[164] | 1 | SUBROUTINE transpose_xy( f_in, work, f_out ) |
---|
[1] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1111] | 22 | ! openACC directives added, |
---|
| 23 | ! resorting data from/to work changed, work got 4 dimensions instead of 1 |
---|
[198] | 24 | ! |
---|
| 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: transpose.f90 1111 2013-03-08 23:54:10Z raasch $ |
---|
| 28 | ! |
---|
[1107] | 29 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 30 | ! preprocessor lines rearranged so that routines can also be used in serial |
---|
| 31 | ! (non-parallel) mode |
---|
| 32 | ! |
---|
[1093] | 33 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 34 | ! unused variables removed |
---|
| 35 | ! |
---|
[1037] | 36 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 37 | ! code put under GPL (PALM 3.9) |
---|
| 38 | ! |
---|
[1004] | 39 | ! 1003 2012-09-14 14:35:53Z raasch |
---|
| 40 | ! indices nxa, nya, etc. replaced by nx, ny, etc. |
---|
| 41 | ! |
---|
[684] | 42 | ! 683 2011-02-09 14:25:15Z raasch |
---|
| 43 | ! openMP parallelization of transpositions for 2d-domain-decomposition |
---|
| 44 | ! |
---|
[623] | 45 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 46 | ! optional barriers included in order to speed up collective operations |
---|
| 47 | ! |
---|
[198] | 48 | ! 164 2008-05-15 08:46:15Z raasch |
---|
[164] | 49 | ! f_inv changed from subroutine argument to automatic array in order to do |
---|
| 50 | ! re-ordering from f_in to f_inv in one step, one array work is needed instead |
---|
| 51 | ! of work1 and work2 |
---|
[1] | 52 | ! |
---|
[198] | 53 | ! February 2007 |
---|
[3] | 54 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 55 | ! |
---|
[1] | 56 | ! Revision 1.2 2004/04/30 13:12:17 raasch |
---|
| 57 | ! Switched from mpi_alltoallv to the simpler mpi_alltoall, |
---|
| 58 | ! all former transpose-routine files collected in this file, enlarged |
---|
| 59 | ! transposition arrays introduced |
---|
| 60 | ! |
---|
| 61 | ! Revision 1.1 2004/04/30 13:08:16 raasch |
---|
| 62 | ! Initial revision (collection of former routines transpose_xy, transpose_xz, |
---|
| 63 | ! transpose_yx, transpose_yz, transpose_zx, transpose_zy) |
---|
| 64 | ! |
---|
| 65 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 66 | ! Initial revision |
---|
| 67 | ! |
---|
| 68 | ! |
---|
| 69 | ! Description: |
---|
| 70 | ! ------------ |
---|
| 71 | ! Transposition of input array (f_in) from x to y. For the input array, all |
---|
| 72 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 73 | ! elements along y reside on the same PE. |
---|
| 74 | !------------------------------------------------------------------------------! |
---|
| 75 | |
---|
| 76 | USE cpulog |
---|
| 77 | USE indices |
---|
| 78 | USE interfaces |
---|
| 79 | USE pegrid |
---|
| 80 | USE transpose_indices |
---|
| 81 | |
---|
| 82 | IMPLICIT NONE |
---|
| 83 | |
---|
[1111] | 84 | INTEGER :: i, j, k, l, ys |
---|
[1] | 85 | |
---|
[1111] | 86 | REAL :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x), f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) |
---|
[1] | 87 | |
---|
[1111] | 88 | REAL, DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work |
---|
| 89 | |
---|
| 90 | !$acc declare create( f_inv ) |
---|
| 91 | REAL :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) |
---|
| 92 | |
---|
| 93 | |
---|
[1] | 94 | ! |
---|
| 95 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 96 | !-- by MPI contiguous |
---|
[683] | 97 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 98 | !$OMP DO |
---|
[1111] | 99 | !$acc kernels present( f_in ) |
---|
| 100 | !$acc loop |
---|
[1003] | 101 | DO i = 0, nx |
---|
| 102 | DO k = nzb_x, nzt_x |
---|
[1111] | 103 | !$acc loop vector( 32 ) |
---|
[1003] | 104 | DO j = nys_x, nyn_x |
---|
[164] | 105 | f_inv(j,k,i) = f_in(i,j,k) |
---|
[1] | 106 | ENDDO |
---|
| 107 | ENDDO |
---|
| 108 | ENDDO |
---|
[1111] | 109 | !$acc end kernels |
---|
[683] | 110 | !$OMP END PARALLEL |
---|
[1] | 111 | |
---|
[1106] | 112 | IF ( numprocs /= 1 ) THEN |
---|
| 113 | |
---|
| 114 | #if defined( __parallel ) |
---|
[1] | 115 | ! |
---|
[1106] | 116 | !-- Transpose array |
---|
| 117 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 118 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 119 | !$acc update host( f_inv ) |
---|
| 120 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 121 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 122 | comm1dy, ierr ) |
---|
[1111] | 123 | !$acc update device( work ) |
---|
[1106] | 124 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 125 | |
---|
| 126 | ! |
---|
[1106] | 127 | !-- Reorder transposed array |
---|
[1111] | 128 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 129 | !$OMP DO |
---|
[1106] | 130 | DO l = 0, pdims(2) - 1 |
---|
| 131 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 132 | !$acc kernels present( f_out, work ) |
---|
| 133 | !$acc loop |
---|
[1106] | 134 | DO i = nxl_y, nxr_y |
---|
| 135 | DO k = nzb_y, nzt_y |
---|
[1111] | 136 | !$acc loop vector( 32 ) |
---|
[1106] | 137 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 138 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 139 | ENDDO |
---|
[1] | 140 | ENDDO |
---|
| 141 | ENDDO |
---|
[1111] | 142 | !$acc end kernels |
---|
[1] | 143 | ENDDO |
---|
[683] | 144 | !$OMP END PARALLEL |
---|
[1] | 145 | #endif |
---|
| 146 | |
---|
[1106] | 147 | ELSE |
---|
| 148 | |
---|
| 149 | ! |
---|
| 150 | !-- Reorder transposed array |
---|
| 151 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 152 | !$OMP DO |
---|
[1111] | 153 | !$acc kernels present( f_out ) |
---|
| 154 | !$acc loop |
---|
[1106] | 155 | DO k = nzb_y, nzt_y |
---|
| 156 | DO i = nxl_y, nxr_y |
---|
[1111] | 157 | !$acc loop vector( 32 ) |
---|
[1106] | 158 | DO j = 0, ny |
---|
| 159 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 160 | ENDDO |
---|
| 161 | ENDDO |
---|
| 162 | ENDDO |
---|
[1111] | 163 | !$acc end kernels |
---|
[1106] | 164 | !$OMP END PARALLEL |
---|
| 165 | |
---|
| 166 | ENDIF |
---|
| 167 | |
---|
[1] | 168 | END SUBROUTINE transpose_xy |
---|
| 169 | |
---|
| 170 | |
---|
[164] | 171 | SUBROUTINE transpose_xz( f_in, work, f_out ) |
---|
[1] | 172 | |
---|
| 173 | !------------------------------------------------------------------------------! |
---|
| 174 | ! Description: |
---|
| 175 | ! ------------ |
---|
| 176 | ! Transposition of input array (f_in) from x to z. For the input array, all |
---|
| 177 | ! elements along x reside on the same PE, while after transposition, all |
---|
| 178 | ! elements along z reside on the same PE. |
---|
| 179 | !------------------------------------------------------------------------------! |
---|
| 180 | |
---|
| 181 | USE cpulog |
---|
| 182 | USE indices |
---|
| 183 | USE interfaces |
---|
| 184 | USE pegrid |
---|
| 185 | USE transpose_indices |
---|
| 186 | |
---|
| 187 | IMPLICIT NONE |
---|
| 188 | |
---|
[1111] | 189 | INTEGER :: i, j, k, l, xs |
---|
[1] | 190 | |
---|
[1111] | 191 | REAL :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x), f_out(1:nz,nys:nyn,nxl:nxr) |
---|
[1] | 192 | |
---|
[1111] | 193 | REAL, DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work |
---|
[1] | 194 | |
---|
[1111] | 195 | !$acc declare create( f_inv ) |
---|
| 196 | REAL :: f_inv(nys:nyn,nxl:nxr,1:nz) |
---|
| 197 | |
---|
| 198 | |
---|
[1] | 199 | ! |
---|
| 200 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 201 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 202 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 203 | |
---|
| 204 | #if defined( __parallel ) |
---|
[1] | 205 | ! |
---|
| 206 | !-- Reorder input array for transposition |
---|
[1111] | 207 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 208 | !$OMP DO |
---|
[1] | 209 | DO l = 0, pdims(1) - 1 |
---|
| 210 | xs = 0 + l * nnx |
---|
[1111] | 211 | !$acc kernels present( f_in, work ) |
---|
| 212 | !$acc loop |
---|
[1003] | 213 | DO k = nzb_x, nzt_x |
---|
[164] | 214 | DO i = xs, xs + nnx - 1 |
---|
[1111] | 215 | !$acc loop vector( 32 ) |
---|
[1003] | 216 | DO j = nys_x, nyn_x |
---|
[1111] | 217 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
[1] | 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | ENDDO |
---|
[1111] | 221 | !$acc end kernels |
---|
[1] | 222 | ENDDO |
---|
[683] | 223 | !$OMP END PARALLEL |
---|
[1] | 224 | |
---|
| 225 | ! |
---|
| 226 | !-- Transpose array |
---|
| 227 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 228 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 229 | !$acc update host( work ) |
---|
| 230 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 231 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
[1] | 232 | comm1dx, ierr ) |
---|
[1111] | 233 | !$acc update device( f_inv ) |
---|
[1] | 234 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 235 | |
---|
| 236 | ! |
---|
| 237 | !-- Reorder transposed array in a way that the z index is in first position |
---|
[683] | 238 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 239 | !$OMP DO |
---|
[1111] | 240 | !$acc kernels present( f_out ) |
---|
| 241 | !$acc loop |
---|
[1003] | 242 | DO k = 1, nz |
---|
| 243 | DO i = nxl, nxr |
---|
[1111] | 244 | !$acc loop vector( 32 ) |
---|
[1003] | 245 | DO j = nys, nyn |
---|
[164] | 246 | f_out(k,j,i) = f_inv(j,i,k) |
---|
[1] | 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | ENDDO |
---|
[1111] | 250 | !$acc end kernels |
---|
[683] | 251 | !$OMP END PARALLEL |
---|
[1106] | 252 | #endif |
---|
| 253 | |
---|
[1] | 254 | ELSE |
---|
[1106] | 255 | |
---|
[1] | 256 | ! |
---|
| 257 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 258 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 259 | !$OMP DO |
---|
[1111] | 260 | !$acc kernels present( f_in ) |
---|
| 261 | !$acc loop |
---|
[1003] | 262 | DO i = nxl, nxr |
---|
| 263 | DO j = nys, nyn |
---|
[1111] | 264 | !$acc loop vector( 32 ) |
---|
[1003] | 265 | DO k = 1, nz |
---|
[164] | 266 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | ENDDO |
---|
[1111] | 270 | !$acc end kernels |
---|
[683] | 271 | !$OMP END PARALLEL |
---|
[1] | 272 | |
---|
[683] | 273 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 274 | !$OMP DO |
---|
[1111] | 275 | !$acc kernels present( f_out ) |
---|
| 276 | !$acc loop |
---|
[1003] | 277 | DO k = 1, nz |
---|
| 278 | DO i = nxl, nxr |
---|
[1111] | 279 | !$acc loop vector( 32 ) |
---|
[1003] | 280 | DO j = nys, nyn |
---|
[164] | 281 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 282 | ENDDO |
---|
[1] | 283 | ENDDO |
---|
| 284 | ENDDO |
---|
[1111] | 285 | !$acc end kernels |
---|
[683] | 286 | !$OMP END PARALLEL |
---|
[1] | 287 | |
---|
[164] | 288 | ENDIF |
---|
| 289 | |
---|
[1] | 290 | END SUBROUTINE transpose_xz |
---|
| 291 | |
---|
| 292 | |
---|
[164] | 293 | SUBROUTINE transpose_yx( f_in, work, f_out ) |
---|
[1] | 294 | |
---|
| 295 | !------------------------------------------------------------------------------! |
---|
| 296 | ! Description: |
---|
| 297 | ! ------------ |
---|
| 298 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 299 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 300 | ! elements along x reside on the same PE. |
---|
| 301 | !------------------------------------------------------------------------------! |
---|
| 302 | |
---|
| 303 | USE cpulog |
---|
| 304 | USE indices |
---|
| 305 | USE interfaces |
---|
| 306 | USE pegrid |
---|
| 307 | USE transpose_indices |
---|
| 308 | |
---|
| 309 | IMPLICIT NONE |
---|
| 310 | |
---|
[1111] | 311 | INTEGER :: i, j, k, l, ys |
---|
[1] | 312 | |
---|
[1111] | 313 | REAL :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) |
---|
[1] | 314 | |
---|
[1111] | 315 | REAL, DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work |
---|
| 316 | |
---|
| 317 | !$acc declare create( f_inv ) |
---|
| 318 | REAL :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) |
---|
| 319 | |
---|
| 320 | |
---|
[1106] | 321 | IF ( numprocs /= 1 ) THEN |
---|
| 322 | |
---|
[1] | 323 | #if defined( __parallel ) |
---|
| 324 | ! |
---|
[1106] | 325 | !-- Reorder input array for transposition |
---|
[1111] | 326 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[683] | 327 | !$OMP DO |
---|
[1106] | 328 | DO l = 0, pdims(2) - 1 |
---|
| 329 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[1111] | 330 | !$acc kernels present( f_in, work ) |
---|
| 331 | !$acc loop |
---|
[1106] | 332 | DO i = nxl_y, nxr_y |
---|
| 333 | DO k = nzb_y, nzt_y |
---|
[1111] | 334 | !$acc loop vector( 32 ) |
---|
[1106] | 335 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 336 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 337 | ENDDO |
---|
| 338 | ENDDO |
---|
| 339 | ENDDO |
---|
[1111] | 340 | !$acc end kernels |
---|
[1106] | 341 | ENDDO |
---|
| 342 | !$OMP END PARALLEL |
---|
| 343 | |
---|
| 344 | ! |
---|
| 345 | !-- Transpose array |
---|
| 346 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 347 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 348 | !$acc update host( work ) |
---|
| 349 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 350 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
[1106] | 351 | comm1dy, ierr ) |
---|
[1111] | 352 | !$acc update device( f_inv ) |
---|
[1106] | 353 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 354 | #endif |
---|
| 355 | |
---|
| 356 | ELSE |
---|
| 357 | |
---|
| 358 | ! |
---|
| 359 | !-- Reorder array f_in the same way as ALLTOALL did it |
---|
| 360 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 361 | !$OMP DO |
---|
[1111] | 362 | !$acc kernels present( f_in ) |
---|
| 363 | !$acc loop |
---|
[1003] | 364 | DO i = nxl_y, nxr_y |
---|
| 365 | DO k = nzb_y, nzt_y |
---|
[1111] | 366 | !$acc loop vector( 32 ) |
---|
[1106] | 367 | DO j = 0, ny |
---|
| 368 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 369 | ENDDO |
---|
| 370 | ENDDO |
---|
| 371 | ENDDO |
---|
[1111] | 372 | !$acc end kernels |
---|
[683] | 373 | !$OMP END PARALLEL |
---|
[1] | 374 | |
---|
[1106] | 375 | ENDIF |
---|
[1] | 376 | |
---|
| 377 | ! |
---|
| 378 | !-- Reorder transposed array in a way that the x index is in first position |
---|
[683] | 379 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 380 | !$OMP DO |
---|
[1111] | 381 | !$acc kernels present( f_out ) |
---|
| 382 | !$acc loop |
---|
[1003] | 383 | DO i = 0, nx |
---|
| 384 | DO k = nzb_x, nzt_x |
---|
[1111] | 385 | !$acc loop vector( 32 ) |
---|
[1003] | 386 | DO j = nys_x, nyn_x |
---|
[164] | 387 | f_out(i,j,k) = f_inv(j,k,i) |
---|
[1] | 388 | ENDDO |
---|
| 389 | ENDDO |
---|
| 390 | ENDDO |
---|
[1111] | 391 | !$acc end kernels |
---|
[683] | 392 | !$OMP END PARALLEL |
---|
[1] | 393 | |
---|
| 394 | END SUBROUTINE transpose_yx |
---|
| 395 | |
---|
| 396 | |
---|
[164] | 397 | SUBROUTINE transpose_yxd( f_in, work, f_out ) |
---|
[1] | 398 | |
---|
| 399 | !------------------------------------------------------------------------------! |
---|
| 400 | ! Description: |
---|
| 401 | ! ------------ |
---|
| 402 | ! Transposition of input array (f_in) from y to x. For the input array, all |
---|
| 403 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 404 | ! elements along x reside on the same PE. |
---|
| 405 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 406 | ! (k,j,i) (cf. transpose_yx). |
---|
| 407 | !------------------------------------------------------------------------------! |
---|
| 408 | |
---|
| 409 | USE cpulog |
---|
| 410 | USE indices |
---|
| 411 | USE interfaces |
---|
| 412 | USE pegrid |
---|
| 413 | USE transpose_indices |
---|
| 414 | |
---|
| 415 | IMPLICIT NONE |
---|
| 416 | |
---|
[1092] | 417 | INTEGER :: i, j, k, l, m, xs |
---|
[1] | 418 | |
---|
[1003] | 419 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_inv(nxl:nxr,1:nz,nys:nyn), & |
---|
| 420 | f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x), & |
---|
[164] | 421 | work(nnx*nny*nnz) |
---|
[1] | 422 | |
---|
| 423 | #if defined( __parallel ) |
---|
| 424 | |
---|
| 425 | ! |
---|
| 426 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 427 | !-- by MPI contiguous |
---|
[1003] | 428 | DO k = 1, nz |
---|
| 429 | DO j = nys, nyn |
---|
| 430 | DO i = nxl, nxr |
---|
[164] | 431 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 432 | ENDDO |
---|
| 433 | ENDDO |
---|
| 434 | ENDDO |
---|
| 435 | |
---|
| 436 | ! |
---|
| 437 | !-- Transpose array |
---|
| 438 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 439 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 440 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
[164] | 441 | work(1), sendrecvcount_xy, MPI_REAL, & |
---|
[1] | 442 | comm1dx, ierr ) |
---|
| 443 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 444 | |
---|
| 445 | ! |
---|
| 446 | !-- Reorder transposed array |
---|
| 447 | m = 0 |
---|
| 448 | DO l = 0, pdims(1) - 1 |
---|
| 449 | xs = 0 + l * nnx |
---|
[1003] | 450 | DO j = nys_x, nyn_x |
---|
| 451 | DO k = 1, nz |
---|
[1] | 452 | DO i = xs, xs + nnx - 1 |
---|
| 453 | m = m + 1 |
---|
[164] | 454 | f_out(i,j,k) = work(m) |
---|
[1] | 455 | ENDDO |
---|
| 456 | ENDDO |
---|
| 457 | ENDDO |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | #endif |
---|
| 461 | |
---|
| 462 | END SUBROUTINE transpose_yxd |
---|
| 463 | |
---|
| 464 | |
---|
[164] | 465 | SUBROUTINE transpose_yz( f_in, work, f_out ) |
---|
[1] | 466 | |
---|
| 467 | !------------------------------------------------------------------------------! |
---|
| 468 | ! Description: |
---|
| 469 | ! ------------ |
---|
| 470 | ! Transposition of input array (f_in) from y to z. For the input array, all |
---|
| 471 | ! elements along y reside on the same PE, while after transposition, all |
---|
| 472 | ! elements along z reside on the same PE. |
---|
| 473 | !------------------------------------------------------------------------------! |
---|
| 474 | |
---|
| 475 | USE cpulog |
---|
| 476 | USE indices |
---|
| 477 | USE interfaces |
---|
| 478 | USE pegrid |
---|
| 479 | USE transpose_indices |
---|
| 480 | |
---|
| 481 | IMPLICIT NONE |
---|
| 482 | |
---|
[1111] | 483 | INTEGER :: i, j, k, l, zs |
---|
[1] | 484 | |
---|
[1111] | 485 | REAL :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y), f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) |
---|
[1] | 486 | |
---|
[1111] | 487 | REAL, DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work |
---|
| 488 | |
---|
| 489 | !$acc declare create( f_inv ) |
---|
| 490 | REAL :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) |
---|
| 491 | |
---|
| 492 | |
---|
[1] | 493 | ! |
---|
| 494 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 495 | !-- by MPI contiguous |
---|
[683] | 496 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 497 | !$OMP DO |
---|
[1111] | 498 | !$acc kernels present( f_in ) |
---|
| 499 | !$acc loop |
---|
[1003] | 500 | DO j = 0, ny |
---|
| 501 | DO k = nzb_y, nzt_y |
---|
[1111] | 502 | !$acc loop vector( 32 ) |
---|
[1003] | 503 | DO i = nxl_y, nxr_y |
---|
[164] | 504 | f_inv(i,k,j) = f_in(j,i,k) |
---|
[1] | 505 | ENDDO |
---|
| 506 | ENDDO |
---|
| 507 | ENDDO |
---|
[1111] | 508 | !$acc end kernels |
---|
[683] | 509 | !$OMP END PARALLEL |
---|
[1] | 510 | |
---|
| 511 | ! |
---|
| 512 | !-- Move data to different array, because memory location of work1 is |
---|
| 513 | !-- needed further below (work1 = work2). |
---|
| 514 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 515 | !-- of the data is necessary and no transposition has to be done. |
---|
| 516 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 517 | |
---|
[683] | 518 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 519 | !$OMP DO |
---|
[1111] | 520 | !$acc kernels present( f_out ) |
---|
| 521 | !$acc loop |
---|
[1003] | 522 | DO j = 0, ny |
---|
| 523 | DO k = nzb_y, nzt_y |
---|
[1111] | 524 | !$acc loop vector( 32 ) |
---|
[1003] | 525 | DO i = nxl_y, nxr_y |
---|
[164] | 526 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 527 | ENDDO |
---|
| 528 | ENDDO |
---|
| 529 | ENDDO |
---|
[1111] | 530 | !$acc end kernels |
---|
[683] | 531 | !$OMP END PARALLEL |
---|
[1] | 532 | |
---|
[1106] | 533 | ELSE |
---|
| 534 | |
---|
| 535 | #if defined( __parallel ) |
---|
[1] | 536 | ! |
---|
[1106] | 537 | !-- Transpose array |
---|
| 538 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 539 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 540 | !$acc update host( f_inv ) |
---|
| 541 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 542 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1106] | 543 | comm1dx, ierr ) |
---|
[1111] | 544 | !$acc update device( work ) |
---|
[1106] | 545 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 546 | |
---|
| 547 | ! |
---|
[1106] | 548 | !-- Reorder transposed array |
---|
[1111] | 549 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 550 | !$OMP DO |
---|
[1106] | 551 | DO l = 0, pdims(1) - 1 |
---|
| 552 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1111] | 553 | !$acc kernels present( f_out, work ) |
---|
| 554 | !$acc loop |
---|
[1106] | 555 | DO j = nys_z, nyn_z |
---|
| 556 | DO k = zs, zs + nzt_y - nzb_y |
---|
[1111] | 557 | !$acc loop vector( 32 ) |
---|
[1106] | 558 | DO i = nxl_z, nxr_z |
---|
[1111] | 559 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 560 | ENDDO |
---|
[1] | 561 | ENDDO |
---|
| 562 | ENDDO |
---|
[1111] | 563 | !$acc end kernels |
---|
[1] | 564 | ENDDO |
---|
[683] | 565 | !$OMP END PARALLEL |
---|
[1] | 566 | #endif |
---|
| 567 | |
---|
[1106] | 568 | ENDIF |
---|
| 569 | |
---|
[1] | 570 | END SUBROUTINE transpose_yz |
---|
| 571 | |
---|
| 572 | |
---|
[164] | 573 | SUBROUTINE transpose_zx( f_in, work, f_out ) |
---|
[1] | 574 | |
---|
| 575 | !------------------------------------------------------------------------------! |
---|
| 576 | ! Description: |
---|
| 577 | ! ------------ |
---|
| 578 | ! Transposition of input array (f_in) from z to x. For the input array, all |
---|
| 579 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 580 | ! elements along x reside on the same PE. |
---|
| 581 | !------------------------------------------------------------------------------! |
---|
| 582 | |
---|
| 583 | USE cpulog |
---|
| 584 | USE indices |
---|
| 585 | USE interfaces |
---|
| 586 | USE pegrid |
---|
| 587 | USE transpose_indices |
---|
| 588 | |
---|
| 589 | IMPLICIT NONE |
---|
| 590 | |
---|
[1111] | 591 | INTEGER :: i, j, k, l, xs |
---|
[1] | 592 | |
---|
[1111] | 593 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) |
---|
[1] | 594 | |
---|
[1111] | 595 | REAL, DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work |
---|
| 596 | |
---|
| 597 | !$acc declare create( f_inv ) |
---|
[1106] | 598 | REAL :: f_inv(nys:nyn,nxl:nxr,1:nz) |
---|
[1] | 599 | |
---|
[1106] | 600 | |
---|
[1] | 601 | ! |
---|
| 602 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 603 | !-- by MPI contiguous |
---|
[683] | 604 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 605 | !$OMP DO |
---|
[1106] | 606 | !$acc kernels present( f_in ) |
---|
| 607 | !$acc loop |
---|
[1003] | 608 | DO k = 1,nz |
---|
| 609 | DO i = nxl, nxr |
---|
[1106] | 610 | !$acc loop vector( 32 ) |
---|
[1003] | 611 | DO j = nys, nyn |
---|
[164] | 612 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 613 | ENDDO |
---|
| 614 | ENDDO |
---|
| 615 | ENDDO |
---|
[1111] | 616 | !$acc end kernels |
---|
[683] | 617 | !$OMP END PARALLEL |
---|
[1] | 618 | |
---|
| 619 | ! |
---|
| 620 | !-- Move data to different array, because memory location of work1 is |
---|
| 621 | !-- needed further below (work1 = work2). |
---|
| 622 | !-- If the PE grid is one-dimensional along y, only local reordering |
---|
| 623 | !-- of the data is necessary and no transposition has to be done. |
---|
| 624 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 625 | |
---|
[683] | 626 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 627 | !$OMP DO |
---|
[1106] | 628 | !$acc kernels present( f_out ) |
---|
| 629 | !$acc loop |
---|
[1003] | 630 | DO k = 1, nz |
---|
| 631 | DO i = nxl, nxr |
---|
[1106] | 632 | !$acc loop vector( 32 ) |
---|
[1003] | 633 | DO j = nys, nyn |
---|
[164] | 634 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 635 | ENDDO |
---|
| 636 | ENDDO |
---|
| 637 | ENDDO |
---|
[1111] | 638 | !$acc end kernels |
---|
[683] | 639 | !$OMP END PARALLEL |
---|
[1] | 640 | |
---|
[1106] | 641 | ELSE |
---|
| 642 | |
---|
| 643 | #if defined( __parallel ) |
---|
[1] | 644 | ! |
---|
[1106] | 645 | !-- Transpose array |
---|
| 646 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
| 647 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 648 | !$acc update host( f_inv ) |
---|
| 649 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 650 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
[1106] | 651 | comm1dx, ierr ) |
---|
[1111] | 652 | !$acc update device( work ) |
---|
[1106] | 653 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 654 | |
---|
| 655 | ! |
---|
[1106] | 656 | !-- Reorder transposed array |
---|
[1111] | 657 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
[683] | 658 | !$OMP DO |
---|
[1106] | 659 | DO l = 0, pdims(1) - 1 |
---|
| 660 | xs = 0 + l * nnx |
---|
[1111] | 661 | !$acc kernels present( f_out, work ) |
---|
| 662 | !$acc loop |
---|
[1106] | 663 | DO k = nzb_x, nzt_x |
---|
| 664 | DO i = xs, xs + nnx - 1 |
---|
[1111] | 665 | !$acc loop vector( 32 ) |
---|
[1106] | 666 | DO j = nys_x, nyn_x |
---|
[1111] | 667 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
[1106] | 668 | ENDDO |
---|
[1] | 669 | ENDDO |
---|
| 670 | ENDDO |
---|
[1111] | 671 | !$acc end kernels |
---|
[1] | 672 | ENDDO |
---|
[683] | 673 | !$OMP END PARALLEL |
---|
[1] | 674 | #endif |
---|
| 675 | |
---|
[1106] | 676 | ENDIF |
---|
| 677 | |
---|
[1] | 678 | END SUBROUTINE transpose_zx |
---|
| 679 | |
---|
| 680 | |
---|
[164] | 681 | SUBROUTINE transpose_zy( f_in, work, f_out ) |
---|
[1] | 682 | |
---|
| 683 | !------------------------------------------------------------------------------! |
---|
| 684 | ! Description: |
---|
| 685 | ! ------------ |
---|
| 686 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 687 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 688 | ! elements along y reside on the same PE. |
---|
| 689 | !------------------------------------------------------------------------------! |
---|
| 690 | |
---|
| 691 | USE cpulog |
---|
| 692 | USE indices |
---|
| 693 | USE interfaces |
---|
| 694 | USE pegrid |
---|
| 695 | USE transpose_indices |
---|
| 696 | |
---|
| 697 | IMPLICIT NONE |
---|
| 698 | |
---|
[1111] | 699 | INTEGER :: i, j, k, l, zs |
---|
[1] | 700 | |
---|
[1111] | 701 | REAL :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz), f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) |
---|
[1] | 702 | |
---|
[1111] | 703 | REAL, DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work |
---|
| 704 | |
---|
| 705 | !$acc declare create( f_inv ) |
---|
| 706 | REAL :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) |
---|
| 707 | |
---|
| 708 | |
---|
[1] | 709 | ! |
---|
| 710 | !-- If the PE grid is one-dimensional along y, the array has only to be |
---|
| 711 | !-- reordered locally and therefore no transposition has to be done. |
---|
| 712 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 713 | |
---|
| 714 | #if defined( __parallel ) |
---|
[1] | 715 | ! |
---|
| 716 | !-- Reorder input array for transposition |
---|
[1111] | 717 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[683] | 718 | !$OMP DO |
---|
[1] | 719 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 720 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[1111] | 721 | !$acc kernels present( f_in, work ) |
---|
| 722 | !$acc loop |
---|
[1003] | 723 | DO j = nys_z, nyn_z |
---|
| 724 | DO k = zs, zs + nzt_y - nzb_y |
---|
[1111] | 725 | !$acc loop vector( 32 ) |
---|
[1003] | 726 | DO i = nxl_z, nxr_z |
---|
[1111] | 727 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 728 | ENDDO |
---|
| 729 | ENDDO |
---|
| 730 | ENDDO |
---|
[1111] | 731 | !$acc end kernels |
---|
[1] | 732 | ENDDO |
---|
[683] | 733 | !$OMP END PARALLEL |
---|
[1] | 734 | |
---|
| 735 | ! |
---|
| 736 | !-- Transpose array |
---|
| 737 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 738 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1111] | 739 | !$acc update host( work ) |
---|
| 740 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 741 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
[1] | 742 | comm1dx, ierr ) |
---|
[1111] | 743 | !$acc update device( f_inv ) |
---|
[1] | 744 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 745 | #endif |
---|
[1] | 746 | |
---|
| 747 | ELSE |
---|
| 748 | ! |
---|
[1106] | 749 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 750 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 751 | !$OMP DO |
---|
[1111] | 752 | !$acc kernels present( f_in ) |
---|
| 753 | !$acc loop |
---|
[1003] | 754 | DO k = nzb_y, nzt_y |
---|
| 755 | DO j = 0, ny |
---|
[1111] | 756 | !$acc loop vector( 32 ) |
---|
[1003] | 757 | DO i = nxl_y, nxr_y |
---|
[164] | 758 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 759 | ENDDO |
---|
| 760 | ENDDO |
---|
| 761 | ENDDO |
---|
[1111] | 762 | !$acc end kernels |
---|
[683] | 763 | !$OMP END PARALLEL |
---|
[1106] | 764 | |
---|
| 765 | ENDIF |
---|
| 766 | |
---|
[164] | 767 | ! |
---|
[1106] | 768 | !-- Reorder transposed array in a way that the y index is in first position |
---|
[683] | 769 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 770 | !$OMP DO |
---|
[1111] | 771 | !$acc kernels present( f_out ) |
---|
| 772 | !$acc loop |
---|
[1106] | 773 | DO k = nzb_y, nzt_y |
---|
| 774 | DO i = nxl_y, nxr_y |
---|
[1111] | 775 | !$acc loop vector( 32 ) |
---|
[1106] | 776 | DO j = 0, ny |
---|
| 777 | f_out(j,i,k) = f_inv(i,k,j) |
---|
[1] | 778 | ENDDO |
---|
| 779 | ENDDO |
---|
[1106] | 780 | ENDDO |
---|
[1111] | 781 | !$acc end kernels |
---|
[683] | 782 | !$OMP END PARALLEL |
---|
[164] | 783 | |
---|
[1] | 784 | END SUBROUTINE transpose_zy |
---|
| 785 | |
---|
| 786 | |
---|
[164] | 787 | SUBROUTINE transpose_zyd( f_in, work, f_out ) |
---|
[1] | 788 | |
---|
| 789 | !------------------------------------------------------------------------------! |
---|
| 790 | ! Description: |
---|
| 791 | ! ------------ |
---|
| 792 | ! Transposition of input array (f_in) from z to y. For the input array, all |
---|
| 793 | ! elements along z reside on the same PE, while after transposition, all |
---|
| 794 | ! elements along y reside on the same PE. |
---|
| 795 | ! This is a direct transposition for arrays with indices in regular order |
---|
| 796 | ! (k,j,i) (cf. transpose_zy). |
---|
| 797 | !------------------------------------------------------------------------------! |
---|
| 798 | |
---|
| 799 | USE cpulog |
---|
| 800 | USE indices |
---|
| 801 | USE interfaces |
---|
| 802 | USE pegrid |
---|
| 803 | USE transpose_indices |
---|
| 804 | |
---|
| 805 | IMPLICIT NONE |
---|
| 806 | |
---|
| 807 | INTEGER :: i, j, k, l, m, ys |
---|
| 808 | |
---|
[1003] | 809 | REAL :: f_in(1:nz,nys:nyn,nxl:nxr), f_inv(nys:nyn,nxl:nxr,1:nz), & |
---|
| 810 | f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd), & |
---|
[164] | 811 | work(nnx*nny*nnz) |
---|
[1] | 812 | |
---|
| 813 | #if defined( __parallel ) |
---|
| 814 | |
---|
| 815 | ! |
---|
| 816 | !-- Rearrange indices of input array in order to make data to be send |
---|
| 817 | !-- by MPI contiguous |
---|
[1003] | 818 | DO i = nxl, nxr |
---|
| 819 | DO j = nys, nyn |
---|
| 820 | DO k = 1, nz |
---|
[164] | 821 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 822 | ENDDO |
---|
| 823 | ENDDO |
---|
| 824 | ENDDO |
---|
| 825 | |
---|
| 826 | ! |
---|
| 827 | !-- Move data to different array, because memory location of work1 is |
---|
| 828 | !-- needed further below (work1 = work2). |
---|
| 829 | !-- If the PE grid is one-dimensional along x, only local reordering |
---|
| 830 | !-- of the data is necessary and no transposition has to be done. |
---|
| 831 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 832 | DO k = 1, nz |
---|
| 833 | DO i = nxl, nxr |
---|
| 834 | DO j = nys, nyn |
---|
[164] | 835 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 836 | ENDDO |
---|
| 837 | ENDDO |
---|
| 838 | ENDDO |
---|
| 839 | RETURN |
---|
| 840 | ENDIF |
---|
| 841 | |
---|
| 842 | ! |
---|
| 843 | !-- Transpose array |
---|
| 844 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 845 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 846 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
[164] | 847 | work(1), sendrecvcount_zyd, MPI_REAL, & |
---|
[1] | 848 | comm1dy, ierr ) |
---|
| 849 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 850 | |
---|
| 851 | ! |
---|
| 852 | !-- Reorder transposed array |
---|
| 853 | m = 0 |
---|
| 854 | DO l = 0, pdims(2) - 1 |
---|
| 855 | ys = 0 + l * nny |
---|
[1003] | 856 | DO k = nzb_yd, nzt_yd |
---|
| 857 | DO i = nxl_yd, nxr_yd |
---|
[1] | 858 | DO j = ys, ys + nny - 1 |
---|
| 859 | m = m + 1 |
---|
[164] | 860 | f_out(j,i,k) = work(m) |
---|
[1] | 861 | ENDDO |
---|
| 862 | ENDDO |
---|
| 863 | ENDDO |
---|
| 864 | ENDDO |
---|
| 865 | |
---|
| 866 | #endif |
---|
| 867 | |
---|
| 868 | END SUBROUTINE transpose_zyd |
---|