1 | SUBROUTINE timestep |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ------------------ |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: timestep.f90 1002 2012-09-13 15:12:24Z letzel $ |
---|
11 | ! |
---|
12 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
13 | ! all actions concerning leapfrog scheme removed |
---|
14 | ! |
---|
15 | ! 978 2012-08-09 08:28:32Z fricke |
---|
16 | ! restriction of the outflow damping layer in the diffusion criterion removed |
---|
17 | ! |
---|
18 | ! 866 2012-03-28 06:44:41Z raasch |
---|
19 | ! bugfix for timestep calculation in case of Galilei transformation, |
---|
20 | ! special treatment in case of mirror velocity boundary condition removed |
---|
21 | ! |
---|
22 | ! 707 2011-03-29 11:39:40Z raasch |
---|
23 | ! bc_lr/ns replaced by bc_lr/ns_cyc |
---|
24 | ! |
---|
25 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
26 | ! Exchange of terminate_coupled between ocean and atmosphere via PE0 |
---|
27 | ! Minimum grid spacing dxyz2_min(k) is now calculated using dzw instead of dzu |
---|
28 | ! |
---|
29 | ! 622 2010-12-10 08:08:13Z raasch |
---|
30 | ! optional barriers included in order to speed up collective operations |
---|
31 | ! |
---|
32 | ! 343 2009-06-24 12:59:09Z maronga |
---|
33 | ! Additional timestep criterion in case of simulations with plant canopy |
---|
34 | ! Output of messages replaced by message handling routine. |
---|
35 | ! |
---|
36 | ! 222 2009-01-12 16:04:16Z letzel |
---|
37 | ! Implementation of a MPI-1 Coupling: replaced myid with target_id |
---|
38 | ! Bugfix for nonparallel execution |
---|
39 | ! |
---|
40 | ! 108 2007-08-24 15:10:38Z letzel |
---|
41 | ! modifications to terminate coupled runs |
---|
42 | ! |
---|
43 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
44 | ! |
---|
45 | ! Revision 1.21 2006/02/23 12:59:44 raasch |
---|
46 | ! nt_anz renamed current_timestep_number |
---|
47 | ! |
---|
48 | ! Revision 1.1 1997/08/11 06:26:19 raasch |
---|
49 | ! Initial revision |
---|
50 | ! |
---|
51 | ! |
---|
52 | ! Description: |
---|
53 | ! ------------ |
---|
54 | ! Compute the time step under consideration of the FCL and diffusion criterion. |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | |
---|
57 | USE arrays_3d |
---|
58 | USE control_parameters |
---|
59 | USE cpulog |
---|
60 | USE grid_variables |
---|
61 | USE indices |
---|
62 | USE interfaces |
---|
63 | USE pegrid |
---|
64 | USE statistics |
---|
65 | |
---|
66 | IMPLICIT NONE |
---|
67 | |
---|
68 | INTEGER :: i, j, k, u_max_cfl_ijk(3), v_max_cfl_ijk(3) |
---|
69 | |
---|
70 | REAL :: div, dt_diff, dt_diff_l, dt_plant_canopy, & |
---|
71 | dt_plant_canopy_l, & |
---|
72 | dt_plant_canopy_u, dt_plant_canopy_v, dt_plant_canopy_w, & |
---|
73 | dt_u, dt_v, dt_w, lad_max, & |
---|
74 | u_gtrans_l, u_max_cfl, vabs_max, value, v_gtrans_l, v_max_cfl |
---|
75 | |
---|
76 | REAL, DIMENSION(2) :: uv_gtrans, uv_gtrans_l |
---|
77 | REAL, DIMENSION(nzb+1:nzt) :: dxyz2_min |
---|
78 | |
---|
79 | |
---|
80 | |
---|
81 | CALL cpu_log( log_point(12), 'calculate_timestep', 'start' ) |
---|
82 | |
---|
83 | ! |
---|
84 | !-- In case of Galilei-transform not using the geostrophic wind as translation |
---|
85 | !-- velocity, compute the volume-averaged horizontal velocity components, which |
---|
86 | !-- will then be subtracted from the horizontal wind for the time step and |
---|
87 | !-- horizontal advection routines. |
---|
88 | IF ( galilei_transformation .AND. .NOT. use_ug_for_galilei_tr ) THEN |
---|
89 | IF ( flow_statistics_called ) THEN |
---|
90 | ! |
---|
91 | !-- Horizontal averages already existent, just need to average them |
---|
92 | !-- vertically. |
---|
93 | u_gtrans = 0.0 |
---|
94 | v_gtrans = 0.0 |
---|
95 | DO k = nzb+1, nzt |
---|
96 | u_gtrans = u_gtrans + hom(k,1,1,0) |
---|
97 | v_gtrans = v_gtrans + hom(k,1,2,0) |
---|
98 | ENDDO |
---|
99 | u_gtrans = u_gtrans / REAL( nzt - nzb ) |
---|
100 | v_gtrans = v_gtrans / REAL( nzt - nzb ) |
---|
101 | ELSE |
---|
102 | ! |
---|
103 | !-- Averaging over the entire model domain. |
---|
104 | uv_gtrans_l = 0.0 |
---|
105 | DO i = nxl, nxr |
---|
106 | DO j = nys, nyn |
---|
107 | DO k = nzb+1, nzt |
---|
108 | uv_gtrans_l(1) = uv_gtrans_l(1) + u(k,j,i) |
---|
109 | uv_gtrans_l(2) = uv_gtrans_l(2) + v(k,j,i) |
---|
110 | ENDDO |
---|
111 | ENDDO |
---|
112 | ENDDO |
---|
113 | uv_gtrans_l = uv_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb) ) |
---|
114 | #if defined( __parallel ) |
---|
115 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
116 | CALL MPI_ALLREDUCE( uv_gtrans_l, uv_gtrans, 2, MPI_REAL, MPI_SUM, & |
---|
117 | comm2d, ierr ) |
---|
118 | u_gtrans = uv_gtrans(1) / REAL( numprocs ) |
---|
119 | v_gtrans = uv_gtrans(2) / REAL( numprocs ) |
---|
120 | #else |
---|
121 | u_gtrans = uv_gtrans_l(1) |
---|
122 | v_gtrans = uv_gtrans_l(2) |
---|
123 | #endif |
---|
124 | ENDIF |
---|
125 | ENDIF |
---|
126 | |
---|
127 | ! |
---|
128 | !-- Determine the maxima of the velocity components. |
---|
129 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, u, 'abs', 0.0, & |
---|
130 | u_max, u_max_ijk ) |
---|
131 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, v, 'abs', 0.0, & |
---|
132 | v_max, v_max_ijk ) |
---|
133 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, w, 'abs', 0.0, & |
---|
134 | w_max, w_max_ijk ) |
---|
135 | |
---|
136 | ! |
---|
137 | !-- In case of Galilei transformation, the horizontal velocity maxima have |
---|
138 | !-- to be calculated from the transformed horizontal velocities |
---|
139 | IF ( galilei_transformation ) THEN |
---|
140 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, u, 'absoff', & |
---|
141 | u_gtrans, u_max_cfl, u_max_cfl_ijk ) |
---|
142 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, v, 'absoff', & |
---|
143 | v_gtrans, v_max_cfl, v_max_cfl_ijk ) |
---|
144 | ELSE |
---|
145 | u_max_cfl = u_max |
---|
146 | v_max_cfl = v_max |
---|
147 | u_max_cfl_ijk = u_max_ijk |
---|
148 | v_max_cfl_ijk = v_max_ijk |
---|
149 | ENDIF |
---|
150 | |
---|
151 | |
---|
152 | IF ( .NOT. dt_fixed ) THEN |
---|
153 | ! |
---|
154 | !-- Variable time step: |
---|
155 | ! |
---|
156 | !-- For each component, compute the maximum time step according to the |
---|
157 | !-- CFL-criterion. |
---|
158 | dt_u = dx / ( ABS( u_max_cfl ) + 1.0E-10 ) |
---|
159 | dt_v = dy / ( ABS( v_max_cfl ) + 1.0E-10 ) |
---|
160 | dt_w = dzu(MAX( 1, w_max_ijk(1) )) / ( ABS( w_max ) + 1.0E-10 ) |
---|
161 | |
---|
162 | ! |
---|
163 | !-- Compute time step according to the diffusion criterion. |
---|
164 | !-- First calculate minimum grid spacing which only depends on index k |
---|
165 | !-- Note: also at k=nzb+1 a full grid length is being assumed, although |
---|
166 | !-- in the Prandtl-layer friction term only dz/2 is used. |
---|
167 | !-- Experience from the old model seems to justify this. |
---|
168 | dt_diff_l = 999999.0 |
---|
169 | |
---|
170 | DO k = nzb+1, nzt |
---|
171 | dxyz2_min(k) = MIN( dx2, dy2, dzw(k)*dzw(k) ) * 0.125 |
---|
172 | ENDDO |
---|
173 | |
---|
174 | !$OMP PARALLEL private(i,j,k,value) reduction(MIN: dt_diff_l) |
---|
175 | !$OMP DO |
---|
176 | DO i = nxl, nxr |
---|
177 | DO j = nys, nyn |
---|
178 | DO k = nzb+1, nzt |
---|
179 | value = dxyz2_min(k) / ( MAX( kh(k,j,i), km(k,j,i) ) + 1E-20 ) |
---|
180 | |
---|
181 | dt_diff_l = MIN( value, dt_diff_l ) |
---|
182 | ENDDO |
---|
183 | ENDDO |
---|
184 | ENDDO |
---|
185 | !$OMP END PARALLEL |
---|
186 | #if defined( __parallel ) |
---|
187 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
188 | CALL MPI_ALLREDUCE( dt_diff_l, dt_diff, 1, MPI_REAL, MPI_MIN, comm2d, & |
---|
189 | ierr ) |
---|
190 | #else |
---|
191 | dt_diff = dt_diff_l |
---|
192 | #endif |
---|
193 | |
---|
194 | ! |
---|
195 | !-- Additional timestep criterion with plant canopies: |
---|
196 | !-- it is not allowed to extract more than the available momentum |
---|
197 | IF ( plant_canopy ) THEN |
---|
198 | |
---|
199 | dt_plant_canopy_l = 0.0 |
---|
200 | DO i = nxl, nxr |
---|
201 | DO j = nys, nyn |
---|
202 | DO k = nzb+1, nzt |
---|
203 | dt_plant_canopy_u = cdc(k,j,i) * lad_u(k,j,i) * & |
---|
204 | SQRT( u(k,j,i)**2 + & |
---|
205 | ( ( v(k,j,i-1) + & |
---|
206 | v(k,j,i) + & |
---|
207 | v(k,j+1,i) + & |
---|
208 | v(k,j+1,i-1) ) & |
---|
209 | / 4.0 )**2 + & |
---|
210 | ( ( w(k-1,j,i-1) + & |
---|
211 | w(k-1,j,i) + & |
---|
212 | w(k,j,i-1) + & |
---|
213 | w(k,j,i) ) & |
---|
214 | / 4.0 )**2 ) |
---|
215 | IF ( dt_plant_canopy_u > dt_plant_canopy_l ) THEN |
---|
216 | dt_plant_canopy_l = dt_plant_canopy_u |
---|
217 | ENDIF |
---|
218 | dt_plant_canopy_v = cdc(k,j,i) * lad_v(k,j,i) * & |
---|
219 | SQRT( ( ( u(k,j-1,i) + & |
---|
220 | u(k,j-1,i+1) + & |
---|
221 | u(k,j,i) + & |
---|
222 | u(k,j,i+1) ) & |
---|
223 | / 4.0 )**2 + & |
---|
224 | v(k,j,i)**2 + & |
---|
225 | ( ( w(k-1,j-1,i) + & |
---|
226 | w(k-1,j,i) + & |
---|
227 | w(k,j-1,i) + & |
---|
228 | w(k,j,i) ) & |
---|
229 | / 4.0 )**2 ) |
---|
230 | IF ( dt_plant_canopy_v > dt_plant_canopy_l ) THEN |
---|
231 | dt_plant_canopy_l = dt_plant_canopy_v |
---|
232 | ENDIF |
---|
233 | dt_plant_canopy_w = cdc(k,j,i) * lad_w(k,j,i) * & |
---|
234 | SQRT( ( ( u(k,j,i) + & |
---|
235 | u(k,j,i+1) + & |
---|
236 | u(k+1,j,i) + & |
---|
237 | u(k+1,j,i+1) ) & |
---|
238 | / 4.0 )**2 + & |
---|
239 | ( ( v(k,j,i) + & |
---|
240 | v(k,j+1,i) + & |
---|
241 | v(k+1,j,i) + & |
---|
242 | v(k+1,j+1,i) ) & |
---|
243 | / 4.0 )**2 + & |
---|
244 | w(k,j,i)**2 ) |
---|
245 | IF ( dt_plant_canopy_w > dt_plant_canopy_l ) THEN |
---|
246 | dt_plant_canopy_l = dt_plant_canopy_w |
---|
247 | ENDIF |
---|
248 | ENDDO |
---|
249 | ENDDO |
---|
250 | ENDDO |
---|
251 | |
---|
252 | IF ( dt_plant_canopy_l > 0.0 ) THEN |
---|
253 | ! |
---|
254 | !-- Invert dt_plant_canopy_l and apply a security timestep factor 0.1 |
---|
255 | dt_plant_canopy_l = 0.1 / dt_plant_canopy_l |
---|
256 | ELSE |
---|
257 | ! |
---|
258 | !-- In case of inhomogeneous plant canopy, some processors may have no |
---|
259 | !-- canopy at all. Then use dt_max as dummy instead. |
---|
260 | dt_plant_canopy_l = dt_max |
---|
261 | ENDIF |
---|
262 | |
---|
263 | ! |
---|
264 | !-- Determine the global minumum |
---|
265 | #if defined( __parallel ) |
---|
266 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
267 | CALL MPI_ALLREDUCE( dt_plant_canopy_l, dt_plant_canopy, 1, MPI_REAL, & |
---|
268 | MPI_MIN, comm2d, ierr ) |
---|
269 | #else |
---|
270 | dt_plant_canopy = dt_plant_canopy_l |
---|
271 | #endif |
---|
272 | |
---|
273 | ELSE |
---|
274 | ! |
---|
275 | !-- Use dt_diff as dummy value to avoid extra IF branches further below |
---|
276 | dt_plant_canopy = dt_diff |
---|
277 | |
---|
278 | ENDIF |
---|
279 | |
---|
280 | ! |
---|
281 | !-- The time step is the minimum of the 3-4 components and the diffusion time |
---|
282 | !-- step minus a reduction (cfl_factor) to be on the safe side. |
---|
283 | !-- The time step must not exceed the maximum allowed value. |
---|
284 | dt_3d = cfl_factor * MIN( dt_diff, dt_plant_canopy, dt_u, dt_v, dt_w ) |
---|
285 | dt_3d = MIN( dt_3d, dt_max ) |
---|
286 | |
---|
287 | ! |
---|
288 | !-- Remember the restricting time step criterion for later output. |
---|
289 | IF ( MIN( dt_u, dt_v, dt_w ) < MIN( dt_diff, dt_plant_canopy ) ) THEN |
---|
290 | timestep_reason = 'A' |
---|
291 | ELSEIF ( dt_plant_canopy < dt_diff ) THEN |
---|
292 | timestep_reason = 'C' |
---|
293 | ELSE |
---|
294 | timestep_reason = 'D' |
---|
295 | ENDIF |
---|
296 | |
---|
297 | ! |
---|
298 | !-- Set flag if the time step becomes too small. |
---|
299 | IF ( dt_3d < ( 0.00001 * dt_max ) ) THEN |
---|
300 | stop_dt = .TRUE. |
---|
301 | |
---|
302 | WRITE( message_string, * ) 'Time step has reached minimum limit.', & |
---|
303 | '&dt = ', dt_3d, ' s Simulation is terminated.', & |
---|
304 | '&old_dt = ', old_dt, ' s', & |
---|
305 | '&dt_u = ', dt_u, ' s', & |
---|
306 | '&dt_v = ', dt_v, ' s', & |
---|
307 | '&dt_w = ', dt_w, ' s', & |
---|
308 | '&dt_diff = ', dt_diff, ' s', & |
---|
309 | '&dt_plant_canopy = ', dt_plant_canopy, ' s', & |
---|
310 | '&u_max_cfl = ', u_max_cfl, ' m/s k=', u_max_cfl_ijk(1), & |
---|
311 | ' j=', u_max_ijk(2), ' i=', u_max_ijk(3), & |
---|
312 | '&v_max_cfl = ', v_max_cfl, ' m/s k=', v_max_cfl_ijk(1), & |
---|
313 | ' j=', v_max_ijk(2), ' i=', v_max_ijk(3), & |
---|
314 | '&w_max = ', w_max, ' m/s k=', w_max_ijk(1), & |
---|
315 | ' j=', w_max_ijk(2), ' i=', w_max_ijk(3) |
---|
316 | CALL message( 'timestep', 'PA0312', 0, 1, 0, 6, 0 ) |
---|
317 | ! |
---|
318 | !-- In case of coupled runs inform the remote model of the termination |
---|
319 | !-- and its reason, provided the remote model has not already been |
---|
320 | !-- informed of another termination reason (terminate_coupled > 0) before. |
---|
321 | #if defined( __parallel ) |
---|
322 | IF ( coupling_mode /= 'uncoupled' .AND. terminate_coupled == 0 ) THEN |
---|
323 | terminate_coupled = 2 |
---|
324 | IF ( myid == 0 ) THEN |
---|
325 | CALL MPI_SENDRECV( & |
---|
326 | terminate_coupled, 1, MPI_INTEGER, target_id, 0, & |
---|
327 | terminate_coupled_remote, 1, MPI_INTEGER, target_id, 0, & |
---|
328 | comm_inter, status, ierr ) |
---|
329 | ENDIF |
---|
330 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
331 | ENDIF |
---|
332 | #endif |
---|
333 | ENDIF |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Ensure a smooth value (two significant digits) of the timestep. |
---|
337 | div = 1000.0 |
---|
338 | DO WHILE ( dt_3d < div ) |
---|
339 | div = div / 10.0 |
---|
340 | ENDDO |
---|
341 | dt_3d = NINT( dt_3d * 100.0 / div ) * div / 100.0 |
---|
342 | |
---|
343 | ! |
---|
344 | !-- Adjust the time step |
---|
345 | old_dt = dt_3d |
---|
346 | |
---|
347 | ENDIF |
---|
348 | |
---|
349 | CALL cpu_log( log_point(12), 'calculate_timestep', 'stop' ) |
---|
350 | |
---|
351 | END SUBROUTINE timestep |
---|