1 | !> @file time_integration_spinup.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: time_integration_spinup.f90 2297 2017-06-28 14:35:57Z scharf $ |
---|
27 | ! bugfixes |
---|
28 | ! |
---|
29 | ! 2296 2017-06-28 07:53:56Z maronga |
---|
30 | ! Initial revision |
---|
31 | ! |
---|
32 | ! |
---|
33 | ! |
---|
34 | ! |
---|
35 | ! Description: |
---|
36 | ! ------------ |
---|
37 | !> Integration in time of the non-atmospheric model components such as land |
---|
38 | !> surface model and urban surface model |
---|
39 | !------------------------------------------------------------------------------! |
---|
40 | SUBROUTINE time_integration_spinup |
---|
41 | |
---|
42 | USE arrays_3d, & |
---|
43 | ONLY: pt, pt_p |
---|
44 | |
---|
45 | USE control_parameters, & |
---|
46 | ONLY: averaging_interval_pr, constant_diffusion, constant_flux_layer, & |
---|
47 | coupling_start_time, current_timestep_number, & |
---|
48 | data_output_during_spinup, disturbance_created, dopr_n, do_sum, & |
---|
49 | dt_averaging_input_pr, dt_dopr, dt_dots, dt_run_control, & |
---|
50 | dt_spinup, humidity, intermediate_timestep_count, & |
---|
51 | intermediate_timestep_count_max, land_surface, & |
---|
52 | nr_timesteps_this_run, simulated_time, simulated_time_chr, & |
---|
53 | skip_time_dopr, spinup, spinup_pt_amplitude, spinup_pt_mean, & |
---|
54 | spinup_time, timestep_count, timestep_scheme, time_dopr, & |
---|
55 | time_dopr_av, time_dots, time_run_control, & |
---|
56 | time_since_reference_point, urban_surface |
---|
57 | |
---|
58 | USE constants, & |
---|
59 | ONLY: pi |
---|
60 | |
---|
61 | USE cpulog, & |
---|
62 | ONLY: cpu_log, log_point, log_point_s |
---|
63 | |
---|
64 | USE indices, & |
---|
65 | ONLY: nbgp, nzb, nzt, nysg, nyng, nxlg, nxrg |
---|
66 | |
---|
67 | |
---|
68 | USE land_surface_model_mod, & |
---|
69 | ONLY: lsm_energy_balance, lsm_soil_model, lsm_swap_timelevel, & |
---|
70 | skip_time_do_lsm |
---|
71 | |
---|
72 | USE pegrid |
---|
73 | |
---|
74 | USE kinds |
---|
75 | |
---|
76 | USE radiation_model_mod, & |
---|
77 | ONLY: dt_radiation, force_radiation_call, radiation, & |
---|
78 | radiation_control, skip_time_do_radiation, time_radiation |
---|
79 | |
---|
80 | USE statistics, & |
---|
81 | ONLY: flow_statistics_called |
---|
82 | |
---|
83 | USE surface_layer_fluxes_mod, & |
---|
84 | ONLY: surface_layer_fluxes |
---|
85 | |
---|
86 | USE surface_mod, & |
---|
87 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
88 | surf_usm_v |
---|
89 | |
---|
90 | USE urban_surface_mod, & |
---|
91 | ONLY: usm_material_heat_model, usm_material_model, & |
---|
92 | usm_radiation, usm_surface_energy_balance, usm_swap_timelevel |
---|
93 | |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | IMPLICIT NONE |
---|
98 | |
---|
99 | CHARACTER (LEN=9) :: time_to_string !< |
---|
100 | |
---|
101 | INTEGER(iwp) :: i |
---|
102 | INTEGER(iwp) :: j |
---|
103 | INTEGER(iwp) :: k |
---|
104 | INTEGER(iwp) :: l |
---|
105 | INTEGER(iwp) :: m |
---|
106 | |
---|
107 | REAL(wp) :: pt_spinup !< temporary storage of temperature |
---|
108 | |
---|
109 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_save !< temporary storage of temperature |
---|
110 | |
---|
111 | REAL(wp) :: day_length = 43200.0_wp !! must be calculated from time_utc_init, day_init, and latitude/longitude |
---|
112 | |
---|
113 | ALLOCATE( pt_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
114 | |
---|
115 | CALL exchange_horiz( pt_p, nbgp ) |
---|
116 | pt_save = pt_p |
---|
117 | |
---|
118 | CALL location_message( 'starting spinup-sequence', .TRUE. ) |
---|
119 | ! |
---|
120 | !-- Start of the time loop |
---|
121 | DO WHILE ( simulated_time < spinup_time ) |
---|
122 | |
---|
123 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'start' ) |
---|
124 | |
---|
125 | ! |
---|
126 | !-- Start of intermediate step loop |
---|
127 | intermediate_timestep_count = 0 |
---|
128 | DO WHILE ( intermediate_timestep_count < & |
---|
129 | intermediate_timestep_count_max ) |
---|
130 | |
---|
131 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
132 | |
---|
133 | ! |
---|
134 | !-- Set the steering factors for the prognostic equations which depend |
---|
135 | !-- on the timestep scheme |
---|
136 | CALL timestep_scheme_steering |
---|
137 | |
---|
138 | |
---|
139 | !!!! Set new values of pt_p here |
---|
140 | pt_spinup = spinup_pt_mean + spinup_pt_amplitude * SIN( pi* (time_since_reference_point/day_length) - pi) |
---|
141 | |
---|
142 | IF ( land_surface ) THEN |
---|
143 | DO m = 1, surf_lsm_h%ns |
---|
144 | i = surf_lsm_h%i(m) |
---|
145 | j = surf_lsm_h%j(m) |
---|
146 | k = surf_lsm_h%k(m) |
---|
147 | pt_p(k,j,i) = pt_spinup |
---|
148 | ENDDO |
---|
149 | |
---|
150 | DO l = 0, 3 |
---|
151 | DO m = 1, surf_lsm_v(l)%ns |
---|
152 | i = surf_lsm_v(l)%i(m) |
---|
153 | j = surf_lsm_v(l)%j(m) |
---|
154 | k = surf_lsm_v(l)%k(m) |
---|
155 | pt_p(k,j,i) = pt_spinup |
---|
156 | ENDDO |
---|
157 | ENDDO |
---|
158 | ENDIF |
---|
159 | |
---|
160 | IF ( urban_surface ) THEN |
---|
161 | DO m = 1, surf_usm_h%ns |
---|
162 | i = surf_usm_h%i(m) |
---|
163 | j = surf_usm_h%j(m) |
---|
164 | k = surf_usm_h%k(m) |
---|
165 | pt_p(k,j,i) = pt_spinup |
---|
166 | ENDDO |
---|
167 | |
---|
168 | DO l = 0, 3 |
---|
169 | DO m = 1, surf_usm_v(l)%ns |
---|
170 | i = surf_usm_v(l)%i(m) |
---|
171 | j = surf_usm_v(l)%j(m) |
---|
172 | k = surf_usm_v(l)%k(m) |
---|
173 | pt_p(k,j,i) = pt_spinup |
---|
174 | ENDDO |
---|
175 | ENDDO |
---|
176 | ENDIF |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Swap the time levels in preparation for the next time step. |
---|
180 | timestep_count = timestep_count + 1 |
---|
181 | |
---|
182 | IF ( land_surface ) THEN |
---|
183 | CALL lsm_swap_timelevel ( 0 ) |
---|
184 | ENDIF |
---|
185 | |
---|
186 | IF ( urban_surface ) THEN |
---|
187 | CALL usm_swap_timelevel ( 0 ) |
---|
188 | ENDIF |
---|
189 | |
---|
190 | IF ( land_surface ) THEN |
---|
191 | CALL lsm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
192 | ENDIF |
---|
193 | |
---|
194 | IF ( urban_surface ) THEN |
---|
195 | CALL usm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
196 | ENDIF |
---|
197 | |
---|
198 | ! |
---|
199 | !-- If required, compute virtual potential temperature |
---|
200 | IF ( humidity ) THEN |
---|
201 | CALL compute_vpt |
---|
202 | ENDIF |
---|
203 | |
---|
204 | ! |
---|
205 | !-- Compute the diffusion quantities |
---|
206 | IF ( .NOT. constant_diffusion ) THEN |
---|
207 | |
---|
208 | ! |
---|
209 | !-- First the vertical (and horizontal) fluxes in the surface |
---|
210 | !-- (constant flux) layer are computed |
---|
211 | IF ( constant_flux_layer ) THEN |
---|
212 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) |
---|
213 | CALL surface_layer_fluxes |
---|
214 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) |
---|
215 | ENDIF |
---|
216 | |
---|
217 | ! |
---|
218 | !-- If required, solve the energy balance for the surface and run soil |
---|
219 | !-- model. Call for horizontal as well as vertical surfaces |
---|
220 | IF ( land_surface .AND. simulated_time > skip_time_do_lsm) THEN |
---|
221 | |
---|
222 | CALL cpu_log( log_point(54), 'land_surface', 'start' ) |
---|
223 | ! |
---|
224 | !-- Call for horizontal upward-facing surfaces |
---|
225 | CALL lsm_energy_balance( .TRUE., -1 ) |
---|
226 | CALL lsm_soil_model( .TRUE., -1 ) |
---|
227 | ! |
---|
228 | !-- Call for northward-facing surfaces |
---|
229 | CALL lsm_energy_balance( .FALSE., 0 ) |
---|
230 | CALL lsm_soil_model( .FALSE., 0 ) |
---|
231 | ! |
---|
232 | !-- Call for southward-facing surfaces |
---|
233 | CALL lsm_energy_balance( .FALSE., 1 ) |
---|
234 | CALL lsm_soil_model( .FALSE., 1 ) |
---|
235 | ! |
---|
236 | !-- Call for eastward-facing surfaces |
---|
237 | CALL lsm_energy_balance( .FALSE., 2 ) |
---|
238 | CALL lsm_soil_model( .FALSE., 2 ) |
---|
239 | ! |
---|
240 | !-- Call for westward-facing surfaces |
---|
241 | CALL lsm_energy_balance( .FALSE., 3 ) |
---|
242 | CALL lsm_soil_model( .FALSE., 3 ) |
---|
243 | |
---|
244 | CALL cpu_log( log_point(54), 'land_surface', 'stop' ) |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! |
---|
248 | !-- If required, solve the energy balance for urban surfaces and run |
---|
249 | !-- the material heat model |
---|
250 | IF (urban_surface) THEN |
---|
251 | CALL cpu_log( log_point(74), 'urban_surface', 'start' ) |
---|
252 | CALL usm_surface_energy_balance |
---|
253 | IF ( usm_material_model ) THEN |
---|
254 | CALL usm_material_heat_model |
---|
255 | ENDIF |
---|
256 | CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) |
---|
257 | ENDIF |
---|
258 | |
---|
259 | ENDIF |
---|
260 | |
---|
261 | ! |
---|
262 | !-- If required, calculate radiative fluxes and heating rates |
---|
263 | IF ( radiation .AND. intermediate_timestep_count & |
---|
264 | == intermediate_timestep_count_max .AND. simulated_time > & |
---|
265 | skip_time_do_radiation ) THEN |
---|
266 | |
---|
267 | time_radiation = time_radiation + dt_spinup |
---|
268 | |
---|
269 | IF ( time_radiation >= dt_radiation .OR. force_radiation_call ) & |
---|
270 | THEN |
---|
271 | |
---|
272 | CALL cpu_log( log_point(50), 'radiation', 'start' ) |
---|
273 | |
---|
274 | IF ( .NOT. force_radiation_call ) THEN |
---|
275 | time_radiation = time_radiation - dt_radiation |
---|
276 | ENDIF |
---|
277 | |
---|
278 | CALL radiation_control |
---|
279 | |
---|
280 | CALL cpu_log( log_point(50), 'radiation', 'stop' ) |
---|
281 | |
---|
282 | IF (urban_surface) THEN |
---|
283 | CALL cpu_log( log_point(75), 'usm_radiation', 'start' ) |
---|
284 | CALL usm_radiation |
---|
285 | CALL cpu_log( log_point(75), 'usm_radiation', 'stop' ) |
---|
286 | ENDIF |
---|
287 | ENDIF |
---|
288 | ENDIF |
---|
289 | |
---|
290 | ENDDO ! Intermediate step loop |
---|
291 | |
---|
292 | ! |
---|
293 | !-- Increase simulation time and output times |
---|
294 | nr_timesteps_this_run = nr_timesteps_this_run + 1 |
---|
295 | current_timestep_number = current_timestep_number + 1 |
---|
296 | simulated_time = simulated_time + dt_spinup |
---|
297 | simulated_time_chr = time_to_string( simulated_time ) |
---|
298 | time_since_reference_point = simulated_time - coupling_start_time |
---|
299 | |
---|
300 | IF ( data_output_during_spinup ) THEN |
---|
301 | time_dots = time_dots + dt_spinup |
---|
302 | IF ( simulated_time >= skip_time_dopr ) THEN |
---|
303 | time_dopr = time_dopr + dt_spinup |
---|
304 | ENDIF |
---|
305 | time_run_control = time_run_control + dt_spinup |
---|
306 | |
---|
307 | ! |
---|
308 | !-- Carry out statistical analysis and output at the requested output times. |
---|
309 | !-- The MOD function is used for calculating the output time counters (like |
---|
310 | !-- time_dopr) in order to regard a possible decrease of the output time |
---|
311 | !-- interval in case of restart runs |
---|
312 | |
---|
313 | ! |
---|
314 | !-- Set a flag indicating that so far no statistics have been created |
---|
315 | !-- for this time step |
---|
316 | flow_statistics_called = .FALSE. |
---|
317 | |
---|
318 | ! |
---|
319 | !-- If required, call flow_statistics for averaging in time |
---|
320 | IF ( averaging_interval_pr /= 0.0_wp .AND. & |
---|
321 | ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & |
---|
322 | simulated_time >= skip_time_dopr ) THEN |
---|
323 | time_dopr_av = time_dopr_av + dt_spinup |
---|
324 | IF ( time_dopr_av >= dt_averaging_input_pr ) THEN |
---|
325 | do_sum = .TRUE. |
---|
326 | time_dopr_av = MOD( time_dopr_av, & |
---|
327 | MAX( dt_averaging_input_pr, dt_spinup ) ) |
---|
328 | ENDIF |
---|
329 | ENDIF |
---|
330 | IF ( do_sum ) CALL flow_statistics |
---|
331 | |
---|
332 | ! |
---|
333 | !-- Output of profiles |
---|
334 | IF ( time_dopr >= dt_dopr ) THEN |
---|
335 | IF ( dopr_n /= 0 ) CALL data_output_profiles |
---|
336 | time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_spinup ) ) |
---|
337 | time_dopr_av = 0.0_wp ! due to averaging (see above) |
---|
338 | ENDIF |
---|
339 | |
---|
340 | ! |
---|
341 | !-- Output of time series |
---|
342 | IF ( time_dots >= dt_dots ) THEN |
---|
343 | CALL data_output_tseries |
---|
344 | time_dots = MOD( time_dots, MAX( dt_dots, dt_spinup ) ) |
---|
345 | ENDIF |
---|
346 | |
---|
347 | ENDIF |
---|
348 | |
---|
349 | ! |
---|
350 | !-- Computation and output of run control parameters. |
---|
351 | !-- This is also done whenever perturbations have been imposed |
---|
352 | IF ( time_run_control >= dt_run_control .OR. & |
---|
353 | timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & |
---|
354 | THEN |
---|
355 | CALL run_control |
---|
356 | IF ( time_run_control >= dt_run_control ) THEN |
---|
357 | time_run_control = MOD( time_run_control, & |
---|
358 | MAX( dt_run_control, dt_spinup ) ) |
---|
359 | ENDIF |
---|
360 | ENDIF |
---|
361 | |
---|
362 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'stop' ) |
---|
363 | |
---|
364 | IF ( myid == 0 ) THEN |
---|
365 | PRINT*, time_since_reference_point |
---|
366 | ENDIF |
---|
367 | |
---|
368 | ENDDO ! time loop |
---|
369 | |
---|
370 | ! |
---|
371 | !-- Write back saved temperature to the 3D arrays |
---|
372 | pt(:,:,:) = pt_save |
---|
373 | pt_p(:,:,:) = pt_save |
---|
374 | |
---|
375 | DEALLOCATE(pt_save) |
---|
376 | |
---|
377 | CALL location_message( 'finished time-stepping spinup', .TRUE. ) |
---|
378 | |
---|
379 | END SUBROUTINE time_integration_spinup |
---|