[1682] | 1 | !> @file transpose.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 2001 2016-08-20 18:41:22Z maronga $ |
---|
| 27 | ! |
---|
[2001] | 28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 29 | ! Forced header and separation lines into 80 columns |
---|
| 30 | ! |
---|
[1683] | 31 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 32 | ! Code annotations made doxygen readable |
---|
| 33 | ! |
---|
[1325] | 34 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
| 35 | ! Bugfix: ONLY statement for module pegrid removed |
---|
| 36 | ! |
---|
[1321] | 37 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 38 | ! ONLY-attribute added to USE-statements, |
---|
| 39 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 40 | ! kinds are defined in new module kinds, |
---|
| 41 | ! old module precision_kind is removed, |
---|
| 42 | ! revision history before 2012 removed, |
---|
| 43 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 44 | ! all variable declaration statements |
---|
[198] | 45 | ! |
---|
[1319] | 46 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 47 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
| 48 | ! required for solving the Poisson equation (poisfft), |
---|
| 49 | ! module interfaces removed |
---|
| 50 | ! |
---|
[1258] | 51 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 52 | ! openacc loop and loop vector clauses removed |
---|
| 53 | ! |
---|
[1217] | 54 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 55 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
| 56 | ! routines resort_for_... |
---|
| 57 | ! |
---|
[1112] | 58 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 59 | ! openACC directives added, |
---|
| 60 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
| 61 | ! |
---|
[1107] | 62 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 63 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 64 | ! (non-parallel) mode |
---|
| 65 | ! |
---|
[1093] | 66 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 67 | ! unused variables removed |
---|
| 68 | ! |
---|
[1037] | 69 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 70 | ! code put under GPL (PALM 3.9) |
---|
| 71 | ! |
---|
[1004] | 72 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 73 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 74 | ! |
---|
[1] | 75 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 76 | ! Initial revision |
---|
| 77 | ! |
---|
[1216] | 78 | !------------------------------------------------------------------------------! |
---|
| 79 | ! Description: |
---|
| 80 | ! ------------ |
---|
[1682] | 81 | !> Resorting data for the transposition from x to y. The transposition itself |
---|
| 82 | !> is carried out in transpose_xy |
---|
[1216] | 83 | !------------------------------------------------------------------------------! |
---|
[1682] | 84 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
| 85 | |
---|
[1216] | 86 | |
---|
[1320] | 87 | USE indices, & |
---|
| 88 | ONLY: nx |
---|
[1216] | 89 | |
---|
[1320] | 90 | USE kinds |
---|
| 91 | |
---|
| 92 | USE transpose_indices, & |
---|
| 93 | ONLY: nxl_z, nxr_z, nyn_x, nyn_z, nys_x, nys_z, nzb_x, nzt_x |
---|
| 94 | |
---|
[1216] | 95 | IMPLICIT NONE |
---|
| 96 | |
---|
[1682] | 97 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 98 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 99 | |
---|
| 100 | |
---|
[1682] | 101 | INTEGER(iwp) :: i !< |
---|
| 102 | INTEGER(iwp) :: j !< |
---|
| 103 | INTEGER(iwp) :: k !< |
---|
[1] | 104 | ! |
---|
[1216] | 105 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 106 | !-- by MPI contiguous |
---|
| 107 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 108 | !$OMP DO |
---|
| 109 | !$acc kernels present( f_in, f_inv ) |
---|
| 110 | DO i = 0, nx |
---|
| 111 | DO k = nzb_x, nzt_x |
---|
| 112 | DO j = nys_x, nyn_x |
---|
| 113 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 114 | ENDDO |
---|
| 115 | ENDDO |
---|
| 116 | ENDDO |
---|
| 117 | !$acc end kernels |
---|
| 118 | !$OMP END PARALLEL |
---|
| 119 | |
---|
| 120 | END SUBROUTINE resort_for_xy |
---|
| 121 | |
---|
| 122 | |
---|
| 123 | !------------------------------------------------------------------------------! |
---|
[1] | 124 | ! Description: |
---|
| 125 | ! ------------ |
---|
[1682] | 126 | !> Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 127 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 128 | !> elements along y reside on the same PE. |
---|
[1] | 129 | !------------------------------------------------------------------------------! |
---|
[1682] | 130 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 131 | |
---|
[1682] | 132 | |
---|
[1320] | 133 | USE cpulog, & |
---|
| 134 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 135 | |
---|
| 136 | USE indices, & |
---|
| 137 | ONLY: nx, ny |
---|
| 138 | |
---|
| 139 | USE kinds |
---|
| 140 | |
---|
[1] | 141 | USE pegrid |
---|
| 142 | |
---|
[1320] | 143 | USE transpose_indices, & |
---|
| 144 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 145 | |
---|
[1] | 146 | IMPLICIT NONE |
---|
| 147 | |
---|
[1682] | 148 | INTEGER(iwp) :: i !< |
---|
| 149 | INTEGER(iwp) :: j !< |
---|
| 150 | INTEGER(iwp) :: k !< |
---|
| 151 | INTEGER(iwp) :: l !< |
---|
| 152 | INTEGER(iwp) :: ys !< |
---|
[1320] | 153 | |
---|
[1682] | 154 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 155 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1] | 156 | |
---|
[1682] | 157 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[1111] | 158 | |
---|
| 159 | |
---|
[1106] | 160 | IF ( numprocs /= 1 ) THEN |
---|
| 161 | |
---|
| 162 | #if defined( __parallel ) |
---|
[1] | 163 | ! |
---|
[1106] | 164 | !-- Transpose array |
---|
[1318] | 165 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 166 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 167 | !$acc update host( f_inv ) |
---|
| 168 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 169 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 170 | comm1dy, ierr ) |
---|
| 171 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 172 | |
---|
| 173 | ! |
---|
[1106] | 174 | !-- Reorder transposed array |
---|
[1111] | 175 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 176 | !$OMP DO |
---|
[1216] | 177 | !$acc data copyin( work ) |
---|
[1106] | 178 | DO l = 0, pdims(2) - 1 |
---|
| 179 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 180 | !$acc kernels present( f_out, work ) |
---|
[1106] | 181 | DO i = nxl_y, nxr_y |
---|
| 182 | DO k = nzb_y, nzt_y |
---|
| 183 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 184 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 185 | ENDDO |
---|
[1] | 186 | ENDDO |
---|
| 187 | ENDDO |
---|
[1111] | 188 | !$acc end kernels |
---|
[1] | 189 | ENDDO |
---|
[1216] | 190 | !$acc end data |
---|
[683] | 191 | !$OMP END PARALLEL |
---|
[1] | 192 | #endif |
---|
| 193 | |
---|
[1106] | 194 | ELSE |
---|
| 195 | |
---|
| 196 | ! |
---|
| 197 | !-- Reorder transposed array |
---|
| 198 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 199 | !$OMP DO |
---|
[1216] | 200 | !$acc kernels present( f_inv, f_out ) |
---|
[1106] | 201 | DO k = nzb_y, nzt_y |
---|
| 202 | DO i = nxl_y, nxr_y |
---|
| 203 | DO j = 0, ny |
---|
| 204 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 205 | ENDDO |
---|
| 206 | ENDDO |
---|
| 207 | ENDDO |
---|
[1111] | 208 | !$acc end kernels |
---|
[1106] | 209 | !$OMP END PARALLEL |
---|
| 210 | |
---|
| 211 | ENDIF |
---|
| 212 | |
---|
[1] | 213 | END SUBROUTINE transpose_xy |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | !------------------------------------------------------------------------------! |
---|
| 217 | ! Description: |
---|
| 218 | ! ------------ |
---|
[1682] | 219 | !> Resorting data after the transposition from x to z. The transposition itself |
---|
| 220 | !> is carried out in transpose_xz |
---|
[1216] | 221 | !------------------------------------------------------------------------------! |
---|
[1682] | 222 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 223 | |
---|
[1682] | 224 | |
---|
[1320] | 225 | USE indices, & |
---|
| 226 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 227 | |
---|
[1320] | 228 | USE kinds |
---|
| 229 | |
---|
[1216] | 230 | IMPLICIT NONE |
---|
| 231 | |
---|
[1682] | 232 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 233 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
[1216] | 234 | |
---|
[1682] | 235 | INTEGER(iwp) :: i !< |
---|
| 236 | INTEGER(iwp) :: j !< |
---|
| 237 | INTEGER(iwp) :: k !< |
---|
[1216] | 238 | ! |
---|
| 239 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 240 | !-- by MPI contiguous. |
---|
| 241 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 242 | !-- backward direction!!! |
---|
| 243 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 244 | !$OMP DO |
---|
| 245 | !$acc kernels present( f_inv, f_out ) |
---|
| 246 | DO k = 1, nz |
---|
| 247 | DO i = nxl, nxr |
---|
| 248 | DO j = nys, nyn |
---|
| 249 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
| 253 | !$acc end kernels |
---|
| 254 | !$OMP END PARALLEL |
---|
| 255 | |
---|
| 256 | END SUBROUTINE resort_for_xz |
---|
| 257 | |
---|
| 258 | |
---|
| 259 | !------------------------------------------------------------------------------! |
---|
| 260 | ! Description: |
---|
| 261 | ! ------------ |
---|
[1682] | 262 | !> Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 263 | !> elements along x reside on the same PE, while after transposition, all |
---|
| 264 | !> elements along z reside on the same PE. |
---|
[1] | 265 | !------------------------------------------------------------------------------! |
---|
[1682] | 266 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 267 | |
---|
[1682] | 268 | |
---|
[1320] | 269 | USE cpulog, & |
---|
| 270 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 271 | |
---|
[1320] | 272 | USE indices, & |
---|
| 273 | ONLY: nnx, nx, nxl, nxr, ny, nyn, nys, nz |
---|
| 274 | |
---|
| 275 | USE kinds |
---|
| 276 | |
---|
[1324] | 277 | USE pegrid |
---|
[1320] | 278 | |
---|
| 279 | USE transpose_indices, & |
---|
| 280 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 281 | |
---|
[1] | 282 | IMPLICIT NONE |
---|
| 283 | |
---|
[1682] | 284 | INTEGER(iwp) :: i !< |
---|
| 285 | INTEGER(iwp) :: j !< |
---|
| 286 | INTEGER(iwp) :: k !< |
---|
| 287 | INTEGER(iwp) :: l !< |
---|
| 288 | INTEGER(iwp) :: xs !< |
---|
[1] | 289 | |
---|
[1682] | 290 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 291 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 292 | |
---|
[1682] | 293 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[1111] | 294 | |
---|
[1320] | 295 | |
---|
[1] | 296 | ! |
---|
| 297 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 298 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 299 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 300 | |
---|
| 301 | #if defined( __parallel ) |
---|
[1] | 302 | ! |
---|
| 303 | !-- Reorder input array for transposition |
---|
[1111] | 304 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 305 | !$OMP DO |
---|
[1216] | 306 | !$acc data copyout( work ) |
---|
[1] | 307 | DO l = 0, pdims(1) - 1 |
---|
| 308 | xs = 0 + l * nnx |
---|
[1111] | 309 | !$acc kernels present( f_in, work ) |
---|
[1003] | 310 | DO k = nzb_x, nzt_x |
---|
[164] | 311 | DO i = xs, xs + nnx - 1 |
---|
[1003] | 312 | DO j = nys_x, nyn_x |
---|
[1111] | 313 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 314 | ENDDO |
---|
| 315 | ENDDO |
---|
| 316 | ENDDO |
---|
[1111] | 317 | !$acc end kernels |
---|
[1] | 318 | ENDDO |
---|
[1216] | 319 | !$acc end data |
---|
[683] | 320 | !$OMP END PARALLEL |
---|
[1] | 321 | |
---|
| 322 | ! |
---|
| 323 | !-- Transpose array |
---|
[1318] | 324 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 325 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 326 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 327 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 328 | comm1dx, ierr ) |
---|
[1111] | 329 | !$acc update device( f_inv ) |
---|
[1] | 330 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 331 | #endif |
---|
| 332 | |
---|
[1] | 333 | ELSE |
---|
[1106] | 334 | |
---|
[1] | 335 | ! |
---|
| 336 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 337 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 338 | !$OMP DO |
---|
[1216] | 339 | !$acc kernels present( f_in, f_inv ) |
---|
[1003] | 340 | DO i = nxl, nxr |
---|
| 341 | DO j = nys, nyn |
---|
| 342 | DO k = 1, nz |
---|
[164] | 343 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 344 | ENDDO |
---|
| 345 | ENDDO |
---|
| 346 | ENDDO |
---|
[1111] | 347 | !$acc end kernels |
---|
[683] | 348 | !$OMP END PARALLEL |
---|
[1] | 349 | |
---|
[164] | 350 | ENDIF |
---|
| 351 | |
---|
[1] | 352 | END SUBROUTINE transpose_xz |
---|
| 353 | |
---|
| 354 | |
---|
| 355 | !------------------------------------------------------------------------------! |
---|
| 356 | ! Description: |
---|
| 357 | ! ------------ |
---|
[1682] | 358 | !> Resorting data after the transposition from y to x. The transposition itself |
---|
| 359 | !> is carried out in transpose_yx |
---|
[1216] | 360 | !------------------------------------------------------------------------------! |
---|
[1682] | 361 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 362 | |
---|
[1682] | 363 | |
---|
[1320] | 364 | USE indices, & |
---|
| 365 | ONLY: nx |
---|
[1216] | 366 | |
---|
[1320] | 367 | USE kinds |
---|
| 368 | |
---|
| 369 | USE transpose_indices, & |
---|
| 370 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 371 | |
---|
[1216] | 372 | IMPLICIT NONE |
---|
| 373 | |
---|
[1682] | 374 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 375 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 376 | |
---|
| 377 | |
---|
[1682] | 378 | INTEGER(iwp) :: i !< |
---|
| 379 | INTEGER(iwp) :: j !< |
---|
| 380 | INTEGER(iwp) :: k !< |
---|
[1216] | 381 | ! |
---|
| 382 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 383 | !-- by MPI contiguous |
---|
| 384 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 385 | !$OMP DO |
---|
| 386 | !$acc kernels present( f_inv, f_out ) |
---|
| 387 | DO i = 0, nx |
---|
| 388 | DO k = nzb_x, nzt_x |
---|
| 389 | DO j = nys_x, nyn_x |
---|
| 390 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | ENDDO |
---|
| 394 | !$acc end kernels |
---|
| 395 | !$OMP END PARALLEL |
---|
| 396 | |
---|
| 397 | END SUBROUTINE resort_for_yx |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | !------------------------------------------------------------------------------! |
---|
| 401 | ! Description: |
---|
| 402 | ! ------------ |
---|
[1682] | 403 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 404 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 405 | !> elements along x reside on the same PE. |
---|
[1] | 406 | !------------------------------------------------------------------------------! |
---|
[1682] | 407 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 408 | |
---|
[1682] | 409 | |
---|
[1320] | 410 | USE cpulog, & |
---|
| 411 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 412 | |
---|
[1320] | 413 | USE indices, & |
---|
| 414 | ONLY: nx, ny |
---|
| 415 | |
---|
| 416 | USE kinds |
---|
| 417 | |
---|
[1324] | 418 | USE pegrid |
---|
[1320] | 419 | |
---|
| 420 | USE transpose_indices, & |
---|
| 421 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 422 | |
---|
[1] | 423 | IMPLICIT NONE |
---|
| 424 | |
---|
[1682] | 425 | INTEGER(iwp) :: i !< |
---|
| 426 | INTEGER(iwp) :: j !< |
---|
| 427 | INTEGER(iwp) :: k !< |
---|
| 428 | INTEGER(iwp) :: l !< |
---|
| 429 | INTEGER(iwp) :: ys !< |
---|
[1] | 430 | |
---|
[1682] | 431 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 432 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 433 | |
---|
[1682] | 434 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[1111] | 435 | |
---|
[1320] | 436 | |
---|
[1106] | 437 | IF ( numprocs /= 1 ) THEN |
---|
| 438 | |
---|
[1] | 439 | #if defined( __parallel ) |
---|
| 440 | ! |
---|
[1106] | 441 | !-- Reorder input array for transposition |
---|
[1111] | 442 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 443 | !$OMP DO |
---|
[1216] | 444 | !$acc data copyout( work ) |
---|
[1106] | 445 | DO l = 0, pdims(2) - 1 |
---|
| 446 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 447 | !$acc kernels present( f_in, work ) |
---|
[1106] | 448 | DO i = nxl_y, nxr_y |
---|
| 449 | DO k = nzb_y, nzt_y |
---|
| 450 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 451 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 452 | ENDDO |
---|
| 453 | ENDDO |
---|
| 454 | ENDDO |
---|
[1111] | 455 | !$acc end kernels |
---|
[1106] | 456 | ENDDO |
---|
[1216] | 457 | !$acc end data |
---|
[1106] | 458 | !$OMP END PARALLEL |
---|
| 459 | |
---|
| 460 | ! |
---|
| 461 | !-- Transpose array |
---|
[1318] | 462 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 463 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 464 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 465 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 466 | comm1dy, ierr ) |
---|
[1111] | 467 | !$acc update device( f_inv ) |
---|
[1106] | 468 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 469 | #endif |
---|
| 470 | |
---|
| 471 | ELSE |
---|
| 472 | |
---|
| 473 | ! |
---|
| 474 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 475 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 476 | !$OMP DO |
---|
[1216] | 477 | !$acc kernels present( f_in, f_inv ) |
---|
[1003] | 478 | DO i = nxl_y, nxr_y |
---|
| 479 | DO k = nzb_y, nzt_y |
---|
[1106] | 480 | DO j = 0, ny |
---|
| 481 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 482 | ENDDO |
---|
| 483 | ENDDO |
---|
| 484 | ENDDO |
---|
[1111] | 485 | !$acc end kernels |
---|
[683] | 486 | !$OMP END PARALLEL |
---|
[1] | 487 | |
---|
[1106] | 488 | ENDIF |
---|
[1] | 489 | |
---|
| 490 | END SUBROUTINE transpose_yx |
---|
| 491 | |
---|
| 492 | |
---|
| 493 | !------------------------------------------------------------------------------! |
---|
| 494 | ! Description: |
---|
| 495 | ! ------------ |
---|
[1682] | 496 | !> Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 497 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 498 | !> elements along x reside on the same PE. |
---|
| 499 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 500 | !> (k,j,i) (cf. transpose_yx). |
---|
[1] | 501 | !------------------------------------------------------------------------------! |
---|
[1682] | 502 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 503 | |
---|
[1682] | 504 | |
---|
[1320] | 505 | USE cpulog, & |
---|
| 506 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 507 | |
---|
[1320] | 508 | USE indices, & |
---|
| 509 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 510 | |
---|
| 511 | USE kinds |
---|
| 512 | |
---|
[1324] | 513 | USE pegrid |
---|
[1320] | 514 | |
---|
| 515 | USE transpose_indices, & |
---|
| 516 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 517 | |
---|
[1] | 518 | IMPLICIT NONE |
---|
| 519 | |
---|
[1682] | 520 | INTEGER(iwp) :: i !< |
---|
| 521 | INTEGER(iwp) :: j !< |
---|
| 522 | INTEGER(iwp) :: k !< |
---|
| 523 | INTEGER(iwp) :: l !< |
---|
| 524 | INTEGER(iwp) :: m !< |
---|
| 525 | INTEGER(iwp) :: xs !< |
---|
[1] | 526 | |
---|
[1682] | 527 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 528 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 529 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 530 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 531 | #if defined( __parallel ) |
---|
| 532 | |
---|
| 533 | ! |
---|
| 534 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 535 | !-- by MPI contiguous |
---|
[1003] | 536 | DO k = 1, nz |
---|
| 537 | DO j = nys, nyn |
---|
| 538 | DO i = nxl, nxr |
---|
[164] | 539 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 540 | ENDDO |
---|
| 541 | ENDDO |
---|
| 542 | ENDDO |
---|
| 543 | |
---|
| 544 | ! |
---|
| 545 | !-- Transpose array |
---|
| 546 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 547 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 548 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 549 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 550 | comm1dx, ierr ) |
---|
| 551 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 552 | |
---|
| 553 | ! |
---|
| 554 | !-- Reorder transposed array |
---|
| 555 | m = 0 |
---|
| 556 | DO l = 0, pdims(1) - 1 |
---|
| 557 | xs = 0 + l * nnx |
---|
[1003] | 558 | DO j = nys_x, nyn_x |
---|
| 559 | DO k = 1, nz |
---|
[1] | 560 | DO i = xs, xs + nnx - 1 |
---|
| 561 | m = m + 1 |
---|
[164] | 562 | f_out(i,j,k) = work(m) |
---|
[1] | 563 | ENDDO |
---|
| 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | ENDDO |
---|
| 567 | |
---|
| 568 | #endif |
---|
| 569 | |
---|
| 570 | END SUBROUTINE transpose_yxd |
---|
| 571 | |
---|
| 572 | |
---|
| 573 | !------------------------------------------------------------------------------! |
---|
| 574 | ! Description: |
---|
| 575 | ! ------------ |
---|
[1682] | 576 | !> Resorting data for the transposition from y to z. The transposition itself |
---|
| 577 | !> is carried out in transpose_yz |
---|
[1216] | 578 | !------------------------------------------------------------------------------! |
---|
[1682] | 579 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 580 | |
---|
[1682] | 581 | |
---|
[1320] | 582 | USE indices, & |
---|
| 583 | ONLY: ny |
---|
[1216] | 584 | |
---|
[1320] | 585 | USE kinds |
---|
| 586 | |
---|
| 587 | USE transpose_indices, & |
---|
| 588 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 589 | |
---|
[1216] | 590 | IMPLICIT NONE |
---|
| 591 | |
---|
[1682] | 592 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 593 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 594 | |
---|
[1682] | 595 | INTEGER(iwp) :: i !< |
---|
| 596 | INTEGER(iwp) :: j !< |
---|
| 597 | INTEGER(iwp) :: k !< |
---|
[1216] | 598 | |
---|
| 599 | ! |
---|
| 600 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 601 | !-- by MPI contiguous |
---|
| 602 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 603 | !$OMP DO |
---|
| 604 | !$acc kernels present( f_in, f_inv ) |
---|
| 605 | DO j = 0, ny |
---|
| 606 | DO k = nzb_y, nzt_y |
---|
| 607 | DO i = nxl_y, nxr_y |
---|
| 608 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 609 | ENDDO |
---|
| 610 | ENDDO |
---|
| 611 | ENDDO |
---|
| 612 | !$acc end kernels |
---|
| 613 | !$OMP END PARALLEL |
---|
| 614 | |
---|
| 615 | END SUBROUTINE resort_for_yz |
---|
| 616 | |
---|
| 617 | |
---|
| 618 | !------------------------------------------------------------------------------! |
---|
| 619 | ! Description: |
---|
| 620 | ! ------------ |
---|
[1682] | 621 | !> Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 622 | !> elements along y reside on the same PE, while after transposition, all |
---|
| 623 | !> elements along z reside on the same PE. |
---|
[1] | 624 | !------------------------------------------------------------------------------! |
---|
[1682] | 625 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 626 | |
---|
[1682] | 627 | |
---|
[1320] | 628 | USE cpulog, & |
---|
| 629 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 630 | |
---|
[1320] | 631 | USE indices, & |
---|
| 632 | ONLY: ny, nz |
---|
| 633 | |
---|
| 634 | USE kinds |
---|
| 635 | |
---|
[1324] | 636 | USE pegrid |
---|
[1320] | 637 | |
---|
| 638 | USE transpose_indices, & |
---|
| 639 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 640 | |
---|
[1] | 641 | IMPLICIT NONE |
---|
| 642 | |
---|
[1682] | 643 | INTEGER(iwp) :: i !< |
---|
| 644 | INTEGER(iwp) :: j !< |
---|
| 645 | INTEGER(iwp) :: k !< |
---|
| 646 | INTEGER(iwp) :: l !< |
---|
| 647 | INTEGER(iwp) :: zs !< |
---|
[1] | 648 | |
---|
[1682] | 649 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 650 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 651 | |
---|
[1682] | 652 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[1111] | 653 | |
---|
[1320] | 654 | |
---|
[1] | 655 | ! |
---|
| 656 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 657 | !-- of the data is necessary and no transposition has to be done. |
---|
| 658 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 659 | |
---|
[683] | 660 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 661 | !$OMP DO |
---|
[1216] | 662 | !$acc kernels present( f_inv, f_out ) |
---|
[1003] | 663 | DO j = 0, ny |
---|
| 664 | DO k = nzb_y, nzt_y |
---|
| 665 | DO i = nxl_y, nxr_y |
---|
[164] | 666 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 667 | ENDDO |
---|
| 668 | ENDDO |
---|
| 669 | ENDDO |
---|
[1111] | 670 | !$acc end kernels |
---|
[683] | 671 | !$OMP END PARALLEL |
---|
[1] | 672 | |
---|
[1106] | 673 | ELSE |
---|
| 674 | |
---|
| 675 | #if defined( __parallel ) |
---|
[1] | 676 | ! |
---|
[1106] | 677 | !-- Transpose array |
---|
[1318] | 678 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 679 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 680 | !$acc update host( f_inv ) |
---|
| 681 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 682 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 683 | comm1dx, ierr ) |
---|
| 684 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 685 | |
---|
| 686 | ! |
---|
[1106] | 687 | !-- Reorder transposed array |
---|
[1111] | 688 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 689 | !$OMP DO |
---|
[1216] | 690 | !$acc data copyin( work ) |
---|
[1106] | 691 | DO l = 0, pdims(1) - 1 |
---|
| 692 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1216] | 693 | !$acc kernels present( f_out ) |
---|
[1106] | 694 | DO j = nys_z, nyn_z |
---|
| 695 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 696 | DO i = nxl_z, nxr_z |
---|
[1111] | 697 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 698 | ENDDO |
---|
[1] | 699 | ENDDO |
---|
| 700 | ENDDO |
---|
[1111] | 701 | !$acc end kernels |
---|
[1] | 702 | ENDDO |
---|
[1216] | 703 | !$acc end data |
---|
[683] | 704 | !$OMP END PARALLEL |
---|
[1] | 705 | #endif |
---|
| 706 | |
---|
[1106] | 707 | ENDIF |
---|
| 708 | |
---|
[1] | 709 | END SUBROUTINE transpose_yz |
---|
| 710 | |
---|
| 711 | |
---|
| 712 | !------------------------------------------------------------------------------! |
---|
| 713 | ! Description: |
---|
| 714 | ! ------------ |
---|
[1682] | 715 | !> Resorting data for the transposition from z to x. The transposition itself |
---|
| 716 | !> is carried out in transpose_zx |
---|
[1216] | 717 | !------------------------------------------------------------------------------! |
---|
[1682] | 718 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 719 | |
---|
[1682] | 720 | |
---|
[1320] | 721 | USE indices, & |
---|
| 722 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 723 | |
---|
[1320] | 724 | USE kinds |
---|
| 725 | |
---|
[1216] | 726 | IMPLICIT NONE |
---|
| 727 | |
---|
[1682] | 728 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 729 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 730 | |
---|
[1682] | 731 | INTEGER(iwp) :: i !< |
---|
| 732 | INTEGER(iwp) :: j !< |
---|
| 733 | INTEGER(iwp) :: k !< |
---|
[1216] | 734 | |
---|
| 735 | ! |
---|
| 736 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 737 | !-- by MPI contiguous |
---|
| 738 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 739 | !$OMP DO |
---|
| 740 | !$acc kernels present( f_in, f_inv ) |
---|
| 741 | DO k = 1,nz |
---|
| 742 | DO i = nxl, nxr |
---|
| 743 | DO j = nys, nyn |
---|
| 744 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 745 | ENDDO |
---|
| 746 | ENDDO |
---|
| 747 | ENDDO |
---|
| 748 | !$acc end kernels |
---|
| 749 | !$OMP END PARALLEL |
---|
| 750 | |
---|
| 751 | END SUBROUTINE resort_for_zx |
---|
| 752 | |
---|
| 753 | |
---|
| 754 | !------------------------------------------------------------------------------! |
---|
| 755 | ! Description: |
---|
| 756 | ! ------------ |
---|
[1682] | 757 | !> Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 758 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 759 | !> elements along x reside on the same PE. |
---|
[1] | 760 | !------------------------------------------------------------------------------! |
---|
[1682] | 761 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 762 | |
---|
[1682] | 763 | |
---|
[1320] | 764 | USE cpulog, & |
---|
| 765 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 766 | |
---|
[1320] | 767 | USE indices, & |
---|
| 768 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 769 | |
---|
| 770 | USE kinds |
---|
| 771 | |
---|
[1324] | 772 | USE pegrid |
---|
[1320] | 773 | |
---|
| 774 | USE transpose_indices, & |
---|
| 775 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 776 | |
---|
[1] | 777 | IMPLICIT NONE |
---|
| 778 | |
---|
[1682] | 779 | INTEGER(iwp) :: i !< |
---|
| 780 | INTEGER(iwp) :: j !< |
---|
| 781 | INTEGER(iwp) :: k !< |
---|
| 782 | INTEGER(iwp) :: l !< |
---|
| 783 | INTEGER(iwp) :: xs !< |
---|
[1] | 784 | |
---|
[1682] | 785 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 786 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 787 | |
---|
[1682] | 788 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[1] | 789 | |
---|
[1320] | 790 | |
---|
[1] | 791 | ! |
---|
| 792 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 793 | !-- of the data is necessary and no transposition has to be done. |
---|
| 794 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 795 | |
---|
[683] | 796 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 797 | !$OMP DO |
---|
[1216] | 798 | !$acc kernels present( f_inv, f_out ) |
---|
[1003] | 799 | DO k = 1, nz |
---|
| 800 | DO i = nxl, nxr |
---|
| 801 | DO j = nys, nyn |
---|
[164] | 802 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 803 | ENDDO |
---|
| 804 | ENDDO |
---|
| 805 | ENDDO |
---|
[1111] | 806 | !$acc end kernels |
---|
[683] | 807 | !$OMP END PARALLEL |
---|
[1] | 808 | |
---|
[1106] | 809 | ELSE |
---|
| 810 | |
---|
| 811 | #if defined( __parallel ) |
---|
[1] | 812 | ! |
---|
[1106] | 813 | !-- Transpose array |
---|
[1318] | 814 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 815 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 816 | !$acc update host( f_inv ) |
---|
| 817 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 818 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 819 | comm1dx, ierr ) |
---|
| 820 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 821 | |
---|
| 822 | ! |
---|
[1106] | 823 | !-- Reorder transposed array |
---|
[1111] | 824 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 825 | !$OMP DO |
---|
[1216] | 826 | !$acc data copyin( work ) |
---|
[1106] | 827 | DO l = 0, pdims(1) - 1 |
---|
| 828 | xs = 0 + l * nnx |
---|
[1216] | 829 | !$acc kernels present( f_out ) |
---|
[1106] | 830 | DO k = nzb_x, nzt_x |
---|
| 831 | DO i = xs, xs + nnx - 1 |
---|
| 832 | DO j = nys_x, nyn_x |
---|
[1111] | 833 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 834 | ENDDO |
---|
[1] | 835 | ENDDO |
---|
| 836 | ENDDO |
---|
[1111] | 837 | !$acc end kernels |
---|
[1] | 838 | ENDDO |
---|
[1216] | 839 | !$acc end data |
---|
[683] | 840 | !$OMP END PARALLEL |
---|
[1] | 841 | #endif |
---|
| 842 | |
---|
[1106] | 843 | ENDIF |
---|
| 844 | |
---|
[1] | 845 | END SUBROUTINE transpose_zx |
---|
| 846 | |
---|
| 847 | |
---|
| 848 | !------------------------------------------------------------------------------! |
---|
| 849 | ! Description: |
---|
| 850 | ! ------------ |
---|
[1682] | 851 | !> Resorting data after the transposition from z to y. The transposition itself |
---|
| 852 | !> is carried out in transpose_zy |
---|
[1216] | 853 | !------------------------------------------------------------------------------! |
---|
[1682] | 854 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 855 | |
---|
[1682] | 856 | |
---|
[1320] | 857 | USE indices, & |
---|
| 858 | ONLY: ny |
---|
[1216] | 859 | |
---|
[1320] | 860 | USE kinds |
---|
| 861 | |
---|
| 862 | USE transpose_indices, & |
---|
| 863 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 864 | |
---|
[1216] | 865 | IMPLICIT NONE |
---|
| 866 | |
---|
[1682] | 867 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 868 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 869 | |
---|
| 870 | |
---|
[1682] | 871 | INTEGER(iwp) :: i !< |
---|
| 872 | INTEGER(iwp) :: j !< |
---|
| 873 | INTEGER(iwp) :: k !< |
---|
[1216] | 874 | |
---|
| 875 | ! |
---|
| 876 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 877 | !-- by MPI contiguous |
---|
| 878 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 879 | !$OMP DO |
---|
| 880 | !$acc kernels present( f_inv, f_out ) |
---|
| 881 | DO k = nzb_y, nzt_y |
---|
| 882 | DO j = 0, ny |
---|
| 883 | DO i = nxl_y, nxr_y |
---|
| 884 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 885 | ENDDO |
---|
| 886 | ENDDO |
---|
| 887 | ENDDO |
---|
| 888 | !$acc end kernels |
---|
| 889 | !$OMP END PARALLEL |
---|
| 890 | |
---|
| 891 | END SUBROUTINE resort_for_zy |
---|
| 892 | |
---|
| 893 | |
---|
| 894 | !------------------------------------------------------------------------------! |
---|
| 895 | ! Description: |
---|
| 896 | ! ------------ |
---|
[1682] | 897 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 898 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 899 | !> elements along y reside on the same PE. |
---|
[1] | 900 | !------------------------------------------------------------------------------! |
---|
[1682] | 901 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 902 | |
---|
[1682] | 903 | |
---|
[1320] | 904 | USE cpulog, & |
---|
| 905 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 906 | |
---|
[1320] | 907 | USE indices, & |
---|
| 908 | ONLY: ny, nz |
---|
| 909 | |
---|
| 910 | USE kinds |
---|
| 911 | |
---|
[1324] | 912 | USE pegrid |
---|
[1320] | 913 | |
---|
| 914 | USE transpose_indices, & |
---|
| 915 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 916 | |
---|
[1] | 917 | IMPLICIT NONE |
---|
| 918 | |
---|
[1682] | 919 | INTEGER(iwp) :: i !< |
---|
| 920 | INTEGER(iwp) :: j !< |
---|
| 921 | INTEGER(iwp) :: k !< |
---|
| 922 | INTEGER(iwp) :: l !< |
---|
| 923 | INTEGER(iwp) :: zs !< |
---|
[1] | 924 | |
---|
[1682] | 925 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 926 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 927 | |
---|
[1682] | 928 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[1111] | 929 | |
---|
[1] | 930 | ! |
---|
| 931 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 932 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 933 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 934 | |
---|
| 935 | #if defined( __parallel ) |
---|
[1] | 936 | ! |
---|
| 937 | !-- Reorder input array for transposition |
---|
[1111] | 938 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 939 | !$OMP DO |
---|
[1216] | 940 | !$acc data copyout( work ) |
---|
[1] | 941 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 942 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1111] | 943 | !$acc kernels present( f_in, work ) |
---|
[1003] | 944 | DO j = nys_z, nyn_z |
---|
| 945 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 946 | DO i = nxl_z, nxr_z |
---|
[1111] | 947 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 948 | ENDDO |
---|
| 949 | ENDDO |
---|
| 950 | ENDDO |
---|
[1111] | 951 | !$acc end kernels |
---|
[1] | 952 | ENDDO |
---|
[1216] | 953 | !$acc end data |
---|
[683] | 954 | !$OMP END PARALLEL |
---|
[1] | 955 | |
---|
| 956 | ! |
---|
| 957 | !-- Transpose array |
---|
[1318] | 958 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 959 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 960 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 961 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 962 | comm1dx, ierr ) |
---|
[1111] | 963 | !$acc update device( f_inv ) |
---|
[1] | 964 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 965 | #endif |
---|
[1] | 966 | |
---|
| 967 | ELSE |
---|
| 968 | ! |
---|
[1106] | 969 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 970 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 971 | !$OMP DO |
---|
[1216] | 972 | !$acc kernels present( f_in, f_inv ) |
---|
[1003] | 973 | DO k = nzb_y, nzt_y |
---|
| 974 | DO j = 0, ny |
---|
| 975 | DO i = nxl_y, nxr_y |
---|
[164] | 976 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 977 | ENDDO |
---|
| 978 | ENDDO |
---|
| 979 | ENDDO |
---|
[1111] | 980 | !$acc end kernels |
---|
[683] | 981 | !$OMP END PARALLEL |
---|
[1106] | 982 | |
---|
| 983 | ENDIF |
---|
| 984 | |
---|
[1] | 985 | END SUBROUTINE transpose_zy |
---|
| 986 | |
---|
| 987 | |
---|
| 988 | !------------------------------------------------------------------------------! |
---|
| 989 | ! Description: |
---|
| 990 | ! ------------ |
---|
[1682] | 991 | !> Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 992 | !> elements along z reside on the same PE, while after transposition, all |
---|
| 993 | !> elements along y reside on the same PE. |
---|
| 994 | !> This is a direct transposition for arrays with indices in regular order |
---|
| 995 | !> (k,j,i) (cf. transpose_zy). |
---|
[1] | 996 | !------------------------------------------------------------------------------! |
---|
[1682] | 997 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 998 | |
---|
[1682] | 999 | |
---|
[1320] | 1000 | USE cpulog, & |
---|
| 1001 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 1002 | |
---|
[1320] | 1003 | USE indices, & |
---|
| 1004 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 1005 | |
---|
| 1006 | USE kinds |
---|
| 1007 | |
---|
[1324] | 1008 | USE pegrid |
---|
[1320] | 1009 | |
---|
| 1010 | USE transpose_indices, & |
---|
| 1011 | ONLY: nxl_y, nxl_yd, nxr_y, nxr_yd, nzb_y, nzb_yd, nzt_y, nzt_yd |
---|
| 1012 | |
---|
[1] | 1013 | IMPLICIT NONE |
---|
| 1014 | |
---|
[1682] | 1015 | INTEGER(iwp) :: i !< |
---|
| 1016 | INTEGER(iwp) :: j !< |
---|
| 1017 | INTEGER(iwp) :: k !< |
---|
| 1018 | INTEGER(iwp) :: l !< |
---|
| 1019 | INTEGER(iwp) :: m !< |
---|
| 1020 | INTEGER(iwp) :: ys !< |
---|
[1] | 1021 | |
---|
[1682] | 1022 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 1023 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1024 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 1025 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 1026 | |
---|
[1] | 1027 | #if defined( __parallel ) |
---|
| 1028 | |
---|
| 1029 | ! |
---|
| 1030 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1031 | !-- by MPI contiguous |
---|
[1003] | 1032 | DO i = nxl, nxr |
---|
| 1033 | DO j = nys, nyn |
---|
| 1034 | DO k = 1, nz |
---|
[164] | 1035 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1036 | ENDDO |
---|
| 1037 | ENDDO |
---|
| 1038 | ENDDO |
---|
| 1039 | |
---|
| 1040 | ! |
---|
| 1041 | !-- Move data to different array, because memory location of work1 is |
---|
| 1042 | !-- needed further below (work1 = work2). |
---|
| 1043 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1044 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1045 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1046 | DO k = 1, nz |
---|
| 1047 | DO i = nxl, nxr |
---|
| 1048 | DO j = nys, nyn |
---|
[164] | 1049 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1050 | ENDDO |
---|
| 1051 | ENDDO |
---|
| 1052 | ENDDO |
---|
| 1053 | RETURN |
---|
| 1054 | ENDIF |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Transpose array |
---|
| 1058 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1059 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1060 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1061 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1062 | comm1dy, ierr ) |
---|
| 1063 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- Reorder transposed array |
---|
| 1067 | m = 0 |
---|
| 1068 | DO l = 0, pdims(2) - 1 |
---|
| 1069 | ys = 0 + l * nny |
---|
[1003] | 1070 | DO k = nzb_yd, nzt_yd |
---|
| 1071 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1072 | DO j = ys, ys + nny - 1 |
---|
| 1073 | m = m + 1 |
---|
[164] | 1074 | f_out(j,i,k) = work(m) |
---|
[1] | 1075 | ENDDO |
---|
| 1076 | ENDDO |
---|
| 1077 | ENDDO |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
| 1080 | #endif |
---|
| 1081 | |
---|
| 1082 | END SUBROUTINE transpose_zyd |
---|