[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 2119 2017-01-17 16:51:50Z kanani $ |
---|
| 27 | ! |
---|
[2119] | 28 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 29 | ! OpenACC directives removed |
---|
| 30 | ! |
---|
[2001] | 31 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 32 | ! Forced header and separation lines into 80 columns |
---|
| 33 | ! |
---|
[1683] | 34 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 35 | ! Code annotations made doxygen readable |
---|
| 36 | ! |
---|
[1325] | 37 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
| 38 | ! Bugfix: ONLY statement for module pegrid removed |
---|
| 39 | ! |
---|
[1321] | 40 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 41 | ! ONLY-attribute added to USE-statements, |
---|
| 42 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 43 | ! kinds are defined in new module kinds, |
---|
| 44 | ! old module precision_kind is removed, |
---|
| 45 | ! revision history before 2012 removed, |
---|
| 46 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 47 | ! all variable declaration statements |
---|
[198] | 48 | ! |
---|
[1319] | 49 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 50 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
| 51 | ! required for solving the Poisson equation (poisfft), |
---|
| 52 | ! module interfaces removed |
---|
| 53 | ! |
---|
[1258] | 54 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 55 | ! openacc loop and loop vector clauses removed |
---|
| 56 | ! |
---|
[1217] | 57 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 58 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
| 59 | ! routines resort_for_... |
---|
| 60 | ! |
---|
[1112] | 61 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 62 | ! openACC directives added, |
---|
| 63 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
| 64 | ! |
---|
[1107] | 65 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 66 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 67 | ! (non-parallel) mode |
---|
| 68 | ! |
---|
[1093] | 69 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 70 | ! unused variables removed |
---|
| 71 | ! |
---|
[1037] | 72 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 73 | ! code put under GPL (PALM 3.9) |
---|
| 74 | ! |
---|
[1004] | 75 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 76 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 77 | ! |
---|
[1] | 78 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 79 | ! Initial revision |
---|
| 80 | ! |
---|
[1216] | 81 | !------------------------------------------------------------------------------! |
---|
| 82 | ! Description: |
---|
| 83 | ! ------------ |
---|
[1682] | 84 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 85 | !> is carried out in transpose_xy |
---|
[1216] | 86 | !------------------------------------------------------------------------------! |
---|
[1682] | 87 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
| 88 | |
---|
[1216] | 89 | |
---|
[1320] | 90 | USE indices, & |
---|
| 91 | ONLY: nx |
---|
[1216] | 92 | |
---|
[1320] | 93 | USE kinds |
---|
| 94 | |
---|
| 95 | USE transpose_indices, & |
---|
| 96 | ONLY: nxl_z, nxr_z, nyn_x, nyn_z, nys_x, nys_z, nzb_x, nzt_x |
---|
| 97 | |
---|
[1216] | 98 | IMPLICIT NONE |
---|
| 99 | |
---|
[1682] | 100 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 101 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 102 | |
---|
| 103 | |
---|
[1682] | 104 | INTEGER(iwp) :: i !< |
---|
| 105 | INTEGER(iwp) :: j !< |
---|
| 106 | INTEGER(iwp) :: k !< |
---|
[1] | 107 | ! |
---|
[1216] | 108 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 109 | !-- by MPI contiguous |
---|
| 110 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 111 | !$OMP DO |
---|
| 112 | DO i = 0, nx |
---|
| 113 | DO k = nzb_x, nzt_x |
---|
| 114 | DO j = nys_x, nyn_x |
---|
| 115 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 116 | ENDDO |
---|
| 117 | ENDDO |
---|
| 118 | ENDDO |
---|
| 119 | !$OMP END PARALLEL |
---|
| 120 | |
---|
| 121 | END SUBROUTINE resort_for_xy |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | !------------------------------------------------------------------------------! |
---|
[1] | 125 | ! Description: |
---|
| 126 | ! ------------ |
---|
[1682] | 127 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 128 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 129 | !> elements along y reside on the same PE. |
---|
[1] | 130 | !------------------------------------------------------------------------------! |
---|
[1682] | 131 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 132 | |
---|
[1682] | 133 | |
---|
[1320] | 134 | USE cpulog, & |
---|
| 135 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 136 | |
---|
| 137 | USE indices, & |
---|
| 138 | ONLY: nx, ny |
---|
| 139 | |
---|
| 140 | USE kinds |
---|
| 141 | |
---|
[1] | 142 | USE pegrid |
---|
| 143 | |
---|
[1320] | 144 | USE transpose_indices, & |
---|
| 145 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 146 | |
---|
[1] | 147 | IMPLICIT NONE |
---|
| 148 | |
---|
[1682] | 149 | INTEGER(iwp) :: i !< |
---|
| 150 | INTEGER(iwp) :: j !< |
---|
| 151 | INTEGER(iwp) :: k !< |
---|
| 152 | INTEGER(iwp) :: l !< |
---|
| 153 | INTEGER(iwp) :: ys !< |
---|
[1320] | 154 | |
---|
[1682] | 155 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 156 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1] | 157 | |
---|
[1682] | 158 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[1111] | 159 | |
---|
| 160 | |
---|
[1106] | 161 | IF ( numprocs /= 1 ) THEN |
---|
| 162 | |
---|
| 163 | #if defined( __parallel ) |
---|
[1] | 164 | ! |
---|
[1106] | 165 | !-- Transpose array |
---|
[1318] | 166 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 167 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 168 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 169 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 170 | comm1dy, ierr ) |
---|
| 171 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 172 | |
---|
| 173 | ! |
---|
[1106] | 174 | !-- Reorder transposed array |
---|
[1111] | 175 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 176 | !$OMP DO |
---|
[1106] | 177 | DO l = 0, pdims(2) - 1 |
---|
| 178 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
| 179 | DO i = nxl_y, nxr_y |
---|
| 180 | DO k = nzb_y, nzt_y |
---|
| 181 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 182 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 183 | ENDDO |
---|
[1] | 184 | ENDDO |
---|
| 185 | ENDDO |
---|
| 186 | ENDDO |
---|
[683] | 187 | !$OMP END PARALLEL |
---|
[1] | 188 | #endif |
---|
| 189 | |
---|
[1106] | 190 | ELSE |
---|
| 191 | |
---|
| 192 | ! |
---|
| 193 | !-- Reorder transposed array |
---|
| 194 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 195 | !$OMP DO |
---|
| 196 | DO k = nzb_y, nzt_y |
---|
| 197 | DO i = nxl_y, nxr_y |
---|
| 198 | DO j = 0, ny |
---|
| 199 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
| 203 | !$OMP END PARALLEL |
---|
| 204 | |
---|
| 205 | ENDIF |
---|
| 206 | |
---|
[1] | 207 | END SUBROUTINE transpose_xy |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | !------------------------------------------------------------------------------! |
---|
| 211 | ! Description: |
---|
| 212 | ! ------------ |
---|
[1682] | 213 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 214 | !> is carried out in transpose_xz |
---|
[1216] | 215 | !------------------------------------------------------------------------------! |
---|
[1682] | 216 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 217 | |
---|
[1682] | 218 | |
---|
[1320] | 219 | USE indices, & |
---|
| 220 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 221 | |
---|
[1320] | 222 | USE kinds |
---|
| 223 | |
---|
[1216] | 224 | IMPLICIT NONE |
---|
| 225 | |
---|
[1682] | 226 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 227 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 228 | |
---|
[1682] | 229 | INTEGER(iwp) :: i !< |
---|
| 230 | INTEGER(iwp) :: j !< |
---|
| 231 | INTEGER(iwp) :: k !< |
---|
[1216] | 232 | ! |
---|
| 233 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 234 | !-- by MPI contiguous. |
---|
| 235 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 236 | !-- backward direction!!! |
---|
| 237 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 238 | !$OMP DO |
---|
| 239 | DO k = 1, nz |
---|
| 240 | DO i = nxl, nxr |
---|
| 241 | DO j = nys, nyn |
---|
| 242 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 243 | ENDDO |
---|
| 244 | ENDDO |
---|
| 245 | ENDDO |
---|
| 246 | !$OMP END PARALLEL |
---|
| 247 | |
---|
| 248 | END SUBROUTINE resort_for_xz |
---|
| 249 | |
---|
| 250 | |
---|
| 251 | !------------------------------------------------------------------------------! |
---|
| 252 | ! Description: |
---|
| 253 | ! ------------ |
---|
[1682] | 254 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 255 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 256 | !> elements along z reside on the same PE. |
---|
[1] | 257 | !------------------------------------------------------------------------------! |
---|
[1682] | 258 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 259 | |
---|
[1682] | 260 | |
---|
[1320] | 261 | USE cpulog, & |
---|
| 262 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 263 | |
---|
[1320] | 264 | USE indices, & |
---|
| 265 | ONLY: nnx, nx, nxl, nxr, ny, nyn, nys, nz |
---|
| 266 | |
---|
| 267 | USE kinds |
---|
| 268 | |
---|
[1324] | 269 | USE pegrid |
---|
[1320] | 270 | |
---|
| 271 | USE transpose_indices, & |
---|
| 272 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 273 | |
---|
[1] | 274 | IMPLICIT NONE |
---|
| 275 | |
---|
[1682] | 276 | INTEGER(iwp) :: i !< |
---|
| 277 | INTEGER(iwp) :: j !< |
---|
| 278 | INTEGER(iwp) :: k !< |
---|
| 279 | INTEGER(iwp) :: l !< |
---|
| 280 | INTEGER(iwp) :: xs !< |
---|
[1] | 281 | |
---|
[1682] | 282 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 283 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 284 | |
---|
[1682] | 285 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[1111] | 286 | |
---|
[1320] | 287 | |
---|
[1] | 288 | ! |
---|
| 289 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 290 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 291 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 292 | |
---|
| 293 | #if defined( __parallel ) |
---|
[1] | 294 | ! |
---|
| 295 | !-- Reorder input array for transposition |
---|
[1111] | 296 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 297 | !$OMP DO |
---|
[1] | 298 | DO l = 0, pdims(1) - 1 |
---|
| 299 | xs = 0 + l * nnx |
---|
[1003] | 300 | DO k = nzb_x, nzt_x |
---|
[164] | 301 | DO i = xs, xs + nnx - 1 |
---|
[1003] | 302 | DO j = nys_x, nyn_x |
---|
[1111] | 303 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 304 | ENDDO |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
[683] | 308 | !$OMP END PARALLEL |
---|
[1] | 309 | |
---|
| 310 | ! |
---|
| 311 | !-- Transpose array |
---|
[1318] | 312 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 313 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 314 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 315 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 316 | comm1dx, ierr ) |
---|
| 317 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 318 | #endif |
---|
| 319 | |
---|
[1] | 320 | ELSE |
---|
[1106] | 321 | |
---|
[1] | 322 | ! |
---|
| 323 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 324 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 325 | !$OMP DO |
---|
[1003] | 326 | DO i = nxl, nxr |
---|
| 327 | DO j = nys, nyn |
---|
| 328 | DO k = 1, nz |
---|
[164] | 329 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 330 | ENDDO |
---|
| 331 | ENDDO |
---|
| 332 | ENDDO |
---|
[683] | 333 | !$OMP END PARALLEL |
---|
[1] | 334 | |
---|
[164] | 335 | ENDIF |
---|
| 336 | |
---|
[1] | 337 | END SUBROUTINE transpose_xz |
---|
| 338 | |
---|
| 339 | |
---|
| 340 | !------------------------------------------------------------------------------! |
---|
| 341 | ! Description: |
---|
| 342 | ! ------------ |
---|
[1682] | 343 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 344 | !> is carried out in transpose_yx |
---|
[1216] | 345 | !------------------------------------------------------------------------------! |
---|
[1682] | 346 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 347 | |
---|
[1682] | 348 | |
---|
[1320] | 349 | USE indices, & |
---|
| 350 | ONLY: nx |
---|
[1216] | 351 | |
---|
[1320] | 352 | USE kinds |
---|
| 353 | |
---|
| 354 | USE transpose_indices, & |
---|
| 355 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 356 | |
---|
[1216] | 357 | IMPLICIT NONE |
---|
| 358 | |
---|
[1682] | 359 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 360 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 361 | |
---|
| 362 | |
---|
[1682] | 363 | INTEGER(iwp) :: i !< |
---|
| 364 | INTEGER(iwp) :: j !< |
---|
| 365 | INTEGER(iwp) :: k !< |
---|
[1216] | 366 | ! |
---|
| 367 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 368 | !-- by MPI contiguous |
---|
| 369 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 370 | !$OMP DO |
---|
| 371 | DO i = 0, nx |
---|
| 372 | DO k = nzb_x, nzt_x |
---|
| 373 | DO j = nys_x, nyn_x |
---|
| 374 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | ENDDO |
---|
| 378 | !$OMP END PARALLEL |
---|
| 379 | |
---|
| 380 | END SUBROUTINE resort_for_yx |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | !------------------------------------------------------------------------------! |
---|
| 384 | ! Description: |
---|
| 385 | ! ------------ |
---|
[1682] | 386 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 387 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 388 | !> elements along x reside on the same PE. |
---|
[1] | 389 | !------------------------------------------------------------------------------! |
---|
[1682] | 390 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 391 | |
---|
[1682] | 392 | |
---|
[1320] | 393 | USE cpulog, & |
---|
| 394 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 395 | |
---|
[1320] | 396 | USE indices, & |
---|
| 397 | ONLY: nx, ny |
---|
| 398 | |
---|
| 399 | USE kinds |
---|
| 400 | |
---|
[1324] | 401 | USE pegrid |
---|
[1320] | 402 | |
---|
| 403 | USE transpose_indices, & |
---|
| 404 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 405 | |
---|
[1] | 406 | IMPLICIT NONE |
---|
| 407 | |
---|
[1682] | 408 | INTEGER(iwp) :: i !< |
---|
| 409 | INTEGER(iwp) :: j !< |
---|
| 410 | INTEGER(iwp) :: k !< |
---|
| 411 | INTEGER(iwp) :: l !< |
---|
| 412 | INTEGER(iwp) :: ys !< |
---|
[1] | 413 | |
---|
[1682] | 414 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 415 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 416 | |
---|
[1682] | 417 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[1111] | 418 | |
---|
[1320] | 419 | |
---|
[1106] | 420 | IF ( numprocs /= 1 ) THEN |
---|
| 421 | |
---|
[1] | 422 | #if defined( __parallel ) |
---|
| 423 | ! |
---|
[1106] | 424 | !-- Reorder input array for transposition |
---|
[1111] | 425 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 426 | !$OMP DO |
---|
[1106] | 427 | DO l = 0, pdims(2) - 1 |
---|
| 428 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
| 429 | DO i = nxl_y, nxr_y |
---|
| 430 | DO k = nzb_y, nzt_y |
---|
| 431 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 432 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | ENDDO |
---|
| 436 | ENDDO |
---|
| 437 | !$OMP END PARALLEL |
---|
| 438 | |
---|
| 439 | ! |
---|
| 440 | !-- Transpose array |
---|
[1318] | 441 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 442 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 443 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 444 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 445 | comm1dy, ierr ) |
---|
| 446 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 447 | #endif |
---|
| 448 | |
---|
| 449 | ELSE |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 453 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 454 | !$OMP DO |
---|
[1003] | 455 | DO i = nxl_y, nxr_y |
---|
| 456 | DO k = nzb_y, nzt_y |
---|
[1106] | 457 | DO j = 0, ny |
---|
| 458 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 459 | ENDDO |
---|
| 460 | ENDDO |
---|
| 461 | ENDDO |
---|
[683] | 462 | !$OMP END PARALLEL |
---|
[1] | 463 | |
---|
[1106] | 464 | ENDIF |
---|
[1] | 465 | |
---|
| 466 | END SUBROUTINE transpose_yx |
---|
| 467 | |
---|
| 468 | |
---|
| 469 | !------------------------------------------------------------------------------! |
---|
| 470 | ! Description: |
---|
| 471 | ! ------------ |
---|
[1682] | 472 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 473 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 474 | !> elements along x reside on the same PE. |
---|
| 475 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 476 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 477 | !------------------------------------------------------------------------------! |
---|
[1682] | 478 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 479 | |
---|
[1682] | 480 | |
---|
[1320] | 481 | USE cpulog, & |
---|
| 482 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 483 | |
---|
[1320] | 484 | USE indices, & |
---|
| 485 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 486 | |
---|
| 487 | USE kinds |
---|
| 488 | |
---|
[1324] | 489 | USE pegrid |
---|
[1320] | 490 | |
---|
| 491 | USE transpose_indices, & |
---|
| 492 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 493 | |
---|
[1] | 494 | IMPLICIT NONE |
---|
| 495 | |
---|
[1682] | 496 | INTEGER(iwp) :: i !< |
---|
| 497 | INTEGER(iwp) :: j !< |
---|
| 498 | INTEGER(iwp) :: k !< |
---|
| 499 | INTEGER(iwp) :: l !< |
---|
| 500 | INTEGER(iwp) :: m !< |
---|
| 501 | INTEGER(iwp) :: xs !< |
---|
[1] | 502 | |
---|
[1682] | 503 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 504 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 505 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 506 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 507 | #if defined( __parallel ) |
---|
| 508 | |
---|
| 509 | ! |
---|
| 510 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 511 | !-- by MPI contiguous |
---|
[1003] | 512 | DO k = 1, nz |
---|
| 513 | DO j = nys, nyn |
---|
| 514 | DO i = nxl, nxr |
---|
[164] | 515 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 516 | ENDDO |
---|
| 517 | ENDDO |
---|
| 518 | ENDDO |
---|
| 519 | |
---|
| 520 | ! |
---|
| 521 | !-- Transpose array |
---|
| 522 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 523 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 524 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 525 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 526 | comm1dx, ierr ) |
---|
| 527 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 528 | |
---|
| 529 | ! |
---|
| 530 | !-- Reorder transposed array |
---|
| 531 | m = 0 |
---|
| 532 | DO l = 0, pdims(1) - 1 |
---|
| 533 | xs = 0 + l * nnx |
---|
[1003] | 534 | DO j = nys_x, nyn_x |
---|
| 535 | DO k = 1, nz |
---|
[1] | 536 | DO i = xs, xs + nnx - 1 |
---|
| 537 | m = m + 1 |
---|
[164] | 538 | f_out(i,j,k) = work(m) |
---|
[1] | 539 | ENDDO |
---|
| 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | ENDDO |
---|
| 543 | |
---|
| 544 | #endif |
---|
| 545 | |
---|
| 546 | END SUBROUTINE transpose_yxd |
---|
| 547 | |
---|
| 548 | |
---|
| 549 | !------------------------------------------------------------------------------! |
---|
| 550 | ! Description: |
---|
| 551 | ! ------------ |
---|
[1682] | 552 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 553 | !> is carried out in transpose_yz |
---|
[1216] | 554 | !------------------------------------------------------------------------------! |
---|
[1682] | 555 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 556 | |
---|
[1682] | 557 | |
---|
[1320] | 558 | USE indices, & |
---|
| 559 | ONLY: ny |
---|
[1216] | 560 | |
---|
[1320] | 561 | USE kinds |
---|
| 562 | |
---|
| 563 | USE transpose_indices, & |
---|
| 564 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 565 | |
---|
[1216] | 566 | IMPLICIT NONE |
---|
| 567 | |
---|
[1682] | 568 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 569 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 570 | |
---|
[1682] | 571 | INTEGER(iwp) :: i !< |
---|
| 572 | INTEGER(iwp) :: j !< |
---|
| 573 | INTEGER(iwp) :: k !< |
---|
[1216] | 574 | |
---|
| 575 | ! |
---|
| 576 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 577 | !-- by MPI contiguous |
---|
| 578 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 579 | !$OMP DO |
---|
| 580 | DO j = 0, ny |
---|
| 581 | DO k = nzb_y, nzt_y |
---|
| 582 | DO i = nxl_y, nxr_y |
---|
| 583 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 584 | ENDDO |
---|
| 585 | ENDDO |
---|
| 586 | ENDDO |
---|
| 587 | !$OMP END PARALLEL |
---|
| 588 | |
---|
| 589 | END SUBROUTINE resort_for_yz |
---|
| 590 | |
---|
| 591 | |
---|
| 592 | !------------------------------------------------------------------------------! |
---|
| 593 | ! Description: |
---|
| 594 | ! ------------ |
---|
[1682] | 595 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 596 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 597 | !> elements along z reside on the same PE. |
---|
[1] | 598 | !------------------------------------------------------------------------------! |
---|
[1682] | 599 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 600 | |
---|
[1682] | 601 | |
---|
[1320] | 602 | USE cpulog, & |
---|
| 603 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 604 | |
---|
[1320] | 605 | USE indices, & |
---|
| 606 | ONLY: ny, nz |
---|
| 607 | |
---|
| 608 | USE kinds |
---|
| 609 | |
---|
[1324] | 610 | USE pegrid |
---|
[1320] | 611 | |
---|
| 612 | USE transpose_indices, & |
---|
| 613 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 614 | |
---|
[1] | 615 | IMPLICIT NONE |
---|
| 616 | |
---|
[1682] | 617 | INTEGER(iwp) :: i !< |
---|
| 618 | INTEGER(iwp) :: j !< |
---|
| 619 | INTEGER(iwp) :: k !< |
---|
| 620 | INTEGER(iwp) :: l !< |
---|
| 621 | INTEGER(iwp) :: zs !< |
---|
[1] | 622 | |
---|
[1682] | 623 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 624 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 625 | |
---|
[1682] | 626 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[1111] | 627 | |
---|
[1320] | 628 | |
---|
[1] | 629 | ! |
---|
| 630 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 631 | !-- of the data is necessary and no transposition has to be done. |
---|
| 632 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 633 | |
---|
[683] | 634 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 635 | !$OMP DO |
---|
[1003] | 636 | DO j = 0, ny |
---|
| 637 | DO k = nzb_y, nzt_y |
---|
| 638 | DO i = nxl_y, nxr_y |
---|
[164] | 639 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | ENDDO |
---|
[683] | 643 | !$OMP END PARALLEL |
---|
[1] | 644 | |
---|
[1106] | 645 | ELSE |
---|
| 646 | |
---|
| 647 | #if defined( __parallel ) |
---|
[1] | 648 | ! |
---|
[1106] | 649 | !-- Transpose array |
---|
[1318] | 650 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 651 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 652 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 653 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 654 | comm1dx, ierr ) |
---|
| 655 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 656 | |
---|
| 657 | ! |
---|
[1106] | 658 | !-- Reorder transposed array |
---|
[1111] | 659 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 660 | !$OMP DO |
---|
[1106] | 661 | DO l = 0, pdims(1) - 1 |
---|
| 662 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
| 663 | DO j = nys_z, nyn_z |
---|
| 664 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 665 | DO i = nxl_z, nxr_z |
---|
[1111] | 666 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 667 | ENDDO |
---|
[1] | 668 | ENDDO |
---|
| 669 | ENDDO |
---|
| 670 | ENDDO |
---|
[683] | 671 | !$OMP END PARALLEL |
---|
[1] | 672 | #endif |
---|
| 673 | |
---|
[1106] | 674 | ENDIF |
---|
| 675 | |
---|
[1] | 676 | END SUBROUTINE transpose_yz |
---|
| 677 | |
---|
| 678 | |
---|
| 679 | !------------------------------------------------------------------------------! |
---|
| 680 | ! Description: |
---|
| 681 | ! ------------ |
---|
[1682] | 682 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 683 | !> is carried out in transpose_zx |
---|
[1216] | 684 | !------------------------------------------------------------------------------! |
---|
[1682] | 685 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 686 | |
---|
[1682] | 687 | |
---|
[1320] | 688 | USE indices, & |
---|
| 689 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 690 | |
---|
[1320] | 691 | USE kinds |
---|
| 692 | |
---|
[1216] | 693 | IMPLICIT NONE |
---|
| 694 | |
---|
[1682] | 695 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 696 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 697 | |
---|
[1682] | 698 | INTEGER(iwp) :: i !< |
---|
| 699 | INTEGER(iwp) :: j !< |
---|
| 700 | INTEGER(iwp) :: k !< |
---|
[1216] | 701 | |
---|
| 702 | ! |
---|
| 703 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 704 | !-- by MPI contiguous |
---|
| 705 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 706 | !$OMP DO |
---|
| 707 | DO k = 1,nz |
---|
| 708 | DO i = nxl, nxr |
---|
| 709 | DO j = nys, nyn |
---|
| 710 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 711 | ENDDO |
---|
| 712 | ENDDO |
---|
| 713 | ENDDO |
---|
| 714 | !$OMP END PARALLEL |
---|
| 715 | |
---|
| 716 | END SUBROUTINE resort_for_zx |
---|
| 717 | |
---|
| 718 | |
---|
| 719 | !------------------------------------------------------------------------------! |
---|
| 720 | ! Description: |
---|
| 721 | ! ------------ |
---|
[1682] | 722 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 723 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 724 | !> elements along x reside on the same PE. |
---|
[1] | 725 | !------------------------------------------------------------------------------! |
---|
[1682] | 726 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 727 | |
---|
[1682] | 728 | |
---|
[1320] | 729 | USE cpulog, & |
---|
| 730 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 731 | |
---|
[1320] | 732 | USE indices, & |
---|
| 733 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 734 | |
---|
| 735 | USE kinds |
---|
| 736 | |
---|
[1324] | 737 | USE pegrid |
---|
[1320] | 738 | |
---|
| 739 | USE transpose_indices, & |
---|
| 740 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 741 | |
---|
[1] | 742 | IMPLICIT NONE |
---|
| 743 | |
---|
[1682] | 744 | INTEGER(iwp) :: i !< |
---|
| 745 | INTEGER(iwp) :: j !< |
---|
| 746 | INTEGER(iwp) :: k !< |
---|
| 747 | INTEGER(iwp) :: l !< |
---|
| 748 | INTEGER(iwp) :: xs !< |
---|
[1] | 749 | |
---|
[1682] | 750 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 751 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 752 | |
---|
[1682] | 753 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[1] | 754 | |
---|
[1320] | 755 | |
---|
[1] | 756 | ! |
---|
| 757 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 758 | !-- of the data is necessary and no transposition has to be done. |
---|
| 759 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 760 | |
---|
[683] | 761 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 762 | !$OMP DO |
---|
[1003] | 763 | DO k = 1, nz |
---|
| 764 | DO i = nxl, nxr |
---|
| 765 | DO j = nys, nyn |
---|
[164] | 766 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 767 | ENDDO |
---|
| 768 | ENDDO |
---|
| 769 | ENDDO |
---|
[683] | 770 | !$OMP END PARALLEL |
---|
[1] | 771 | |
---|
[1106] | 772 | ELSE |
---|
| 773 | |
---|
| 774 | #if defined( __parallel ) |
---|
[1] | 775 | ! |
---|
[1106] | 776 | !-- Transpose array |
---|
[1318] | 777 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 778 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 779 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 780 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 781 | comm1dx, ierr ) |
---|
| 782 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 783 | |
---|
| 784 | ! |
---|
[1106] | 785 | !-- Reorder transposed array |
---|
[1111] | 786 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 787 | !$OMP DO |
---|
[1106] | 788 | DO l = 0, pdims(1) - 1 |
---|
| 789 | xs = 0 + l * nnx |
---|
| 790 | DO k = nzb_x, nzt_x |
---|
| 791 | DO i = xs, xs + nnx - 1 |
---|
| 792 | DO j = nys_x, nyn_x |
---|
[1111] | 793 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 794 | ENDDO |
---|
[1] | 795 | ENDDO |
---|
| 796 | ENDDO |
---|
| 797 | ENDDO |
---|
[683] | 798 | !$OMP END PARALLEL |
---|
[1] | 799 | #endif |
---|
| 800 | |
---|
[1106] | 801 | ENDIF |
---|
| 802 | |
---|
[1] | 803 | END SUBROUTINE transpose_zx |
---|
| 804 | |
---|
| 805 | |
---|
| 806 | !------------------------------------------------------------------------------! |
---|
| 807 | ! Description: |
---|
| 808 | ! ------------ |
---|
[1682] | 809 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 810 | !> is carried out in transpose_zy |
---|
[1216] | 811 | !------------------------------------------------------------------------------! |
---|
[1682] | 812 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 813 | |
---|
[1682] | 814 | |
---|
[1320] | 815 | USE indices, & |
---|
| 816 | ONLY: ny |
---|
[1216] | 817 | |
---|
[1320] | 818 | USE kinds |
---|
| 819 | |
---|
| 820 | USE transpose_indices, & |
---|
| 821 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 822 | |
---|
[1216] | 823 | IMPLICIT NONE |
---|
| 824 | |
---|
[1682] | 825 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 826 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 827 | |
---|
| 828 | |
---|
[1682] | 829 | INTEGER(iwp) :: i !< |
---|
| 830 | INTEGER(iwp) :: j !< |
---|
| 831 | INTEGER(iwp) :: k !< |
---|
[1216] | 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 835 | !-- by MPI contiguous |
---|
| 836 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 837 | !$OMP DO |
---|
| 838 | DO k = nzb_y, nzt_y |
---|
| 839 | DO j = 0, ny |
---|
| 840 | DO i = nxl_y, nxr_y |
---|
| 841 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 842 | ENDDO |
---|
| 843 | ENDDO |
---|
| 844 | ENDDO |
---|
| 845 | !$OMP END PARALLEL |
---|
| 846 | |
---|
| 847 | END SUBROUTINE resort_for_zy |
---|
| 848 | |
---|
| 849 | |
---|
| 850 | !------------------------------------------------------------------------------! |
---|
| 851 | ! Description: |
---|
| 852 | ! ------------ |
---|
[1682] | 853 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 854 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 855 | !> elements along y reside on the same PE. |
---|
[1] | 856 | !------------------------------------------------------------------------------! |
---|
[1682] | 857 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 858 | |
---|
[1682] | 859 | |
---|
[1320] | 860 | USE cpulog, & |
---|
| 861 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 862 | |
---|
[1320] | 863 | USE indices, & |
---|
| 864 | ONLY: ny, nz |
---|
| 865 | |
---|
| 866 | USE kinds |
---|
| 867 | |
---|
[1324] | 868 | USE pegrid |
---|
[1320] | 869 | |
---|
| 870 | USE transpose_indices, & |
---|
| 871 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 872 | |
---|
[1] | 873 | IMPLICIT NONE |
---|
| 874 | |
---|
[1682] | 875 | INTEGER(iwp) :: i !< |
---|
| 876 | INTEGER(iwp) :: j !< |
---|
| 877 | INTEGER(iwp) :: k !< |
---|
| 878 | INTEGER(iwp) :: l !< |
---|
| 879 | INTEGER(iwp) :: zs !< |
---|
[1] | 880 | |
---|
[1682] | 881 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 882 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 883 | |
---|
[1682] | 884 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[1111] | 885 | |
---|
[1] | 886 | ! |
---|
| 887 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 888 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 889 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 890 | |
---|
| 891 | #if defined( __parallel ) |
---|
[1] | 892 | ! |
---|
| 893 | !-- Reorder input array for transposition |
---|
[1111] | 894 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 895 | !$OMP DO |
---|
[1] | 896 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 897 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
| 898 | DO j = nys_z, nyn_z |
---|
| 899 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 900 | DO i = nxl_z, nxr_z |
---|
[1111] | 901 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 902 | ENDDO |
---|
| 903 | ENDDO |
---|
| 904 | ENDDO |
---|
| 905 | ENDDO |
---|
[683] | 906 | !$OMP END PARALLEL |
---|
[1] | 907 | |
---|
| 908 | ! |
---|
| 909 | !-- Transpose array |
---|
[1318] | 910 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 911 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 912 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 913 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 914 | comm1dx, ierr ) |
---|
| 915 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 916 | #endif |
---|
[1] | 917 | |
---|
| 918 | ELSE |
---|
| 919 | ! |
---|
[1106] | 920 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 921 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 922 | !$OMP DO |
---|
[1003] | 923 | DO k = nzb_y, nzt_y |
---|
| 924 | DO j = 0, ny |
---|
| 925 | DO i = nxl_y, nxr_y |
---|
[164] | 926 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 927 | ENDDO |
---|
| 928 | ENDDO |
---|
| 929 | ENDDO |
---|
[683] | 930 | !$OMP END PARALLEL |
---|
[1106] | 931 | |
---|
| 932 | ENDIF |
---|
| 933 | |
---|
[1] | 934 | END SUBROUTINE transpose_zy |
---|
| 935 | |
---|
| 936 | |
---|
| 937 | !------------------------------------------------------------------------------! |
---|
| 938 | ! Description: |
---|
| 939 | ! ------------ |
---|
[1682] | 940 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 941 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 942 | !> elements along y reside on the same PE. |
---|
| 943 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 944 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 945 | !------------------------------------------------------------------------------! |
---|
[1682] | 946 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 947 | |
---|
[1682] | 948 | |
---|
[1320] | 949 | USE cpulog, & |
---|
| 950 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 951 | |
---|
[1320] | 952 | USE indices, & |
---|
| 953 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 954 | |
---|
| 955 | USE kinds |
---|
| 956 | |
---|
[1324] | 957 | USE pegrid |
---|
[1320] | 958 | |
---|
| 959 | USE transpose_indices, & |
---|
| 960 | ONLY: nxl_y, nxl_yd, nxr_y, nxr_yd, nzb_y, nzb_yd, nzt_y, nzt_yd |
---|
| 961 | |
---|
[1] | 962 | IMPLICIT NONE |
---|
| 963 | |
---|
[1682] | 964 | INTEGER(iwp) :: i !< |
---|
| 965 | INTEGER(iwp) :: j !< |
---|
| 966 | INTEGER(iwp) :: k !< |
---|
| 967 | INTEGER(iwp) :: l !< |
---|
| 968 | INTEGER(iwp) :: m !< |
---|
| 969 | INTEGER(iwp) :: ys !< |
---|
[1] | 970 | |
---|
[1682] | 971 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 972 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 973 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 974 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 975 | |
---|
[1] | 976 | #if defined( __parallel ) |
---|
| 977 | |
---|
| 978 | ! |
---|
| 979 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 980 | !-- by MPI contiguous |
---|
[1003] | 981 | DO i = nxl, nxr |
---|
| 982 | DO j = nys, nyn |
---|
| 983 | DO k = 1, nz |
---|
[164] | 984 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 985 | ENDDO |
---|
| 986 | ENDDO |
---|
| 987 | ENDDO |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Move data to different array, because memory location of work1 is |
---|
| 991 | !-- needed further below (work1 = work2). |
---|
| 992 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 993 | !-- of the data is necessary and no transposition has to be done. |
---|
| 994 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 995 | DO k = 1, nz |
---|
| 996 | DO i = nxl, nxr |
---|
| 997 | DO j = nys, nyn |
---|
[164] | 998 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 999 | ENDDO |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
| 1002 | RETURN |
---|
| 1003 | ENDIF |
---|
| 1004 | |
---|
| 1005 | ! |
---|
| 1006 | !-- Transpose array |
---|
| 1007 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1008 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1009 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1010 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1011 | comm1dy, ierr ) |
---|
| 1012 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Reorder transposed array |
---|
| 1016 | m = 0 |
---|
| 1017 | DO l = 0, pdims(2) - 1 |
---|
| 1018 | ys = 0 + l * nny |
---|
[1003] | 1019 | DO k = nzb_yd, nzt_yd |
---|
| 1020 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1021 | DO j = ys, ys + nny - 1 |
---|
| 1022 | m = m + 1 |
---|
[164] | 1023 | f_out(j,i,k) = work(m) |
---|
[1] | 1024 | ENDDO |
---|
| 1025 | ENDDO |
---|
| 1026 | ENDDO |
---|
| 1027 | ENDDO |
---|
| 1028 | |
---|
| 1029 | #endif |
---|
| 1030 | |
---|
| 1031 | END SUBROUTINE transpose_zyd |
---|