[1] | 1 | SUBROUTINE transpose_xy( f_in, work1, f_inv, work2, f_out ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: transpose.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
| 11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 12 | ! |
---|
[1] | 13 | ! Revision 1.2 2004/04/30 13:12:17 raasch |
---|
| 14 | ! Switched from mpi_alltoallv to the simpler mpi_alltoall, |
---|
| 15 | ! all former transpose-routine files collected in this file, enlarged |
---|
| 16 | ! transposition arrays introduced |
---|
| 17 | ! |
---|
| 18 | ! Revision 1.1 2004/04/30 13:08:16 raasch |
---|
| 19 | ! Initial revision (collection of former routines transpose_xy, transpose_xz, |
---|
| 20 | ! transpose_yx, transpose_yz, transpose_zx, transpose_zy) |
---|
| 21 | ! |
---|
| 22 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 23 | ! Initial revision |
---|
| 24 | ! |
---|
| 25 | ! |
---|
| 26 | ! Description: |
---|
| 27 | ! ------------ |
---|
| 28 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 29 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 30 | ! elements along y reside on the same PE. |
---|
| 31 | !------------------------------------------------------------------------------! |
---|
| 32 | |
---|
| 33 | USE cpulog |
---|
| 34 | USE indices |
---|
| 35 | USE interfaces |
---|
| 36 | USE pegrid |
---|
| 37 | USE transpose_indices |
---|
| 38 | |
---|
| 39 | IMPLICIT NONE |
---|
| 40 | |
---|
| 41 | INTEGER :: i, j, k, l, m, ys |
---|
| 42 | |
---|
| 43 | REAL :: f_in(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 44 | f_inv(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), & |
---|
| 45 | f_out(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
| 46 | work1(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), work2(nnx*nny*nnz) |
---|
| 47 | |
---|
| 48 | #if defined( __parallel ) |
---|
| 49 | |
---|
| 50 | ! |
---|
| 51 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 52 | !-- by MPI contiguous |
---|
| 53 | DO k = nzb_x, nzt_xa |
---|
| 54 | DO j = nys_x, nyn_xa |
---|
| 55 | DO i = 0, nxa |
---|
| 56 | work1(j,k,i) = f_in(i,j,k) |
---|
| 57 | ENDDO |
---|
| 58 | ENDDO |
---|
| 59 | ENDDO |
---|
| 60 | |
---|
| 61 | ! |
---|
| 62 | !-- Move data to different array, because memory location of work1 is |
---|
| 63 | !-- needed further below (work1 = work2) |
---|
| 64 | DO i = 0, nxa |
---|
| 65 | DO k = nzb_x, nzt_xa |
---|
| 66 | DO j = nys_x, nyn_xa |
---|
| 67 | f_inv(j,k,i) = work1(j,k,i) |
---|
| 68 | ENDDO |
---|
| 69 | ENDDO |
---|
| 70 | ENDDO |
---|
| 71 | |
---|
| 72 | ! |
---|
| 73 | !-- Transpose array |
---|
| 74 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 75 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 76 | work2(1), sendrecvcount_xy, MPI_REAL, & |
---|
| 77 | comm1dy, ierr ) |
---|
| 78 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 79 | |
---|
| 80 | ! |
---|
| 81 | !-- Reorder transposed array |
---|
| 82 | m = 0 |
---|
| 83 | DO l = 0, pdims(2) - 1 |
---|
| 84 | ys = 0 + l * ( nyn_xa - nys_x + 1 ) |
---|
| 85 | DO i = nxl_y, nxr_ya |
---|
| 86 | DO k = nzb_y, nzt_ya |
---|
| 87 | DO j = ys, ys + nyn_xa - nys_x |
---|
| 88 | m = m + 1 |
---|
| 89 | f_out(j,i,k) = work2(m) |
---|
| 90 | ENDDO |
---|
| 91 | ENDDO |
---|
| 92 | ENDDO |
---|
| 93 | ENDDO |
---|
| 94 | |
---|
| 95 | #endif |
---|
| 96 | |
---|
| 97 | END SUBROUTINE transpose_xy |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | SUBROUTINE transpose_xz( f_in, work1, f_inv, work2, f_out ) |
---|
| 101 | |
---|
| 102 | !------------------------------------------------------------------------------! |
---|
| 103 | ! Description: |
---|
| 104 | ! ------------ |
---|
| 105 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 106 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 107 | ! elements along z reside on the same PE. |
---|
| 108 | !------------------------------------------------------------------------------! |
---|
| 109 | |
---|
| 110 | USE cpulog |
---|
| 111 | USE indices |
---|
| 112 | USE interfaces |
---|
| 113 | USE pegrid |
---|
| 114 | USE transpose_indices |
---|
| 115 | |
---|
| 116 | IMPLICIT NONE |
---|
| 117 | |
---|
| 118 | INTEGER :: i, j, k, l, m, xs |
---|
| 119 | |
---|
| 120 | REAL :: f_in(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 121 | f_inv(nxl:nxra,nys:nyna,1:nza), & |
---|
| 122 | f_out(1:nza,nys:nyna,nxl:nxra), & |
---|
| 123 | work1(1:nza,nys:nyna,nxl:nxra), work2(nnx*nny*nnz) |
---|
| 124 | |
---|
| 125 | #if defined( __parallel ) |
---|
| 126 | |
---|
| 127 | ! |
---|
| 128 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 129 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 130 | IF ( pdims(1) /= 1 ) THEN |
---|
| 131 | ! |
---|
| 132 | !-- Reorder input array for transposition |
---|
| 133 | m = 0 |
---|
| 134 | DO l = 0, pdims(1) - 1 |
---|
| 135 | xs = 0 + l * nnx |
---|
| 136 | DO k = nzb_x, nzt_xa |
---|
| 137 | DO j = nys_x, nyn_xa |
---|
| 138 | DO i = xs, xs + nnx - 1 |
---|
| 139 | m = m + 1 |
---|
| 140 | work2(m) = f_in(i,j,k) |
---|
| 141 | ENDDO |
---|
| 142 | ENDDO |
---|
| 143 | ENDDO |
---|
| 144 | ENDDO |
---|
| 145 | |
---|
| 146 | ! |
---|
| 147 | !-- Transpose array |
---|
| 148 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 149 | CALL MPI_ALLTOALL( work2(1), sendrecvcount_zx, MPI_REAL, & |
---|
| 150 | f_inv(nxl,nys,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 151 | comm1dx, ierr ) |
---|
| 152 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 153 | |
---|
| 154 | ! |
---|
| 155 | !-- Reorder transposed array in a way that the z index is in first position |
---|
| 156 | DO i = nxl, nxra |
---|
| 157 | DO j = nys, nyna |
---|
| 158 | DO k = 1, nza |
---|
| 159 | work1(k,j,i) = f_inv(i,j,k) |
---|
| 160 | ENDDO |
---|
| 161 | ENDDO |
---|
| 162 | ENDDO |
---|
| 163 | ELSE |
---|
| 164 | ! |
---|
| 165 | !-- Reorder the array in a way that the z index is in first position |
---|
| 166 | DO i = nxl, nxra |
---|
| 167 | DO j = nys, nyna |
---|
| 168 | DO k = 1, nza |
---|
| 169 | work1(k,j,i) = f_in(i,j,k) |
---|
| 170 | ENDDO |
---|
| 171 | ENDDO |
---|
| 172 | ENDDO |
---|
| 173 | ENDIF |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- Move data to output array |
---|
| 177 | DO i = nxl, nxra |
---|
| 178 | DO j = nys, nyna |
---|
| 179 | DO k = 1, nza |
---|
| 180 | f_out(k,j,i) = work1(k,j,i) |
---|
| 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | ENDDO |
---|
| 184 | |
---|
| 185 | #endif |
---|
| 186 | |
---|
| 187 | END SUBROUTINE transpose_xz |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | SUBROUTINE transpose_yx( f_in, work1, f_inv, work2, f_out ) |
---|
| 191 | |
---|
| 192 | !------------------------------------------------------------------------------! |
---|
| 193 | ! Description: |
---|
| 194 | ! ------------ |
---|
| 195 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 196 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 197 | ! elements along x reside on the same PE. |
---|
| 198 | !------------------------------------------------------------------------------! |
---|
| 199 | |
---|
| 200 | USE cpulog |
---|
| 201 | USE indices |
---|
| 202 | USE interfaces |
---|
| 203 | USE pegrid |
---|
| 204 | USE transpose_indices |
---|
| 205 | |
---|
| 206 | IMPLICIT NONE |
---|
| 207 | |
---|
| 208 | INTEGER :: i, j, k, l, m, ys |
---|
| 209 | |
---|
| 210 | REAL :: f_in(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
| 211 | f_inv(nys_x:nyn_xa,nzb_x:nzt_xa,0:nxa), & |
---|
| 212 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 213 | work1(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), work2(nnx*nny*nnz) |
---|
| 214 | |
---|
| 215 | #if defined( __parallel ) |
---|
| 216 | |
---|
| 217 | ! |
---|
| 218 | !-- Reorder input array for transposition |
---|
| 219 | m = 0 |
---|
| 220 | DO l = 0, pdims(2) - 1 |
---|
| 221 | ys = 0 + l * ( nyn_xa - nys_x + 1 ) |
---|
| 222 | DO i = nxl_y, nxr_ya |
---|
| 223 | DO k = nzb_y, nzt_ya |
---|
| 224 | DO j = ys, ys + nyn_xa - nys_x |
---|
| 225 | m = m + 1 |
---|
| 226 | work2(m) = f_in(j,i,k) |
---|
| 227 | ENDDO |
---|
| 228 | ENDDO |
---|
| 229 | ENDDO |
---|
| 230 | ENDDO |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- Transpose array |
---|
| 234 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 235 | CALL MPI_ALLTOALL( work2(1), sendrecvcount_xy, MPI_REAL, & |
---|
| 236 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 237 | comm1dy, ierr ) |
---|
| 238 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- Reorder transposed array in a way that the x index is in first position |
---|
| 242 | DO i = 0, nxa |
---|
| 243 | DO k = nzb_x, nzt_xa |
---|
| 244 | DO j = nys_x, nyn_xa |
---|
| 245 | work1(i,j,k) = f_inv(j,k,i) |
---|
| 246 | ENDDO |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | |
---|
| 250 | ! |
---|
| 251 | !-- Move data to output array |
---|
| 252 | DO k = nzb_x, nzt_xa |
---|
| 253 | DO j = nys_x, nyn_xa |
---|
| 254 | DO i = 0, nxa |
---|
| 255 | f_out(i,j,k) = work1(i,j,k) |
---|
| 256 | ENDDO |
---|
| 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | |
---|
| 260 | #endif |
---|
| 261 | |
---|
| 262 | END SUBROUTINE transpose_yx |
---|
| 263 | |
---|
| 264 | |
---|
| 265 | SUBROUTINE transpose_yxd( f_in, work1, f_inv, work2, f_out ) |
---|
| 266 | |
---|
| 267 | !------------------------------------------------------------------------------! |
---|
| 268 | ! Description: |
---|
| 269 | ! ------------ |
---|
| 270 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 271 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 272 | ! elements along x reside on the same PE. |
---|
| 273 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 274 | ! (k,j,i) (cf. transpose_yx). |
---|
| 275 | !------------------------------------------------------------------------------! |
---|
| 276 | |
---|
| 277 | USE cpulog |
---|
| 278 | USE indices |
---|
| 279 | USE interfaces |
---|
| 280 | USE pegrid |
---|
| 281 | USE transpose_indices |
---|
| 282 | |
---|
| 283 | IMPLICIT NONE |
---|
| 284 | |
---|
| 285 | INTEGER :: i, j, k, l, m, recvcount_yx, sendcount_yx, xs |
---|
| 286 | |
---|
| 287 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nxl:nxra,1:nza,nys:nyna), & |
---|
| 288 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 289 | work1(nxl:nxra,1:nza,nys:nyna), work2(nnx*nny*nnz) |
---|
| 290 | |
---|
| 291 | #if defined( __parallel ) |
---|
| 292 | |
---|
| 293 | ! |
---|
| 294 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 295 | !-- by MPI contiguous |
---|
| 296 | DO k = 1, nza |
---|
| 297 | DO j = nys, nyna |
---|
| 298 | DO i = nxl, nxra |
---|
| 299 | work1(i,k,j) = f_in(k,j,i) |
---|
| 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | ENDDO |
---|
| 303 | |
---|
| 304 | ! |
---|
| 305 | !-- Move data to different array, because memory location of work1 is |
---|
| 306 | !-- needed further below (work1 = work2) |
---|
| 307 | DO j = nys, nyna |
---|
| 308 | DO k = 1, nza |
---|
| 309 | DO i = nxl, nxra |
---|
| 310 | f_inv(i,k,j) = work1(i,k,j) |
---|
| 311 | ENDDO |
---|
| 312 | ENDDO |
---|
| 313 | ENDDO |
---|
| 314 | |
---|
| 315 | ! |
---|
| 316 | !-- Transpose array |
---|
| 317 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 318 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
| 319 | work2(1), sendrecvcount_xy, MPI_REAL, & |
---|
| 320 | comm1dx, ierr ) |
---|
| 321 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 322 | |
---|
| 323 | ! |
---|
| 324 | !-- Reorder transposed array |
---|
| 325 | m = 0 |
---|
| 326 | DO l = 0, pdims(1) - 1 |
---|
| 327 | xs = 0 + l * nnx |
---|
| 328 | DO j = nys_x, nyn_xa |
---|
| 329 | DO k = 1, nza |
---|
| 330 | DO i = xs, xs + nnx - 1 |
---|
| 331 | m = m + 1 |
---|
| 332 | f_out(i,j,k) = work2(m) |
---|
| 333 | ENDDO |
---|
| 334 | ENDDO |
---|
| 335 | ENDDO |
---|
| 336 | ENDDO |
---|
| 337 | |
---|
| 338 | #endif |
---|
| 339 | |
---|
| 340 | END SUBROUTINE transpose_yxd |
---|
| 341 | |
---|
| 342 | |
---|
| 343 | SUBROUTINE transpose_yz( f_in, work1, f_inv, work2, f_out ) |
---|
| 344 | |
---|
| 345 | !------------------------------------------------------------------------------! |
---|
| 346 | ! Description: |
---|
| 347 | ! ------------ |
---|
| 348 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 349 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 350 | ! elements along z reside on the same PE. |
---|
| 351 | !------------------------------------------------------------------------------! |
---|
| 352 | |
---|
| 353 | USE cpulog |
---|
| 354 | USE indices |
---|
| 355 | USE interfaces |
---|
| 356 | USE pegrid |
---|
| 357 | USE transpose_indices |
---|
| 358 | |
---|
| 359 | IMPLICIT NONE |
---|
| 360 | |
---|
| 361 | INTEGER :: i, j, k, l, m, zs |
---|
| 362 | |
---|
| 363 | REAL :: f_in(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
| 364 | f_inv(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), & |
---|
| 365 | f_out(nxl_z:nxr_za,nys_z:nyn_za,1:nza), & |
---|
| 366 | work1(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), work2(nnx*nny*nnz) |
---|
| 367 | |
---|
| 368 | #if defined( __parallel ) |
---|
| 369 | |
---|
| 370 | ! |
---|
| 371 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 372 | !-- by MPI contiguous |
---|
| 373 | DO k = nzb_y, nzt_ya |
---|
| 374 | DO i = nxl_y, nxr_ya |
---|
| 375 | DO j = 0, nya |
---|
| 376 | work1(i,k,j) = f_in(j,i,k) |
---|
| 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | ENDDO |
---|
| 380 | |
---|
| 381 | ! |
---|
| 382 | !-- Move data to different array, because memory location of work1 is |
---|
| 383 | !-- needed further below (work1 = work2). |
---|
| 384 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 385 | !-- of the data is necessary and no transposition has to be done. |
---|
| 386 | IF ( pdims(1) == 1 ) THEN |
---|
| 387 | DO j = 0, nya |
---|
| 388 | DO k = nzb_y, nzt_ya |
---|
| 389 | DO i = nxl_y, nxr_ya |
---|
| 390 | f_out(i,j,k) = work1(i,k,j) |
---|
| 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | ENDDO |
---|
| 394 | RETURN |
---|
| 395 | ELSE |
---|
| 396 | DO j = 0, nya |
---|
| 397 | DO k = nzb_y, nzt_ya |
---|
| 398 | DO i = nxl_y, nxr_ya |
---|
| 399 | f_inv(i,k,j) = work1(i,k,j) |
---|
| 400 | ENDDO |
---|
| 401 | ENDDO |
---|
| 402 | ENDDO |
---|
| 403 | ENDIF |
---|
| 404 | |
---|
| 405 | ! |
---|
| 406 | !-- Transpose array |
---|
| 407 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 408 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 409 | work2(1), sendrecvcount_yz, MPI_REAL, & |
---|
| 410 | comm1dx, ierr ) |
---|
| 411 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 412 | |
---|
| 413 | ! |
---|
| 414 | !-- Reorder transposed array |
---|
| 415 | m = 0 |
---|
| 416 | DO l = 0, pdims(1) - 1 |
---|
| 417 | zs = 1 + l * ( nzt_ya - nzb_y + 1 ) |
---|
| 418 | DO j = nys_z, nyn_za |
---|
| 419 | DO k = zs, zs + nzt_ya - nzb_y |
---|
| 420 | DO i = nxl_z, nxr_za |
---|
| 421 | m = m + 1 |
---|
| 422 | f_out(i,j,k) = work2(m) |
---|
| 423 | ENDDO |
---|
| 424 | ENDDO |
---|
| 425 | ENDDO |
---|
| 426 | ENDDO |
---|
| 427 | |
---|
| 428 | #endif |
---|
| 429 | |
---|
| 430 | END SUBROUTINE transpose_yz |
---|
| 431 | |
---|
| 432 | |
---|
| 433 | SUBROUTINE transpose_zx( f_in, work1, f_inv, work2, f_out ) |
---|
| 434 | |
---|
| 435 | !------------------------------------------------------------------------------! |
---|
| 436 | ! Description: |
---|
| 437 | ! ------------ |
---|
| 438 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 439 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 440 | ! elements along x reside on the same PE. |
---|
| 441 | !------------------------------------------------------------------------------! |
---|
| 442 | |
---|
| 443 | USE cpulog |
---|
| 444 | USE indices |
---|
| 445 | USE interfaces |
---|
| 446 | USE pegrid |
---|
| 447 | USE transpose_indices |
---|
| 448 | |
---|
| 449 | IMPLICIT NONE |
---|
| 450 | |
---|
| 451 | INTEGER :: i, j, k, l, m, xs |
---|
| 452 | |
---|
| 453 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nxl:nxra,nys:nyna,1:nza), & |
---|
| 454 | f_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 455 | work1(nxl:nxra,nys:nyna,1:nza), work2(nnx*nny*nnz) |
---|
| 456 | |
---|
| 457 | #if defined( __parallel ) |
---|
| 458 | |
---|
| 459 | ! |
---|
| 460 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 461 | !-- by MPI contiguous |
---|
| 462 | DO i = nxl, nxra |
---|
| 463 | DO j = nys, nyna |
---|
| 464 | DO k = 1,nza |
---|
| 465 | work1(i,j,k) = f_in(k,j,i) |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | |
---|
| 470 | ! |
---|
| 471 | !-- Move data to different array, because memory location of work1 is |
---|
| 472 | !-- needed further below (work1 = work2). |
---|
| 473 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 474 | !-- of the data is necessary and no transposition has to be done. |
---|
| 475 | IF ( pdims(1) == 1 ) THEN |
---|
| 476 | DO k = 1, nza |
---|
| 477 | DO j = nys, nyna |
---|
| 478 | DO i = nxl, nxra |
---|
| 479 | f_out(i,j,k) = work1(i,j,k) |
---|
| 480 | ENDDO |
---|
| 481 | ENDDO |
---|
| 482 | ENDDO |
---|
| 483 | RETURN |
---|
| 484 | ELSE |
---|
| 485 | DO k = 1, nza |
---|
| 486 | DO j = nys, nyna |
---|
| 487 | DO i = nxl, nxra |
---|
| 488 | f_inv(i,j,k) = work1(i,j,k) |
---|
| 489 | ENDDO |
---|
| 490 | ENDDO |
---|
| 491 | ENDDO |
---|
| 492 | ENDIF |
---|
| 493 | |
---|
| 494 | ! |
---|
| 495 | !-- Transpose array |
---|
| 496 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 497 | CALL MPI_ALLTOALL( f_inv(nxl,nys,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 498 | work2(1), sendrecvcount_zx, MPI_REAL, & |
---|
| 499 | comm1dx, ierr ) |
---|
| 500 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 501 | |
---|
| 502 | ! |
---|
| 503 | !-- Reorder transposed array |
---|
| 504 | m = 0 |
---|
| 505 | DO l = 0, pdims(1) - 1 |
---|
| 506 | xs = 0 + l * nnx |
---|
| 507 | DO k = nzb_x, nzt_xa |
---|
| 508 | DO j = nys_x, nyn_xa |
---|
| 509 | DO i = xs, xs + nnx - 1 |
---|
| 510 | m = m + 1 |
---|
| 511 | f_out(i,j,k) = work2(m) |
---|
| 512 | ENDDO |
---|
| 513 | ENDDO |
---|
| 514 | ENDDO |
---|
| 515 | ENDDO |
---|
| 516 | |
---|
| 517 | #endif |
---|
| 518 | |
---|
| 519 | END SUBROUTINE transpose_zx |
---|
| 520 | |
---|
| 521 | |
---|
| 522 | SUBROUTINE transpose_zy( f_in, work1, f_inv, work2, f_out ) |
---|
| 523 | |
---|
| 524 | !------------------------------------------------------------------------------! |
---|
| 525 | ! Description: |
---|
| 526 | ! ------------ |
---|
| 527 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 528 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 529 | ! elements along y reside on the same PE. |
---|
| 530 | !------------------------------------------------------------------------------! |
---|
| 531 | |
---|
| 532 | USE cpulog |
---|
| 533 | USE indices |
---|
| 534 | USE interfaces |
---|
| 535 | USE pegrid |
---|
| 536 | USE transpose_indices |
---|
| 537 | |
---|
| 538 | IMPLICIT NONE |
---|
| 539 | |
---|
| 540 | INTEGER :: i, j, k, l, m, zs |
---|
| 541 | |
---|
| 542 | REAL :: f_in(nxl_z:nxr_za,nys_z:nyn_za,1:nza), & |
---|
| 543 | f_inv(nxl_y:nxr_ya,nzb_y:nzt_ya,0:nya), & |
---|
| 544 | f_out(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), & |
---|
| 545 | work1(0:nya,nxl_y:nxr_ya,nzb_y:nzt_ya), work2(nnx*nny*nnz) |
---|
| 546 | |
---|
| 547 | #if defined( __parallel ) |
---|
| 548 | |
---|
| 549 | ! |
---|
| 550 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 551 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 552 | IF ( pdims(1) /= 1 ) THEN |
---|
| 553 | ! |
---|
| 554 | !-- Reorder input array for transposition |
---|
| 555 | m = 0 |
---|
| 556 | DO l = 0, pdims(1) - 1 |
---|
| 557 | zs = 1 + l * ( nzt_ya - nzb_y + 1 ) |
---|
| 558 | DO j = nys_z, nyn_za |
---|
| 559 | DO k = zs, zs + nzt_ya - nzb_y |
---|
| 560 | DO i = nxl_z, nxr_za |
---|
| 561 | m = m + 1 |
---|
| 562 | work2(m) = f_in(i,j,k) |
---|
| 563 | ENDDO |
---|
| 564 | ENDDO |
---|
| 565 | ENDDO |
---|
| 566 | ENDDO |
---|
| 567 | |
---|
| 568 | ! |
---|
| 569 | !-- Transpose array |
---|
| 570 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 571 | CALL MPI_ALLTOALL( work2(1), sendrecvcount_yz, MPI_REAL, & |
---|
| 572 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 573 | comm1dx, ierr ) |
---|
| 574 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 575 | |
---|
| 576 | ! |
---|
| 577 | !-- Reorder transposed array in a way that the y index is in first position |
---|
| 578 | DO k = nzb_y, nzt_ya |
---|
| 579 | DO i = nxl_y, nxr_ya |
---|
| 580 | DO j = 0, nya |
---|
| 581 | work1(j,i,k) = f_inv(i,k,j) |
---|
| 582 | ENDDO |
---|
| 583 | ENDDO |
---|
| 584 | ENDDO |
---|
| 585 | ELSE |
---|
| 586 | ! |
---|
| 587 | !-- Reorder the array in a way that the y index is in first position |
---|
| 588 | DO k = nzb_y, nzt_ya |
---|
| 589 | DO i = nxl_y, nxr_ya |
---|
| 590 | DO j = 0, nya |
---|
| 591 | work1(j,i,k) = f_in(i,j,k) |
---|
| 592 | ENDDO |
---|
| 593 | ENDDO |
---|
| 594 | ENDDO |
---|
| 595 | ENDIF |
---|
| 596 | |
---|
| 597 | ! |
---|
| 598 | !-- Move data to output array |
---|
| 599 | DO k = nzb_y, nzt_ya |
---|
| 600 | DO i = nxl_y, nxr_ya |
---|
| 601 | DO j = 0, nya |
---|
| 602 | f_out(j,i,k) = work1(j,i,k) |
---|
| 603 | ENDDO |
---|
| 604 | ENDDO |
---|
| 605 | ENDDO |
---|
| 606 | |
---|
| 607 | #endif |
---|
| 608 | |
---|
| 609 | END SUBROUTINE transpose_zy |
---|
| 610 | |
---|
| 611 | |
---|
| 612 | SUBROUTINE transpose_zyd( f_in, work1, f_inv, work2, f_out ) |
---|
| 613 | |
---|
| 614 | !------------------------------------------------------------------------------! |
---|
| 615 | ! Description: |
---|
| 616 | ! ------------ |
---|
| 617 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 618 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 619 | ! elements along y reside on the same PE. |
---|
| 620 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 621 | ! (k,j,i) (cf. transpose_zy). |
---|
| 622 | !------------------------------------------------------------------------------! |
---|
| 623 | |
---|
| 624 | USE cpulog |
---|
| 625 | USE indices |
---|
| 626 | USE interfaces |
---|
| 627 | USE pegrid |
---|
| 628 | USE transpose_indices |
---|
| 629 | |
---|
| 630 | IMPLICIT NONE |
---|
| 631 | |
---|
| 632 | INTEGER :: i, j, k, l, m, ys |
---|
| 633 | |
---|
| 634 | REAL :: f_in(1:nza,nys:nyna,nxl:nxra), f_inv(nys:nyna,nxl:nxra,1:nza), & |
---|
| 635 | f_out(0:nya,nxl_yd:nxr_yda,nzb_yd:nzt_yda), & |
---|
| 636 | work1(nys:nyna,nxl:nxra,1:nza), work2(nnx*nny*nnz) |
---|
| 637 | |
---|
| 638 | #if defined( __parallel ) |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 642 | !-- by MPI contiguous |
---|
| 643 | DO i = nxl, nxra |
---|
| 644 | DO j = nys, nyna |
---|
| 645 | DO k = 1, nza |
---|
| 646 | work1(j,i,k) = f_in(k,j,i) |
---|
| 647 | ENDDO |
---|
| 648 | ENDDO |
---|
| 649 | ENDDO |
---|
| 650 | |
---|
| 651 | ! |
---|
| 652 | !-- Move data to different array, because memory location of work1 is |
---|
| 653 | !-- needed further below (work1 = work2). |
---|
| 654 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 655 | !-- of the data is necessary and no transposition has to be done. |
---|
| 656 | IF ( pdims(2) == 1 ) THEN |
---|
| 657 | DO k = 1, nza |
---|
| 658 | DO i = nxl, nxra |
---|
| 659 | DO j = nys, nyna |
---|
| 660 | f_out(j,i,k) = work1(j,i,k) |
---|
| 661 | ENDDO |
---|
| 662 | ENDDO |
---|
| 663 | ENDDO |
---|
| 664 | RETURN |
---|
| 665 | ELSE |
---|
| 666 | DO k = 1, nza |
---|
| 667 | DO i = nxl, nxra |
---|
| 668 | DO j = nys, nyna |
---|
| 669 | f_inv(j,i,k) = work1(j,i,k) |
---|
| 670 | ENDDO |
---|
| 671 | ENDDO |
---|
| 672 | ENDDO |
---|
| 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- Transpose array |
---|
| 677 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 678 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
| 679 | work2(1), sendrecvcount_zyd, MPI_REAL, & |
---|
| 680 | comm1dy, ierr ) |
---|
| 681 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 682 | |
---|
| 683 | ! |
---|
| 684 | !-- Reorder transposed array |
---|
| 685 | m = 0 |
---|
| 686 | DO l = 0, pdims(2) - 1 |
---|
| 687 | ys = 0 + l * nny |
---|
| 688 | DO k = nzb_yd, nzt_yda |
---|
| 689 | DO i = nxl_yd, nxr_yda |
---|
| 690 | DO j = ys, ys + nny - 1 |
---|
| 691 | m = m + 1 |
---|
| 692 | f_out(j,i,k) = work2(m) |
---|
| 693 | ENDDO |
---|
| 694 | ENDDO |
---|
| 695 | ENDDO |
---|
| 696 | ENDDO |
---|
| 697 | |
---|
| 698 | #endif |
---|
| 699 | |
---|
| 700 | END SUBROUTINE transpose_zyd |
---|