[164] | 1 | SUBROUTINE transpose_xy( f_in, work, f_out ) |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1112] | 22 | ! |
---|
[198] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 1112 2013-03-09 00:34:37Z suehring $ |
---|
| 27 | ! |
---|
[1112] | 28 | ! 1111 2013-03-08 23:54:10Z raasch |
---|
| 29 | ! openACC directives added, |
---|
| 30 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
| 31 | ! |
---|
[1107] | 32 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 33 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 34 | ! (non-parallel) mode |
---|
| 35 | ! |
---|
[1093] | 36 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 37 | ! unused variables removed |
---|
| 38 | ! |
---|
[1037] | 39 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 40 | ! code put under GPL (PALM 3.9) |
---|
| 41 | ! |
---|
[1004] | 42 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 43 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 44 | ! |
---|
[684] | 45 | ! 683 2011-02-09 14:25:15Z raasch |
---|
| 46 | ! openMP parallelization of transpositions for 2d-domain-decomposition |
---|
| 47 | ! |
---|
[623] | 48 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 49 | ! optional barriers included in order to speed up collective operations |
---|
| 50 | ! |
---|
[198] | 51 | ! 164 2008-05-15 08:46:15Z raasch |
---|
[164] | 52 | ! f_inv changed from subroutine argument to automatic array in order to do |
---|
| 53 | ! re-ordering from f_in to f_inv in one step, one array work is needed instead |
---|
| 54 | ! of work1 and work2 |
---|
[1] | 55 | ! |
---|
[198] | 56 | ! February 2007 |
---|
[3] | 57 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 58 | ! |
---|
[1] | 59 | ! Revision 1.2 2004/04/30 13:12:17 raasch |
---|
| 60 | ! Switched from mpi_alltoallv to the simpler mpi_alltoall, |
---|
| 61 | ! all former transpose-routine files collected in this file, enlarged |
---|
| 62 | ! transposition arrays introduced |
---|
| 63 | ! |
---|
| 64 | ! Revision 1.1 2004/04/30 13:08:16 raasch |
---|
| 65 | ! Initial revision (collection of former routines transpose_xy, transpose_xz, |
---|
| 66 | ! transpose_yx, transpose_yz, transpose_zx, transpose_zy) |
---|
| 67 | ! |
---|
| 68 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 69 | ! Initial revision |
---|
| 70 | ! |
---|
| 71 | ! |
---|
| 72 | ! Description: |
---|
| 73 | ! ------------ |
---|
| 74 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 75 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 76 | ! elements along y reside on the same PE. |
---|
| 77 | !------------------------------------------------------------------------------! |
---|
| 78 | |
---|
| 79 | USE cpulog |
---|
| 80 | USE indices |
---|
| 81 | USE interfaces |
---|
| 82 | USE pegrid |
---|
| 83 | USE transpose_indices |
---|
| 84 | |
---|
| 85 | IMPLICIT NONE |
---|
| 86 | |
---|
[1111] | 87 | INTEGER :: i, j, k, l, ys |
---|
[1] | 88 | |
---|
[1111] | 89 | REAL :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x), f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) |
---|
[1] | 90 | |
---|
[1111] | 91 | REAL, DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work |
---|
| 92 | |
---|
| 93 | !$acc declare create( f_inv ) |
---|
| 94 | REAL :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) |
---|
| 95 | |
---|
| 96 | |
---|
[1] | 97 | ! |
---|
| 98 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 99 | !-- by MPI contiguous |
---|
[683] | 100 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 101 | !$OMP DO |
---|
[1111] | 102 | !$acc kernels present( f_in ) |
---|
| 103 | !$acc loop |
---|
[1003] | 104 | DO i = 0, nx |
---|
| 105 | DO k = nzb_x, nzt_x |
---|
[1111] | 106 | !$acc loop vector( 32 ) |
---|
[1003] | 107 | DO j = nys_x, nyn_x |
---|
[164] | 108 | f_inv(j,k,i) = f_in(i,j,k) |
---|
[1] | 109 | ENDDO |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
[1111] | 112 | !$acc end kernels |
---|
[683] | 113 | !$OMP END PARALLEL |
---|
[1] | 114 | |
---|
[1106] | 115 | IF ( numprocs /= 1 ) THEN |
---|
| 116 | |
---|
| 117 | #if defined( __parallel ) |
---|
[1] | 118 | ! |
---|
[1106] | 119 | !-- Transpose array |
---|
| 120 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 121 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 122 | !$acc update host( f_inv ) |
---|
| 123 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 124 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 125 | comm1dy, ierr ) |
---|
[1111] | 126 | !$acc update device( work ) |
---|
[1106] | 127 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 128 | |
---|
| 129 | ! |
---|
[1106] | 130 | !-- Reorder transposed array |
---|
[1111] | 131 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 132 | !$OMP DO |
---|
[1106] | 133 | DO l = 0, pdims(2) - 1 |
---|
| 134 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 135 | !$acc kernels present( f_out, work ) |
---|
| 136 | !$acc loop |
---|
[1106] | 137 | DO i = nxl_y, nxr_y |
---|
| 138 | DO k = nzb_y, nzt_y |
---|
[1111] | 139 | !$acc loop vector( 32 ) |
---|
[1106] | 140 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 141 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 142 | ENDDO |
---|
[1] | 143 | ENDDO |
---|
| 144 | ENDDO |
---|
[1111] | 145 | !$acc end kernels |
---|
[1] | 146 | ENDDO |
---|
[683] | 147 | !$OMP END PARALLEL |
---|
[1] | 148 | #endif |
---|
| 149 | |
---|
[1106] | 150 | ELSE |
---|
| 151 | |
---|
| 152 | ! |
---|
| 153 | !-- Reorder transposed array |
---|
| 154 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 155 | !$OMP DO |
---|
[1111] | 156 | !$acc kernels present( f_out ) |
---|
| 157 | !$acc loop |
---|
[1106] | 158 | DO k = nzb_y, nzt_y |
---|
| 159 | DO i = nxl_y, nxr_y |
---|
[1111] | 160 | !$acc loop vector( 32 ) |
---|
[1106] | 161 | DO j = 0, ny |
---|
| 162 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 163 | ENDDO |
---|
| 164 | ENDDO |
---|
| 165 | ENDDO |
---|
[1111] | 166 | !$acc end kernels |
---|
[1106] | 167 | !$OMP END PARALLEL |
---|
| 168 | |
---|
| 169 | ENDIF |
---|
| 170 | |
---|
[1] | 171 | END SUBROUTINE transpose_xy |
---|
| 172 | |
---|
| 173 | |
---|
[164] | 174 | SUBROUTINE transpose_xz( f_in, work, f_out ) |
---|
[1] | 175 | |
---|
| 176 | !------------------------------------------------------------------------------! |
---|
| 177 | ! Description: |
---|
| 178 | ! ------------ |
---|
| 179 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 180 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 181 | ! elements along z reside on the same PE. |
---|
| 182 | !------------------------------------------------------------------------------! |
---|
| 183 | |
---|
| 184 | USE cpulog |
---|
| 185 | USE indices |
---|
| 186 | USE interfaces |
---|
| 187 | USE pegrid |
---|
| 188 | USE transpose_indices |
---|
| 189 | |
---|
| 190 | IMPLICIT NONE |
---|
| 191 | |
---|
[1111] | 192 | INTEGER :: i, j, k, l, xs |
---|
[1] | 193 | |
---|
[1111] | 194 | REAL :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x), f_out(1:nz,nys:nyn,nxl:nxr) |
---|
[1] | 195 | |
---|
[1111] | 196 | REAL, DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work |
---|
[1] | 197 | |
---|
[1111] | 198 | !$acc declare create( f_inv ) |
---|
| 199 | REAL :: f_inv(nys:nyn,nxl:nxr,1:nz) |
---|
| 200 | |
---|
| 201 | |
---|
[1] | 202 | ! |
---|
| 203 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 204 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 205 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 206 | |
---|
| 207 | #if defined( __parallel ) |
---|
[1] | 208 | ! |
---|
| 209 | !-- Reorder input array for transposition |
---|
[1111] | 210 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 211 | !$OMP DO |
---|
[1] | 212 | DO l = 0, pdims(1) - 1 |
---|
| 213 | xs = 0 + l * nnx |
---|
[1111] | 214 | !$acc kernels present( f_in, work ) |
---|
| 215 | !$acc loop |
---|
[1003] | 216 | DO k = nzb_x, nzt_x |
---|
[164] | 217 | DO i = xs, xs + nnx - 1 |
---|
[1111] | 218 | !$acc loop vector( 32 ) |
---|
[1003] | 219 | DO j = nys_x, nyn_x |
---|
[1111] | 220 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 221 | ENDDO |
---|
| 222 | ENDDO |
---|
| 223 | ENDDO |
---|
[1111] | 224 | !$acc end kernels |
---|
[1] | 225 | ENDDO |
---|
[683] | 226 | !$OMP END PARALLEL |
---|
[1] | 227 | |
---|
| 228 | ! |
---|
| 229 | !-- Transpose array |
---|
| 230 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 231 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 232 | !$acc update host( work ) |
---|
| 233 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 234 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 235 | comm1dx, ierr ) |
---|
[1111] | 236 | !$acc update device( f_inv ) |
---|
[1] | 237 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 238 | |
---|
| 239 | ! |
---|
| 240 | !-- Reorder transposed array in a way that the z index is in first position |
---|
[683] | 241 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 242 | !$OMP DO |
---|
[1111] | 243 | !$acc kernels present( f_out ) |
---|
| 244 | !$acc loop |
---|
[1003] | 245 | DO k = 1, nz |
---|
| 246 | DO i = nxl, nxr |
---|
[1111] | 247 | !$acc loop vector( 32 ) |
---|
[1003] | 248 | DO j = nys, nyn |
---|
[164] | 249 | f_out(k,j,i) = f_inv(j,i,k) |
---|
[1] | 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | ENDDO |
---|
[1111] | 253 | !$acc end kernels |
---|
[683] | 254 | !$OMP END PARALLEL |
---|
[1106] | 255 | #endif |
---|
| 256 | |
---|
[1] | 257 | ELSE |
---|
[1106] | 258 | |
---|
[1] | 259 | ! |
---|
| 260 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 261 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 262 | !$OMP DO |
---|
[1111] | 263 | !$acc kernels present( f_in ) |
---|
| 264 | !$acc loop |
---|
[1003] | 265 | DO i = nxl, nxr |
---|
| 266 | DO j = nys, nyn |
---|
[1111] | 267 | !$acc loop vector( 32 ) |
---|
[1003] | 268 | DO k = 1, nz |
---|
[164] | 269 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 270 | ENDDO |
---|
| 271 | ENDDO |
---|
| 272 | ENDDO |
---|
[1111] | 273 | !$acc end kernels |
---|
[683] | 274 | !$OMP END PARALLEL |
---|
[1] | 275 | |
---|
[683] | 276 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 277 | !$OMP DO |
---|
[1111] | 278 | !$acc kernels present( f_out ) |
---|
| 279 | !$acc loop |
---|
[1003] | 280 | DO k = 1, nz |
---|
| 281 | DO i = nxl, nxr |
---|
[1111] | 282 | !$acc loop vector( 32 ) |
---|
[1003] | 283 | DO j = nys, nyn |
---|
[164] | 284 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 285 | ENDDO |
---|
[1] | 286 | ENDDO |
---|
| 287 | ENDDO |
---|
[1111] | 288 | !$acc end kernels |
---|
[683] | 289 | !$OMP END PARALLEL |
---|
[1] | 290 | |
---|
[164] | 291 | ENDIF |
---|
| 292 | |
---|
[1] | 293 | END SUBROUTINE transpose_xz |
---|
| 294 | |
---|
| 295 | |
---|
[164] | 296 | SUBROUTINE transpose_yx( f_in, work, f_out ) |
---|
[1] | 297 | |
---|
| 298 | !------------------------------------------------------------------------------! |
---|
| 299 | ! Description: |
---|
| 300 | ! ------------ |
---|
| 301 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 302 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 303 | ! elements along x reside on the same PE. |
---|
| 304 | !------------------------------------------------------------------------------! |
---|
| 305 | |
---|
| 306 | USE cpulog |
---|
| 307 | USE indices |
---|
| 308 | USE interfaces |
---|
| 309 | USE pegrid |
---|
| 310 | USE transpose_indices |
---|
| 311 | |
---|
| 312 | IMPLICIT NONE |
---|
| 313 | |
---|
[1111] | 314 | INTEGER :: i, j, k, l, ys |
---|
[1] | 315 | |
---|
[1111] | 316 | REAL :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) |
---|
[1] | 317 | |
---|
[1111] | 318 | REAL, DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work |
---|
| 319 | |
---|
| 320 | !$acc declare create( f_inv ) |
---|
| 321 | REAL :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) |
---|
| 322 | |
---|
| 323 | |
---|
[1106] | 324 | IF ( numprocs /= 1 ) THEN |
---|
| 325 | |
---|
[1] | 326 | #if defined( __parallel ) |
---|
| 327 | ! |
---|
[1106] | 328 | !-- Reorder input array for transposition |
---|
[1111] | 329 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 330 | !$OMP DO |
---|
[1106] | 331 | DO l = 0, pdims(2) - 1 |
---|
| 332 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 333 | !$acc kernels present( f_in, work ) |
---|
| 334 | !$acc loop |
---|
[1106] | 335 | DO i = nxl_y, nxr_y |
---|
| 336 | DO k = nzb_y, nzt_y |
---|
[1111] | 337 | !$acc loop vector( 32 ) |
---|
[1106] | 338 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 339 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 340 | ENDDO |
---|
| 341 | ENDDO |
---|
| 342 | ENDDO |
---|
[1111] | 343 | !$acc end kernels |
---|
[1106] | 344 | ENDDO |
---|
| 345 | !$OMP END PARALLEL |
---|
| 346 | |
---|
| 347 | ! |
---|
| 348 | !-- Transpose array |
---|
| 349 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 350 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 351 | !$acc update host( work ) |
---|
| 352 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 353 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 354 | comm1dy, ierr ) |
---|
[1111] | 355 | !$acc update device( f_inv ) |
---|
[1106] | 356 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 357 | #endif |
---|
| 358 | |
---|
| 359 | ELSE |
---|
| 360 | |
---|
| 361 | ! |
---|
| 362 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 363 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 364 | !$OMP DO |
---|
[1111] | 365 | !$acc kernels present( f_in ) |
---|
| 366 | !$acc loop |
---|
[1003] | 367 | DO i = nxl_y, nxr_y |
---|
| 368 | DO k = nzb_y, nzt_y |
---|
[1111] | 369 | !$acc loop vector( 32 ) |
---|
[1106] | 370 | DO j = 0, ny |
---|
| 371 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 372 | ENDDO |
---|
| 373 | ENDDO |
---|
| 374 | ENDDO |
---|
[1111] | 375 | !$acc end kernels |
---|
[683] | 376 | !$OMP END PARALLEL |
---|
[1] | 377 | |
---|
[1106] | 378 | ENDIF |
---|
[1] | 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Reorder transposed array in a way that the x index is in first position |
---|
[683] | 382 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 383 | !$OMP DO |
---|
[1111] | 384 | !$acc kernels present( f_out ) |
---|
| 385 | !$acc loop |
---|
[1003] | 386 | DO i = 0, nx |
---|
| 387 | DO k = nzb_x, nzt_x |
---|
[1111] | 388 | !$acc loop vector( 32 ) |
---|
[1003] | 389 | DO j = nys_x, nyn_x |
---|
[164] | 390 | f_out(i,j,k) = f_inv(j,k,i) |
---|
[1] | 391 | ENDDO |
---|
| 392 | ENDDO |
---|
| 393 | ENDDO |
---|
[1111] | 394 | !$acc end kernels |
---|
[683] | 395 | !$OMP END PARALLEL |
---|
[1] | 396 | |
---|
| 397 | END SUBROUTINE transpose_yx |
---|
| 398 | |
---|
| 399 | |
---|
[164] | 400 | SUBROUTINE transpose_yxd( f_in, work, f_out ) |
---|
[1] | 401 | |
---|
| 402 | !------------------------------------------------------------------------------! |
---|
| 403 | ! Description: |
---|
| 404 | ! ------------ |
---|
| 405 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 406 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 407 | ! elements along x reside on the same PE. |
---|
| 408 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 409 | ! (k,j,i) (cf. transpose_yx). |
---|
| 410 | !------------------------------------------------------------------------------! |
---|
| 411 | |
---|
| 412 | USE cpulog |
---|
| 413 | USE indices |
---|
| 414 | USE interfaces |
---|
| 415 | USE pegrid |
---|
| 416 | USE transpose_indices |
---|
| 417 | |
---|
| 418 | IMPLICIT NONE |
---|
| 419 | |
---|
[1092] | 420 | INTEGER :: i, j, k, l, m, xs |
---|
[1] | 421 | |
---|
[1003] | 422 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_inv(nxl:nxr,1:nz,nys:nyn), & |
---|
| 423 | f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
[164] | 424 | work(nnx*nny*nnz) |
---|
[1] | 425 | |
---|
| 426 | #if defined( __parallel ) |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 430 | !-- by MPI contiguous |
---|
[1003] | 431 | DO k = 1, nz |
---|
| 432 | DO j = nys, nyn |
---|
| 433 | DO i = nxl, nxr |
---|
[164] | 434 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 435 | ENDDO |
---|
| 436 | ENDDO |
---|
| 437 | ENDDO |
---|
| 438 | |
---|
| 439 | ! |
---|
| 440 | !-- Transpose array |
---|
| 441 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 442 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 443 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 444 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 445 | comm1dx, ierr ) |
---|
| 446 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- Reorder transposed array |
---|
| 450 | m = 0 |
---|
| 451 | DO l = 0, pdims(1) - 1 |
---|
| 452 | xs = 0 + l * nnx |
---|
[1003] | 453 | DO j = nys_x, nyn_x |
---|
| 454 | DO k = 1, nz |
---|
[1] | 455 | DO i = xs, xs + nnx - 1 |
---|
| 456 | m = m + 1 |
---|
[164] | 457 | f_out(i,j,k) = work(m) |
---|
[1] | 458 | ENDDO |
---|
| 459 | ENDDO |
---|
| 460 | ENDDO |
---|
| 461 | ENDDO |
---|
| 462 | |
---|
| 463 | #endif |
---|
| 464 | |
---|
| 465 | END SUBROUTINE transpose_yxd |
---|
| 466 | |
---|
| 467 | |
---|
[164] | 468 | SUBROUTINE transpose_yz( f_in, work, f_out ) |
---|
[1] | 469 | |
---|
| 470 | !------------------------------------------------------------------------------! |
---|
| 471 | ! Description: |
---|
| 472 | ! ------------ |
---|
| 473 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 474 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 475 | ! elements along z reside on the same PE. |
---|
| 476 | !------------------------------------------------------------------------------! |
---|
| 477 | |
---|
| 478 | USE cpulog |
---|
| 479 | USE indices |
---|
| 480 | USE interfaces |
---|
| 481 | USE pegrid |
---|
| 482 | USE transpose_indices |
---|
| 483 | |
---|
| 484 | IMPLICIT NONE |
---|
| 485 | |
---|
[1111] | 486 | INTEGER :: i, j, k, l, zs |
---|
[1] | 487 | |
---|
[1111] | 488 | REAL :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) |
---|
[1] | 489 | |
---|
[1111] | 490 | REAL, DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work |
---|
| 491 | |
---|
| 492 | !$acc declare create( f_inv ) |
---|
| 493 | REAL :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) |
---|
| 494 | |
---|
| 495 | |
---|
[1] | 496 | ! |
---|
| 497 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 498 | !-- by MPI contiguous |
---|
[683] | 499 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 500 | !$OMP DO |
---|
[1111] | 501 | !$acc kernels present( f_in ) |
---|
| 502 | !$acc loop |
---|
[1003] | 503 | DO j = 0, ny |
---|
| 504 | DO k = nzb_y, nzt_y |
---|
[1111] | 505 | !$acc loop vector( 32 ) |
---|
[1003] | 506 | DO i = nxl_y, nxr_y |
---|
[164] | 507 | f_inv(i,k,j) = f_in(j,i,k) |
---|
[1] | 508 | ENDDO |
---|
| 509 | ENDDO |
---|
| 510 | ENDDO |
---|
[1111] | 511 | !$acc end kernels |
---|
[683] | 512 | !$OMP END PARALLEL |
---|
[1] | 513 | |
---|
| 514 | ! |
---|
| 515 | !-- Move data to different array, because memory location of work1 is |
---|
| 516 | !-- needed further below (work1 = work2). |
---|
| 517 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 518 | !-- of the data is necessary and no transposition has to be done. |
---|
| 519 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 520 | |
---|
[683] | 521 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 522 | !$OMP DO |
---|
[1111] | 523 | !$acc kernels present( f_out ) |
---|
| 524 | !$acc loop |
---|
[1003] | 525 | DO j = 0, ny |
---|
| 526 | DO k = nzb_y, nzt_y |
---|
[1111] | 527 | !$acc loop vector( 32 ) |
---|
[1003] | 528 | DO i = nxl_y, nxr_y |
---|
[164] | 529 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 530 | ENDDO |
---|
| 531 | ENDDO |
---|
| 532 | ENDDO |
---|
[1111] | 533 | !$acc end kernels |
---|
[683] | 534 | !$OMP END PARALLEL |
---|
[1] | 535 | |
---|
[1106] | 536 | ELSE |
---|
| 537 | |
---|
| 538 | #if defined( __parallel ) |
---|
[1] | 539 | ! |
---|
[1106] | 540 | !-- Transpose array |
---|
| 541 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 542 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 543 | !$acc update host( f_inv ) |
---|
| 544 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 545 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 546 | comm1dx, ierr ) |
---|
[1111] | 547 | !$acc update device( work ) |
---|
[1106] | 548 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 549 | |
---|
| 550 | ! |
---|
[1106] | 551 | !-- Reorder transposed array |
---|
[1111] | 552 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 553 | !$OMP DO |
---|
[1106] | 554 | DO l = 0, pdims(1) - 1 |
---|
| 555 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1111] | 556 | !$acc kernels present( f_out, work ) |
---|
| 557 | !$acc loop |
---|
[1106] | 558 | DO j = nys_z, nyn_z |
---|
| 559 | DO k = zs, zs + nzt_y - nzb_y |
---|
[1111] | 560 | !$acc loop vector( 32 ) |
---|
[1106] | 561 | DO i = nxl_z, nxr_z |
---|
[1111] | 562 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 563 | ENDDO |
---|
[1] | 564 | ENDDO |
---|
| 565 | ENDDO |
---|
[1111] | 566 | !$acc end kernels |
---|
[1] | 567 | ENDDO |
---|
[683] | 568 | !$OMP END PARALLEL |
---|
[1] | 569 | #endif |
---|
| 570 | |
---|
[1106] | 571 | ENDIF |
---|
| 572 | |
---|
[1] | 573 | END SUBROUTINE transpose_yz |
---|
| 574 | |
---|
| 575 | |
---|
[164] | 576 | SUBROUTINE transpose_zx( f_in, work, f_out ) |
---|
[1] | 577 | |
---|
| 578 | !------------------------------------------------------------------------------! |
---|
| 579 | ! Description: |
---|
| 580 | ! ------------ |
---|
| 581 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 582 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 583 | ! elements along x reside on the same PE. |
---|
| 584 | !------------------------------------------------------------------------------! |
---|
| 585 | |
---|
| 586 | USE cpulog |
---|
| 587 | USE indices |
---|
| 588 | USE interfaces |
---|
| 589 | USE pegrid |
---|
| 590 | USE transpose_indices |
---|
| 591 | |
---|
| 592 | IMPLICIT NONE |
---|
| 593 | |
---|
[1111] | 594 | INTEGER :: i, j, k, l, xs |
---|
[1] | 595 | |
---|
[1111] | 596 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) |
---|
[1] | 597 | |
---|
[1111] | 598 | REAL, DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work |
---|
| 599 | |
---|
| 600 | !$acc declare create( f_inv ) |
---|
[1106] | 601 | REAL :: f_inv(nys:nyn,nxl:nxr,1:nz) |
---|
[1] | 602 | |
---|
[1106] | 603 | |
---|
[1] | 604 | ! |
---|
| 605 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 606 | !-- by MPI contiguous |
---|
[683] | 607 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 608 | !$OMP DO |
---|
[1106] | 609 | !$acc kernels present( f_in ) |
---|
| 610 | !$acc loop |
---|
[1003] | 611 | DO k = 1,nz |
---|
| 612 | DO i = nxl, nxr |
---|
[1106] | 613 | !$acc loop vector( 32 ) |
---|
[1003] | 614 | DO j = nys, nyn |
---|
[164] | 615 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 616 | ENDDO |
---|
| 617 | ENDDO |
---|
| 618 | ENDDO |
---|
[1111] | 619 | !$acc end kernels |
---|
[683] | 620 | !$OMP END PARALLEL |
---|
[1] | 621 | |
---|
| 622 | ! |
---|
| 623 | !-- Move data to different array, because memory location of work1 is |
---|
| 624 | !-- needed further below (work1 = work2). |
---|
| 625 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 626 | !-- of the data is necessary and no transposition has to be done. |
---|
| 627 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 628 | |
---|
[683] | 629 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 630 | !$OMP DO |
---|
[1106] | 631 | !$acc kernels present( f_out ) |
---|
| 632 | !$acc loop |
---|
[1003] | 633 | DO k = 1, nz |
---|
| 634 | DO i = nxl, nxr |
---|
[1106] | 635 | !$acc loop vector( 32 ) |
---|
[1003] | 636 | DO j = nys, nyn |
---|
[164] | 637 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 638 | ENDDO |
---|
| 639 | ENDDO |
---|
| 640 | ENDDO |
---|
[1111] | 641 | !$acc end kernels |
---|
[683] | 642 | !$OMP END PARALLEL |
---|
[1] | 643 | |
---|
[1106] | 644 | ELSE |
---|
| 645 | |
---|
| 646 | #if defined( __parallel ) |
---|
[1] | 647 | ! |
---|
[1106] | 648 | !-- Transpose array |
---|
| 649 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 650 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 651 | !$acc update host( f_inv ) |
---|
| 652 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 653 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 654 | comm1dx, ierr ) |
---|
[1111] | 655 | !$acc update device( work ) |
---|
[1106] | 656 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 657 | |
---|
| 658 | ! |
---|
[1106] | 659 | !-- Reorder transposed array |
---|
[1111] | 660 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 661 | !$OMP DO |
---|
[1106] | 662 | DO l = 0, pdims(1) - 1 |
---|
| 663 | xs = 0 + l * nnx |
---|
[1111] | 664 | !$acc kernels present( f_out, work ) |
---|
| 665 | !$acc loop |
---|
[1106] | 666 | DO k = nzb_x, nzt_x |
---|
| 667 | DO i = xs, xs + nnx - 1 |
---|
[1111] | 668 | !$acc loop vector( 32 ) |
---|
[1106] | 669 | DO j = nys_x, nyn_x |
---|
[1111] | 670 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 671 | ENDDO |
---|
[1] | 672 | ENDDO |
---|
| 673 | ENDDO |
---|
[1111] | 674 | !$acc end kernels |
---|
[1] | 675 | ENDDO |
---|
[683] | 676 | !$OMP END PARALLEL |
---|
[1] | 677 | #endif |
---|
| 678 | |
---|
[1106] | 679 | ENDIF |
---|
| 680 | |
---|
[1] | 681 | END SUBROUTINE transpose_zx |
---|
| 682 | |
---|
| 683 | |
---|
[164] | 684 | SUBROUTINE transpose_zy( f_in, work, f_out ) |
---|
[1] | 685 | |
---|
| 686 | !------------------------------------------------------------------------------! |
---|
| 687 | ! Description: |
---|
| 688 | ! ------------ |
---|
| 689 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 690 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 691 | ! elements along y reside on the same PE. |
---|
| 692 | !------------------------------------------------------------------------------! |
---|
| 693 | |
---|
| 694 | USE cpulog |
---|
| 695 | USE indices |
---|
| 696 | USE interfaces |
---|
| 697 | USE pegrid |
---|
| 698 | USE transpose_indices |
---|
| 699 | |
---|
| 700 | IMPLICIT NONE |
---|
| 701 | |
---|
[1111] | 702 | INTEGER :: i, j, k, l, zs |
---|
[1] | 703 | |
---|
[1111] | 704 | REAL :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz), f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) |
---|
[1] | 705 | |
---|
[1111] | 706 | REAL, DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work |
---|
| 707 | |
---|
| 708 | !$acc declare create( f_inv ) |
---|
| 709 | REAL :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) |
---|
| 710 | |
---|
| 711 | |
---|
[1] | 712 | ! |
---|
| 713 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 714 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 715 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 716 | |
---|
| 717 | #if defined( __parallel ) |
---|
[1] | 718 | ! |
---|
| 719 | !-- Reorder input array for transposition |
---|
[1111] | 720 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 721 | !$OMP DO |
---|
[1] | 722 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 723 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1111] | 724 | !$acc kernels present( f_in, work ) |
---|
| 725 | !$acc loop |
---|
[1003] | 726 | DO j = nys_z, nyn_z |
---|
| 727 | DO k = zs, zs + nzt_y - nzb_y |
---|
[1111] | 728 | !$acc loop vector( 32 ) |
---|
[1003] | 729 | DO i = nxl_z, nxr_z |
---|
[1111] | 730 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 731 | ENDDO |
---|
| 732 | ENDDO |
---|
| 733 | ENDDO |
---|
[1111] | 734 | !$acc end kernels |
---|
[1] | 735 | ENDDO |
---|
[683] | 736 | !$OMP END PARALLEL |
---|
[1] | 737 | |
---|
| 738 | ! |
---|
| 739 | !-- Transpose array |
---|
| 740 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 741 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 742 | !$acc update host( work ) |
---|
| 743 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 744 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 745 | comm1dx, ierr ) |
---|
[1111] | 746 | !$acc update device( f_inv ) |
---|
[1] | 747 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 748 | #endif |
---|
[1] | 749 | |
---|
| 750 | ELSE |
---|
| 751 | ! |
---|
[1106] | 752 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 753 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 754 | !$OMP DO |
---|
[1111] | 755 | !$acc kernels present( f_in ) |
---|
| 756 | !$acc loop |
---|
[1003] | 757 | DO k = nzb_y, nzt_y |
---|
| 758 | DO j = 0, ny |
---|
[1111] | 759 | !$acc loop vector( 32 ) |
---|
[1003] | 760 | DO i = nxl_y, nxr_y |
---|
[164] | 761 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 762 | ENDDO |
---|
| 763 | ENDDO |
---|
| 764 | ENDDO |
---|
[1111] | 765 | !$acc end kernels |
---|
[683] | 766 | !$OMP END PARALLEL |
---|
[1106] | 767 | |
---|
| 768 | ENDIF |
---|
| 769 | |
---|
[164] | 770 | ! |
---|
[1106] | 771 | !-- Reorder transposed array in a way that the y index is in first position |
---|
[683] | 772 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 773 | !$OMP DO |
---|
[1111] | 774 | !$acc kernels present( f_out ) |
---|
| 775 | !$acc loop |
---|
[1106] | 776 | DO k = nzb_y, nzt_y |
---|
| 777 | DO i = nxl_y, nxr_y |
---|
[1111] | 778 | !$acc loop vector( 32 ) |
---|
[1106] | 779 | DO j = 0, ny |
---|
| 780 | f_out(j,i,k) = f_inv(i,k,j) |
---|
[1] | 781 | ENDDO |
---|
| 782 | ENDDO |
---|
[1106] | 783 | ENDDO |
---|
[1111] | 784 | !$acc end kernels |
---|
[683] | 785 | !$OMP END PARALLEL |
---|
[164] | 786 | |
---|
[1] | 787 | END SUBROUTINE transpose_zy |
---|
| 788 | |
---|
| 789 | |
---|
[164] | 790 | SUBROUTINE transpose_zyd( f_in, work, f_out ) |
---|
[1] | 791 | |
---|
| 792 | !------------------------------------------------------------------------------! |
---|
| 793 | ! Description: |
---|
| 794 | ! ------------ |
---|
| 795 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 796 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 797 | ! elements along y reside on the same PE. |
---|
| 798 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 799 | ! (k,j,i) (cf. transpose_zy). |
---|
| 800 | !------------------------------------------------------------------------------! |
---|
| 801 | |
---|
| 802 | USE cpulog |
---|
| 803 | USE indices |
---|
| 804 | USE interfaces |
---|
| 805 | USE pegrid |
---|
| 806 | USE transpose_indices |
---|
| 807 | |
---|
| 808 | IMPLICIT NONE |
---|
| 809 | |
---|
| 810 | INTEGER :: i, j, k, l, m, ys |
---|
| 811 | |
---|
[1003] | 812 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_inv(nys:nyn,nxl:nxr,1:nz), & |
---|
| 813 | f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd), & |
---|
[164] | 814 | work(nnx*nny*nnz) |
---|
[1] | 815 | |
---|
| 816 | #if defined( __parallel ) |
---|
| 817 | |
---|
| 818 | ! |
---|
| 819 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 820 | !-- by MPI contiguous |
---|
[1003] | 821 | DO i = nxl, nxr |
---|
| 822 | DO j = nys, nyn |
---|
| 823 | DO k = 1, nz |
---|
[164] | 824 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 825 | ENDDO |
---|
| 826 | ENDDO |
---|
| 827 | ENDDO |
---|
| 828 | |
---|
| 829 | ! |
---|
| 830 | !-- Move data to different array, because memory location of work1 is |
---|
| 831 | !-- needed further below (work1 = work2). |
---|
| 832 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 833 | !-- of the data is necessary and no transposition has to be done. |
---|
| 834 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 835 | DO k = 1, nz |
---|
| 836 | DO i = nxl, nxr |
---|
| 837 | DO j = nys, nyn |
---|
[164] | 838 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 839 | ENDDO |
---|
| 840 | ENDDO |
---|
| 841 | ENDDO |
---|
| 842 | RETURN |
---|
| 843 | ENDIF |
---|
| 844 | |
---|
| 845 | ! |
---|
| 846 | !-- Transpose array |
---|
| 847 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 848 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 849 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 850 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 851 | comm1dy, ierr ) |
---|
| 852 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 853 | |
---|
| 854 | ! |
---|
| 855 | !-- Reorder transposed array |
---|
| 856 | m = 0 |
---|
| 857 | DO l = 0, pdims(2) - 1 |
---|
| 858 | ys = 0 + l * nny |
---|
[1003] | 859 | DO k = nzb_yd, nzt_yd |
---|
| 860 | DO i = nxl_yd, nxr_yd |
---|
[1] | 861 | DO j = ys, ys + nny - 1 |
---|
| 862 | m = m + 1 |
---|
[164] | 863 | f_out(j,i,k) = work(m) |
---|
[1] | 864 | ENDDO |
---|
| 865 | ENDDO |
---|
| 866 | ENDDO |
---|
| 867 | ENDDO |
---|
| 868 | |
---|
| 869 | #endif |
---|
| 870 | |
---|
| 871 | END SUBROUTINE transpose_zyd |
---|