[1682] | 1 | !> @file timestep.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[258] | 20 | ! Current revisions: |
---|
[866] | 21 | ! ------------------ |
---|
[1485] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1485] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: timestep.f90 2001 2016-08-20 18:41:22Z maronga $ |
---|
| 27 | ! |
---|
[2001] | 28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 29 | ! Forced header and separation lines into 80 columns |
---|
| 30 | ! |
---|
[1851] | 31 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
| 32 | ! Adapted for modularization of microphysics |
---|
[1852] | 33 | ! |
---|
[1683] | 34 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 35 | ! Code annotations made doxygen readable |
---|
| 36 | ! |
---|
[1485] | 37 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 38 | ! Changes due to new module structure of the plant canopy model: |
---|
| 39 | ! calculations and parameters related to the plant canopy model removed |
---|
| 40 | ! (the limitation of the canopy drag, i.e. that the canopy drag itself should |
---|
| 41 | ! not change the sign of the velocity components, is now assured for in the |
---|
| 42 | ! calculation of the canopy tendency terms in subroutine plant_canopy_model) |
---|
[1343] | 43 | ! |
---|
| 44 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 45 | ! REAL constants defined as wp-kind |
---|
| 46 | ! |
---|
[1323] | 47 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 48 | ! REAL functions provided with KIND-attribute |
---|
| 49 | ! |
---|
[1321] | 50 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 51 | ! ONLY-attribute added to USE-statements, |
---|
| 52 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 53 | ! kinds are defined in new module kinds, |
---|
| 54 | ! old module precision_kind is removed, |
---|
| 55 | ! revision history before 2012 removed, |
---|
| 56 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 57 | ! all variable declaration statements |
---|
[1321] | 58 | ! |
---|
[1258] | 59 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 60 | ! openacc porting |
---|
| 61 | ! bugfix for calculation of advective timestep in case of vertically stretched |
---|
| 62 | ! grids |
---|
| 63 | ! |
---|
[1093] | 64 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 65 | ! unused variables removed |
---|
| 66 | ! |
---|
[1054] | 67 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 68 | ! timestep is reduced in two-moment cloud scheme according to the maximum |
---|
| 69 | ! terminal velocity of rain drops |
---|
| 70 | ! |
---|
[1037] | 71 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 72 | ! code put under GPL (PALM 3.9) |
---|
| 73 | ! |
---|
[1002] | 74 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 75 | ! all actions concerning leapfrog scheme removed |
---|
| 76 | ! |
---|
[979] | 77 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 78 | ! restriction of the outflow damping layer in the diffusion criterion removed |
---|
| 79 | ! |
---|
[867] | 80 | ! 866 2012-03-28 06:44:41Z raasch |
---|
| 81 | ! bugfix for timestep calculation in case of Galilei transformation, |
---|
| 82 | ! special treatment in case of mirror velocity boundary condition removed |
---|
| 83 | ! |
---|
[1] | 84 | ! Revision 1.1 1997/08/11 06:26:19 raasch |
---|
| 85 | ! Initial revision |
---|
| 86 | ! |
---|
| 87 | ! |
---|
| 88 | ! Description: |
---|
| 89 | ! ------------ |
---|
[1682] | 90 | !> Compute the time step under consideration of the FCL and diffusion criterion. |
---|
[1] | 91 | !------------------------------------------------------------------------------! |
---|
[1682] | 92 | SUBROUTINE timestep |
---|
| 93 | |
---|
[1] | 94 | |
---|
[1320] | 95 | USE arrays_3d, & |
---|
[1484] | 96 | ONLY: dzu, dzw, kh, km, u, v, w |
---|
[1320] | 97 | |
---|
| 98 | USE control_parameters, & |
---|
| 99 | ONLY: cfl_factor, coupling_mode, dt_3d, dt_fixed, dt_max, & |
---|
[1484] | 100 | galilei_transformation, old_dt, message_string, & |
---|
[1320] | 101 | stop_dt, terminate_coupled, terminate_coupled_remote, & |
---|
| 102 | timestep_reason, u_gtrans, use_ug_for_galilei_tr, v_gtrans |
---|
| 103 | |
---|
| 104 | USE cpulog, & |
---|
| 105 | ONLY: cpu_log, log_point |
---|
| 106 | |
---|
| 107 | USE grid_variables, & |
---|
| 108 | ONLY: dx, dx2, dy, dy2 |
---|
| 109 | |
---|
| 110 | USE indices, & |
---|
| 111 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
| 112 | |
---|
[1] | 113 | USE interfaces |
---|
[1320] | 114 | |
---|
| 115 | USE kinds |
---|
| 116 | |
---|
[1849] | 117 | USE microphysics_mod, & |
---|
| 118 | ONLY: dt_precipitation |
---|
| 119 | |
---|
[1] | 120 | USE pegrid |
---|
| 121 | |
---|
[1320] | 122 | USE statistics, & |
---|
| 123 | ONLY: flow_statistics_called, hom, u_max, u_max_ijk, v_max, v_max_ijk,& |
---|
| 124 | w_max, w_max_ijk |
---|
| 125 | |
---|
[1] | 126 | IMPLICIT NONE |
---|
| 127 | |
---|
[1682] | 128 | INTEGER(iwp) :: i !< |
---|
| 129 | INTEGER(iwp) :: j !< |
---|
| 130 | INTEGER(iwp) :: k !< |
---|
[1] | 131 | |
---|
[1682] | 132 | REAL(wp) :: div !< |
---|
| 133 | REAL(wp) :: dt_diff !< |
---|
| 134 | REAL(wp) :: dt_diff_l !< |
---|
| 135 | REAL(wp) :: dt_u !< |
---|
| 136 | REAL(wp) :: dt_u_l !< |
---|
| 137 | REAL(wp) :: dt_v !< |
---|
| 138 | REAL(wp) :: dt_v_l !< |
---|
| 139 | REAL(wp) :: dt_w !< |
---|
| 140 | REAL(wp) :: dt_w_l !< |
---|
| 141 | REAL(wp) :: u_gtrans_l !< |
---|
| 142 | REAL(wp) :: u_max_l !< |
---|
| 143 | REAL(wp) :: u_min_l !< |
---|
| 144 | REAL(wp) :: value !< |
---|
| 145 | REAL(wp) :: v_gtrans_l !< |
---|
| 146 | REAL(wp) :: v_max_l !< |
---|
| 147 | REAL(wp) :: v_min_l !< |
---|
| 148 | REAL(wp) :: w_max_l !< |
---|
| 149 | REAL(wp) :: w_min_l !< |
---|
[1320] | 150 | |
---|
[1682] | 151 | REAL(wp), DIMENSION(2) :: uv_gtrans !< |
---|
| 152 | REAL(wp), DIMENSION(2) :: uv_gtrans_l !< |
---|
| 153 | REAL(wp), DIMENSION(3) :: reduce !< |
---|
| 154 | REAL(wp), DIMENSION(3) :: reduce_l !< |
---|
| 155 | REAL(wp), DIMENSION(nzb+1:nzt) :: dxyz2_min !< |
---|
[1] | 156 | |
---|
| 157 | |
---|
[667] | 158 | |
---|
[1] | 159 | CALL cpu_log( log_point(12), 'calculate_timestep', 'start' ) |
---|
| 160 | |
---|
| 161 | ! |
---|
| 162 | !-- In case of Galilei-transform not using the geostrophic wind as translation |
---|
| 163 | !-- velocity, compute the volume-averaged horizontal velocity components, which |
---|
| 164 | !-- will then be subtracted from the horizontal wind for the time step and |
---|
| 165 | !-- horizontal advection routines. |
---|
| 166 | IF ( galilei_transformation .AND. .NOT. use_ug_for_galilei_tr ) THEN |
---|
| 167 | IF ( flow_statistics_called ) THEN |
---|
| 168 | ! |
---|
| 169 | !-- Horizontal averages already existent, just need to average them |
---|
| 170 | !-- vertically. |
---|
[1342] | 171 | u_gtrans = 0.0_wp |
---|
| 172 | v_gtrans = 0.0_wp |
---|
[1] | 173 | DO k = nzb+1, nzt |
---|
| 174 | u_gtrans = u_gtrans + hom(k,1,1,0) |
---|
| 175 | v_gtrans = v_gtrans + hom(k,1,2,0) |
---|
| 176 | ENDDO |
---|
[1322] | 177 | u_gtrans = u_gtrans / REAL( nzt - nzb, KIND=wp ) |
---|
| 178 | v_gtrans = v_gtrans / REAL( nzt - nzb, KIND=wp ) |
---|
[1] | 179 | ELSE |
---|
| 180 | ! |
---|
| 181 | !-- Averaging over the entire model domain. |
---|
[1342] | 182 | u_gtrans_l = 0.0_wp |
---|
| 183 | v_gtrans_l = 0.0_wp |
---|
[1257] | 184 | !$acc parallel present( u, v ) |
---|
[1] | 185 | DO i = nxl, nxr |
---|
| 186 | DO j = nys, nyn |
---|
| 187 | DO k = nzb+1, nzt |
---|
[1257] | 188 | u_gtrans_l = u_gtrans_l + u(k,j,i) |
---|
| 189 | v_gtrans_l = v_gtrans_l + v(k,j,i) |
---|
[1] | 190 | ENDDO |
---|
| 191 | ENDDO |
---|
| 192 | ENDDO |
---|
[1257] | 193 | !$acc end parallel |
---|
[1322] | 194 | uv_gtrans_l(1) = u_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb), KIND=wp ) |
---|
| 195 | uv_gtrans_l(2) = v_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb), KIND=wp ) |
---|
[1] | 196 | #if defined( __parallel ) |
---|
[622] | 197 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 198 | CALL MPI_ALLREDUCE( uv_gtrans_l, uv_gtrans, 2, MPI_REAL, MPI_SUM, & |
---|
| 199 | comm2d, ierr ) |
---|
[1322] | 200 | u_gtrans = uv_gtrans(1) / REAL( numprocs, KIND=wp ) |
---|
| 201 | v_gtrans = uv_gtrans(2) / REAL( numprocs, KIND=wp ) |
---|
[1] | 202 | #else |
---|
| 203 | u_gtrans = uv_gtrans_l(1) |
---|
| 204 | v_gtrans = uv_gtrans_l(2) |
---|
| 205 | #endif |
---|
| 206 | ENDIF |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
[866] | 209 | ! |
---|
[1257] | 210 | !-- Determine the maxima of the velocity components, including their |
---|
| 211 | !-- grid index positions. |
---|
| 212 | #if defined( __openacc ) |
---|
| 213 | IF ( dt_fixed ) THEN ! otherwise do it further below for better cache usage |
---|
[1342] | 214 | u_max_l = -999999.9_wp |
---|
| 215 | u_min_l = 999999.9_wp |
---|
| 216 | v_max_l = -999999.9_wp |
---|
| 217 | v_min_l = 999999.9_wp |
---|
| 218 | w_max_l = -999999.9_wp |
---|
| 219 | w_min_l = 999999.9_wp |
---|
[1257] | 220 | !$acc parallel present( u, v, w ) |
---|
| 221 | DO i = nxl, nxr |
---|
| 222 | DO j = nys, nyn |
---|
| 223 | DO k = nzb+1, nzt |
---|
| 224 | u_max_l = MAX( u_max_l, u(k,j,i) ) |
---|
| 225 | u_min_l = MIN( u_min_l, u(k,j,i) ) |
---|
| 226 | v_max_l = MAX( v_max_l, v(k,j,i) ) |
---|
| 227 | v_min_l = MIN( v_min_l, v(k,j,i) ) |
---|
| 228 | w_max_l = MAX( w_max_l, w(k,j,i) ) |
---|
| 229 | w_min_l = MIN( w_min_l, w(k,j,i) ) |
---|
| 230 | ENDDO |
---|
| 231 | ENDDO |
---|
| 232 | ENDDO |
---|
| 233 | !$acc end parallel |
---|
| 234 | #if defined( __parallel ) |
---|
| 235 | reduce_l(1) = u_max_l |
---|
| 236 | reduce_l(2) = v_max_l |
---|
| 237 | reduce_l(3) = w_max_l |
---|
| 238 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 239 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 240 | u_max = reduce(1) |
---|
| 241 | v_max = reduce(2) |
---|
| 242 | w_max = reduce(3) |
---|
| 243 | reduce_l(1) = u_min_l |
---|
| 244 | reduce_l(2) = v_min_l |
---|
| 245 | reduce_l(3) = w_min_l |
---|
| 246 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 247 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 248 | IF ( ABS( reduce(1) ) > u_max ) u_max = reduce(1) |
---|
| 249 | IF ( ABS( reduce(2) ) > v_max ) v_max = reduce(2) |
---|
| 250 | IF ( ABS( reduce(3) ) > w_max ) w_max = reduce(3) |
---|
| 251 | #else |
---|
| 252 | IF ( ABS( u_min_l ) > u_max_l ) THEN |
---|
| 253 | u_max = u_min_l |
---|
| 254 | ELSE |
---|
| 255 | u_max = u_max_l |
---|
| 256 | ENDIF |
---|
| 257 | IF ( ABS( v_min_l ) > v_max_l ) THEN |
---|
| 258 | v_max = v_min_l |
---|
| 259 | ELSE |
---|
| 260 | v_max = v_max_l |
---|
| 261 | ENDIF |
---|
| 262 | IF ( ABS( w_min_l ) > w_max_l ) THEN |
---|
| 263 | w_max = w_min_l |
---|
| 264 | ELSE |
---|
| 265 | w_max = w_max_l |
---|
| 266 | ENDIF |
---|
| 267 | #endif |
---|
| 268 | ENDIF |
---|
| 269 | #else |
---|
[1320] | 270 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, u, 'abs', 0.0_wp, & |
---|
[866] | 271 | u_max, u_max_ijk ) |
---|
[1320] | 272 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, v, 'abs', 0.0_wp, & |
---|
[866] | 273 | v_max, v_max_ijk ) |
---|
[1320] | 274 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, w, 'abs', 0.0_wp, & |
---|
[866] | 275 | w_max, w_max_ijk ) |
---|
[1257] | 276 | #endif |
---|
[866] | 277 | |
---|
[1257] | 278 | IF ( .NOT. dt_fixed ) THEN |
---|
| 279 | #if defined( __openacc ) |
---|
[866] | 280 | ! |
---|
[1257] | 281 | !-- Variable time step: |
---|
| 282 | !-- Calculate the maximum time step according to the CFL-criterion, |
---|
| 283 | !-- individually for each velocity component |
---|
[1342] | 284 | dt_u_l = 999999.9_wp |
---|
| 285 | dt_v_l = 999999.9_wp |
---|
| 286 | dt_w_l = 999999.9_wp |
---|
| 287 | u_max_l = -999999.9_wp |
---|
| 288 | u_min_l = 999999.9_wp |
---|
| 289 | v_max_l = -999999.9_wp |
---|
| 290 | v_min_l = 999999.9_wp |
---|
| 291 | w_max_l = -999999.9_wp |
---|
| 292 | w_min_l = 999999.9_wp |
---|
[1257] | 293 | !$acc parallel loop collapse(3) present( u, v, w ) |
---|
| 294 | DO i = nxl, nxr |
---|
| 295 | DO j = nys, nyn |
---|
| 296 | DO k = nzb+1, nzt |
---|
[1342] | 297 | dt_u_l = MIN( dt_u_l, ( dx / ( ABS( u(k,j,i) - u_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 298 | dt_v_l = MIN( dt_v_l, ( dy / ( ABS( v(k,j,i) - v_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 299 | dt_w_l = MIN( dt_w_l, ( dzu(k) / ( ABS( w(k,j,i) ) + 1.0E-10_wp ) ) ) |
---|
[1257] | 300 | u_max_l = MAX( u_max_l, u(k,j,i) ) |
---|
| 301 | u_min_l = MIN( u_min_l, u(k,j,i) ) |
---|
| 302 | v_max_l = MAX( v_max_l, v(k,j,i) ) |
---|
| 303 | v_min_l = MIN( v_min_l, v(k,j,i) ) |
---|
| 304 | w_max_l = MAX( w_max_l, w(k,j,i) ) |
---|
| 305 | w_min_l = MIN( w_min_l, w(k,j,i) ) |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
| 308 | ENDDO |
---|
| 309 | !$acc end parallel |
---|
[866] | 310 | |
---|
[1257] | 311 | #if defined( __parallel ) |
---|
| 312 | reduce_l(1) = dt_u_l |
---|
| 313 | reduce_l(2) = dt_v_l |
---|
| 314 | reduce_l(3) = dt_w_l |
---|
| 315 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 316 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 317 | dt_u = reduce(1) |
---|
| 318 | dt_v = reduce(2) |
---|
| 319 | dt_w = reduce(3) |
---|
[866] | 320 | |
---|
[1257] | 321 | reduce_l(1) = u_max_l |
---|
| 322 | reduce_l(2) = v_max_l |
---|
| 323 | reduce_l(3) = w_max_l |
---|
| 324 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 325 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 326 | u_max = reduce(1) |
---|
| 327 | v_max = reduce(2) |
---|
| 328 | w_max = reduce(3) |
---|
| 329 | reduce_l(1) = u_min_l |
---|
| 330 | reduce_l(2) = v_min_l |
---|
| 331 | reduce_l(3) = w_min_l |
---|
| 332 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 333 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 334 | IF ( ABS( reduce(1) ) > u_max ) u_max = reduce(1) |
---|
| 335 | IF ( ABS( reduce(2) ) > v_max ) v_max = reduce(2) |
---|
| 336 | IF ( ABS( reduce(3) ) > w_max ) w_max = reduce(3) |
---|
| 337 | #else |
---|
| 338 | dt_u = dt_u_l |
---|
| 339 | dt_v = dt_v_l |
---|
| 340 | dt_w = dt_w_l |
---|
| 341 | |
---|
| 342 | IF ( ABS( u_min_l ) > u_max_l ) THEN |
---|
| 343 | u_max = u_min_l |
---|
| 344 | ELSE |
---|
| 345 | u_max = u_max_l |
---|
| 346 | ENDIF |
---|
| 347 | IF ( ABS( v_min_l ) > v_max_l ) THEN |
---|
| 348 | v_max = v_min_l |
---|
| 349 | ELSE |
---|
| 350 | v_max = v_max_l |
---|
| 351 | ENDIF |
---|
| 352 | IF ( ABS( w_min_l ) > w_max_l ) THEN |
---|
| 353 | w_max = w_min_l |
---|
| 354 | ELSE |
---|
| 355 | w_max = w_max_l |
---|
| 356 | ENDIF |
---|
| 357 | #endif |
---|
| 358 | |
---|
| 359 | #else |
---|
[1] | 360 | ! |
---|
| 361 | !-- Variable time step: |
---|
[1257] | 362 | !-- Calculate the maximum time step according to the CFL-criterion, |
---|
| 363 | !-- individually for each velocity component |
---|
[1342] | 364 | dt_u_l = 999999.9_wp |
---|
| 365 | dt_v_l = 999999.9_wp |
---|
| 366 | dt_w_l = 999999.9_wp |
---|
[1257] | 367 | DO i = nxl, nxr |
---|
| 368 | DO j = nys, nyn |
---|
| 369 | DO k = nzb+1, nzt |
---|
[1342] | 370 | dt_u_l = MIN( dt_u_l, ( dx / ( ABS( u(k,j,i) - u_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 371 | dt_v_l = MIN( dt_v_l, ( dy / ( ABS( v(k,j,i) - v_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 372 | dt_w_l = MIN( dt_w_l, ( dzu(k) / ( ABS( w(k,j,i) ) + 1.0E-10_wp ) ) ) |
---|
[1257] | 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | ENDDO |
---|
[1] | 376 | |
---|
[1257] | 377 | #if defined( __parallel ) |
---|
| 378 | reduce_l(1) = dt_u_l |
---|
| 379 | reduce_l(2) = dt_v_l |
---|
| 380 | reduce_l(3) = dt_w_l |
---|
| 381 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 382 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 383 | dt_u = reduce(1) |
---|
| 384 | dt_v = reduce(2) |
---|
| 385 | dt_w = reduce(3) |
---|
| 386 | #else |
---|
| 387 | dt_u = dt_u_l |
---|
| 388 | dt_v = dt_v_l |
---|
| 389 | dt_w = dt_w_l |
---|
| 390 | #endif |
---|
| 391 | |
---|
| 392 | #endif |
---|
| 393 | |
---|
[1] | 394 | ! |
---|
| 395 | !-- Compute time step according to the diffusion criterion. |
---|
| 396 | !-- First calculate minimum grid spacing which only depends on index k |
---|
| 397 | !-- Note: also at k=nzb+1 a full grid length is being assumed, although |
---|
| 398 | !-- in the Prandtl-layer friction term only dz/2 is used. |
---|
| 399 | !-- Experience from the old model seems to justify this. |
---|
[1342] | 400 | dt_diff_l = 999999.0_wp |
---|
[1] | 401 | |
---|
| 402 | DO k = nzb+1, nzt |
---|
[1342] | 403 | dxyz2_min(k) = MIN( dx2, dy2, dzw(k)*dzw(k) ) * 0.125_wp |
---|
[1] | 404 | ENDDO |
---|
| 405 | |
---|
| 406 | !$OMP PARALLEL private(i,j,k,value) reduction(MIN: dt_diff_l) |
---|
| 407 | !$OMP DO |
---|
[1257] | 408 | !$acc parallel loop collapse(3) present( kh, km ) |
---|
[1] | 409 | DO i = nxl, nxr |
---|
| 410 | DO j = nys, nyn |
---|
| 411 | DO k = nzb+1, nzt |
---|
[1257] | 412 | dt_diff_l = MIN( dt_diff_l, dxyz2_min(k) / & |
---|
[1342] | 413 | ( MAX( kh(k,j,i), km(k,j,i) ) + 1E-20_wp ) ) |
---|
[1] | 414 | ENDDO |
---|
| 415 | ENDDO |
---|
| 416 | ENDDO |
---|
[1257] | 417 | !$acc end parallel |
---|
[1] | 418 | !$OMP END PARALLEL |
---|
| 419 | #if defined( __parallel ) |
---|
[622] | 420 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 421 | CALL MPI_ALLREDUCE( dt_diff_l, dt_diff, 1, MPI_REAL, MPI_MIN, comm2d, & |
---|
| 422 | ierr ) |
---|
| 423 | #else |
---|
| 424 | dt_diff = dt_diff_l |
---|
| 425 | #endif |
---|
| 426 | |
---|
| 427 | ! |
---|
[316] | 428 | !-- The time step is the minimum of the 3-4 components and the diffusion time |
---|
[1001] | 429 | !-- step minus a reduction (cfl_factor) to be on the safe side. |
---|
[1] | 430 | !-- The time step must not exceed the maximum allowed value. |
---|
[1484] | 431 | dt_3d = cfl_factor * MIN( dt_diff, dt_u, dt_v, dt_w, & |
---|
[1053] | 432 | dt_precipitation ) |
---|
[1] | 433 | dt_3d = MIN( dt_3d, dt_max ) |
---|
| 434 | |
---|
| 435 | ! |
---|
| 436 | !-- Remember the restricting time step criterion for later output. |
---|
[1484] | 437 | IF ( MIN( dt_u, dt_v, dt_w ) < dt_diff ) THEN |
---|
[1] | 438 | timestep_reason = 'A' |
---|
| 439 | ELSE |
---|
| 440 | timestep_reason = 'D' |
---|
| 441 | ENDIF |
---|
| 442 | |
---|
| 443 | ! |
---|
| 444 | !-- Set flag if the time step becomes too small. |
---|
[1342] | 445 | IF ( dt_3d < ( 0.00001_wp * dt_max ) ) THEN |
---|
[1] | 446 | stop_dt = .TRUE. |
---|
[108] | 447 | |
---|
[320] | 448 | WRITE( message_string, * ) 'Time step has reached minimum limit.', & |
---|
| 449 | '&dt = ', dt_3d, ' s Simulation is terminated.', & |
---|
| 450 | '&old_dt = ', old_dt, ' s', & |
---|
| 451 | '&dt_u = ', dt_u, ' s', & |
---|
| 452 | '&dt_v = ', dt_v, ' s', & |
---|
| 453 | '&dt_w = ', dt_w, ' s', & |
---|
| 454 | '&dt_diff = ', dt_diff, ' s', & |
---|
[1257] | 455 | '&u_max = ', u_max, ' m/s k=', u_max_ijk(1), & |
---|
[320] | 456 | ' j=', u_max_ijk(2), ' i=', u_max_ijk(3), & |
---|
[1257] | 457 | '&v_max = ', v_max, ' m/s k=', v_max_ijk(1), & |
---|
[320] | 458 | ' j=', v_max_ijk(2), ' i=', v_max_ijk(3), & |
---|
[1257] | 459 | '&w_max = ', w_max, ' m/s k=', w_max_ijk(1), & |
---|
[320] | 460 | ' j=', w_max_ijk(2), ' i=', w_max_ijk(3) |
---|
[258] | 461 | CALL message( 'timestep', 'PA0312', 0, 1, 0, 6, 0 ) |
---|
[108] | 462 | ! |
---|
| 463 | !-- In case of coupled runs inform the remote model of the termination |
---|
| 464 | !-- and its reason, provided the remote model has not already been |
---|
| 465 | !-- informed of another termination reason (terminate_coupled > 0) before. |
---|
[222] | 466 | #if defined( __parallel ) |
---|
[108] | 467 | IF ( coupling_mode /= 'uncoupled' .AND. terminate_coupled == 0 ) THEN |
---|
| 468 | terminate_coupled = 2 |
---|
[667] | 469 | IF ( myid == 0 ) THEN |
---|
| 470 | CALL MPI_SENDRECV( & |
---|
| 471 | terminate_coupled, 1, MPI_INTEGER, target_id, 0, & |
---|
| 472 | terminate_coupled_remote, 1, MPI_INTEGER, target_id, 0, & |
---|
| 473 | comm_inter, status, ierr ) |
---|
| 474 | ENDIF |
---|
| 475 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
[108] | 476 | ENDIF |
---|
[222] | 477 | #endif |
---|
[1] | 478 | ENDIF |
---|
| 479 | |
---|
| 480 | ! |
---|
[1001] | 481 | !-- Ensure a smooth value (two significant digits) of the timestep. |
---|
[1342] | 482 | div = 1000.0_wp |
---|
[1001] | 483 | DO WHILE ( dt_3d < div ) |
---|
[1342] | 484 | div = div / 10.0_wp |
---|
[1001] | 485 | ENDDO |
---|
[1342] | 486 | dt_3d = NINT( dt_3d * 100.0_wp / div ) * div / 100.0_wp |
---|
[1] | 487 | |
---|
| 488 | ! |
---|
[1001] | 489 | !-- Adjust the time step |
---|
| 490 | old_dt = dt_3d |
---|
[1] | 491 | |
---|
[1001] | 492 | ENDIF |
---|
[1] | 493 | |
---|
| 494 | CALL cpu_log( log_point(12), 'calculate_timestep', 'stop' ) |
---|
| 495 | |
---|
| 496 | END SUBROUTINE timestep |
---|