[1] | 1 | SUBROUTINE timestep |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[258] | 20 | ! Current revisions: |
---|
[866] | 21 | ! ------------------ |
---|
[1321] | 22 | ! |
---|
[1323] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: timestep.f90 1323 2014-03-20 17:09:54Z suehring $ |
---|
| 27 | ! |
---|
[1323] | 28 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 29 | ! REAL functions provided with KIND-attribute |
---|
| 30 | ! |
---|
[1321] | 31 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 32 | ! ONLY-attribute added to USE-statements, |
---|
| 33 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 34 | ! kinds are defined in new module kinds, |
---|
| 35 | ! old module precision_kind is removed, |
---|
| 36 | ! revision history before 2012 removed, |
---|
| 37 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 38 | ! all variable declaration statements |
---|
[1321] | 39 | ! |
---|
[1258] | 40 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 41 | ! openacc porting |
---|
| 42 | ! bugfix for calculation of advective timestep in case of vertically stretched |
---|
| 43 | ! grids |
---|
| 44 | ! |
---|
[1093] | 45 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 46 | ! unused variables removed |
---|
| 47 | ! |
---|
[1054] | 48 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 49 | ! timestep is reduced in two-moment cloud scheme according to the maximum |
---|
| 50 | ! terminal velocity of rain drops |
---|
| 51 | ! |
---|
[1037] | 52 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 53 | ! code put under GPL (PALM 3.9) |
---|
| 54 | ! |
---|
[1002] | 55 | ! 1001 2012-09-13 14:08:46Z raasch |
---|
| 56 | ! all actions concerning leapfrog scheme removed |
---|
| 57 | ! |
---|
[979] | 58 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 59 | ! restriction of the outflow damping layer in the diffusion criterion removed |
---|
| 60 | ! |
---|
[867] | 61 | ! 866 2012-03-28 06:44:41Z raasch |
---|
| 62 | ! bugfix for timestep calculation in case of Galilei transformation, |
---|
| 63 | ! special treatment in case of mirror velocity boundary condition removed |
---|
| 64 | ! |
---|
[1] | 65 | ! Revision 1.1 1997/08/11 06:26:19 raasch |
---|
| 66 | ! Initial revision |
---|
| 67 | ! |
---|
| 68 | ! |
---|
| 69 | ! Description: |
---|
| 70 | ! ------------ |
---|
| 71 | ! Compute the time step under consideration of the FCL and diffusion criterion. |
---|
| 72 | !------------------------------------------------------------------------------! |
---|
| 73 | |
---|
[1320] | 74 | USE arrays_3d, & |
---|
| 75 | ONLY: cdc, dzu, dzw, kh, km, lad_u, lad_v, lad_w, u, v, w |
---|
| 76 | |
---|
| 77 | USE cloud_parameters, & |
---|
| 78 | ONLY: dt_precipitation |
---|
| 79 | |
---|
| 80 | USE control_parameters, & |
---|
| 81 | ONLY: cfl_factor, coupling_mode, dt_3d, dt_fixed, dt_max, & |
---|
| 82 | galilei_transformation, old_dt, plant_canopy, message_string, & |
---|
| 83 | stop_dt, terminate_coupled, terminate_coupled_remote, & |
---|
| 84 | timestep_reason, u_gtrans, use_ug_for_galilei_tr, v_gtrans |
---|
| 85 | |
---|
| 86 | USE cpulog, & |
---|
| 87 | ONLY: cpu_log, log_point |
---|
| 88 | |
---|
| 89 | USE grid_variables, & |
---|
| 90 | ONLY: dx, dx2, dy, dy2 |
---|
| 91 | |
---|
| 92 | USE indices, & |
---|
| 93 | ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt |
---|
| 94 | |
---|
[1] | 95 | USE interfaces |
---|
[1320] | 96 | |
---|
| 97 | USE kinds |
---|
| 98 | |
---|
[1] | 99 | USE pegrid |
---|
| 100 | |
---|
[1320] | 101 | USE statistics, & |
---|
| 102 | ONLY: flow_statistics_called, hom, u_max, u_max_ijk, v_max, v_max_ijk,& |
---|
| 103 | w_max, w_max_ijk |
---|
| 104 | |
---|
[1] | 105 | IMPLICIT NONE |
---|
| 106 | |
---|
[1320] | 107 | INTEGER(iwp) :: i !: |
---|
| 108 | INTEGER(iwp) :: j !: |
---|
| 109 | INTEGER(iwp) :: k !: |
---|
[1] | 110 | |
---|
[1320] | 111 | REAL(wp) :: div !: |
---|
| 112 | REAL(wp) :: dt_diff !: |
---|
| 113 | REAL(wp) :: dt_diff_l !: |
---|
| 114 | REAL(wp) :: dt_plant_canopy !: |
---|
| 115 | REAL(wp) :: dt_plant_canopy_l !: |
---|
| 116 | REAL(wp) :: dt_plant_canopy_u !: |
---|
| 117 | REAL(wp) :: dt_plant_canopy_v !: |
---|
| 118 | REAL(wp) :: dt_plant_canopy_w !: |
---|
| 119 | REAL(wp) :: dt_u !: |
---|
| 120 | REAL(wp) :: dt_u_l !: |
---|
| 121 | REAL(wp) :: dt_v !: |
---|
| 122 | REAL(wp) :: dt_v_l !: |
---|
| 123 | REAL(wp) :: dt_w !: |
---|
| 124 | REAL(wp) :: dt_w_l !: |
---|
| 125 | REAL(wp) :: u_gtrans_l !: |
---|
| 126 | REAL(wp) :: u_max_l !: |
---|
| 127 | REAL(wp) :: u_min_l !: |
---|
| 128 | REAL(wp) :: value !: |
---|
| 129 | REAL(wp) :: v_gtrans_l !: |
---|
| 130 | REAL(wp) :: v_max_l !: |
---|
| 131 | REAL(wp) :: v_min_l !: |
---|
| 132 | REAL(wp) :: w_max_l !: |
---|
| 133 | REAL(wp) :: w_min_l !: |
---|
| 134 | |
---|
| 135 | REAL(wp), DIMENSION(2) :: uv_gtrans !: |
---|
| 136 | REAL(wp), DIMENSION(2) :: uv_gtrans_l !: |
---|
| 137 | REAL(wp), DIMENSION(3) :: reduce !: |
---|
| 138 | REAL(wp), DIMENSION(3) :: reduce_l !: |
---|
| 139 | REAL(wp), DIMENSION(nzb+1:nzt) :: dxyz2_min !: |
---|
[1] | 140 | |
---|
| 141 | |
---|
[667] | 142 | |
---|
[1] | 143 | CALL cpu_log( log_point(12), 'calculate_timestep', 'start' ) |
---|
| 144 | |
---|
| 145 | ! |
---|
| 146 | !-- In case of Galilei-transform not using the geostrophic wind as translation |
---|
| 147 | !-- velocity, compute the volume-averaged horizontal velocity components, which |
---|
| 148 | !-- will then be subtracted from the horizontal wind for the time step and |
---|
| 149 | !-- horizontal advection routines. |
---|
| 150 | IF ( galilei_transformation .AND. .NOT. use_ug_for_galilei_tr ) THEN |
---|
| 151 | IF ( flow_statistics_called ) THEN |
---|
| 152 | ! |
---|
| 153 | !-- Horizontal averages already existent, just need to average them |
---|
| 154 | !-- vertically. |
---|
| 155 | u_gtrans = 0.0 |
---|
| 156 | v_gtrans = 0.0 |
---|
| 157 | DO k = nzb+1, nzt |
---|
| 158 | u_gtrans = u_gtrans + hom(k,1,1,0) |
---|
| 159 | v_gtrans = v_gtrans + hom(k,1,2,0) |
---|
| 160 | ENDDO |
---|
[1322] | 161 | u_gtrans = u_gtrans / REAL( nzt - nzb, KIND=wp ) |
---|
| 162 | v_gtrans = v_gtrans / REAL( nzt - nzb, KIND=wp ) |
---|
[1] | 163 | ELSE |
---|
| 164 | ! |
---|
| 165 | !-- Averaging over the entire model domain. |
---|
[1257] | 166 | u_gtrans_l = 0.0 |
---|
| 167 | v_gtrans_l = 0.0 |
---|
| 168 | !$acc parallel present( u, v ) |
---|
[1] | 169 | DO i = nxl, nxr |
---|
| 170 | DO j = nys, nyn |
---|
| 171 | DO k = nzb+1, nzt |
---|
[1257] | 172 | u_gtrans_l = u_gtrans_l + u(k,j,i) |
---|
| 173 | v_gtrans_l = v_gtrans_l + v(k,j,i) |
---|
[1] | 174 | ENDDO |
---|
| 175 | ENDDO |
---|
| 176 | ENDDO |
---|
[1257] | 177 | !$acc end parallel |
---|
[1322] | 178 | uv_gtrans_l(1) = u_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb), KIND=wp ) |
---|
| 179 | uv_gtrans_l(2) = v_gtrans_l / REAL( (nxr-nxl+1)*(nyn-nys+1)*(nzt-nzb), KIND=wp ) |
---|
[1] | 180 | #if defined( __parallel ) |
---|
[622] | 181 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 182 | CALL MPI_ALLREDUCE( uv_gtrans_l, uv_gtrans, 2, MPI_REAL, MPI_SUM, & |
---|
| 183 | comm2d, ierr ) |
---|
[1322] | 184 | u_gtrans = uv_gtrans(1) / REAL( numprocs, KIND=wp ) |
---|
| 185 | v_gtrans = uv_gtrans(2) / REAL( numprocs, KIND=wp ) |
---|
[1] | 186 | #else |
---|
| 187 | u_gtrans = uv_gtrans_l(1) |
---|
| 188 | v_gtrans = uv_gtrans_l(2) |
---|
| 189 | #endif |
---|
| 190 | ENDIF |
---|
| 191 | ENDIF |
---|
| 192 | |
---|
[866] | 193 | ! |
---|
[1257] | 194 | !-- Determine the maxima of the velocity components, including their |
---|
| 195 | !-- grid index positions. |
---|
| 196 | #if defined( __openacc ) |
---|
| 197 | IF ( dt_fixed ) THEN ! otherwise do it further below for better cache usage |
---|
| 198 | u_max_l = -999999.9 |
---|
| 199 | u_min_l = 999999.9 |
---|
| 200 | v_max_l = -999999.9 |
---|
| 201 | v_min_l = 999999.9 |
---|
| 202 | w_max_l = -999999.9 |
---|
| 203 | w_min_l = 999999.9 |
---|
| 204 | !$acc parallel present( u, v, w ) |
---|
| 205 | DO i = nxl, nxr |
---|
| 206 | DO j = nys, nyn |
---|
| 207 | DO k = nzb+1, nzt |
---|
| 208 | u_max_l = MAX( u_max_l, u(k,j,i) ) |
---|
| 209 | u_min_l = MIN( u_min_l, u(k,j,i) ) |
---|
| 210 | v_max_l = MAX( v_max_l, v(k,j,i) ) |
---|
| 211 | v_min_l = MIN( v_min_l, v(k,j,i) ) |
---|
| 212 | w_max_l = MAX( w_max_l, w(k,j,i) ) |
---|
| 213 | w_min_l = MIN( w_min_l, w(k,j,i) ) |
---|
| 214 | ENDDO |
---|
| 215 | ENDDO |
---|
| 216 | ENDDO |
---|
| 217 | !$acc end parallel |
---|
| 218 | #if defined( __parallel ) |
---|
| 219 | reduce_l(1) = u_max_l |
---|
| 220 | reduce_l(2) = v_max_l |
---|
| 221 | reduce_l(3) = w_max_l |
---|
| 222 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 223 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 224 | u_max = reduce(1) |
---|
| 225 | v_max = reduce(2) |
---|
| 226 | w_max = reduce(3) |
---|
| 227 | reduce_l(1) = u_min_l |
---|
| 228 | reduce_l(2) = v_min_l |
---|
| 229 | reduce_l(3) = w_min_l |
---|
| 230 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 231 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 232 | IF ( ABS( reduce(1) ) > u_max ) u_max = reduce(1) |
---|
| 233 | IF ( ABS( reduce(2) ) > v_max ) v_max = reduce(2) |
---|
| 234 | IF ( ABS( reduce(3) ) > w_max ) w_max = reduce(3) |
---|
| 235 | #else |
---|
| 236 | IF ( ABS( u_min_l ) > u_max_l ) THEN |
---|
| 237 | u_max = u_min_l |
---|
| 238 | ELSE |
---|
| 239 | u_max = u_max_l |
---|
| 240 | ENDIF |
---|
| 241 | IF ( ABS( v_min_l ) > v_max_l ) THEN |
---|
| 242 | v_max = v_min_l |
---|
| 243 | ELSE |
---|
| 244 | v_max = v_max_l |
---|
| 245 | ENDIF |
---|
| 246 | IF ( ABS( w_min_l ) > w_max_l ) THEN |
---|
| 247 | w_max = w_min_l |
---|
| 248 | ELSE |
---|
| 249 | w_max = w_max_l |
---|
| 250 | ENDIF |
---|
| 251 | #endif |
---|
| 252 | ENDIF |
---|
| 253 | #else |
---|
[1320] | 254 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, u, 'abs', 0.0_wp, & |
---|
[866] | 255 | u_max, u_max_ijk ) |
---|
[1320] | 256 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, v, 'abs', 0.0_wp, & |
---|
[866] | 257 | v_max, v_max_ijk ) |
---|
[1320] | 258 | CALL global_min_max( nzb, nzt+1, nysg, nyng, nxlg, nxrg, w, 'abs', 0.0_wp, & |
---|
[866] | 259 | w_max, w_max_ijk ) |
---|
[1257] | 260 | #endif |
---|
[866] | 261 | |
---|
[1257] | 262 | IF ( .NOT. dt_fixed ) THEN |
---|
| 263 | #if defined( __openacc ) |
---|
[866] | 264 | ! |
---|
[1257] | 265 | !-- Variable time step: |
---|
| 266 | !-- Calculate the maximum time step according to the CFL-criterion, |
---|
| 267 | !-- individually for each velocity component |
---|
| 268 | dt_u_l = 999999.9 |
---|
| 269 | dt_v_l = 999999.9 |
---|
| 270 | dt_w_l = 999999.9 |
---|
| 271 | u_max_l = -999999.9 |
---|
| 272 | u_min_l = 999999.9 |
---|
| 273 | v_max_l = -999999.9 |
---|
| 274 | v_min_l = 999999.9 |
---|
| 275 | w_max_l = -999999.9 |
---|
| 276 | w_min_l = 999999.9 |
---|
| 277 | !$acc parallel loop collapse(3) present( u, v, w ) |
---|
| 278 | DO i = nxl, nxr |
---|
| 279 | DO j = nys, nyn |
---|
| 280 | DO k = nzb+1, nzt |
---|
| 281 | dt_u_l = MIN( dt_u_l, ( dx / ( ABS( u(k,j,i) - u_gtrans ) + 1.0E-10 ) ) ) |
---|
| 282 | dt_v_l = MIN( dt_v_l, ( dy / ( ABS( v(k,j,i) - v_gtrans ) + 1.0E-10 ) ) ) |
---|
| 283 | dt_w_l = MIN( dt_w_l, ( dzu(k) / ( ABS( w(k,j,i) ) + 1.0E-10 ) ) ) |
---|
| 284 | u_max_l = MAX( u_max_l, u(k,j,i) ) |
---|
| 285 | u_min_l = MIN( u_min_l, u(k,j,i) ) |
---|
| 286 | v_max_l = MAX( v_max_l, v(k,j,i) ) |
---|
| 287 | v_min_l = MIN( v_min_l, v(k,j,i) ) |
---|
| 288 | w_max_l = MAX( w_max_l, w(k,j,i) ) |
---|
| 289 | w_min_l = MIN( w_min_l, w(k,j,i) ) |
---|
| 290 | ENDDO |
---|
| 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | !$acc end parallel |
---|
[866] | 294 | |
---|
[1257] | 295 | #if defined( __parallel ) |
---|
| 296 | reduce_l(1) = dt_u_l |
---|
| 297 | reduce_l(2) = dt_v_l |
---|
| 298 | reduce_l(3) = dt_w_l |
---|
| 299 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 300 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 301 | dt_u = reduce(1) |
---|
| 302 | dt_v = reduce(2) |
---|
| 303 | dt_w = reduce(3) |
---|
[866] | 304 | |
---|
[1257] | 305 | reduce_l(1) = u_max_l |
---|
| 306 | reduce_l(2) = v_max_l |
---|
| 307 | reduce_l(3) = w_max_l |
---|
| 308 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 309 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
| 310 | u_max = reduce(1) |
---|
| 311 | v_max = reduce(2) |
---|
| 312 | w_max = reduce(3) |
---|
| 313 | reduce_l(1) = u_min_l |
---|
| 314 | reduce_l(2) = v_min_l |
---|
| 315 | reduce_l(3) = w_min_l |
---|
| 316 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 317 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 318 | IF ( ABS( reduce(1) ) > u_max ) u_max = reduce(1) |
---|
| 319 | IF ( ABS( reduce(2) ) > v_max ) v_max = reduce(2) |
---|
| 320 | IF ( ABS( reduce(3) ) > w_max ) w_max = reduce(3) |
---|
| 321 | #else |
---|
| 322 | dt_u = dt_u_l |
---|
| 323 | dt_v = dt_v_l |
---|
| 324 | dt_w = dt_w_l |
---|
| 325 | |
---|
| 326 | IF ( ABS( u_min_l ) > u_max_l ) THEN |
---|
| 327 | u_max = u_min_l |
---|
| 328 | ELSE |
---|
| 329 | u_max = u_max_l |
---|
| 330 | ENDIF |
---|
| 331 | IF ( ABS( v_min_l ) > v_max_l ) THEN |
---|
| 332 | v_max = v_min_l |
---|
| 333 | ELSE |
---|
| 334 | v_max = v_max_l |
---|
| 335 | ENDIF |
---|
| 336 | IF ( ABS( w_min_l ) > w_max_l ) THEN |
---|
| 337 | w_max = w_min_l |
---|
| 338 | ELSE |
---|
| 339 | w_max = w_max_l |
---|
| 340 | ENDIF |
---|
| 341 | #endif |
---|
| 342 | |
---|
| 343 | #else |
---|
[1] | 344 | ! |
---|
| 345 | !-- Variable time step: |
---|
[1257] | 346 | !-- Calculate the maximum time step according to the CFL-criterion, |
---|
| 347 | !-- individually for each velocity component |
---|
| 348 | dt_u_l = 999999.9 |
---|
| 349 | dt_v_l = 999999.9 |
---|
| 350 | dt_w_l = 999999.9 |
---|
| 351 | DO i = nxl, nxr |
---|
| 352 | DO j = nys, nyn |
---|
| 353 | DO k = nzb+1, nzt |
---|
| 354 | dt_u_l = MIN( dt_u_l, ( dx / ( ABS( u(k,j,i) - u_gtrans ) + 1.0E-10 ) ) ) |
---|
| 355 | dt_v_l = MIN( dt_v_l, ( dy / ( ABS( v(k,j,i) - v_gtrans ) + 1.0E-10 ) ) ) |
---|
| 356 | dt_w_l = MIN( dt_w_l, ( dzu(k) / ( ABS( w(k,j,i) ) + 1.0E-10 ) ) ) |
---|
| 357 | ENDDO |
---|
| 358 | ENDDO |
---|
| 359 | ENDDO |
---|
[1] | 360 | |
---|
[1257] | 361 | #if defined( __parallel ) |
---|
| 362 | reduce_l(1) = dt_u_l |
---|
| 363 | reduce_l(2) = dt_v_l |
---|
| 364 | reduce_l(3) = dt_w_l |
---|
| 365 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 366 | CALL MPI_ALLREDUCE( reduce_l, reduce, 3, MPI_REAL, MPI_MIN, comm2d, ierr ) |
---|
| 367 | dt_u = reduce(1) |
---|
| 368 | dt_v = reduce(2) |
---|
| 369 | dt_w = reduce(3) |
---|
| 370 | #else |
---|
| 371 | dt_u = dt_u_l |
---|
| 372 | dt_v = dt_v_l |
---|
| 373 | dt_w = dt_w_l |
---|
| 374 | #endif |
---|
| 375 | |
---|
| 376 | #endif |
---|
| 377 | |
---|
[1] | 378 | ! |
---|
| 379 | !-- Compute time step according to the diffusion criterion. |
---|
| 380 | !-- First calculate minimum grid spacing which only depends on index k |
---|
| 381 | !-- Note: also at k=nzb+1 a full grid length is being assumed, although |
---|
| 382 | !-- in the Prandtl-layer friction term only dz/2 is used. |
---|
| 383 | !-- Experience from the old model seems to justify this. |
---|
| 384 | dt_diff_l = 999999.0 |
---|
| 385 | |
---|
| 386 | DO k = nzb+1, nzt |
---|
[667] | 387 | dxyz2_min(k) = MIN( dx2, dy2, dzw(k)*dzw(k) ) * 0.125 |
---|
[1] | 388 | ENDDO |
---|
| 389 | |
---|
| 390 | !$OMP PARALLEL private(i,j,k,value) reduction(MIN: dt_diff_l) |
---|
| 391 | !$OMP DO |
---|
[1257] | 392 | !$acc parallel loop collapse(3) present( kh, km ) |
---|
[1] | 393 | DO i = nxl, nxr |
---|
| 394 | DO j = nys, nyn |
---|
| 395 | DO k = nzb+1, nzt |
---|
[1257] | 396 | dt_diff_l = MIN( dt_diff_l, dxyz2_min(k) / & |
---|
| 397 | ( MAX( kh(k,j,i), km(k,j,i) ) + 1E-20 ) ) |
---|
[1] | 398 | ENDDO |
---|
| 399 | ENDDO |
---|
| 400 | ENDDO |
---|
[1257] | 401 | !$acc end parallel |
---|
[1] | 402 | !$OMP END PARALLEL |
---|
| 403 | #if defined( __parallel ) |
---|
[622] | 404 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[1] | 405 | CALL MPI_ALLREDUCE( dt_diff_l, dt_diff, 1, MPI_REAL, MPI_MIN, comm2d, & |
---|
| 406 | ierr ) |
---|
| 407 | #else |
---|
| 408 | dt_diff = dt_diff_l |
---|
| 409 | #endif |
---|
| 410 | |
---|
| 411 | ! |
---|
[316] | 412 | !-- Additional timestep criterion with plant canopies: |
---|
| 413 | !-- it is not allowed to extract more than the available momentum |
---|
| 414 | IF ( plant_canopy ) THEN |
---|
[318] | 415 | |
---|
| 416 | dt_plant_canopy_l = 0.0 |
---|
| 417 | DO i = nxl, nxr |
---|
| 418 | DO j = nys, nyn |
---|
| 419 | DO k = nzb+1, nzt |
---|
| 420 | dt_plant_canopy_u = cdc(k,j,i) * lad_u(k,j,i) * & |
---|
| 421 | SQRT( u(k,j,i)**2 + & |
---|
| 422 | ( ( v(k,j,i-1) + & |
---|
| 423 | v(k,j,i) + & |
---|
| 424 | v(k,j+1,i) + & |
---|
| 425 | v(k,j+1,i-1) ) & |
---|
| 426 | / 4.0 )**2 + & |
---|
| 427 | ( ( w(k-1,j,i-1) + & |
---|
| 428 | w(k-1,j,i) + & |
---|
| 429 | w(k,j,i-1) + & |
---|
| 430 | w(k,j,i) ) & |
---|
| 431 | / 4.0 )**2 ) |
---|
| 432 | IF ( dt_plant_canopy_u > dt_plant_canopy_l ) THEN |
---|
| 433 | dt_plant_canopy_l = dt_plant_canopy_u |
---|
| 434 | ENDIF |
---|
| 435 | dt_plant_canopy_v = cdc(k,j,i) * lad_v(k,j,i) * & |
---|
| 436 | SQRT( ( ( u(k,j-1,i) + & |
---|
| 437 | u(k,j-1,i+1) + & |
---|
| 438 | u(k,j,i) + & |
---|
| 439 | u(k,j,i+1) ) & |
---|
| 440 | / 4.0 )**2 + & |
---|
| 441 | v(k,j,i)**2 + & |
---|
| 442 | ( ( w(k-1,j-1,i) + & |
---|
| 443 | w(k-1,j,i) + & |
---|
| 444 | w(k,j-1,i) + & |
---|
| 445 | w(k,j,i) ) & |
---|
| 446 | / 4.0 )**2 ) |
---|
| 447 | IF ( dt_plant_canopy_v > dt_plant_canopy_l ) THEN |
---|
| 448 | dt_plant_canopy_l = dt_plant_canopy_v |
---|
| 449 | ENDIF |
---|
| 450 | dt_plant_canopy_w = cdc(k,j,i) * lad_w(k,j,i) * & |
---|
| 451 | SQRT( ( ( u(k,j,i) + & |
---|
| 452 | u(k,j,i+1) + & |
---|
| 453 | u(k+1,j,i) + & |
---|
| 454 | u(k+1,j,i+1) ) & |
---|
| 455 | / 4.0 )**2 + & |
---|
| 456 | ( ( v(k,j,i) + & |
---|
| 457 | v(k,j+1,i) + & |
---|
| 458 | v(k+1,j,i) + & |
---|
| 459 | v(k+1,j+1,i) ) & |
---|
| 460 | / 4.0 )**2 + & |
---|
| 461 | w(k,j,i)**2 ) |
---|
| 462 | IF ( dt_plant_canopy_w > dt_plant_canopy_l ) THEN |
---|
| 463 | dt_plant_canopy_l = dt_plant_canopy_w |
---|
| 464 | ENDIF |
---|
| 465 | ENDDO |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | |
---|
| 469 | IF ( dt_plant_canopy_l > 0.0 ) THEN |
---|
[320] | 470 | ! |
---|
| 471 | !-- Invert dt_plant_canopy_l and apply a security timestep factor 0.1 |
---|
[318] | 472 | dt_plant_canopy_l = 0.1 / dt_plant_canopy_l |
---|
[320] | 473 | ELSE |
---|
| 474 | ! |
---|
| 475 | !-- In case of inhomogeneous plant canopy, some processors may have no |
---|
| 476 | !-- canopy at all. Then use dt_max as dummy instead. |
---|
| 477 | dt_plant_canopy_l = dt_max |
---|
[318] | 478 | ENDIF |
---|
[320] | 479 | |
---|
[316] | 480 | ! |
---|
[318] | 481 | !-- Determine the global minumum |
---|
| 482 | #if defined( __parallel ) |
---|
[622] | 483 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[866] | 484 | CALL MPI_ALLREDUCE( dt_plant_canopy_l, dt_plant_canopy, 1, MPI_REAL, & |
---|
[318] | 485 | MPI_MIN, comm2d, ierr ) |
---|
| 486 | #else |
---|
| 487 | dt_plant_canopy = dt_plant_canopy_l |
---|
| 488 | #endif |
---|
[316] | 489 | |
---|
| 490 | ELSE |
---|
| 491 | ! |
---|
| 492 | !-- Use dt_diff as dummy value to avoid extra IF branches further below |
---|
| 493 | dt_plant_canopy = dt_diff |
---|
| 494 | |
---|
| 495 | ENDIF |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- The time step is the minimum of the 3-4 components and the diffusion time |
---|
[1001] | 499 | !-- step minus a reduction (cfl_factor) to be on the safe side. |
---|
[1] | 500 | !-- The time step must not exceed the maximum allowed value. |
---|
[1053] | 501 | dt_3d = cfl_factor * MIN( dt_diff, dt_plant_canopy, dt_u, dt_v, dt_w, & |
---|
| 502 | dt_precipitation ) |
---|
[1] | 503 | dt_3d = MIN( dt_3d, dt_max ) |
---|
| 504 | |
---|
| 505 | ! |
---|
| 506 | !-- Remember the restricting time step criterion for later output. |
---|
[316] | 507 | IF ( MIN( dt_u, dt_v, dt_w ) < MIN( dt_diff, dt_plant_canopy ) ) THEN |
---|
[1] | 508 | timestep_reason = 'A' |
---|
[316] | 509 | ELSEIF ( dt_plant_canopy < dt_diff ) THEN |
---|
| 510 | timestep_reason = 'C' |
---|
[1] | 511 | ELSE |
---|
| 512 | timestep_reason = 'D' |
---|
| 513 | ENDIF |
---|
| 514 | |
---|
| 515 | ! |
---|
| 516 | !-- Set flag if the time step becomes too small. |
---|
| 517 | IF ( dt_3d < ( 0.00001 * dt_max ) ) THEN |
---|
| 518 | stop_dt = .TRUE. |
---|
[108] | 519 | |
---|
[320] | 520 | WRITE( message_string, * ) 'Time step has reached minimum limit.', & |
---|
| 521 | '&dt = ', dt_3d, ' s Simulation is terminated.', & |
---|
| 522 | '&old_dt = ', old_dt, ' s', & |
---|
| 523 | '&dt_u = ', dt_u, ' s', & |
---|
| 524 | '&dt_v = ', dt_v, ' s', & |
---|
| 525 | '&dt_w = ', dt_w, ' s', & |
---|
| 526 | '&dt_diff = ', dt_diff, ' s', & |
---|
| 527 | '&dt_plant_canopy = ', dt_plant_canopy, ' s', & |
---|
[1257] | 528 | '&u_max = ', u_max, ' m/s k=', u_max_ijk(1), & |
---|
[320] | 529 | ' j=', u_max_ijk(2), ' i=', u_max_ijk(3), & |
---|
[1257] | 530 | '&v_max = ', v_max, ' m/s k=', v_max_ijk(1), & |
---|
[320] | 531 | ' j=', v_max_ijk(2), ' i=', v_max_ijk(3), & |
---|
[1257] | 532 | '&w_max = ', w_max, ' m/s k=', w_max_ijk(1), & |
---|
[320] | 533 | ' j=', w_max_ijk(2), ' i=', w_max_ijk(3) |
---|
[258] | 534 | CALL message( 'timestep', 'PA0312', 0, 1, 0, 6, 0 ) |
---|
[108] | 535 | ! |
---|
| 536 | !-- In case of coupled runs inform the remote model of the termination |
---|
| 537 | !-- and its reason, provided the remote model has not already been |
---|
| 538 | !-- informed of another termination reason (terminate_coupled > 0) before. |
---|
[222] | 539 | #if defined( __parallel ) |
---|
[108] | 540 | IF ( coupling_mode /= 'uncoupled' .AND. terminate_coupled == 0 ) THEN |
---|
| 541 | terminate_coupled = 2 |
---|
[667] | 542 | IF ( myid == 0 ) THEN |
---|
| 543 | CALL MPI_SENDRECV( & |
---|
| 544 | terminate_coupled, 1, MPI_INTEGER, target_id, 0, & |
---|
| 545 | terminate_coupled_remote, 1, MPI_INTEGER, target_id, 0, & |
---|
| 546 | comm_inter, status, ierr ) |
---|
| 547 | ENDIF |
---|
| 548 | CALL MPI_BCAST( terminate_coupled_remote, 1, MPI_INTEGER, 0, comm2d, ierr) |
---|
[108] | 549 | ENDIF |
---|
[222] | 550 | #endif |
---|
[1] | 551 | ENDIF |
---|
| 552 | |
---|
| 553 | ! |
---|
[1001] | 554 | !-- Ensure a smooth value (two significant digits) of the timestep. |
---|
| 555 | div = 1000.0 |
---|
| 556 | DO WHILE ( dt_3d < div ) |
---|
| 557 | div = div / 10.0 |
---|
| 558 | ENDDO |
---|
| 559 | dt_3d = NINT( dt_3d * 100.0 / div ) * div / 100.0 |
---|
[1] | 560 | |
---|
| 561 | ! |
---|
[1001] | 562 | !-- Adjust the time step |
---|
| 563 | old_dt = dt_3d |
---|
[1] | 564 | |
---|
[1001] | 565 | ENDIF |
---|
[1] | 566 | |
---|
| 567 | CALL cpu_log( log_point(12), 'calculate_timestep', 'stop' ) |
---|
| 568 | |
---|
| 569 | END SUBROUTINE timestep |
---|