[164] | 1 | SUBROUTINE transpose_xy( f_in, work, f_out ) |
---|
[1] | 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[164] | 6 | ! f_inv changed from subroutine argument to automatic array in order to do |
---|
| 7 | ! re-ordering from f_in to f_inv in one step, one array work is needed instead |
---|
| 8 | ! of work1 and work2 |
---|
[1] | 9 | ! |
---|
| 10 | ! Former revisions: |
---|
| 11 | ! ----------------- |
---|
[3] | 12 | ! $Id: transpose.f90 164 2008-05-15 08:46:15Z steinfeld $ |
---|
| 13 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 14 | ! |
---|
[1] | 15 | ! Revision 1.2 2004/04/30 13:12:17 raasch |
---|
| 16 | ! Switched from mpi_alltoallv to the simpler mpi_alltoall, |
---|
| 17 | ! all former transpose-routine files collected in this file, enlarged |
---|
| 18 | ! transposition arrays introduced |
---|
| 19 | ! |
---|
| 20 | ! Revision 1.1 2004/04/30 13:08:16 raasch |
---|
| 21 | ! Initial revision (collection of former routines transpose_xy, transpose_xz, |
---|
| 22 | ! transpose_yx, transpose_yz, transpose_zx, transpose_zy) |
---|
| 23 | ! |
---|
| 24 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 25 | ! Initial revision |
---|
| 26 | ! |
---|
| 27 | ! |
---|
| 28 | ! Description: |
---|
| 29 | ! ------------ |
---|
| 30 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 31 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 32 | ! elements along y reside on the same PE. |
---|
| 33 | !------------------------------------------------------------------------------! |
---|
| 34 | |
---|
| 35 | USE cpulog |
---|
| 36 | USE indices |
---|
| 37 | USE interfaces |
---|
| 38 | USE pegrid |
---|
| 39 | USE transpose_indices |
---|
| 40 | |
---|
| 41 | IMPLICIT NONE |
---|
| 42 | |
---|
| 43 | INTEGER :: i, j, k, l, m, ys |
---|
| 44 | |
---|
| 45 | REAL :: f_in(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 46 | f_inv(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), & |
---|
| 47 | f_out(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
[164] | 48 | work(nnx*nny*nnz) |
---|
[1] | 49 | |
---|
| 50 | #if defined( __parallel ) |
---|
| 51 | |
---|
| 52 | ! |
---|
| 53 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 54 | !-- by MPI contiguous |
---|
| 55 | DO i = 0, nxa |
---|
| 56 | DO k = nzb_x, nzt_xa |
---|
| 57 | DO j = nys_x, nyn_xa |
---|
[164] | 58 | f_inv(j,k,i) = f_in(i,j,k) |
---|
[1] | 59 | ENDDO |
---|
| 60 | ENDDO |
---|
| 61 | ENDDO |
---|
| 62 | |
---|
| 63 | ! |
---|
| 64 | !-- Transpose array |
---|
| 65 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 66 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 67 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 68 | comm1dy, ierr ) |
---|
| 69 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 70 | |
---|
| 71 | ! |
---|
| 72 | !-- Reorder transposed array |
---|
| 73 | m = 0 |
---|
| 74 | DO l = 0, pdims(2) - 1 |
---|
| 75 | ys = 0 + l * ( nyn_xa - nys_x + 1 ) |
---|
| 76 | DO i = nxl_y, nxr_ya |
---|
| 77 | DO k = nzb_y, nzt_ya |
---|
| 78 | DO j = ys, ys + nyn_xa - nys_x |
---|
| 79 | m = m + 1 |
---|
[164] | 80 | f_out(j,i,k) = work(m) |
---|
[1] | 81 | ENDDO |
---|
| 82 | ENDDO |
---|
| 83 | ENDDO |
---|
| 84 | ENDDO |
---|
| 85 | |
---|
| 86 | #endif |
---|
| 87 | |
---|
| 88 | END SUBROUTINE transpose_xy |
---|
| 89 | |
---|
| 90 | |
---|
[164] | 91 | SUBROUTINE transpose_xz( f_in, work, f_out ) |
---|
[1] | 92 | |
---|
| 93 | !------------------------------------------------------------------------------! |
---|
| 94 | ! Description: |
---|
| 95 | ! ------------ |
---|
| 96 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 97 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 98 | ! elements along z reside on the same PE. |
---|
| 99 | !------------------------------------------------------------------------------! |
---|
| 100 | |
---|
| 101 | USE cpulog |
---|
| 102 | USE indices |
---|
| 103 | USE interfaces |
---|
| 104 | USE pegrid |
---|
| 105 | USE transpose_indices |
---|
| 106 | |
---|
| 107 | IMPLICIT NONE |
---|
| 108 | |
---|
| 109 | INTEGER :: i, j, k, l, m, xs |
---|
| 110 | |
---|
| 111 | REAL :: f_in(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
[164] | 112 | f_inv(nys:nyna,nxl:nxra,1:nza), & |
---|
[1] | 113 | f_out(1:nza,nys:nyna,nxl:nxra), & |
---|
[164] | 114 | work(nnx*nny*nnz) |
---|
[1] | 115 | |
---|
| 116 | #if defined( __parallel ) |
---|
| 117 | |
---|
| 118 | ! |
---|
| 119 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 120 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 121 | IF ( pdims(1) /= 1 ) THEN |
---|
| 122 | ! |
---|
| 123 | !-- Reorder input array for transposition |
---|
| 124 | m = 0 |
---|
| 125 | DO l = 0, pdims(1) - 1 |
---|
| 126 | xs = 0 + l * nnx |
---|
| 127 | DO k = nzb_x, nzt_xa |
---|
[164] | 128 | DO i = xs, xs + nnx - 1 |
---|
| 129 | DO j = nys_x, nyn_xa |
---|
[1] | 130 | m = m + 1 |
---|
[164] | 131 | work(m) = f_in(i,j,k) |
---|
[1] | 132 | ENDDO |
---|
| 133 | ENDDO |
---|
| 134 | ENDDO |
---|
| 135 | ENDDO |
---|
| 136 | |
---|
| 137 | ! |
---|
| 138 | !-- Transpose array |
---|
| 139 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[164] | 140 | CALL MPI_ALLTOALL( work(1), sendrecvcount_zx, MPI_REAL, & |
---|
| 141 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 142 | comm1dx, ierr ) |
---|
| 143 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 144 | |
---|
| 145 | ! |
---|
| 146 | !-- Reorder transposed array in a way that the z index is in first position |
---|
[164] | 147 | DO k = 1, nza |
---|
| 148 | DO i = nxl, nxra |
---|
| 149 | DO j = nys, nyna |
---|
| 150 | f_out(k,j,i) = f_inv(j,i,k) |
---|
[1] | 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | ENDDO |
---|
| 154 | ELSE |
---|
| 155 | ! |
---|
| 156 | !-- Reorder the array in a way that the z index is in first position |
---|
| 157 | DO i = nxl, nxra |
---|
| 158 | DO j = nys, nyna |
---|
| 159 | DO k = 1, nza |
---|
[164] | 160 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 161 | ENDDO |
---|
| 162 | ENDDO |
---|
| 163 | ENDDO |
---|
| 164 | |
---|
[164] | 165 | DO k = 1, nza |
---|
| 166 | DO i = nxl, nxra |
---|
| 167 | DO j = nys, nyna |
---|
| 168 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 169 | ENDDO |
---|
[1] | 170 | ENDDO |
---|
| 171 | ENDDO |
---|
| 172 | |
---|
[164] | 173 | ENDIF |
---|
| 174 | |
---|
| 175 | |
---|
[1] | 176 | #endif |
---|
| 177 | |
---|
| 178 | END SUBROUTINE transpose_xz |
---|
| 179 | |
---|
| 180 | |
---|
[164] | 181 | SUBROUTINE transpose_yx( f_in, work, f_out ) |
---|
[1] | 182 | |
---|
| 183 | !------------------------------------------------------------------------------! |
---|
| 184 | ! Description: |
---|
| 185 | ! ------------ |
---|
| 186 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 187 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 188 | ! elements along x reside on the same PE. |
---|
| 189 | !------------------------------------------------------------------------------! |
---|
| 190 | |
---|
| 191 | USE cpulog |
---|
| 192 | USE indices |
---|
| 193 | USE interfaces |
---|
| 194 | USE pegrid |
---|
| 195 | USE transpose_indices |
---|
| 196 | |
---|
| 197 | IMPLICIT NONE |
---|
| 198 | |
---|
| 199 | INTEGER :: i, j, k, l, m, ys |
---|
| 200 | |
---|
| 201 | REAL :: f_in(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
| 202 | f_inv(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), & |
---|
| 203 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
[164] | 204 | work(nnx*nny*nnz) |
---|
[1] | 205 | |
---|
| 206 | #if defined( __parallel ) |
---|
| 207 | |
---|
| 208 | ! |
---|
| 209 | !-- Reorder input array for transposition |
---|
| 210 | m = 0 |
---|
| 211 | DO l = 0, pdims(2) - 1 |
---|
| 212 | ys = 0 + l * ( nyn_xa - nys_x + 1 ) |
---|
| 213 | DO i = nxl_y, nxr_ya |
---|
| 214 | DO k = nzb_y, nzt_ya |
---|
| 215 | DO j = ys, ys + nyn_xa - nys_x |
---|
| 216 | m = m + 1 |
---|
[164] | 217 | work(m) = f_in(j,i,k) |
---|
[1] | 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | ENDDO |
---|
| 221 | ENDDO |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- Transpose array |
---|
| 225 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[164] | 226 | CALL MPI_ALLTOALL( work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 227 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 228 | comm1dy, ierr ) |
---|
| 229 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 230 | |
---|
| 231 | ! |
---|
| 232 | !-- Reorder transposed array in a way that the x index is in first position |
---|
| 233 | DO i = 0, nxa |
---|
| 234 | DO k = nzb_x, nzt_xa |
---|
| 235 | DO j = nys_x, nyn_xa |
---|
[164] | 236 | f_out(i,j,k) = f_inv(j,k,i) |
---|
[1] | 237 | ENDDO |
---|
| 238 | ENDDO |
---|
| 239 | ENDDO |
---|
| 240 | |
---|
| 241 | #endif |
---|
| 242 | |
---|
| 243 | END SUBROUTINE transpose_yx |
---|
| 244 | |
---|
| 245 | |
---|
[164] | 246 | SUBROUTINE transpose_yxd( f_in, work, f_out ) |
---|
[1] | 247 | |
---|
| 248 | !------------------------------------------------------------------------------! |
---|
| 249 | ! Description: |
---|
| 250 | ! ------------ |
---|
| 251 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 252 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 253 | ! elements along x reside on the same PE. |
---|
| 254 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 255 | ! (k,j,i) (cf. transpose_yx). |
---|
| 256 | !------------------------------------------------------------------------------! |
---|
| 257 | |
---|
| 258 | USE cpulog |
---|
| 259 | USE indices |
---|
| 260 | USE interfaces |
---|
| 261 | USE pegrid |
---|
| 262 | USE transpose_indices |
---|
| 263 | |
---|
| 264 | IMPLICIT NONE |
---|
| 265 | |
---|
| 266 | INTEGER :: i, j, k, l, m, recvcount_yx, sendcount_yx, xs |
---|
| 267 | |
---|
| 268 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nxl:nxra,1:nza,nys:nyna), & |
---|
| 269 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
[164] | 270 | work(nnx*nny*nnz) |
---|
[1] | 271 | |
---|
| 272 | #if defined( __parallel ) |
---|
| 273 | |
---|
| 274 | ! |
---|
| 275 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 276 | !-- by MPI contiguous |
---|
| 277 | DO k = 1, nza |
---|
| 278 | DO j = nys, nyna |
---|
| 279 | DO i = nxl, nxra |
---|
[164] | 280 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 281 | ENDDO |
---|
| 282 | ENDDO |
---|
| 283 | ENDDO |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- Transpose array |
---|
| 287 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 288 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 289 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 290 | comm1dx, ierr ) |
---|
| 291 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Reorder transposed array |
---|
| 295 | m = 0 |
---|
| 296 | DO l = 0, pdims(1) - 1 |
---|
| 297 | xs = 0 + l * nnx |
---|
| 298 | DO j = nys_x, nyn_xa |
---|
| 299 | DO k = 1, nza |
---|
| 300 | DO i = xs, xs + nnx - 1 |
---|
| 301 | m = m + 1 |
---|
[164] | 302 | f_out(i,j,k) = work(m) |
---|
[1] | 303 | ENDDO |
---|
| 304 | ENDDO |
---|
| 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | |
---|
| 308 | #endif |
---|
| 309 | |
---|
| 310 | END SUBROUTINE transpose_yxd |
---|
| 311 | |
---|
| 312 | |
---|
[164] | 313 | SUBROUTINE transpose_yz( f_in, work, f_out ) |
---|
[1] | 314 | |
---|
| 315 | !------------------------------------------------------------------------------! |
---|
| 316 | ! Description: |
---|
| 317 | ! ------------ |
---|
| 318 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 319 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 320 | ! elements along z reside on the same PE. |
---|
| 321 | !------------------------------------------------------------------------------! |
---|
| 322 | |
---|
| 323 | USE cpulog |
---|
| 324 | USE indices |
---|
| 325 | USE interfaces |
---|
| 326 | USE pegrid |
---|
| 327 | USE transpose_indices |
---|
| 328 | |
---|
| 329 | IMPLICIT NONE |
---|
| 330 | |
---|
| 331 | INTEGER :: i, j, k, l, m, zs |
---|
| 332 | |
---|
| 333 | REAL :: f_in(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
| 334 | f_inv(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), & |
---|
| 335 | f_out(nxl_z:nxr_za,nys_z:nyn_za,1:nza), & |
---|
[164] | 336 | work(nnx*nny*nnz) |
---|
[1] | 337 | |
---|
| 338 | #if defined( __parallel ) |
---|
| 339 | |
---|
| 340 | ! |
---|
| 341 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 342 | !-- by MPI contiguous |
---|
[164] | 343 | DO j = 0, nya |
---|
| 344 | DO k = nzb_y, nzt_ya |
---|
| 345 | DO i = nxl_y, nxr_ya |
---|
| 346 | f_inv(i,k,j) = f_in(j,i,k) |
---|
[1] | 347 | ENDDO |
---|
| 348 | ENDDO |
---|
| 349 | ENDDO |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- Move data to different array, because memory location of work1 is |
---|
| 353 | !-- needed further below (work1 = work2). |
---|
| 354 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 355 | !-- of the data is necessary and no transposition has to be done. |
---|
| 356 | IF ( pdims(1) == 1 ) THEN |
---|
| 357 | DO j = 0, nya |
---|
| 358 | DO k = nzb_y, nzt_ya |
---|
| 359 | DO i = nxl_y, nxr_ya |
---|
[164] | 360 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 361 | ENDDO |
---|
| 362 | ENDDO |
---|
| 363 | ENDDO |
---|
| 364 | RETURN |
---|
| 365 | ENDIF |
---|
| 366 | |
---|
| 367 | ! |
---|
| 368 | !-- Transpose array |
---|
| 369 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 370 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[164] | 371 | work(1), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 372 | comm1dx, ierr ) |
---|
| 373 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 374 | |
---|
| 375 | ! |
---|
| 376 | !-- Reorder transposed array |
---|
| 377 | m = 0 |
---|
| 378 | DO l = 0, pdims(1) - 1 |
---|
| 379 | zs = 1 + l * ( nzt_ya - nzb_y + 1 ) |
---|
| 380 | DO j = nys_z, nyn_za |
---|
| 381 | DO k = zs, zs + nzt_ya - nzb_y |
---|
| 382 | DO i = nxl_z, nxr_za |
---|
| 383 | m = m + 1 |
---|
[164] | 384 | f_out(i,j,k) = work(m) |
---|
[1] | 385 | ENDDO |
---|
| 386 | ENDDO |
---|
| 387 | ENDDO |
---|
| 388 | ENDDO |
---|
| 389 | |
---|
| 390 | #endif |
---|
| 391 | |
---|
| 392 | END SUBROUTINE transpose_yz |
---|
| 393 | |
---|
| 394 | |
---|
[164] | 395 | SUBROUTINE transpose_zx( f_in, work, f_out ) |
---|
[1] | 396 | |
---|
| 397 | !------------------------------------------------------------------------------! |
---|
| 398 | ! Description: |
---|
| 399 | ! ------------ |
---|
| 400 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 401 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 402 | ! elements along x reside on the same PE. |
---|
| 403 | !------------------------------------------------------------------------------! |
---|
| 404 | |
---|
| 405 | USE cpulog |
---|
| 406 | USE indices |
---|
| 407 | USE interfaces |
---|
| 408 | USE pegrid |
---|
| 409 | USE transpose_indices |
---|
| 410 | |
---|
| 411 | IMPLICIT NONE |
---|
| 412 | |
---|
| 413 | INTEGER :: i, j, k, l, m, xs |
---|
| 414 | |
---|
[164] | 415 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nys:nyna,nxl:nxra,1:nza), & |
---|
[1] | 416 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
[164] | 417 | work(nnx*nny*nnz) |
---|
[1] | 418 | |
---|
| 419 | #if defined( __parallel ) |
---|
| 420 | |
---|
| 421 | ! |
---|
| 422 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 423 | !-- by MPI contiguous |
---|
[164] | 424 | DO k = 1,nza |
---|
| 425 | DO i = nxl, nxra |
---|
| 426 | DO j = nys, nyna |
---|
| 427 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 428 | ENDDO |
---|
| 429 | ENDDO |
---|
| 430 | ENDDO |
---|
| 431 | |
---|
| 432 | ! |
---|
| 433 | !-- Move data to different array, because memory location of work1 is |
---|
| 434 | !-- needed further below (work1 = work2). |
---|
| 435 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 436 | !-- of the data is necessary and no transposition has to be done. |
---|
| 437 | IF ( pdims(1) == 1 ) THEN |
---|
| 438 | DO k = 1, nza |
---|
[164] | 439 | DO i = nxl, nxra |
---|
| 440 | DO j = nys, nyna |
---|
| 441 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 442 | ENDDO |
---|
| 443 | ENDDO |
---|
| 444 | ENDDO |
---|
| 445 | RETURN |
---|
| 446 | ENDIF |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- Transpose array |
---|
| 450 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[164] | 451 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 452 | work(1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 453 | comm1dx, ierr ) |
---|
| 454 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 455 | |
---|
| 456 | ! |
---|
| 457 | !-- Reorder transposed array |
---|
| 458 | m = 0 |
---|
| 459 | DO l = 0, pdims(1) - 1 |
---|
| 460 | xs = 0 + l * nnx |
---|
| 461 | DO k = nzb_x, nzt_xa |
---|
[164] | 462 | DO i = xs, xs + nnx - 1 |
---|
| 463 | DO j = nys_x, nyn_xa |
---|
[1] | 464 | m = m + 1 |
---|
[164] | 465 | f_out(i,j,k) = work(m) |
---|
[1] | 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | ENDDO |
---|
| 470 | |
---|
| 471 | #endif |
---|
| 472 | |
---|
| 473 | END SUBROUTINE transpose_zx |
---|
| 474 | |
---|
| 475 | |
---|
[164] | 476 | SUBROUTINE transpose_zy( f_in, work, f_out ) |
---|
[1] | 477 | |
---|
| 478 | !------------------------------------------------------------------------------! |
---|
| 479 | ! Description: |
---|
| 480 | ! ------------ |
---|
| 481 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 482 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 483 | ! elements along y reside on the same PE. |
---|
| 484 | !------------------------------------------------------------------------------! |
---|
| 485 | |
---|
| 486 | USE cpulog |
---|
| 487 | USE indices |
---|
| 488 | USE interfaces |
---|
| 489 | USE pegrid |
---|
| 490 | USE transpose_indices |
---|
| 491 | |
---|
| 492 | IMPLICIT NONE |
---|
| 493 | |
---|
| 494 | INTEGER :: i, j, k, l, m, zs |
---|
| 495 | |
---|
| 496 | REAL :: f_in(nxl_z:nxr_za,nys_z:nyn_za,1:nza), & |
---|
| 497 | f_inv(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), & |
---|
| 498 | f_out(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
[164] | 499 | work(nnx*nny*nnz) |
---|
[1] | 500 | |
---|
| 501 | #if defined( __parallel ) |
---|
| 502 | |
---|
| 503 | ! |
---|
| 504 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 505 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 506 | IF ( pdims(1) /= 1 ) THEN |
---|
| 507 | ! |
---|
| 508 | !-- Reorder input array for transposition |
---|
| 509 | m = 0 |
---|
| 510 | DO l = 0, pdims(1) - 1 |
---|
| 511 | zs = 1 + l * ( nzt_ya - nzb_y + 1 ) |
---|
| 512 | DO j = nys_z, nyn_za |
---|
| 513 | DO k = zs, zs + nzt_ya - nzb_y |
---|
| 514 | DO i = nxl_z, nxr_za |
---|
| 515 | m = m + 1 |
---|
[164] | 516 | work(m) = f_in(i,j,k) |
---|
[1] | 517 | ENDDO |
---|
| 518 | ENDDO |
---|
| 519 | ENDDO |
---|
| 520 | ENDDO |
---|
| 521 | |
---|
| 522 | ! |
---|
| 523 | !-- Transpose array |
---|
| 524 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[164] | 525 | CALL MPI_ALLTOALL( work(1), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 526 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 527 | comm1dx, ierr ) |
---|
| 528 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 529 | |
---|
| 530 | ! |
---|
| 531 | !-- Reorder transposed array in a way that the y index is in first position |
---|
[164] | 532 | DO j = 0, nya |
---|
| 533 | DO k = nzb_y, nzt_ya |
---|
| 534 | DO i = nxl_y, nxr_ya |
---|
| 535 | f_out(j,i,k) = f_inv(i,k,j) |
---|
[1] | 536 | ENDDO |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | ELSE |
---|
| 540 | ! |
---|
| 541 | !-- Reorder the array in a way that the y index is in first position |
---|
| 542 | DO k = nzb_y, nzt_ya |
---|
[164] | 543 | DO j = 0, nya |
---|
| 544 | DO i = nxl_y, nxr_ya |
---|
| 545 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 546 | ENDDO |
---|
| 547 | ENDDO |
---|
| 548 | ENDDO |
---|
| 549 | ! |
---|
| 550 | !-- Move data to output array |
---|
| 551 | DO k = nzb_y, nzt_ya |
---|
[1] | 552 | DO i = nxl_y, nxr_ya |
---|
| 553 | DO j = 0, nya |
---|
[164] | 554 | f_out(j,i,k) = f_inv(i,k,j) |
---|
[1] | 555 | ENDDO |
---|
| 556 | ENDDO |
---|
| 557 | ENDDO |
---|
[164] | 558 | |
---|
[1] | 559 | ENDIF |
---|
| 560 | |
---|
| 561 | #endif |
---|
| 562 | |
---|
| 563 | END SUBROUTINE transpose_zy |
---|
| 564 | |
---|
| 565 | |
---|
[164] | 566 | SUBROUTINE transpose_zyd( f_in, work, f_out ) |
---|
[1] | 567 | |
---|
| 568 | !------------------------------------------------------------------------------! |
---|
| 569 | ! Description: |
---|
| 570 | ! ------------ |
---|
| 571 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 572 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 573 | ! elements along y reside on the same PE. |
---|
| 574 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 575 | ! (k,j,i) (cf. transpose_zy). |
---|
| 576 | !------------------------------------------------------------------------------! |
---|
| 577 | |
---|
| 578 | USE cpulog |
---|
| 579 | USE indices |
---|
| 580 | USE interfaces |
---|
| 581 | USE pegrid |
---|
| 582 | USE transpose_indices |
---|
| 583 | |
---|
| 584 | IMPLICIT NONE |
---|
| 585 | |
---|
| 586 | INTEGER :: i, j, k, l, m, ys |
---|
| 587 | |
---|
| 588 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nys:nyna,nxl:nxra,1:nza), & |
---|
| 589 | f_out(0:nya,nxl_yd:nxr_yda,nzb_yd:nzt_yda), & |
---|
[164] | 590 | work(nnx*nny*nnz) |
---|
[1] | 591 | |
---|
| 592 | #if defined( __parallel ) |
---|
| 593 | |
---|
| 594 | ! |
---|
| 595 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 596 | !-- by MPI contiguous |
---|
| 597 | DO i = nxl, nxra |
---|
| 598 | DO j = nys, nyna |
---|
| 599 | DO k = 1, nza |
---|
[164] | 600 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 601 | ENDDO |
---|
| 602 | ENDDO |
---|
| 603 | ENDDO |
---|
| 604 | |
---|
| 605 | ! |
---|
| 606 | !-- Move data to different array, because memory location of work1 is |
---|
| 607 | !-- needed further below (work1 = work2). |
---|
| 608 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 609 | !-- of the data is necessary and no transposition has to be done. |
---|
| 610 | IF ( pdims(2) == 1 ) THEN |
---|
| 611 | DO k = 1, nza |
---|
| 612 | DO i = nxl, nxra |
---|
| 613 | DO j = nys, nyna |
---|
[164] | 614 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 615 | ENDDO |
---|
| 616 | ENDDO |
---|
| 617 | ENDDO |
---|
| 618 | RETURN |
---|
| 619 | ENDIF |
---|
| 620 | |
---|
| 621 | ! |
---|
| 622 | !-- Transpose array |
---|
| 623 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 624 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 625 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 626 | comm1dy, ierr ) |
---|
| 627 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 628 | |
---|
| 629 | ! |
---|
| 630 | !-- Reorder transposed array |
---|
| 631 | m = 0 |
---|
| 632 | DO l = 0, pdims(2) - 1 |
---|
| 633 | ys = 0 + l * nny |
---|
| 634 | DO k = nzb_yd, nzt_yda |
---|
| 635 | DO i = nxl_yd, nxr_yda |
---|
| 636 | DO j = ys, ys + nny - 1 |
---|
| 637 | m = m + 1 |
---|
[164] | 638 | f_out(j,i,k) = work(m) |
---|
[1] | 639 | ENDDO |
---|
| 640 | ENDDO |
---|
| 641 | ENDDO |
---|
| 642 | ENDDO |
---|
| 643 | |
---|
| 644 | #endif |
---|
| 645 | |
---|
| 646 | END SUBROUTINE transpose_zyd |
---|