[1682] | 1 | !> @file timestep.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[258] | 19 | ! Current revisions: |
---|
[866] | 20 | ! ------------------ |
---|
[1849] | 21 | ! Adapted for modularization of microphysics |
---|
[1485] | 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: timestep.f90 1849 2016-04-08 11:33:18Z hoffmann $ |
---|
| 26 | ! |
---|
[1683] | 27 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 28 | ! Code annotations made doxygen readable |
---|
| 29 | ! |
---|
[1485] | 30 | ! 1484 2014-10-21 10:53:05Z kanani |
---|
[1484] | 31 | ! Changes due to new module structure of the plant canopy model: |
---|
| 32 | ! calculations and parameters related to the plant canopy model removed |
---|
| 33 | ! (the limitation of the canopy drag, i.e. that the canopy drag itself should |
---|
| 34 | ! not change the sign of the velocity components, is now assured for in the |
---|
| 35 | ! calculation of the canopy tendency terms in subroutine plant_canopy_model) |
---|
[1343] | 36 | ! |
---|
| 37 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 38 | ! REAL constants defined as wp-kind |
---|
| 39 | ! |
---|
[1323] | 40 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 41 | ! REAL functions provided with KIND-attribute |
---|
| 42 | ! |
---|
[1321] | 43 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 44 | ! ONLY-attribute added to USE-statements, |
---|
| 45 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 46 | ! kinds are defined in new module kinds, |
---|
| 47 | ! old module precision_kind is removed, |
---|
| 48 | ! revision history before 2012 removed, |
---|
| 49 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 50 | ! all variable declaration statements |
---|
[1321] | 51 | ! |
---|
[1258] | 52 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 53 | ! openacc porting |
---|
| 54 | ! bugfix for calculation of advective timestep in case of vertically stretched |
---|
| 55 | ! grids |
---|
| 56 | ! |
---|
[1093] | 57 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 58 | ! unused variables removed |
---|
| 59 | ! |
---|
[1054] | 60 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 61 | ! timestep is reduced in two-moment cloud scheme according to the maximum |
---|
| 62 | ! terminal velocity of rain drops |
---|
| 63 | ! |
---|
[1037] | 64 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 65 | ! code put under GPL (PALM 3.9) |
---|
| 66 | ! |
---|
[1002] | 67 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 68 | ! all actions concerning leapfrog scheme removed |
---|
| 69 | ! |
---|
[979] | 70 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 71 | ! restriction of the outflow damping layer in the diffusion criterion removed |
---|
| 72 | ! |
---|
[867] | 73 | ! 866 2012-03-28 06:44:41Z raasch |
---|
| 74 | ! bugfix for timestep calculation in case of Galilei transformation, |
---|
| 75 | ! special treatment in case of mirror velocity boundary condition removed |
---|
| 76 | ! |
---|
[1] | 77 | ! Revision 1.1 1997/08/11 06:26:19 raasch |
---|
| 78 | ! Initial revision |
---|
| 79 | ! |
---|
| 80 | ! |
---|
| 81 | ! Description: |
---|
| 82 | ! ------------ |
---|
[1682] | 83 | !> Compute the time step under consideration of the FCL and diffusion criterion. |
---|
[1] | 84 | !------------------------------------------------------------------------------! |
---|
[1682] | 85 | SUBROUTINE timestep |
---|
| 86 | |
---|
[1] | 87 | |
---|
[1320] | 88 | USE arrays_3d, & |
---|
[1484] | 89 | ONLY: dzu, dzw, kh, km, u, v, w |
---|
[1320] | 90 | |
---|
| 91 | USE control_parameters, & |
---|
| 92 | ONLY: cfl_factor, coupling_mode, dt_3d, dt_fixed, dt_max, & |
---|
[1484] | 93 | galilei_transformation, old_dt, message_string, & |
---|
[1320] | 94 | stop_dt, terminate_coupled, terminate_coupled_remote, & |
---|
| 95 | timestep_reason, u_gtrans, use_ug_for_galilei_tr, v_gtrans |
---|
| 96 | |
---|
| 97 | USE cpulog, & |
---|
| 98 | ONLY: cpu_log, log_point |
---|
| 99 | |
---|
| 100 | USE grid_variables, & |
---|
| 101 | ONLY: dx, dx2, dy, dy2 |
---|
| 102 | |
---|
| 103 | USE indices, & |
---|
| 104 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
| 105 | |
---|
[1] | 106 | USE interfaces |
---|
[1320] | 107 | |
---|
| 108 | USE kinds |
---|
| 109 | |
---|
[1849] | 110 | USE microphysics_mod, & |
---|
| 111 | ONLY: dt_precipitation |
---|
| 112 | |
---|
[1] | 113 | USE pegrid |
---|
| 114 | |
---|
[1320] | 115 | USE statistics, & |
---|
| 116 | ONLY: flow_statistics_called, hom, u_max, u_max_ijk, v_max, v_max_ijk,& |
---|
| 117 | w_max, w_max_ijk |
---|
| 118 | |
---|
[1] | 119 | IMPLICIT NONE |
---|
| 120 | |
---|
[1682] | 121 | INTEGER(iwp) :: i !< |
---|
| 122 | INTEGER(iwp) :: j !< |
---|
| 123 | INTEGER(iwp) :: k !< |
---|
[1] | 124 | |
---|
[1682] | 125 | REAL(wp) :: div !< |
---|
| 126 | REAL(wp) :: dt_diff !< |
---|
| 127 | REAL(wp) :: dt_diff_l !< |
---|
| 128 | REAL(wp) :: dt_u !< |
---|
| 129 | REAL(wp) :: dt_u_l !< |
---|
| 130 | REAL(wp) :: dt_v !< |
---|
| 131 | REAL(wp) :: dt_v_l !< |
---|
| 132 | REAL(wp) :: dt_w !< |
---|
| 133 | REAL(wp) :: dt_w_l !< |
---|
| 134 | REAL(wp) :: u_gtrans_l !< |
---|
| 135 | REAL(wp) :: u_max_l !< |
---|
| 136 | REAL(wp) :: u_min_l !< |
---|
| 137 | REAL(wp) :: value !< |
---|
| 138 | REAL(wp) :: v_gtrans_l !< |
---|
| 139 | REAL(wp) :: v_max_l !< |
---|
| 140 | REAL(wp) :: v_min_l !< |
---|
| 141 | REAL(wp) :: w_max_l !< |
---|
| 142 | REAL(wp) :: w_min_l !< |
---|
[1320] | 143 | |
---|
[1682] | 144 | REAL(wp), DIMENSION(2) :: uv_gtrans !< |
---|
| 145 | REAL(wp), DIMENSION(2) :: uv_gtrans_l !< |
---|
| 146 | REAL(wp), DIMENSION(3) :: reduce !< |
---|
| 147 | REAL(wp), DIMENSION(3) :: reduce_l !< |
---|
| 148 | REAL(wp), DIMENSION(nzb+1:nzt) :: dxyz2_min !< |
---|
[1] | 149 | |
---|
| 150 | |
---|
[667] | 151 | |
---|
[1] | 152 | CALL cpu_log( log_point(12), 'calculate_timestep', 'start' ) |
---|
| 153 | |
---|
| 154 | ! |
---|
| 155 | !-- In case of Galilei-transform not using the geostrophic wind as translation |
---|
| 156 | !-- velocity, compute the volume-averaged horizontal velocity components, which |
---|
| 157 | !-- will then be subtracted from the horizontal wind for the time step and |
---|
| 158 | !-- horizontal advection routines. |
---|
| 159 | IF ( galilei_transformation .AND. .NOT. use_ug_for_galilei_tr ) THEN |
---|
| 160 | IF ( flow_statistics_called ) THEN |
---|
| 161 | ! |
---|
| 162 | !-- Horizontal averages already existent, just need to average them |
---|
| 163 | !-- vertically. |
---|
[1342] | 164 | u_gtrans = 0.0_wp |
---|
| 165 | v_gtrans = 0.0_wp |
---|
[1] | 166 | DO k = nzb+1, nzt |
---|
| 167 | u_gtrans = u_gtrans + hom(k,1,1,0) |
---|
| 168 | v_gtrans = v_gtrans + hom(k,1,2,0) |
---|
| 169 | ENDDO |
---|
[1322] | 170 | u_gtrans = u_gtrans / REAL( nzt - nzb, KIND=wp ) |
---|
| 171 | v_gtrans = v_gtrans / REAL( nzt - nzb, KIND=wp ) |
---|
[1] | 172 | ELSE |
---|
| 173 | ! |
---|
| 174 | !-- Averaging over the entire model domain. |
---|
[1342] | 175 | u_gtrans_l = 0.0_wp |
---|
| 176 | v_gtrans_l = 0.0_wp |
---|
[1257] | 177 | !$acc parallel present( u, v ) |
---|
[1] | 178 | DO i = nxl, nxr |
---|
| 179 | DO j = nys, nyn |
---|
| 180 | DO k = nzb+1, nzt |
---|
[1257] | 181 | u_gtrans_l = u_gtrans_l + u(k,j,i) |
---|
| 182 | v_gtrans_l = v_gtrans_l + v(k,j,i) |
---|
[1] | 183 | ENDDO |
---|
| 184 | ENDDO |
---|
| 185 | ENDDO |
---|
[1257] | 186 | !$acc end parallel |
---|
[1322] | 187 | uv_gtrans_l(1) = u_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb), KIND=wp ) |
---|
| 188 | uv_gtrans_l(2) = v_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb), KIND=wp ) |
---|
[1] | 189 | #if defined( __parallel ) |
---|
[622] | 190 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 191 | CALL MPI_ALLREDUCE( uv_gtrans_l, uv_gtrans, 2, MPI_REAL, MPI_SUM, & |
---|
| 192 | comm2d, ierr ) |
---|
[1322] | 193 | u_gtrans = uv_gtrans(1) / REAL( numprocs, KIND=wp ) |
---|
| 194 | v_gtrans = uv_gtrans(2) / REAL( numprocs, KIND=wp ) |
---|
[1] | 195 | #else |
---|
| 196 | u_gtrans = uv_gtrans_l(1) |
---|
| 197 | v_gtrans = uv_gtrans_l(2) |
---|
| 198 | #endif |
---|
| 199 | ENDIF |
---|
| 200 | ENDIF |
---|
| 201 | |
---|
[866] | 202 | ! |
---|
[1257] | 203 | !-- Determine the maxima of the velocity components, including their |
---|
| 204 | !-- grid index positions. |
---|
| 205 | #if defined( __openacc ) |
---|
| 206 | IF ( dt_fixed ) THEN ! otherwise do it further below for better cache usage |
---|
[1342] | 207 | u_max_l = -999999.9_wp |
---|
| 208 | u_min_l = 999999.9_wp |
---|
| 209 | v_max_l = -999999.9_wp |
---|
| 210 | v_min_l = 999999.9_wp |
---|
| 211 | w_max_l = -999999.9_wp |
---|
| 212 | w_min_l = 999999.9_wp |
---|
[1257] | 213 | !$acc parallel present( u, v, w ) |
---|
| 214 | DO i = nxl, nxr |
---|
| 215 | DO j = nys, nyn |
---|
| 216 | DO k = nzb+1, nzt |
---|
| 217 | u_max_l = MAX( u_max_l, u(k,j,i) ) |
---|
| 218 | u_min_l = MIN( u_min_l, u(k,j,i) ) |
---|
| 219 | v_max_l = MAX( v_max_l, v(k,j,i) ) |
---|
| 220 | v_min_l = MIN( v_min_l, v(k,j,i) ) |
---|
| 221 | w_max_l = MAX( w_max_l, w(k,j,i) ) |
---|
| 222 | w_min_l = MIN( w_min_l, w(k,j,i) ) |
---|
| 223 | ENDDO |
---|
| 224 | ENDDO |
---|
| 225 | ENDDO |
---|
| 226 | !$acc end parallel |
---|
| 227 | #if defined( __parallel ) |
---|
| 228 | reduce_l(1) = u_max_l |
---|
| 229 | reduce_l(2) = v_max_l |
---|
| 230 | reduce_l(3) = w_max_l |
---|
| 231 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 232 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 233 | u_max = reduce(1) |
---|
| 234 | v_max = reduce(2) |
---|
| 235 | w_max = reduce(3) |
---|
| 236 | reduce_l(1) = u_min_l |
---|
| 237 | reduce_l(2) = v_min_l |
---|
| 238 | reduce_l(3) = w_min_l |
---|
| 239 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 240 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 241 | IF ( ABS( reduce(1) ) > u_max ) u_max = reduce(1) |
---|
| 242 | IF ( ABS( reduce(2) ) > v_max ) v_max = reduce(2) |
---|
| 243 | IF ( ABS( reduce(3) ) > w_max ) w_max = reduce(3) |
---|
| 244 | #else |
---|
| 245 | IF ( ABS( u_min_l ) > u_max_l ) THEN |
---|
| 246 | u_max = u_min_l |
---|
| 247 | ELSE |
---|
| 248 | u_max = u_max_l |
---|
| 249 | ENDIF |
---|
| 250 | IF ( ABS( v_min_l ) > v_max_l ) THEN |
---|
| 251 | v_max = v_min_l |
---|
| 252 | ELSE |
---|
| 253 | v_max = v_max_l |
---|
| 254 | ENDIF |
---|
| 255 | IF ( ABS( w_min_l ) > w_max_l ) THEN |
---|
| 256 | w_max = w_min_l |
---|
| 257 | ELSE |
---|
| 258 | w_max = w_max_l |
---|
| 259 | ENDIF |
---|
| 260 | #endif |
---|
| 261 | ENDIF |
---|
| 262 | #else |
---|
[1320] | 263 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, u, 'abs', 0.0_wp, & |
---|
[866] | 264 | u_max, u_max_ijk ) |
---|
[1320] | 265 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, v, 'abs', 0.0_wp, & |
---|
[866] | 266 | v_max, v_max_ijk ) |
---|
[1320] | 267 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, w, 'abs', 0.0_wp, & |
---|
[866] | 268 | w_max, w_max_ijk ) |
---|
[1257] | 269 | #endif |
---|
[866] | 270 | |
---|
[1257] | 271 | IF ( .NOT. dt_fixed ) THEN |
---|
| 272 | #if defined( __openacc ) |
---|
[866] | 273 | ! |
---|
[1257] | 274 | !-- Variable time step: |
---|
| 275 | !-- Calculate the maximum time step according to the CFL-criterion, |
---|
| 276 | !-- individually for each velocity component |
---|
[1342] | 277 | dt_u_l = 999999.9_wp |
---|
| 278 | dt_v_l = 999999.9_wp |
---|
| 279 | dt_w_l = 999999.9_wp |
---|
| 280 | u_max_l = -999999.9_wp |
---|
| 281 | u_min_l = 999999.9_wp |
---|
| 282 | v_max_l = -999999.9_wp |
---|
| 283 | v_min_l = 999999.9_wp |
---|
| 284 | w_max_l = -999999.9_wp |
---|
| 285 | w_min_l = 999999.9_wp |
---|
[1257] | 286 | !$acc parallel loop collapse(3) present( u, v, w ) |
---|
| 287 | DO i = nxl, nxr |
---|
| 288 | DO j = nys, nyn |
---|
| 289 | DO k = nzb+1, nzt |
---|
[1342] | 290 | dt_u_l = MIN( dt_u_l, ( dx / ( ABS( u(k,j,i) - u_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 291 | dt_v_l = MIN( dt_v_l, ( dy / ( ABS( v(k,j,i) - v_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 292 | dt_w_l = MIN( dt_w_l, ( dzu(k) / ( ABS( w(k,j,i) ) + 1.0E-10_wp ) ) ) |
---|
[1257] | 293 | u_max_l = MAX( u_max_l, u(k,j,i) ) |
---|
| 294 | u_min_l = MIN( u_min_l, u(k,j,i) ) |
---|
| 295 | v_max_l = MAX( v_max_l, v(k,j,i) ) |
---|
| 296 | v_min_l = MIN( v_min_l, v(k,j,i) ) |
---|
| 297 | w_max_l = MAX( w_max_l, w(k,j,i) ) |
---|
| 298 | w_min_l = MIN( w_min_l, w(k,j,i) ) |
---|
| 299 | ENDDO |
---|
| 300 | ENDDO |
---|
| 301 | ENDDO |
---|
| 302 | !$acc end parallel |
---|
[866] | 303 | |
---|
[1257] | 304 | #if defined( __parallel ) |
---|
| 305 | reduce_l(1) = dt_u_l |
---|
| 306 | reduce_l(2) = dt_v_l |
---|
| 307 | reduce_l(3) = dt_w_l |
---|
| 308 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 309 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 310 | dt_u = reduce(1) |
---|
| 311 | dt_v = reduce(2) |
---|
| 312 | dt_w = reduce(3) |
---|
[866] | 313 | |
---|
[1257] | 314 | reduce_l(1) = u_max_l |
---|
| 315 | reduce_l(2) = v_max_l |
---|
| 316 | reduce_l(3) = w_max_l |
---|
| 317 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 318 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 319 | u_max = reduce(1) |
---|
| 320 | v_max = reduce(2) |
---|
| 321 | w_max = reduce(3) |
---|
| 322 | reduce_l(1) = u_min_l |
---|
| 323 | reduce_l(2) = v_min_l |
---|
| 324 | reduce_l(3) = w_min_l |
---|
| 325 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 326 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 327 | IF ( ABS( reduce(1) ) > u_max ) u_max = reduce(1) |
---|
| 328 | IF ( ABS( reduce(2) ) > v_max ) v_max = reduce(2) |
---|
| 329 | IF ( ABS( reduce(3) ) > w_max ) w_max = reduce(3) |
---|
| 330 | #else |
---|
| 331 | dt_u = dt_u_l |
---|
| 332 | dt_v = dt_v_l |
---|
| 333 | dt_w = dt_w_l |
---|
| 334 | |
---|
| 335 | IF ( ABS( u_min_l ) > u_max_l ) THEN |
---|
| 336 | u_max = u_min_l |
---|
| 337 | ELSE |
---|
| 338 | u_max = u_max_l |
---|
| 339 | ENDIF |
---|
| 340 | IF ( ABS( v_min_l ) > v_max_l ) THEN |
---|
| 341 | v_max = v_min_l |
---|
| 342 | ELSE |
---|
| 343 | v_max = v_max_l |
---|
| 344 | ENDIF |
---|
| 345 | IF ( ABS( w_min_l ) > w_max_l ) THEN |
---|
| 346 | w_max = w_min_l |
---|
| 347 | ELSE |
---|
| 348 | w_max = w_max_l |
---|
| 349 | ENDIF |
---|
| 350 | #endif |
---|
| 351 | |
---|
| 352 | #else |
---|
[1] | 353 | ! |
---|
| 354 | !-- Variable time step: |
---|
[1257] | 355 | !-- Calculate the maximum time step according to the CFL-criterion, |
---|
| 356 | !-- individually for each velocity component |
---|
[1342] | 357 | dt_u_l = 999999.9_wp |
---|
| 358 | dt_v_l = 999999.9_wp |
---|
| 359 | dt_w_l = 999999.9_wp |
---|
[1257] | 360 | DO i = nxl, nxr |
---|
| 361 | DO j = nys, nyn |
---|
| 362 | DO k = nzb+1, nzt |
---|
[1342] | 363 | dt_u_l = MIN( dt_u_l, ( dx / ( ABS( u(k,j,i) - u_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 364 | dt_v_l = MIN( dt_v_l, ( dy / ( ABS( v(k,j,i) - v_gtrans ) + 1.0E-10_wp ) ) ) |
---|
| 365 | dt_w_l = MIN( dt_w_l, ( dzu(k) / ( ABS( w(k,j,i) ) + 1.0E-10_wp ) ) ) |
---|
[1257] | 366 | ENDDO |
---|
| 367 | ENDDO |
---|
| 368 | ENDDO |
---|
[1] | 369 | |
---|
[1257] | 370 | #if defined( __parallel ) |
---|
| 371 | reduce_l(1) = dt_u_l |
---|
| 372 | reduce_l(2) = dt_v_l |
---|
| 373 | reduce_l(3) = dt_w_l |
---|
| 374 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 375 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 376 | dt_u = reduce(1) |
---|
| 377 | dt_v = reduce(2) |
---|
| 378 | dt_w = reduce(3) |
---|
| 379 | #else |
---|
| 380 | dt_u = dt_u_l |
---|
| 381 | dt_v = dt_v_l |
---|
| 382 | dt_w = dt_w_l |
---|
| 383 | #endif |
---|
| 384 | |
---|
| 385 | #endif |
---|
| 386 | |
---|
[1] | 387 | ! |
---|
| 388 | !-- Compute time step according to the diffusion criterion. |
---|
| 389 | !-- First calculate minimum grid spacing which only depends on index k |
---|
| 390 | !-- Note: also at k=nzb+1 a full grid length is being assumed, although |
---|
| 391 | !-- in the Prandtl-layer friction term only dz/2 is used. |
---|
| 392 | !-- Experience from the old model seems to justify this. |
---|
[1342] | 393 | dt_diff_l = 999999.0_wp |
---|
[1] | 394 | |
---|
| 395 | DO k = nzb+1, nzt |
---|
[1342] | 396 | dxyz2_min(k) = MIN( dx2, dy2, dzw(k)*dzw(k) ) * 0.125_wp |
---|
[1] | 397 | ENDDO |
---|
| 398 | |
---|
| 399 | !$OMP PARALLEL private(i,j,k,value) reduction(MIN: dt_diff_l) |
---|
| 400 | !$OMP DO |
---|
[1257] | 401 | !$acc parallel loop collapse(3) present( kh, km ) |
---|
[1] | 402 | DO i = nxl, nxr |
---|
| 403 | DO j = nys, nyn |
---|
| 404 | DO k = nzb+1, nzt |
---|
[1257] | 405 | dt_diff_l = MIN( dt_diff_l, dxyz2_min(k) / & |
---|
[1342] | 406 | ( MAX( kh(k,j,i), km(k,j,i) ) + 1E-20_wp ) ) |
---|
[1] | 407 | ENDDO |
---|
| 408 | ENDDO |
---|
| 409 | ENDDO |
---|
[1257] | 410 | !$acc end parallel |
---|
[1] | 411 | !$OMP END PARALLEL |
---|
| 412 | #if defined( __parallel ) |
---|
[622] | 413 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 414 | CALL MPI_ALLREDUCE( dt_diff_l, dt_diff, 1, MPI_REAL, MPI_MIN, comm2d, & |
---|
| 415 | ierr ) |
---|
| 416 | #else |
---|
| 417 | dt_diff = dt_diff_l |
---|
| 418 | #endif |
---|
| 419 | |
---|
| 420 | ! |
---|
[316] | 421 | !-- The time step is the minimum of the 3-4 components and the diffusion time |
---|
[1001] | 422 | !-- step minus a reduction (cfl_factor) to be on the safe side. |
---|
[1] | 423 | !-- The time step must not exceed the maximum allowed value. |
---|
[1484] | 424 | dt_3d = cfl_factor * MIN( dt_diff, dt_u, dt_v, dt_w, & |
---|
[1053] | 425 | dt_precipitation ) |
---|
[1] | 426 | dt_3d = MIN( dt_3d, dt_max ) |
---|
| 427 | |
---|
| 428 | ! |
---|
| 429 | !-- Remember the restricting time step criterion for later output. |
---|
[1484] | 430 | IF ( MIN( dt_u, dt_v, dt_w ) < dt_diff ) THEN |
---|
[1] | 431 | timestep_reason = 'A' |
---|
| 432 | ELSE |
---|
| 433 | timestep_reason = 'D' |
---|
| 434 | ENDIF |
---|
| 435 | |
---|
| 436 | ! |
---|
| 437 | !-- Set flag if the time step becomes too small. |
---|
[1342] | 438 | IF ( dt_3d < ( 0.00001_wp * dt_max ) ) THEN |
---|
[1] | 439 | stop_dt = .TRUE. |
---|
[108] | 440 | |
---|
[320] | 441 | WRITE( message_string, * ) 'Time step has reached minimum limit.', & |
---|
| 442 | '&dt = ', dt_3d, ' s Simulation is terminated.', & |
---|
| 443 | '&old_dt = ', old_dt, ' s', & |
---|
| 444 | '&dt_u = ', dt_u, ' s', & |
---|
| 445 | '&dt_v = ', dt_v, ' s', & |
---|
| 446 | '&dt_w = ', dt_w, ' s', & |
---|
| 447 | '&dt_diff = ', dt_diff, ' s', & |
---|
[1257] | 448 | '&u_max = ', u_max, ' m/s k=', u_max_ijk(1), & |
---|
[320] | 449 | ' j=', u_max_ijk(2), ' i=', u_max_ijk(3), & |
---|
[1257] | 450 | '&v_max = ', v_max, ' m/s k=', v_max_ijk(1), & |
---|
[320] | 451 | ' j=', v_max_ijk(2), ' i=', v_max_ijk(3), & |
---|
[1257] | 452 | '&w_max = ', w_max, ' m/s k=', w_max_ijk(1), & |
---|
[320] | 453 | ' j=', w_max_ijk(2), ' i=', w_max_ijk(3) |
---|
[258] | 454 | CALL message( 'timestep', 'PA0312', 0, 1, 0, 6, 0 ) |
---|
[108] | 455 | ! |
---|
| 456 | !-- In case of coupled runs inform the remote model of the termination |
---|
| 457 | !-- and its reason, provided the remote model has not already been |
---|
| 458 | !-- informed of another termination reason (terminate_coupled > 0) before. |
---|
[222] | 459 | #if defined( __parallel ) |
---|
[108] | 460 | IF ( coupling_mode /= 'uncoupled' .AND. terminate_coupled == 0 ) THEN |
---|
| 461 | terminate_coupled = 2 |
---|
[667] | 462 | IF ( myid == 0 ) THEN |
---|
| 463 | CALL MPI_SENDRECV( & |
---|
| 464 | terminate_coupled, 1, MPI_INTEGER, target_id, 0, & |
---|
| 465 | terminate_coupled_remote, 1, MPI_INTEGER, target_id, 0, & |
---|
| 466 | comm_inter, status, ierr ) |
---|
| 467 | ENDIF |
---|
| 468 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
[108] | 469 | ENDIF |
---|
[222] | 470 | #endif |
---|
[1] | 471 | ENDIF |
---|
| 472 | |
---|
| 473 | ! |
---|
[1001] | 474 | !-- Ensure a smooth value (two significant digits) of the timestep. |
---|
[1342] | 475 | div = 1000.0_wp |
---|
[1001] | 476 | DO WHILE ( dt_3d < div ) |
---|
[1342] | 477 | div = div / 10.0_wp |
---|
[1001] | 478 | ENDDO |
---|
[1342] | 479 | dt_3d = NINT( dt_3d * 100.0_wp / div ) * div / 100.0_wp |
---|
[1] | 480 | |
---|
| 481 | ! |
---|
[1001] | 482 | !-- Adjust the time step |
---|
| 483 | old_dt = dt_3d |
---|
[1] | 484 | |
---|
[1001] | 485 | ENDIF |
---|
[1] | 486 | |
---|
| 487 | CALL cpu_log( log_point(12), 'calculate_timestep', 'stop' ) |
---|
| 488 | |
---|
| 489 | END SUBROUTINE timestep |
---|