST_DATA |
---|
| 1124 | #endif |
---|
[3690] | 1125 | #endif |
---|
| 1126 | |
---|
[1] | 1127 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 1128 | #endif |
---|
[1] | 1129 | |
---|
| 1130 | ELSE |
---|
| 1131 | ! |
---|
[1106] | 1132 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 1133 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1134 | !$OMP DO |
---|
[3690] | 1135 | #if __acc_fft_device |
---|
[3634] | 1136 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1137 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 1138 | #endif |
---|
[1003] | 1139 | DO k = nzb_y, nzt_y |
---|
| 1140 | DO j = 0, ny |
---|
| 1141 | DO i = nxl_y, nxr_y |
---|
[164] | 1142 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 1143 | ENDDO |
---|
| 1144 | ENDDO |
---|
| 1145 | ENDDO |
---|
[683] | 1146 | !$OMP END PARALLEL |
---|
[1106] | 1147 | |
---|
| 1148 | ENDIF |
---|
| 1149 | |
---|
[1] | 1150 | END SUBROUTINE transpose_zy |
---|
| 1151 | |
---|
| 1152 | |
---|
| 1153 | !------------------------------------------------------------------------------! |
---|
| 1154 | ! Description: |
---|
| 1155 | ! ------------ |
---|
[1682] | 1156 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 1157 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 1158 | !> elements along y reside on the same PE. |
---|
| 1159 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 1160 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 1161 | !------------------------------------------------------------------------------! |
---|
[1682] | 1162 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 1163 | |
---|
[1682] | 1164 | |
---|
[1320] | 1165 | USE cpulog, & |
---|
[3241] | 1166 | ONLY: cpu_log, log_point_s |
---|
[1] | 1167 | |
---|
[1320] | 1168 | USE indices, & |
---|
| 1169 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 1170 | |
---|
| 1171 | USE kinds |
---|
| 1172 | |
---|
[1324] | 1173 | USE pegrid |
---|
[1320] | 1174 | |
---|
| 1175 | USE transpose_indices, & |
---|
[3241] | 1176 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
[1320] | 1177 | |
---|
[1] | 1178 | IMPLICIT NONE |
---|
| 1179 | |
---|
[1682] | 1180 | INTEGER(iwp) :: i !< |
---|
| 1181 | INTEGER(iwp) :: j !< |
---|
| 1182 | INTEGER(iwp) :: k !< |
---|
| 1183 | INTEGER(iwp) :: l !< |
---|
| 1184 | INTEGER(iwp) :: m !< |
---|
| 1185 | INTEGER(iwp) :: ys !< |
---|
[1] | 1186 | |
---|
[1682] | 1187 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 1188 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1189 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 1190 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 1191 | |
---|
[1] | 1192 | #if defined( __parallel ) |
---|
| 1193 | |
---|
| 1194 | ! |
---|
| 1195 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1196 | !-- by MPI contiguous |
---|
[1003] | 1197 | DO i = nxl, nxr |
---|
| 1198 | DO j = nys, nyn |
---|
| 1199 | DO k = 1, nz |
---|
[164] | 1200 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1201 | ENDDO |
---|
| 1202 | ENDDO |
---|
| 1203 | ENDDO |
---|
| 1204 | |
---|
| 1205 | ! |
---|
| 1206 | !-- Move data to different array, because memory location of work1 is |
---|
| 1207 | !-- needed further below (work1 = work2). |
---|
| 1208 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1209 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1210 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1211 | DO k = 1, nz |
---|
| 1212 | DO i = nxl, nxr |
---|
| 1213 | DO j = nys, nyn |
---|
[164] | 1214 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1215 | ENDDO |
---|
| 1216 | ENDDO |
---|
| 1217 | ENDDO |
---|
| 1218 | RETURN |
---|
| 1219 | ENDIF |
---|
| 1220 | |
---|
| 1221 | ! |
---|
| 1222 | !-- Transpose array |
---|
| 1223 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1224 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1225 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1226 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1227 | comm1dy, ierr ) |
---|
| 1228 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1229 | |
---|
| 1230 | ! |
---|
| 1231 | !-- Reorder transposed array |
---|
| 1232 | m = 0 |
---|
| 1233 | DO l = 0, pdims(2) - 1 |
---|
| 1234 | ys = 0 + l * nny |
---|
[1003] | 1235 | DO k = nzb_yd, nzt_yd |
---|
| 1236 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1237 | DO j = ys, ys + nny - 1 |
---|
| 1238 | m = m + 1 |
---|
[164] | 1239 | f_out(j,i,k) = work(m) |
---|
[1] | 1240 | ENDDO |
---|
| 1241 | ENDDO |
---|
| 1242 | ENDDO |
---|
| 1243 | ENDDO |
---|
| 1244 | |
---|
| 1245 | #endif |
---|
| 1246 | |
---|
| 1247 | END SUBROUTINE transpose_zyd |
---|