[1216] | 1 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: transpose.f90 1325 2014-03-21 09:21:15Z hoffmann $ |
---|
| 26 | ! |
---|
[1325] | 27 | ! 1324 2014-03-21 09:13:16Z suehring |
---|
| 28 | ! Bugfix: ONLY statement for module pegrid removed |
---|
| 29 | ! |
---|
[1321] | 30 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 31 | ! ONLY-attribute added to USE-statements, |
---|
| 32 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 33 | ! kinds are defined in new module kinds, |
---|
| 34 | ! old module precision_kind is removed, |
---|
| 35 | ! revision history before 2012 removed, |
---|
| 36 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 37 | ! all variable declaration statements |
---|
[198] | 38 | ! |
---|
[1319] | 39 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 40 | ! cpu_log_nowait parameter added to cpu measurements of the transpositions |
---|
| 41 | ! required for solving the Poisson equation (poisfft), |
---|
| 42 | ! module interfaces removed |
---|
| 43 | ! |
---|
[1258] | 44 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 45 | ! openacc loop and loop vector clauses removed |
---|
| 46 | ! |
---|
[1217] | 47 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 48 | ! re-sorting of the transposed / to be transposed arrays moved to separate |
---|
| 49 | ! routines resort_for_... |
---|
| 50 | ! |
---|
[1112] | 51 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 52 | ! openACC directives added, |
---|
| 53 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
| 54 | ! |
---|
[1107] | 55 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 56 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 57 | ! (non-parallel) mode |
---|
| 58 | ! |
---|
[1093] | 59 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 60 | ! unused variables removed |
---|
| 61 | ! |
---|
[1037] | 62 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 63 | ! code put under GPL (PALM 3.9) |
---|
| 64 | ! |
---|
[1004] | 65 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 66 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 67 | ! |
---|
[1] | 68 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 69 | ! Initial revision |
---|
| 70 | ! |
---|
[1216] | 71 | !------------------------------------------------------------------------------! |
---|
| 72 | ! Description: |
---|
| 73 | ! ------------ |
---|
| 74 | ! Resorting data for the transposition from x to y. The transposition itself |
---|
| 75 | ! is carried out in transpose_xy |
---|
| 76 | !------------------------------------------------------------------------------! |
---|
| 77 | |
---|
[1320] | 78 | USE indices, & |
---|
| 79 | ONLY: nx |
---|
[1216] | 80 | |
---|
[1320] | 81 | USE kinds |
---|
| 82 | |
---|
| 83 | USE transpose_indices, & |
---|
| 84 | ONLY: nxl_z, nxr_z, nyn_x, nyn_z, nys_x, nys_z, nzb_x, nzt_x |
---|
| 85 | |
---|
[1216] | 86 | IMPLICIT NONE |
---|
| 87 | |
---|
[1320] | 88 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !: |
---|
| 89 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !: |
---|
[1216] | 90 | |
---|
| 91 | |
---|
[1320] | 92 | INTEGER(iwp) :: i !: |
---|
| 93 | INTEGER(iwp) :: j !: |
---|
| 94 | INTEGER(iwp) :: k !: |
---|
[1] | 95 | ! |
---|
[1216] | 96 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 97 | !-- by MPI contiguous |
---|
| 98 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 99 | !$OMP DO |
---|
| 100 | !$acc kernels present( f_in, f_inv ) |
---|
| 101 | DO i = 0, nx |
---|
| 102 | DO k = nzb_x, nzt_x |
---|
| 103 | DO j = nys_x, nyn_x |
---|
| 104 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 105 | ENDDO |
---|
| 106 | ENDDO |
---|
| 107 | ENDDO |
---|
| 108 | !$acc end kernels |
---|
| 109 | !$OMP END PARALLEL |
---|
| 110 | |
---|
| 111 | END SUBROUTINE resort_for_xy |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
| 115 | |
---|
| 116 | !------------------------------------------------------------------------------! |
---|
[1] | 117 | ! Description: |
---|
| 118 | ! ------------ |
---|
| 119 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 120 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 121 | ! elements along y reside on the same PE. |
---|
| 122 | !------------------------------------------------------------------------------! |
---|
| 123 | |
---|
[1320] | 124 | USE cpulog, & |
---|
| 125 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
| 126 | |
---|
| 127 | USE indices, & |
---|
| 128 | ONLY: nx, ny |
---|
| 129 | |
---|
| 130 | USE kinds |
---|
| 131 | |
---|
[1] | 132 | USE pegrid |
---|
| 133 | |
---|
[1320] | 134 | USE transpose_indices, & |
---|
| 135 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 136 | |
---|
[1] | 137 | IMPLICIT NONE |
---|
| 138 | |
---|
[1320] | 139 | INTEGER(iwp) :: i !: |
---|
| 140 | INTEGER(iwp) :: j !: |
---|
| 141 | INTEGER(iwp) :: k !: |
---|
| 142 | INTEGER(iwp) :: l !: |
---|
| 143 | INTEGER(iwp) :: ys !: |
---|
| 144 | |
---|
| 145 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !: |
---|
| 146 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !: |
---|
[1] | 147 | |
---|
[1320] | 148 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !: |
---|
[1111] | 149 | |
---|
| 150 | |
---|
[1106] | 151 | IF ( numprocs /= 1 ) THEN |
---|
| 152 | |
---|
| 153 | #if defined( __parallel ) |
---|
[1] | 154 | ! |
---|
[1106] | 155 | !-- Transpose array |
---|
[1318] | 156 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 157 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 158 | !$acc update host( f_inv ) |
---|
| 159 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 160 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 161 | comm1dy, ierr ) |
---|
| 162 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 163 | |
---|
| 164 | ! |
---|
[1106] | 165 | !-- Reorder transposed array |
---|
[1111] | 166 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 167 | !$OMP DO |
---|
[1216] | 168 | !$acc data copyin( work ) |
---|
[1106] | 169 | DO l = 0, pdims(2) - 1 |
---|
| 170 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 171 | !$acc kernels present( f_out, work ) |
---|
[1106] | 172 | DO i = nxl_y, nxr_y |
---|
| 173 | DO k = nzb_y, nzt_y |
---|
| 174 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 175 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 176 | ENDDO |
---|
[1] | 177 | ENDDO |
---|
| 178 | ENDDO |
---|
[1111] | 179 | !$acc end kernels |
---|
[1] | 180 | ENDDO |
---|
[1216] | 181 | !$acc end data |
---|
[683] | 182 | !$OMP END PARALLEL |
---|
[1] | 183 | #endif |
---|
| 184 | |
---|
[1106] | 185 | ELSE |
---|
| 186 | |
---|
| 187 | ! |
---|
| 188 | !-- Reorder transposed array |
---|
| 189 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 190 | !$OMP DO |
---|
[1216] | 191 | !$acc kernels present( f_inv, f_out ) |
---|
[1106] | 192 | DO k = nzb_y, nzt_y |
---|
| 193 | DO i = nxl_y, nxr_y |
---|
| 194 | DO j = 0, ny |
---|
| 195 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 196 | ENDDO |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
[1111] | 199 | !$acc end kernels |
---|
[1106] | 200 | !$OMP END PARALLEL |
---|
| 201 | |
---|
| 202 | ENDIF |
---|
| 203 | |
---|
[1] | 204 | END SUBROUTINE transpose_xy |
---|
| 205 | |
---|
| 206 | |
---|
[1216] | 207 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1] | 208 | |
---|
| 209 | !------------------------------------------------------------------------------! |
---|
| 210 | ! Description: |
---|
| 211 | ! ------------ |
---|
[1216] | 212 | ! Resorting data after the transposition from x to z. The transposition itself |
---|
| 213 | ! is carried out in transpose_xz |
---|
| 214 | !------------------------------------------------------------------------------! |
---|
| 215 | |
---|
[1320] | 216 | USE indices, & |
---|
| 217 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 218 | |
---|
[1320] | 219 | USE kinds |
---|
| 220 | |
---|
[1216] | 221 | IMPLICIT NONE |
---|
| 222 | |
---|
[1320] | 223 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !: |
---|
| 224 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !: |
---|
[1216] | 225 | |
---|
[1320] | 226 | INTEGER(iwp) :: i !: |
---|
| 227 | INTEGER(iwp) :: j !: |
---|
| 228 | INTEGER(iwp) :: k !: |
---|
[1216] | 229 | ! |
---|
| 230 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 231 | !-- by MPI contiguous. |
---|
| 232 | !-- In case of parallel fft/transposition, scattered store is faster in |
---|
| 233 | !-- backward direction!!! |
---|
| 234 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 235 | !$OMP DO |
---|
| 236 | !$acc kernels present( f_inv, f_out ) |
---|
| 237 | DO k = 1, nz |
---|
| 238 | DO i = nxl, nxr |
---|
| 239 | DO j = nys, nyn |
---|
| 240 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 241 | ENDDO |
---|
| 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | !$acc end kernels |
---|
| 245 | !$OMP END PARALLEL |
---|
| 246 | |
---|
| 247 | END SUBROUTINE resort_for_xz |
---|
| 248 | |
---|
| 249 | |
---|
| 250 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
| 251 | |
---|
| 252 | !------------------------------------------------------------------------------! |
---|
| 253 | ! Description: |
---|
| 254 | ! ------------ |
---|
[1] | 255 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 256 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 257 | ! elements along z reside on the same PE. |
---|
| 258 | !------------------------------------------------------------------------------! |
---|
| 259 | |
---|
[1320] | 260 | USE cpulog, & |
---|
| 261 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 262 | |
---|
[1320] | 263 | USE indices, & |
---|
| 264 | ONLY: nnx, nx, nxl, nxr, ny, nyn, nys, nz |
---|
| 265 | |
---|
| 266 | USE kinds |
---|
| 267 | |
---|
[1324] | 268 | USE pegrid |
---|
[1320] | 269 | |
---|
| 270 | USE transpose_indices, & |
---|
| 271 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 272 | |
---|
[1] | 273 | IMPLICIT NONE |
---|
| 274 | |
---|
[1320] | 275 | INTEGER(iwp) :: i !: |
---|
| 276 | INTEGER(iwp) :: j !: |
---|
| 277 | INTEGER(iwp) :: k !: |
---|
| 278 | INTEGER(iwp) :: l !: |
---|
| 279 | INTEGER(iwp) :: xs !: |
---|
[1] | 280 | |
---|
[1320] | 281 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !: |
---|
| 282 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !: |
---|
[1] | 283 | |
---|
[1320] | 284 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !: |
---|
[1111] | 285 | |
---|
[1320] | 286 | |
---|
[1] | 287 | ! |
---|
| 288 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 289 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 290 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 291 | |
---|
| 292 | #if defined( __parallel ) |
---|
[1] | 293 | ! |
---|
| 294 | !-- Reorder input array for transposition |
---|
[1111] | 295 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 296 | !$OMP DO |
---|
[1216] | 297 | !$acc data copyout( work ) |
---|
[1] | 298 | DO l = 0, pdims(1) - 1 |
---|
| 299 | xs = 0 + l * nnx |
---|
[1111] | 300 | !$acc kernels present( f_in, work ) |
---|
[1003] | 301 | DO k = nzb_x, nzt_x |
---|
[164] | 302 | DO i = xs, xs + nnx - 1 |
---|
[1003] | 303 | DO j = nys_x, nyn_x |
---|
[1111] | 304 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 305 | ENDDO |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
[1111] | 308 | !$acc end kernels |
---|
[1] | 309 | ENDDO |
---|
[1216] | 310 | !$acc end data |
---|
[683] | 311 | !$OMP END PARALLEL |
---|
[1] | 312 | |
---|
| 313 | ! |
---|
| 314 | !-- Transpose array |
---|
[1318] | 315 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 316 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 317 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 318 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 319 | comm1dx, ierr ) |
---|
[1111] | 320 | !$acc update device( f_inv ) |
---|
[1] | 321 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 322 | #endif |
---|
| 323 | |
---|
[1] | 324 | ELSE |
---|
[1106] | 325 | |
---|
[1] | 326 | ! |
---|
| 327 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 328 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 329 | !$OMP DO |
---|
[1216] | 330 | !$acc kernels present( f_in, f_inv ) |
---|
[1003] | 331 | DO i = nxl, nxr |
---|
| 332 | DO j = nys, nyn |
---|
| 333 | DO k = 1, nz |
---|
[164] | 334 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 335 | ENDDO |
---|
| 336 | ENDDO |
---|
| 337 | ENDDO |
---|
[1111] | 338 | !$acc end kernels |
---|
[683] | 339 | !$OMP END PARALLEL |
---|
[1] | 340 | |
---|
[164] | 341 | ENDIF |
---|
| 342 | |
---|
[1] | 343 | END SUBROUTINE transpose_xz |
---|
| 344 | |
---|
| 345 | |
---|
[1216] | 346 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1] | 347 | |
---|
| 348 | !------------------------------------------------------------------------------! |
---|
| 349 | ! Description: |
---|
| 350 | ! ------------ |
---|
[1216] | 351 | ! Resorting data after the transposition from y to x. The transposition itself |
---|
| 352 | ! is carried out in transpose_yx |
---|
| 353 | !------------------------------------------------------------------------------! |
---|
| 354 | |
---|
[1320] | 355 | USE indices, & |
---|
| 356 | ONLY: nx |
---|
[1216] | 357 | |
---|
[1320] | 358 | USE kinds |
---|
| 359 | |
---|
| 360 | USE transpose_indices, & |
---|
| 361 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 362 | |
---|
[1216] | 363 | IMPLICIT NONE |
---|
| 364 | |
---|
[1320] | 365 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !: |
---|
| 366 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !: |
---|
[1216] | 367 | |
---|
| 368 | |
---|
[1320] | 369 | INTEGER(iwp) :: i !: |
---|
| 370 | INTEGER(iwp) :: j !: |
---|
| 371 | INTEGER(iwp) :: k !: |
---|
[1216] | 372 | ! |
---|
| 373 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 374 | !-- by MPI contiguous |
---|
| 375 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 376 | !$OMP DO |
---|
| 377 | !$acc kernels present( f_inv, f_out ) |
---|
| 378 | DO i = 0, nx |
---|
| 379 | DO k = nzb_x, nzt_x |
---|
| 380 | DO j = nys_x, nyn_x |
---|
| 381 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 382 | ENDDO |
---|
| 383 | ENDDO |
---|
| 384 | ENDDO |
---|
| 385 | !$acc end kernels |
---|
| 386 | !$OMP END PARALLEL |
---|
| 387 | |
---|
| 388 | END SUBROUTINE resort_for_yx |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
| 392 | |
---|
| 393 | !------------------------------------------------------------------------------! |
---|
| 394 | ! Description: |
---|
| 395 | ! ------------ |
---|
[1] | 396 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 397 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 398 | ! elements along x reside on the same PE. |
---|
| 399 | !------------------------------------------------------------------------------! |
---|
| 400 | |
---|
[1320] | 401 | USE cpulog, & |
---|
| 402 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 403 | |
---|
[1320] | 404 | USE indices, & |
---|
| 405 | ONLY: nx, ny |
---|
| 406 | |
---|
| 407 | USE kinds |
---|
| 408 | |
---|
[1324] | 409 | USE pegrid |
---|
[1320] | 410 | |
---|
| 411 | USE transpose_indices, & |
---|
| 412 | ONLY: nxl_y, nxr_y, nyn_x, nys_x, nzb_x, nzb_y, nzt_x, nzt_y |
---|
| 413 | |
---|
[1] | 414 | IMPLICIT NONE |
---|
| 415 | |
---|
[1320] | 416 | INTEGER(iwp) :: i !: |
---|
| 417 | INTEGER(iwp) :: j !: |
---|
| 418 | INTEGER(iwp) :: k !: |
---|
| 419 | INTEGER(iwp) :: l !: |
---|
| 420 | INTEGER(iwp) :: ys !: |
---|
[1] | 421 | |
---|
[1320] | 422 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !: |
---|
| 423 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !: |
---|
[1111] | 424 | |
---|
[1320] | 425 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !: |
---|
[1111] | 426 | |
---|
[1320] | 427 | |
---|
[1106] | 428 | IF ( numprocs /= 1 ) THEN |
---|
| 429 | |
---|
[1] | 430 | #if defined( __parallel ) |
---|
| 431 | ! |
---|
[1106] | 432 | !-- Reorder input array for transposition |
---|
[1111] | 433 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 434 | !$OMP DO |
---|
[1216] | 435 | !$acc data copyout( work ) |
---|
[1106] | 436 | DO l = 0, pdims(2) - 1 |
---|
| 437 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 438 | !$acc kernels present( f_in, work ) |
---|
[1106] | 439 | DO i = nxl_y, nxr_y |
---|
| 440 | DO k = nzb_y, nzt_y |
---|
| 441 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 442 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 443 | ENDDO |
---|
| 444 | ENDDO |
---|
| 445 | ENDDO |
---|
[1111] | 446 | !$acc end kernels |
---|
[1106] | 447 | ENDDO |
---|
[1216] | 448 | !$acc end data |
---|
[1106] | 449 | !$OMP END PARALLEL |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- Transpose array |
---|
[1318] | 453 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 454 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 455 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 456 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 457 | comm1dy, ierr ) |
---|
[1111] | 458 | !$acc update device( f_inv ) |
---|
[1106] | 459 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 460 | #endif |
---|
| 461 | |
---|
| 462 | ELSE |
---|
| 463 | |
---|
| 464 | ! |
---|
| 465 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 466 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 467 | !$OMP DO |
---|
[1216] | 468 | !$acc kernels present( f_in, f_inv ) |
---|
[1003] | 469 | DO i = nxl_y, nxr_y |
---|
| 470 | DO k = nzb_y, nzt_y |
---|
[1106] | 471 | DO j = 0, ny |
---|
| 472 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 473 | ENDDO |
---|
| 474 | ENDDO |
---|
| 475 | ENDDO |
---|
[1111] | 476 | !$acc end kernels |
---|
[683] | 477 | !$OMP END PARALLEL |
---|
[1] | 478 | |
---|
[1106] | 479 | ENDIF |
---|
[1] | 480 | |
---|
| 481 | END SUBROUTINE transpose_yx |
---|
| 482 | |
---|
| 483 | |
---|
[1216] | 484 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 485 | |
---|
| 486 | !------------------------------------------------------------------------------! |
---|
| 487 | ! Description: |
---|
| 488 | ! ------------ |
---|
| 489 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 490 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 491 | ! elements along x reside on the same PE. |
---|
| 492 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 493 | ! (k,j,i) (cf. transpose_yx). |
---|
| 494 | !------------------------------------------------------------------------------! |
---|
| 495 | |
---|
[1320] | 496 | USE cpulog, & |
---|
| 497 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 498 | |
---|
[1320] | 499 | USE indices, & |
---|
| 500 | ONLY: nnx, nny, nnz, nx, nxl, nxr, nyn, nys, nz |
---|
| 501 | |
---|
| 502 | USE kinds |
---|
| 503 | |
---|
[1324] | 504 | USE pegrid |
---|
[1320] | 505 | |
---|
| 506 | USE transpose_indices, & |
---|
| 507 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 508 | |
---|
[1] | 509 | IMPLICIT NONE |
---|
| 510 | |
---|
[1320] | 511 | INTEGER(iwp) :: i !: |
---|
| 512 | INTEGER(iwp) :: j !: |
---|
| 513 | INTEGER(iwp) :: k !: |
---|
| 514 | INTEGER(iwp) :: l !: |
---|
| 515 | INTEGER(iwp) :: m !: |
---|
| 516 | INTEGER(iwp) :: xs !: |
---|
[1] | 517 | |
---|
[1320] | 518 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !: |
---|
| 519 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !: |
---|
| 520 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !: |
---|
| 521 | REAL(wp) :: work(nnx*nny*nnz) !: |
---|
[1] | 522 | #if defined( __parallel ) |
---|
| 523 | |
---|
| 524 | ! |
---|
| 525 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 526 | !-- by MPI contiguous |
---|
[1003] | 527 | DO k = 1, nz |
---|
| 528 | DO j = nys, nyn |
---|
| 529 | DO i = nxl, nxr |
---|
[164] | 530 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 531 | ENDDO |
---|
| 532 | ENDDO |
---|
| 533 | ENDDO |
---|
| 534 | |
---|
| 535 | ! |
---|
| 536 | !-- Transpose array |
---|
| 537 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 538 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 539 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 540 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 541 | comm1dx, ierr ) |
---|
| 542 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 543 | |
---|
| 544 | ! |
---|
| 545 | !-- Reorder transposed array |
---|
| 546 | m = 0 |
---|
| 547 | DO l = 0, pdims(1) - 1 |
---|
| 548 | xs = 0 + l * nnx |
---|
[1003] | 549 | DO j = nys_x, nyn_x |
---|
| 550 | DO k = 1, nz |
---|
[1] | 551 | DO i = xs, xs + nnx - 1 |
---|
| 552 | m = m + 1 |
---|
[164] | 553 | f_out(i,j,k) = work(m) |
---|
[1] | 554 | ENDDO |
---|
| 555 | ENDDO |
---|
| 556 | ENDDO |
---|
| 557 | ENDDO |
---|
| 558 | |
---|
| 559 | #endif |
---|
| 560 | |
---|
| 561 | END SUBROUTINE transpose_yxd |
---|
| 562 | |
---|
| 563 | |
---|
[1216] | 564 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1] | 565 | |
---|
| 566 | !------------------------------------------------------------------------------! |
---|
| 567 | ! Description: |
---|
| 568 | ! ------------ |
---|
[1216] | 569 | ! Resorting data for the transposition from y to z. The transposition itself |
---|
| 570 | ! is carried out in transpose_yz |
---|
| 571 | !------------------------------------------------------------------------------! |
---|
| 572 | |
---|
[1320] | 573 | USE indices, & |
---|
| 574 | ONLY: ny |
---|
[1216] | 575 | |
---|
[1320] | 576 | USE kinds |
---|
| 577 | |
---|
| 578 | USE transpose_indices, & |
---|
| 579 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 580 | |
---|
[1216] | 581 | IMPLICIT NONE |
---|
| 582 | |
---|
[1320] | 583 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !: |
---|
| 584 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !: |
---|
[1216] | 585 | |
---|
[1320] | 586 | INTEGER(iwp) :: i !: |
---|
| 587 | INTEGER(iwp) :: j !: |
---|
| 588 | INTEGER(iwp) :: k !: |
---|
[1216] | 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 592 | !-- by MPI contiguous |
---|
| 593 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 594 | !$OMP DO |
---|
| 595 | !$acc kernels present( f_in, f_inv ) |
---|
| 596 | DO j = 0, ny |
---|
| 597 | DO k = nzb_y, nzt_y |
---|
| 598 | DO i = nxl_y, nxr_y |
---|
| 599 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 600 | ENDDO |
---|
| 601 | ENDDO |
---|
| 602 | ENDDO |
---|
| 603 | !$acc end kernels |
---|
| 604 | !$OMP END PARALLEL |
---|
| 605 | |
---|
| 606 | END SUBROUTINE resort_for_yz |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
| 610 | |
---|
| 611 | !------------------------------------------------------------------------------! |
---|
| 612 | ! Description: |
---|
| 613 | ! ------------ |
---|
[1] | 614 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 615 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 616 | ! elements along z reside on the same PE. |
---|
| 617 | !------------------------------------------------------------------------------! |
---|
| 618 | |
---|
[1320] | 619 | USE cpulog, & |
---|
| 620 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 621 | |
---|
[1320] | 622 | USE indices, & |
---|
| 623 | ONLY: ny, nz |
---|
| 624 | |
---|
| 625 | USE kinds |
---|
| 626 | |
---|
[1324] | 627 | USE pegrid |
---|
[1320] | 628 | |
---|
| 629 | USE transpose_indices, & |
---|
| 630 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 631 | |
---|
[1] | 632 | IMPLICIT NONE |
---|
| 633 | |
---|
[1320] | 634 | INTEGER(iwp) :: i !: |
---|
| 635 | INTEGER(iwp) :: j !: |
---|
| 636 | INTEGER(iwp) :: k !: |
---|
| 637 | INTEGER(iwp) :: l !: |
---|
| 638 | INTEGER(iwp) :: zs !: |
---|
[1] | 639 | |
---|
[1320] | 640 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !: |
---|
| 641 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
[1111] | 642 | |
---|
[1320] | 643 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !: |
---|
[1111] | 644 | |
---|
[1320] | 645 | |
---|
[1] | 646 | ! |
---|
| 647 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 648 | !-- of the data is necessary and no transposition has to be done. |
---|
| 649 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 650 | |
---|
[683] | 651 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 652 | !$OMP DO |
---|
[1216] | 653 | !$acc kernels present( f_inv, f_out ) |
---|
[1003] | 654 | DO j = 0, ny |
---|
| 655 | DO k = nzb_y, nzt_y |
---|
| 656 | DO i = nxl_y, nxr_y |
---|
[164] | 657 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 658 | ENDDO |
---|
| 659 | ENDDO |
---|
| 660 | ENDDO |
---|
[1111] | 661 | !$acc end kernels |
---|
[683] | 662 | !$OMP END PARALLEL |
---|
[1] | 663 | |
---|
[1106] | 664 | ELSE |
---|
| 665 | |
---|
| 666 | #if defined( __parallel ) |
---|
[1] | 667 | ! |
---|
[1106] | 668 | !-- Transpose array |
---|
[1318] | 669 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 670 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 671 | !$acc update host( f_inv ) |
---|
| 672 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 673 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 674 | comm1dx, ierr ) |
---|
| 675 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 676 | |
---|
| 677 | ! |
---|
[1106] | 678 | !-- Reorder transposed array |
---|
[1111] | 679 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 680 | !$OMP DO |
---|
[1216] | 681 | !$acc data copyin( work ) |
---|
[1106] | 682 | DO l = 0, pdims(1) - 1 |
---|
| 683 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1216] | 684 | !$acc kernels present( f_out ) |
---|
[1106] | 685 | DO j = nys_z, nyn_z |
---|
| 686 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 687 | DO i = nxl_z, nxr_z |
---|
[1111] | 688 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 689 | ENDDO |
---|
[1] | 690 | ENDDO |
---|
| 691 | ENDDO |
---|
[1111] | 692 | !$acc end kernels |
---|
[1] | 693 | ENDDO |
---|
[1216] | 694 | !$acc end data |
---|
[683] | 695 | !$OMP END PARALLEL |
---|
[1] | 696 | #endif |
---|
| 697 | |
---|
[1106] | 698 | ENDIF |
---|
| 699 | |
---|
[1] | 700 | END SUBROUTINE transpose_yz |
---|
| 701 | |
---|
| 702 | |
---|
[1216] | 703 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1] | 704 | |
---|
| 705 | !------------------------------------------------------------------------------! |
---|
| 706 | ! Description: |
---|
| 707 | ! ------------ |
---|
[1216] | 708 | ! Resorting data for the transposition from z to x. The transposition itself |
---|
| 709 | ! is carried out in transpose_zx |
---|
| 710 | !------------------------------------------------------------------------------! |
---|
| 711 | |
---|
[1320] | 712 | USE indices, & |
---|
| 713 | ONLY: nxl, nxr, nyn, nys, nz |
---|
[1216] | 714 | |
---|
[1320] | 715 | USE kinds |
---|
| 716 | |
---|
[1216] | 717 | IMPLICIT NONE |
---|
| 718 | |
---|
[1320] | 719 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !: |
---|
| 720 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !: |
---|
[1216] | 721 | |
---|
[1320] | 722 | INTEGER(iwp) :: i !: |
---|
| 723 | INTEGER(iwp) :: j !: |
---|
| 724 | INTEGER(iwp) :: k !: |
---|
[1216] | 725 | |
---|
| 726 | ! |
---|
| 727 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 728 | !-- by MPI contiguous |
---|
| 729 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 730 | !$OMP DO |
---|
| 731 | !$acc kernels present( f_in, f_inv ) |
---|
| 732 | DO k = 1,nz |
---|
| 733 | DO i = nxl, nxr |
---|
| 734 | DO j = nys, nyn |
---|
| 735 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 736 | ENDDO |
---|
| 737 | ENDDO |
---|
| 738 | ENDDO |
---|
| 739 | !$acc end kernels |
---|
| 740 | !$OMP END PARALLEL |
---|
| 741 | |
---|
| 742 | END SUBROUTINE resort_for_zx |
---|
| 743 | |
---|
| 744 | |
---|
| 745 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
| 746 | |
---|
| 747 | !------------------------------------------------------------------------------! |
---|
| 748 | ! Description: |
---|
| 749 | ! ------------ |
---|
[1] | 750 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 751 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 752 | ! elements along x reside on the same PE. |
---|
| 753 | !------------------------------------------------------------------------------! |
---|
| 754 | |
---|
[1320] | 755 | USE cpulog, & |
---|
| 756 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 757 | |
---|
[1320] | 758 | USE indices, & |
---|
| 759 | ONLY: nnx, nx, nxl, nxr, nyn, nys, nz |
---|
| 760 | |
---|
| 761 | USE kinds |
---|
| 762 | |
---|
[1324] | 763 | USE pegrid |
---|
[1320] | 764 | |
---|
| 765 | USE transpose_indices, & |
---|
| 766 | ONLY: nyn_x, nys_x, nzb_x, nzt_x |
---|
| 767 | |
---|
[1] | 768 | IMPLICIT NONE |
---|
| 769 | |
---|
[1320] | 770 | INTEGER(iwp) :: i !: |
---|
| 771 | INTEGER(iwp) :: j !: |
---|
| 772 | INTEGER(iwp) :: k !: |
---|
| 773 | INTEGER(iwp) :: l !: |
---|
| 774 | INTEGER(iwp) :: xs !: |
---|
[1] | 775 | |
---|
[1320] | 776 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !: |
---|
| 777 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !: |
---|
[1111] | 778 | |
---|
[1320] | 779 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !: |
---|
[1] | 780 | |
---|
[1320] | 781 | |
---|
[1] | 782 | ! |
---|
| 783 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 784 | !-- of the data is necessary and no transposition has to be done. |
---|
| 785 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 786 | |
---|
[683] | 787 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 788 | !$OMP DO |
---|
[1216] | 789 | !$acc kernels present( f_inv, f_out ) |
---|
[1003] | 790 | DO k = 1, nz |
---|
| 791 | DO i = nxl, nxr |
---|
| 792 | DO j = nys, nyn |
---|
[164] | 793 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 794 | ENDDO |
---|
| 795 | ENDDO |
---|
| 796 | ENDDO |
---|
[1111] | 797 | !$acc end kernels |
---|
[683] | 798 | !$OMP END PARALLEL |
---|
[1] | 799 | |
---|
[1106] | 800 | ELSE |
---|
| 801 | |
---|
| 802 | #if defined( __parallel ) |
---|
[1] | 803 | ! |
---|
[1106] | 804 | !-- Transpose array |
---|
[1318] | 805 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[1106] | 806 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 807 | !$acc update host( f_inv ) |
---|
| 808 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 809 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 810 | comm1dx, ierr ) |
---|
| 811 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 812 | |
---|
| 813 | ! |
---|
[1106] | 814 | !-- Reorder transposed array |
---|
[1111] | 815 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 816 | !$OMP DO |
---|
[1216] | 817 | !$acc data copyin( work ) |
---|
[1106] | 818 | DO l = 0, pdims(1) - 1 |
---|
| 819 | xs = 0 + l * nnx |
---|
[1216] | 820 | !$acc kernels present( f_out ) |
---|
[1106] | 821 | DO k = nzb_x, nzt_x |
---|
| 822 | DO i = xs, xs + nnx - 1 |
---|
| 823 | DO j = nys_x, nyn_x |
---|
[1111] | 824 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 825 | ENDDO |
---|
[1] | 826 | ENDDO |
---|
| 827 | ENDDO |
---|
[1111] | 828 | !$acc end kernels |
---|
[1] | 829 | ENDDO |
---|
[1216] | 830 | !$acc end data |
---|
[683] | 831 | !$OMP END PARALLEL |
---|
[1] | 832 | #endif |
---|
| 833 | |
---|
[1106] | 834 | ENDIF |
---|
| 835 | |
---|
[1] | 836 | END SUBROUTINE transpose_zx |
---|
| 837 | |
---|
| 838 | |
---|
[1216] | 839 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1] | 840 | |
---|
| 841 | !------------------------------------------------------------------------------! |
---|
| 842 | ! Description: |
---|
| 843 | ! ------------ |
---|
[1216] | 844 | ! Resorting data after the transposition from z to y. The transposition itself |
---|
| 845 | ! is carried out in transpose_zy |
---|
| 846 | !------------------------------------------------------------------------------! |
---|
| 847 | |
---|
[1320] | 848 | USE indices, & |
---|
| 849 | ONLY: ny |
---|
[1216] | 850 | |
---|
[1320] | 851 | USE kinds |
---|
| 852 | |
---|
| 853 | USE transpose_indices, & |
---|
| 854 | ONLY: nxl_y, nxr_y, nzb_y, nzt_y |
---|
| 855 | |
---|
[1216] | 856 | IMPLICIT NONE |
---|
| 857 | |
---|
[1320] | 858 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !: |
---|
| 859 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !: |
---|
[1216] | 860 | |
---|
| 861 | |
---|
[1320] | 862 | INTEGER(iwp) :: i !: |
---|
| 863 | INTEGER(iwp) :: j !: |
---|
| 864 | INTEGER(iwp) :: k !: |
---|
[1216] | 865 | |
---|
| 866 | ! |
---|
| 867 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 868 | !-- by MPI contiguous |
---|
| 869 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 870 | !$OMP DO |
---|
| 871 | !$acc kernels present( f_inv, f_out ) |
---|
| 872 | DO k = nzb_y, nzt_y |
---|
| 873 | DO j = 0, ny |
---|
| 874 | DO i = nxl_y, nxr_y |
---|
| 875 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 876 | ENDDO |
---|
| 877 | ENDDO |
---|
| 878 | ENDDO |
---|
| 879 | !$acc end kernels |
---|
| 880 | !$OMP END PARALLEL |
---|
| 881 | |
---|
| 882 | END SUBROUTINE resort_for_zy |
---|
| 883 | |
---|
| 884 | |
---|
| 885 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
| 886 | |
---|
| 887 | !------------------------------------------------------------------------------! |
---|
| 888 | ! Description: |
---|
| 889 | ! ------------ |
---|
[1] | 890 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 891 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 892 | ! elements along y reside on the same PE. |
---|
| 893 | !------------------------------------------------------------------------------! |
---|
| 894 | |
---|
[1320] | 895 | USE cpulog, & |
---|
| 896 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 897 | |
---|
[1320] | 898 | USE indices, & |
---|
| 899 | ONLY: ny, nz |
---|
| 900 | |
---|
| 901 | USE kinds |
---|
| 902 | |
---|
[1324] | 903 | USE pegrid |
---|
[1320] | 904 | |
---|
| 905 | USE transpose_indices, & |
---|
| 906 | ONLY: nxl_y, nxl_z, nxr_y, nxr_z, nyn_z, nys_z, nzb_y, nzt_y |
---|
| 907 | |
---|
[1] | 908 | IMPLICIT NONE |
---|
| 909 | |
---|
[1320] | 910 | INTEGER(iwp) :: i !: |
---|
| 911 | INTEGER(iwp) :: j !: |
---|
| 912 | INTEGER(iwp) :: k !: |
---|
| 913 | INTEGER(iwp) :: l !: |
---|
| 914 | INTEGER(iwp) :: zs !: |
---|
[1] | 915 | |
---|
[1320] | 916 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !: |
---|
| 917 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !: |
---|
[1111] | 918 | |
---|
[1320] | 919 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !: |
---|
[1111] | 920 | |
---|
[1] | 921 | ! |
---|
| 922 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 923 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 924 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 925 | |
---|
| 926 | #if defined( __parallel ) |
---|
[1] | 927 | ! |
---|
| 928 | !-- Reorder input array for transposition |
---|
[1111] | 929 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 930 | !$OMP DO |
---|
[1216] | 931 | !$acc data copyout( work ) |
---|
[1] | 932 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 933 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1111] | 934 | !$acc kernels present( f_in, work ) |
---|
[1003] | 935 | DO j = nys_z, nyn_z |
---|
| 936 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 937 | DO i = nxl_z, nxr_z |
---|
[1111] | 938 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 939 | ENDDO |
---|
| 940 | ENDDO |
---|
| 941 | ENDDO |
---|
[1111] | 942 | !$acc end kernels |
---|
[1] | 943 | ENDDO |
---|
[1216] | 944 | !$acc end data |
---|
[683] | 945 | !$OMP END PARALLEL |
---|
[1] | 946 | |
---|
| 947 | ! |
---|
| 948 | !-- Transpose array |
---|
[1318] | 949 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[622] | 950 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 951 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 952 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 953 | comm1dx, ierr ) |
---|
[1111] | 954 | !$acc update device( f_inv ) |
---|
[1] | 955 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 956 | #endif |
---|
[1] | 957 | |
---|
| 958 | ELSE |
---|
| 959 | ! |
---|
[1106] | 960 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 961 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 962 | !$OMP DO |
---|
[1216] | 963 | !$acc kernels present( f_in, f_inv ) |
---|
[1003] | 964 | DO k = nzb_y, nzt_y |
---|
| 965 | DO j = 0, ny |
---|
| 966 | DO i = nxl_y, nxr_y |
---|
[164] | 967 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 968 | ENDDO |
---|
| 969 | ENDDO |
---|
| 970 | ENDDO |
---|
[1111] | 971 | !$acc end kernels |
---|
[683] | 972 | !$OMP END PARALLEL |
---|
[1106] | 973 | |
---|
| 974 | ENDIF |
---|
| 975 | |
---|
[1] | 976 | END SUBROUTINE transpose_zy |
---|
| 977 | |
---|
| 978 | |
---|
[1216] | 979 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 980 | |
---|
| 981 | !------------------------------------------------------------------------------! |
---|
| 982 | ! Description: |
---|
| 983 | ! ------------ |
---|
| 984 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 985 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 986 | ! elements along y reside on the same PE. |
---|
| 987 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 988 | ! (k,j,i) (cf. transpose_zy). |
---|
| 989 | !------------------------------------------------------------------------------! |
---|
| 990 | |
---|
[1320] | 991 | USE cpulog, & |
---|
| 992 | ONLY: cpu_log, cpu_log_nowait, log_point_s |
---|
[1] | 993 | |
---|
[1320] | 994 | USE indices, & |
---|
| 995 | ONLY: nnx, nny, nnz, nxl, nxr, nyn, nys, ny, nz |
---|
| 996 | |
---|
| 997 | USE kinds |
---|
| 998 | |
---|
[1324] | 999 | USE pegrid |
---|
[1320] | 1000 | |
---|
| 1001 | USE transpose_indices, & |
---|
| 1002 | ONLY: nxl_y, nxl_yd, nxr_y, nxr_yd, nzb_y, nzb_yd, nzt_y, nzt_yd |
---|
| 1003 | |
---|
[1] | 1004 | IMPLICIT NONE |
---|
| 1005 | |
---|
[1320] | 1006 | INTEGER(iwp) :: i !: |
---|
| 1007 | INTEGER(iwp) :: j !: |
---|
| 1008 | INTEGER(iwp) :: k !: |
---|
| 1009 | INTEGER(iwp) :: l !: |
---|
| 1010 | INTEGER(iwp) :: m !: |
---|
| 1011 | INTEGER(iwp) :: ys !: |
---|
[1] | 1012 | |
---|
[1320] | 1013 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !: |
---|
| 1014 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !: |
---|
| 1015 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !: |
---|
| 1016 | REAL(wp) :: work(nnx*nny*nnz) !: |
---|
| 1017 | |
---|
[1] | 1018 | #if defined( __parallel ) |
---|
| 1019 | |
---|
| 1020 | ! |
---|
| 1021 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 1022 | !-- by MPI contiguous |
---|
[1003] | 1023 | DO i = nxl, nxr |
---|
| 1024 | DO j = nys, nyn |
---|
| 1025 | DO k = 1, nz |
---|
[164] | 1026 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1027 | ENDDO |
---|
| 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | |
---|
| 1031 | ! |
---|
| 1032 | !-- Move data to different array, because memory location of work1 is |
---|
| 1033 | !-- needed further below (work1 = work2). |
---|
| 1034 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 1035 | !-- of the data is necessary and no transposition has to be done. |
---|
| 1036 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1037 | DO k = 1, nz |
---|
| 1038 | DO i = nxl, nxr |
---|
| 1039 | DO j = nys, nyn |
---|
[164] | 1040 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1041 | ENDDO |
---|
| 1042 | ENDDO |
---|
| 1043 | ENDDO |
---|
| 1044 | RETURN |
---|
| 1045 | ENDIF |
---|
| 1046 | |
---|
| 1047 | ! |
---|
| 1048 | !-- Transpose array |
---|
| 1049 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1050 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 1051 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 1052 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 1053 | comm1dy, ierr ) |
---|
| 1054 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1055 | |
---|
| 1056 | ! |
---|
| 1057 | !-- Reorder transposed array |
---|
| 1058 | m = 0 |
---|
| 1059 | DO l = 0, pdims(2) - 1 |
---|
| 1060 | ys = 0 + l * nny |
---|
[1003] | 1061 | DO k = nzb_yd, nzt_yd |
---|
| 1062 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1063 | DO j = ys, ys + nny - 1 |
---|
| 1064 | m = m + 1 |
---|
[164] | 1065 | f_out(j,i,k) = work(m) |
---|
[1] | 1066 | ENDDO |
---|
| 1067 | ENDDO |
---|
| 1068 | ENDDO |
---|
| 1069 | ENDDO |
---|
| 1070 | |
---|
| 1071 | #endif |
---|
| 1072 | |
---|
| 1073 | END SUBROUTINE transpose_zyd |
---|