[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 3241 2018-09-12 15:02:00Z raasch $ |
---|
[3241] | 27 | ! unused variables removed |
---|
| 28 | ! |
---|
| 29 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 30 | ! Corrected "Former revisions" section |
---|
| 31 | ! |
---|
| 32 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 33 | ! Change in file header (GPL part) |
---|
[1321] | 34 | ! |
---|
[2716] | 35 | ! 2119 2017-01-17 16:51:50Z raasch |
---|
| 36 | ! |
---|
[2119] | 37 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 38 | ! OpenACC directives removed |
---|
| 39 | ! |
---|
[2001] | 40 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 41 | ! Forced header and separation lines into 80 columns |
---|
| 42 | ! |
---|
[1683] | 43 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 44 | ! Code annotations made doxygen readable |
---|
| 45 | ! |
---|
[1325] | 46 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
| 47 | ! Bugfix: ONLY statement for module pegrid removed |
---|
| 48 | ! |
---|
[1321] | 49 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 50 | ! ONLY-attribute added to USE-statements, |
---|
| 51 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 52 | ! kinds are defined in new module kinds, |
---|
| 53 | ! old module precision_kind is removed, |
---|
| 54 | ! revision history before 2012 removed, |
---|
| 55 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 56 | ! all variable declaration statements |
---|
[198] | 57 | ! |
---|
[1319] | 58 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 59 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
| 60 | ! required for solving the Poisson equation (poisfft), |
---|
| 61 | ! module interfaces removed |
---|
| 62 | ! |
---|
[1258] | 63 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 64 | ! openacc loop and loop vector clauses removed |
---|
| 65 | ! |
---|
[1217] | 66 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 67 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
| 68 | ! routines resort_for_... |
---|
| 69 | ! |
---|
[1112] | 70 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 71 | ! openACC directives added, |
---|
| 72 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
| 73 | ! |
---|
[1107] | 74 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 75 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 76 | ! (non-parallel) mode |
---|
| 77 | ! |
---|
[1093] | 78 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 79 | ! unused variables removed |
---|
| 80 | ! |
---|
[1037] | 81 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 82 | ! code put under GPL (PALM 3.9) |
---|
| 83 | ! |
---|
[1004] | 84 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 85 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 86 | ! |
---|
[1] | 87 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 88 | ! Initial revision |
---|
| 89 | ! |
---|
[1216] | 90 | !------------------------------------------------------------------------------! |
---|
| 91 | ! Description: |
---|
| 92 | ! ------------ |
---|
[1682] | 93 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 94 | !> is carried out in transpose_xy |
---|
[1216] | 95 | !------------------------------------------------------------------------------! |
---|
[1682] | 96 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
| 97 | |
---|
[1216] | 98 | |
---|
[1320] | 99 | USE indices, & |
---|
| 100 | ONLY: nx |
---|
[1216] | 101 | |
---|
[1320] | 102 | USE kinds |
---|
| 103 | |
---|
| 104 | USE transpose_indices, & |
---|
[3241] | 105 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
[1320] | 106 | |
---|
[1216] | 107 | IMPLICIT NONE |
---|
| 108 | |
---|
[1682] | 109 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 110 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 111 | |
---|
| 112 | |
---|
[1682] | 113 | INTEGER(iwp) :: i !< |
---|
| 114 | INTEGER(iwp) :: j !< |
---|
| 115 | INTEGER(iwp) :: k !< |
---|
[1] | 116 | ! |
---|
[1216] | 117 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 118 | !-- by MPI contiguous |
---|
| 119 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 120 | !$OMP DO |
---|
| 121 | DO i = 0, nx |
---|
| 122 | DO k = nzb_x, nzt_x |
---|
| 123 | DO j = nys_x, nyn_x |
---|
| 124 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 125 | ENDDO |
---|
| 126 | ENDDO |
---|
| 127 | ENDDO |
---|
| 128 | !$OMP END PARALLEL |
---|
| 129 | |
---|
| 130 | END SUBROUTINE resort_for_xy |
---|
| 131 | |
---|
| 132 | |
---|
| 133 | !------------------------------------------------------------------------------! |
---|
[1] | 134 | ! Description: |
---|
| 135 | ! ------------ |
---|
[1682] | 136 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 137 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 138 | !> elements along y reside on the same PE. |
---|
[1] | 139 | !------------------------------------------------------------------------------! |
---|
[1682] | 140 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 141 | |
---|
[1682] | 142 | |
---|
[1320] | 143 | USE cpulog, & |
---|
| 144 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 145 | |
---|
| 146 | USE indices, & |
---|
| 147 | ONLY: nx, ny |
---|
| 148 | |
---|
| 149 | USE kinds |
---|
| 150 | |
---|
[1] | 151 | USE pegrid |
---|
| 152 | |
---|
[1320] | 153 | USE transpose_indices, & |
---|
| 154 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 155 | |
---|
[1] | 156 | IMPLICIT NONE |
---|
| 157 | |
---|
[1682] | 158 | INTEGER(iwp) :: i !< |
---|
| 159 | INTEGER(iwp) :: j !< |
---|
| 160 | INTEGER(iwp) :: k !< |
---|
| 161 | INTEGER(iwp) :: l !< |
---|
| 162 | INTEGER(iwp) :: ys !< |
---|
[1320] | 163 | |
---|
[1682] | 164 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 165 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1] | 166 | |
---|
[1682] | 167 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[1111] | 168 | |
---|
| 169 | |
---|
[1106] | 170 | IF ( numprocs /= 1 ) THEN |
---|
| 171 | |
---|
| 172 | #if defined( __parallel ) |
---|
[1] | 173 | ! |
---|
[1106] | 174 | !-- Transpose array |
---|
[1318] | 175 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 176 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 177 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 178 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 179 | comm1dy, ierr ) |
---|
| 180 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 181 | |
---|
| 182 | ! |
---|
[1106] | 183 | !-- Reorder transposed array |
---|
[1111] | 184 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 185 | !$OMP DO |
---|
[1106] | 186 | DO l = 0, pdims(2) - 1 |
---|
| 187 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
| 188 | DO i = nxl_y, nxr_y |
---|
| 189 | DO k = nzb_y, nzt_y |
---|
| 190 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 191 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 192 | ENDDO |
---|
[1] | 193 | ENDDO |
---|
| 194 | ENDDO |
---|
| 195 | ENDDO |
---|
[683] | 196 | !$OMP END PARALLEL |
---|
[1] | 197 | #endif |
---|
| 198 | |
---|
[1106] | 199 | ELSE |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- Reorder transposed array |
---|
| 203 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 204 | !$OMP DO |
---|
| 205 | DO k = nzb_y, nzt_y |
---|
| 206 | DO i = nxl_y, nxr_y |
---|
| 207 | DO j = 0, ny |
---|
| 208 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | !$OMP END PARALLEL |
---|
| 213 | |
---|
| 214 | ENDIF |
---|
| 215 | |
---|
[1] | 216 | END SUBROUTINE transpose_xy |
---|
| 217 | |
---|
| 218 | |
---|
| 219 | !------------------------------------------------------------------------------! |
---|
| 220 | ! Description: |
---|
| 221 | ! ------------ |
---|
[1682] | 222 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 223 | !> is carried out in transpose_xz |
---|
[1216] | 224 | !------------------------------------------------------------------------------! |
---|
[1682] | 225 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 226 | |
---|
[1682] | 227 | |
---|
[1320] | 228 | USE indices, & |
---|
| 229 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 230 | |
---|
[1320] | 231 | USE kinds |
---|
| 232 | |
---|
[1216] | 233 | IMPLICIT NONE |
---|
| 234 | |
---|
[1682] | 235 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 236 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 237 | |
---|
[1682] | 238 | INTEGER(iwp) :: i !< |
---|
| 239 | INTEGER(iwp) :: j !< |
---|
| 240 | INTEGER(iwp) :: k !< |
---|
[1216] | 241 | ! |
---|
| 242 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 243 | !-- by MPI contiguous. |
---|
| 244 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 245 | !-- backward direction!!! |
---|
| 246 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 247 | !$OMP DO |
---|
| 248 | DO k = 1, nz |
---|
| 249 | DO i = nxl, nxr |
---|
| 250 | DO j = nys, nyn |
---|
| 251 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 252 | ENDDO |
---|
| 253 | ENDDO |
---|
| 254 | ENDDO |
---|
| 255 | !$OMP END PARALLEL |
---|
| 256 | |
---|
| 257 | END SUBROUTINE resort_for_xz |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | !------------------------------------------------------------------------------! |
---|
| 261 | ! Description: |
---|
| 262 | ! ------------ |
---|
[1682] | 263 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 264 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 265 | !> elements along z reside on the same PE. |
---|
[1] | 266 | !------------------------------------------------------------------------------! |
---|
[1682] | 267 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 268 | |
---|
[1682] | 269 | |
---|
[1320] | 270 | USE cpulog, & |
---|
| 271 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 272 | |
---|
[1320] | 273 | USE indices, & |
---|
[3241] | 274 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
[1320] | 275 | |
---|
| 276 | USE kinds |
---|
| 277 | |
---|
[1324] | 278 | USE pegrid |
---|
[1320] | 279 | |
---|
| 280 | USE transpose_indices, & |
---|
| 281 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 282 | |
---|
[1] | 283 | IMPLICIT NONE |
---|
| 284 | |
---|
[1682] | 285 | INTEGER(iwp) :: i !< |
---|
| 286 | INTEGER(iwp) :: j !< |
---|
| 287 | INTEGER(iwp) :: k !< |
---|
| 288 | INTEGER(iwp) :: l !< |
---|
| 289 | INTEGER(iwp) :: xs !< |
---|
[1] | 290 | |
---|
[1682] | 291 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 292 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 293 | |
---|
[1682] | 294 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[1111] | 295 | |
---|
[1320] | 296 | |
---|
[1] | 297 | ! |
---|
| 298 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 299 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 300 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 301 | |
---|
| 302 | #if defined( __parallel ) |
---|
[1] | 303 | ! |
---|
| 304 | !-- Reorder input array for transposition |
---|
[1111] | 305 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 306 | !$OMP DO |
---|
[1] | 307 | DO l = 0, pdims(1) - 1 |
---|
| 308 | xs = 0 + l * nnx |
---|
[1003] | 309 | DO k = nzb_x, nzt_x |
---|
[164] | 310 | DO i = xs, xs + nnx - 1 |
---|
[1003] | 311 | DO j = nys_x, nyn_x |
---|
[1111] | 312 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 313 | ENDDO |
---|
| 314 | ENDDO |
---|
| 315 | ENDDO |
---|
| 316 | ENDDO |
---|
[683] | 317 | !$OMP END PARALLEL |
---|
[1] | 318 | |
---|
| 319 | ! |
---|
| 320 | !-- Transpose array |
---|
[1318] | 321 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 322 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 323 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 324 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 325 | comm1dx, ierr ) |
---|
| 326 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 327 | #endif |
---|
| 328 | |
---|
[1] | 329 | ELSE |
---|
[1106] | 330 | |
---|
[1] | 331 | ! |
---|
| 332 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 333 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 334 | !$OMP DO |
---|
[1003] | 335 | DO i = nxl, nxr |
---|
| 336 | DO j = nys, nyn |
---|
| 337 | DO k = 1, nz |
---|
[164] | 338 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 339 | ENDDO |
---|
| 340 | ENDDO |
---|
| 341 | ENDDO |
---|
[683] | 342 | !$OMP END PARALLEL |
---|
[1] | 343 | |
---|
[164] | 344 | ENDIF |
---|
| 345 | |
---|
[1] | 346 | END SUBROUTINE transpose_xz |
---|
| 347 | |
---|
| 348 | |
---|
| 349 | !------------------------------------------------------------------------------! |
---|
| 350 | ! Description: |
---|
| 351 | ! ------------ |
---|
[1682] | 352 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 353 | !> is carried out in transpose_yx |
---|
[1216] | 354 | !------------------------------------------------------------------------------! |
---|
[1682] | 355 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 356 | |
---|
[1682] | 357 | |
---|
[1320] | 358 | USE indices, & |
---|
| 359 | ONLY: nx |
---|
[1216] | 360 | |
---|
[1320] | 361 | USE kinds |
---|
| 362 | |
---|
| 363 | USE transpose_indices, & |
---|
| 364 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 365 | |
---|
[1216] | 366 | IMPLICIT NONE |
---|
| 367 | |
---|
[1682] | 368 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 369 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 370 | |
---|
| 371 | |
---|
[1682] | 372 | INTEGER(iwp) :: i !< |
---|
| 373 | INTEGER(iwp) :: j !< |
---|
| 374 | INTEGER(iwp) :: k !< |
---|
[1216] | 375 | ! |
---|
| 376 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 377 | !-- by MPI contiguous |
---|
| 378 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 379 | !$OMP DO |
---|
| 380 | DO i = 0, nx |
---|
| 381 | DO k = nzb_x, nzt_x |
---|
| 382 | DO j = nys_x, nyn_x |
---|
| 383 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 384 | ENDDO |
---|
| 385 | ENDDO |
---|
| 386 | ENDDO |
---|
| 387 | !$OMP END PARALLEL |
---|
| 388 | |
---|
| 389 | END SUBROUTINE resort_for_yx |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | !------------------------------------------------------------------------------! |
---|
| 393 | ! Description: |
---|
| 394 | ! ------------ |
---|
[1682] | 395 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 396 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 397 | !> elements along x reside on the same PE. |
---|
[1] | 398 | !------------------------------------------------------------------------------! |
---|
[1682] | 399 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 400 | |
---|
[1682] | 401 | |
---|
[1320] | 402 | USE cpulog, & |
---|
| 403 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 404 | |
---|
[1320] | 405 | USE indices, & |
---|
| 406 | ONLY: nx, ny |
---|
| 407 | |
---|
| 408 | USE kinds |
---|
| 409 | |
---|
[1324] | 410 | USE pegrid |
---|
[1320] | 411 | |
---|
| 412 | USE transpose_indices, & |
---|
| 413 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 414 | |
---|
[1] | 415 | IMPLICIT NONE |
---|
| 416 | |
---|
[1682] | 417 | INTEGER(iwp) :: i !< |
---|
| 418 | INTEGER(iwp) :: j !< |
---|
| 419 | INTEGER(iwp) :: k !< |
---|
| 420 | INTEGER(iwp) :: l !< |
---|
| 421 | INTEGER(iwp) :: ys !< |
---|
[1] | 422 | |
---|
[1682] | 423 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 424 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 425 | |
---|
[1682] | 426 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[1111] | 427 | |
---|
[1320] | 428 | |
---|
[1106] | 429 | IF ( numprocs /= 1 ) THEN |
---|
| 430 | |
---|
[1] | 431 | #if defined( __parallel ) |
---|
| 432 | ! |
---|
[1106] | 433 | !-- Reorder input array for transposition |
---|
[1111] | 434 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 435 | !$OMP DO |
---|
[1106] | 436 | DO l = 0, pdims(2) - 1 |
---|
| 437 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
| 438 | DO i = nxl_y, nxr_y |
---|
| 439 | DO k = nzb_y, nzt_y |
---|
| 440 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 441 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 442 | ENDDO |
---|
| 443 | ENDDO |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
| 446 | !$OMP END PARALLEL |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- Transpose array |
---|
[1318] | 450 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 451 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 452 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 453 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 454 | comm1dy, ierr ) |
---|
| 455 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 456 | #endif |
---|
| 457 | |
---|
| 458 | ELSE |
---|
| 459 | |
---|
| 460 | ! |
---|
| 461 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 462 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 463 | !$OMP DO |
---|
[1003] | 464 | DO i = nxl_y, nxr_y |
---|
| 465 | DO k = nzb_y, nzt_y |
---|
[1106] | 466 | DO j = 0, ny |
---|
| 467 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 468 | ENDDO |
---|
| 469 | ENDDO |
---|
| 470 | ENDDO |
---|
[683] | 471 | !$OMP END PARALLEL |
---|
[1] | 472 | |
---|
[1106] | 473 | ENDIF |
---|
[1] | 474 | |
---|
| 475 | END SUBROUTINE transpose_yx |
---|
| 476 | |
---|
| 477 | |
---|
| 478 | !------------------------------------------------------------------------------! |
---|
| 479 | ! Description: |
---|
| 480 | ! ------------ |
---|
[1682] | 481 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 482 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 483 | !> elements along x reside on the same PE. |
---|
| 484 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 485 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 486 | !------------------------------------------------------------------------------! |
---|
[1682] | 487 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 488 | |
---|
[1682] | 489 | |
---|
[1320] | 490 | USE cpulog, & |
---|
[3241] | 491 | ONLY: cpu_log, log_point_s |
---|
[1] | 492 | |
---|
[1320] | 493 | USE indices, & |
---|
| 494 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 495 | |
---|
| 496 | USE kinds |
---|
| 497 | |
---|
[1324] | 498 | USE pegrid |
---|
[1320] | 499 | |
---|
| 500 | USE transpose_indices, & |
---|
| 501 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 502 | |
---|
[1] | 503 | IMPLICIT NONE |
---|
| 504 | |
---|
[1682] | 505 | INTEGER(iwp) :: i !< |
---|
| 506 | INTEGER(iwp) :: j !< |
---|
| 507 | INTEGER(iwp) :: k !< |
---|
| 508 | INTEGER(iwp) :: l !< |
---|
| 509 | INTEGER(iwp) :: m !< |
---|
| 510 | INTEGER(iwp) :: xs !< |
---|
[1] | 511 | |
---|
[1682] | 512 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 513 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 514 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 515 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 516 | #if defined( __parallel ) |
---|
| 517 | |
---|
| 518 | ! |
---|
| 519 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 520 | !-- by MPI contiguous |
---|
[1003] | 521 | DO k = 1, nz |
---|
| 522 | DO j = nys, nyn |
---|
| 523 | DO i = nxl, nxr |
---|
[164] | 524 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 525 | ENDDO |
---|
| 526 | ENDDO |
---|
| 527 | ENDDO |
---|
| 528 | |
---|
| 529 | ! |
---|
| 530 | !-- Transpose array |
---|
| 531 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 532 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 533 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 534 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 535 | comm1dx, ierr ) |
---|
| 536 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 537 | |
---|
| 538 | ! |
---|
| 539 | !-- Reorder transposed array |
---|
| 540 | m = 0 |
---|
| 541 | DO l = 0, pdims(1) - 1 |
---|
| 542 | xs = 0 + l * nnx |
---|
[1003] | 543 | DO j = nys_x, nyn_x |
---|
| 544 | DO k = 1, nz |
---|
[1] | 545 | DO i = xs, xs + nnx - 1 |
---|
| 546 | m = m + 1 |
---|
[164] | 547 | f_out(i,j,k) = work(m) |
---|
[1] | 548 | ENDDO |
---|
| 549 | ENDDO |
---|
| 550 | ENDDO |
---|
| 551 | ENDDO |
---|
| 552 | |
---|
| 553 | #endif |
---|
| 554 | |
---|
| 555 | END SUBROUTINE transpose_yxd |
---|
| 556 | |
---|
| 557 | |
---|
| 558 | !------------------------------------------------------------------------------! |
---|
| 559 | ! Description: |
---|
| 560 | ! ------------ |
---|
[1682] | 561 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 562 | !> is carried out in transpose_yz |
---|
[1216] | 563 | !------------------------------------------------------------------------------! |
---|
[1682] | 564 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 565 | |
---|
[1682] | 566 | |
---|
[1320] | 567 | USE indices, & |
---|
| 568 | ONLY: ny |
---|
[1216] | 569 | |
---|
[1320] | 570 | USE kinds |
---|
| 571 | |
---|
| 572 | USE transpose_indices, & |
---|
| 573 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 574 | |
---|
[1216] | 575 | IMPLICIT NONE |
---|
| 576 | |
---|
[1682] | 577 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 578 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 579 | |
---|
[1682] | 580 | INTEGER(iwp) :: i !< |
---|
| 581 | INTEGER(iwp) :: j !< |
---|
| 582 | INTEGER(iwp) :: k !< |
---|
[1216] | 583 | |
---|
| 584 | ! |
---|
| 585 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 586 | !-- by MPI contiguous |
---|
| 587 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 588 | !$OMP DO |
---|
| 589 | DO j = 0, ny |
---|
| 590 | DO k = nzb_y, nzt_y |
---|
| 591 | DO i = nxl_y, nxr_y |
---|
| 592 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 593 | ENDDO |
---|
| 594 | ENDDO |
---|
| 595 | ENDDO |
---|
| 596 | !$OMP END PARALLEL |
---|
| 597 | |
---|
| 598 | END SUBROUTINE resort_for_yz |
---|
| 599 | |
---|
| 600 | |
---|
| 601 | !------------------------------------------------------------------------------! |
---|
| 602 | ! Description: |
---|
| 603 | ! ------------ |
---|
[1682] | 604 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 605 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 606 | !> elements along z reside on the same PE. |
---|
[1] | 607 | !------------------------------------------------------------------------------! |
---|
[1682] | 608 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 609 | |
---|
[1682] | 610 | |
---|
[1320] | 611 | USE cpulog, & |
---|
| 612 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 613 | |
---|
[1320] | 614 | USE indices, & |
---|
| 615 | ONLY: ny, nz |
---|
| 616 | |
---|
| 617 | USE kinds |
---|
| 618 | |
---|
[1324] | 619 | USE pegrid |
---|
[1320] | 620 | |
---|
| 621 | USE transpose_indices, & |
---|
| 622 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 623 | |
---|
[1] | 624 | IMPLICIT NONE |
---|
| 625 | |
---|
[1682] | 626 | INTEGER(iwp) :: i !< |
---|
| 627 | INTEGER(iwp) :: j !< |
---|
| 628 | INTEGER(iwp) :: k !< |
---|
| 629 | INTEGER(iwp) :: l !< |
---|
| 630 | INTEGER(iwp) :: zs !< |
---|
[1] | 631 | |
---|
[1682] | 632 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 633 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 634 | |
---|
[1682] | 635 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[1111] | 636 | |
---|
[1320] | 637 | |
---|
[1] | 638 | ! |
---|
| 639 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 640 | !-- of the data is necessary and no transposition has to be done. |
---|
| 641 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 642 | |
---|
[683] | 643 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 644 | !$OMP DO |
---|
[1003] | 645 | DO j = 0, ny |
---|
| 646 | DO k = nzb_y, nzt_y |
---|
| 647 | DO i = nxl_y, nxr_y |
---|
[164] | 648 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 649 | ENDDO |
---|
| 650 | ENDDO |
---|
| 651 | ENDDO |
---|
[683] | 652 | !$OMP END PARALLEL |
---|
[1] | 653 | |
---|
[1106] | 654 | ELSE |
---|
| 655 | |
---|
| 656 | #if defined( __parallel ) |
---|
[1] | 657 | ! |
---|
[1106] | 658 | !-- Transpose array |
---|
[1318] | 659 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 660 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 661 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 662 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 663 | comm1dx, ierr ) |
---|
| 664 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 665 | |
---|
| 666 | ! |
---|
[1106] | 667 | !-- Reorder transposed array |
---|
[1111] | 668 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 669 | !$OMP DO |
---|
[1106] | 670 | DO l = 0, pdims(1) - 1 |
---|
| 671 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
| 672 | DO j = nys_z, nyn_z |
---|
| 673 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 674 | DO i = nxl_z, nxr_z |
---|
[1111] | 675 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 676 | ENDDO |
---|
[1] | 677 | ENDDO |
---|
| 678 | ENDDO |
---|
| 679 | ENDDO |
---|
[683] | 680 | !$OMP END PARALLEL |
---|
[1] | 681 | #endif |
---|
| 682 | |
---|
[1106] | 683 | ENDIF |
---|
| 684 | |
---|
[1] | 685 | END SUBROUTINE transpose_yz |
---|
| 686 | |
---|
| 687 | |
---|
| 688 | !------------------------------------------------------------------------------! |
---|
| 689 | ! Description: |
---|
| 690 | ! ------------ |
---|
[1682] | 691 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 692 | !> is carried out in transpose_zx |
---|
[1216] | 693 | !------------------------------------------------------------------------------! |
---|
[1682] | 694 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 695 | |
---|
[1682] | 696 | |
---|
[1320] | 697 | USE indices, & |
---|
| 698 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 699 | |
---|
[1320] | 700 | USE kinds |
---|
| 701 | |
---|
[1216] | 702 | IMPLICIT NONE |
---|
| 703 | |
---|
[1682] | 704 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 705 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 706 | |
---|
[1682] | 707 | INTEGER(iwp) :: i !< |
---|
| 708 | INTEGER(iwp) :: j !< |
---|
| 709 | INTEGER(iwp) :: k !< |
---|
[1216] | 710 | |
---|
| 711 | ! |
---|
| 712 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 713 | !-- by MPI contiguous |
---|
| 714 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 715 | !$OMP DO |
---|
| 716 | DO k = 1,nz |
---|
| 717 | DO i = nxl, nxr |
---|
| 718 | DO j = nys, nyn |
---|
| 719 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 720 | ENDDO |
---|
| 721 | ENDDO |
---|
| 722 | ENDDO |
---|
| 723 | !$OMP END PARALLEL |
---|
| 724 | |
---|
| 725 | END SUBROUTINE resort_for_zx |
---|
| 726 | |
---|
| 727 | |
---|
| 728 | !------------------------------------------------------------------------------! |
---|
| 729 | ! Description: |
---|
| 730 | ! ------------ |
---|
[1682] | 731 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 732 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 733 | !> elements along x reside on the same PE. |
---|
[1] | 734 | !------------------------------------------------------------------------------! |
---|
[1682] | 735 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 736 | |
---|
[1682] | 737 | |
---|
[1320] | 738 | USE cpulog, & |
---|
| 739 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 740 | |
---|
[1320] | 741 | USE indices, & |
---|
| 742 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 743 | |
---|
| 744 | USE kinds |
---|
| 745 | |
---|
[1324] | 746 | USE pegrid |
---|
[1320] | 747 | |
---|
| 748 | USE transpose_indices, & |
---|
| 749 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 750 | |
---|
[1] | 751 | IMPLICIT NONE |
---|
| 752 | |
---|
[1682] | 753 | INTEGER(iwp) :: i !< |
---|
| 754 | INTEGER(iwp) :: j !< |
---|
| 755 | INTEGER(iwp) :: k !< |
---|
| 756 | INTEGER(iwp) :: l !< |
---|
| 757 | INTEGER(iwp) :: xs !< |
---|
[1] | 758 | |
---|
[1682] | 759 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 760 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 761 | |
---|
[1682] | 762 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[1] | 763 | |
---|
[1320] | 764 | |
---|
[1] | 765 | ! |
---|
| 766 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 767 | !-- of the data is necessary and no transposition has to be done. |
---|
| 768 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 769 | |
---|
[683] | 770 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 771 | !$OMP DO |
---|
[1003] | 772 | DO k = 1, nz |
---|
| 773 | DO i = nxl, nxr |
---|
| 774 | DO j = nys, nyn |
---|
[164] | 775 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 776 | ENDDO |
---|
| 777 | ENDDO |
---|
| 778 | ENDDO |
---|
[683] | 779 | !$OMP END PARALLEL |
---|
[1] | 780 | |
---|
[1106] | 781 | ELSE |
---|
| 782 | |
---|
| 783 | #if defined( __parallel ) |
---|
[1] | 784 | ! |
---|
[1106] | 785 | !-- Transpose array |
---|
[1318] | 786 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 787 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 788 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 789 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 790 | comm1dx, ierr ) |
---|
| 791 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 792 | |
---|
| 793 | ! |
---|
[1106] | 794 | !-- Reorder transposed array |
---|
[1111] | 795 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 796 | !$OMP DO |
---|
[1106] | 797 | DO l = 0, pdims(1) - 1 |
---|
| 798 | xs = 0 + l * nnx |
---|
| 799 | DO k = nzb_x, nzt_x |
---|
| 800 | DO i = xs, xs + nnx - 1 |
---|
| 801 | DO j = nys_x, nyn_x |
---|
[1111] | 802 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 803 | ENDDO |
---|
[1] | 804 | ENDDO |
---|
| 805 | ENDDO |
---|
| 806 | ENDDO |
---|
[683] | 807 | !$OMP END PARALLEL |
---|
[1] | 808 | #endif |
---|
| 809 | |
---|
[1106] | 810 | ENDIF |
---|
| 811 | |
---|
[1] | 812 | END SUBROUTINE transpose_zx |
---|
| 813 | |
---|
| 814 | |
---|
| 815 | !------------------------------------------------------------------------------! |
---|
| 816 | ! Description: |
---|
| 817 | ! ------------ |
---|
[1682] | 818 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 819 | !> is carried out in transpose_zy |
---|
[1216] | 820 | !------------------------------------------------------------------------------! |
---|
[1682] | 821 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 822 | |
---|
[1682] | 823 | |
---|
[1320] | 824 | USE indices, & |
---|
| 825 | ONLY: ny |
---|
[1216] | 826 | |
---|
[1320] | 827 | USE kinds |
---|
| 828 | |
---|
| 829 | USE transpose_indices, & |
---|
| 830 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 831 | |
---|
[1216] | 832 | IMPLICIT NONE |
---|
| 833 | |
---|
[1682] | 834 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 835 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 836 | |
---|
| 837 | |
---|
[1682] | 838 | INTEGER(iwp) :: i !< |
---|
| 839 | INTEGER(iwp) :: j !< |
---|
| 840 | INTEGER(iwp) :: k !< |
---|
[1216] | 841 | |
---|
| 842 | ! |
---|
| 843 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 844 | !-- by MPI contiguous |
---|
| 845 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 846 | !$OMP DO |
---|
| 847 | DO k = nzb_y, nzt_y |
---|
| 848 | DO j = 0, ny |
---|
| 849 | DO i = nxl_y, nxr_y |
---|
| 850 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 851 | ENDDO |
---|
| 852 | ENDDO |
---|
| 853 | ENDDO |
---|
| 854 | !$OMP END PARALLEL |
---|
| 855 | |
---|
| 856 | END SUBROUTINE resort_for_zy |
---|
| 857 | |
---|
| 858 | |
---|
| 859 | !------------------------------------------------------------------------------! |
---|
[3241] | 860 | ! Description:cpu_log_nowait |
---|
[1216] | 861 | ! ------------ |
---|
[1682] | 862 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 863 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 864 | !> elements along y reside on the same PE. |
---|
[1] | 865 | !------------------------------------------------------------------------------! |
---|
[1682] | 866 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 867 | |
---|
[1682] | 868 | |
---|
[1320] | 869 | USE cpulog, & |
---|
| 870 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 871 | |
---|
[1320] | 872 | USE indices, & |
---|
| 873 | ONLY: ny, nz |
---|
| 874 | |
---|
| 875 | USE kinds |
---|
| 876 | |
---|
[1324] | 877 | USE pegrid |
---|
[1320] | 878 | |
---|
| 879 | USE transpose_indices, & |
---|
| 880 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 881 | |
---|
[1] | 882 | IMPLICIT NONE |
---|
| 883 | |
---|
[1682] | 884 | INTEGER(iwp) :: i !< |
---|
| 885 | INTEGER(iwp) :: j !< |
---|
| 886 | INTEGER(iwp) :: k !< |
---|
| 887 | INTEGER(iwp) :: l !< |
---|
| 888 | INTEGER(iwp) :: zs !< |
---|
[1] | 889 | |
---|
[1682] | 890 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 891 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 892 | |
---|
[1682] | 893 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[1111] | 894 | |
---|
[1] | 895 | ! |
---|
| 896 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 897 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 898 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 899 | |
---|
| 900 | #if defined( __parallel ) |
---|
[1] | 901 | ! |
---|
| 902 | !-- Reorder input array for transposition |
---|
[1111] | 903 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 904 | !$OMP DO |
---|
[1] | 905 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 906 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
| 907 | DO j = nys_z, nyn_z |
---|
| 908 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 909 | DO i = nxl_z, nxr_z |
---|
[1111] | 910 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 911 | ENDDO |
---|
| 912 | ENDDO |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
[683] | 915 | !$OMP END PARALLEL |
---|
[1] | 916 | |
---|
| 917 | ! |
---|
| 918 | !-- Transpose array |
---|
[1318] | 919 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 920 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 921 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 922 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 923 | comm1dx, ierr ) |
---|
| 924 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 925 | #endif |
---|
[1] | 926 | |
---|
| 927 | ELSE |
---|
| 928 | ! |
---|
[1106] | 929 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 930 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 931 | !$OMP DO |
---|
[1003] | 932 | DO k = nzb_y, nzt_y |
---|
| 933 | DO j = 0, ny |
---|
| 934 | DO i = nxl_y, nxr_y |
---|
[164] | 935 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 936 | ENDDO |
---|
| 937 | ENDDO |
---|
| 938 | ENDDO |
---|
[683] | 939 | !$OMP END PARALLEL |
---|
[1106] | 940 | |
---|
| 941 | ENDIF |
---|
| 942 | |
---|
[1] | 943 | END SUBROUTINE transpose_zy |
---|
| 944 | |
---|
| 945 | |
---|
| 946 | !------------------------------------------------------------------------------! |
---|
| 947 | ! Description: |
---|
| 948 | ! ------------ |
---|
[1682] | 949 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 950 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 951 | !> elements along y reside on the same PE. |
---|
| 952 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 953 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 954 | !------------------------------------------------------------------------------! |
---|
[1682] | 955 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 956 | |
---|
[1682] | 957 | |
---|
[1320] | 958 | USE cpulog, & |
---|
[3241] | 959 | ONLY: cpu_log, log_point_s |
---|
[1] | 960 | |
---|
[1320] | 961 | USE indices, & |
---|
| 962 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 963 | |
---|
| 964 | USE kinds |
---|
| 965 | |
---|
[1324] | 966 | USE pegrid |
---|
[1320] | 967 | |
---|
| 968 | USE transpose_indices, & |
---|
[3241] | 969 | ONLY: nxl_yd, nxr_yd, nzb_yd, nzt_yd |
---|
[1320] | 970 | |
---|
[1] | 971 | IMPLICIT NONE |
---|
| 972 | |
---|
[1682] | 973 | INTEGER(iwp) :: i !< |
---|
| 974 | INTEGER(iwp) :: j !< |
---|
| 975 | INTEGER(iwp) :: k !< |
---|
| 976 | INTEGER(iwp) :: l !< |
---|
| 977 | INTEGER(iwp) :: m !< |
---|
| 978 | INTEGER(iwp) :: ys !< |
---|
[1] | 979 | |
---|
[1682] | 980 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 981 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 982 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 983 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 984 | |
---|
[1] | 985 | #if defined( __parallel ) |
---|
| 986 | |
---|
| 987 | ! |
---|
| 988 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 989 | !-- by MPI contiguous |
---|
[1003] | 990 | DO i = nxl, nxr |
---|
| 991 | DO j = nys, nyn |
---|
| 992 | DO k = 1, nz |
---|
[164] | 993 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 994 | ENDDO |
---|
| 995 | ENDDO |
---|
| 996 | ENDDO |
---|
| 997 | |
---|
| 998 | ! |
---|
| 999 | !-- Move data to different array, because memory location of work1 is |
---|
| 1000 | !-- needed further below (work1 = work2). |
---|
| 1001 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1002 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1003 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1004 | DO k = 1, nz |
---|
| 1005 | DO i = nxl, nxr |
---|
| 1006 | DO j = nys, nyn |
---|
[164] | 1007 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1008 | ENDDO |
---|
| 1009 | ENDDO |
---|
| 1010 | ENDDO |
---|
| 1011 | RETURN |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Transpose array |
---|
| 1016 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1017 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1018 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1019 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1020 | comm1dy, ierr ) |
---|
| 1021 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- Reorder transposed array |
---|
| 1025 | m = 0 |
---|
| 1026 | DO l = 0, pdims(2) - 1 |
---|
| 1027 | ys = 0 + l * nny |
---|
[1003] | 1028 | DO k = nzb_yd, nzt_yd |
---|
| 1029 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1030 | DO j = ys, ys + nny - 1 |
---|
| 1031 | m = m + 1 |
---|
[164] | 1032 | f_out(j,i,k) = work(m) |
---|
[1] | 1033 | ENDDO |
---|
| 1034 | ENDDO |
---|
| 1035 | ENDDO |
---|
| 1036 | ENDDO |
---|
| 1037 | |
---|
| 1038 | #endif |
---|
| 1039 | |
---|
| 1040 | END SUBROUTINE transpose_zyd |
---|