[2296] | 1 | !> @file time_integration_spinup.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[2296] | 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2296] | 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: time_integration_spinup.f90 2818 2018-02-19 16:42:36Z maronga $ |
---|
[2818] | 27 | ! Velocity components near walls/ground are now set to the profiles stored in |
---|
| 28 | ! u_init and v_init. Activated soil moisture calculation during spinup. |
---|
| 29 | ! |
---|
| 30 | ! 2782 2018-02-02 11:51:10Z maronga |
---|
[2782] | 31 | ! Bugfix and re-activation of homogeneous setting of velocity components |
---|
| 32 | ! during spinup |
---|
| 33 | ! |
---|
| 34 | ! 2758 2018-01-17 12:55:21Z suehring |
---|
[2758] | 35 | ! Comment out homogeneous setting of wind velocity as this will lead to zero |
---|
| 36 | ! friction velocity and cause problems in MOST relationships. |
---|
| 37 | ! |
---|
| 38 | ! 2728 2018-01-09 07:03:53Z maronga |
---|
[2728] | 39 | ! Set velocity componenets to homogeneous values during spinup |
---|
| 40 | ! |
---|
| 41 | ! 2724 2018-01-05 12:12:38Z maronga |
---|
[2724] | 42 | ! Use dt_spinup for all active components during spinup |
---|
| 43 | ! |
---|
| 44 | ! 2723 2018-01-05 09:27:03Z maronga |
---|
[2723] | 45 | ! Bugfix: array rad_sw_in no longer exists and is thus removed from RUN_CONTROL |
---|
| 46 | ! output. |
---|
| 47 | ! Added output of XY and 3D data during spinup. |
---|
| 48 | ! Bugfix: time step in LSM and USM was set to dt_3d instead of dt_spinup |
---|
| 49 | ! |
---|
| 50 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 51 | ! Corrected "Former revisions" section |
---|
| 52 | ! |
---|
| 53 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 54 | ! Change in file header (GPL part) |
---|
[2696] | 55 | ! Added radiation interactions (moved from USM) (MS) |
---|
| 56 | ! |
---|
| 57 | ! 2544 2017-10-13 18:09:32Z maronga |
---|
[2544] | 58 | ! Date and time quantities are now read from date_and_time_mod |
---|
| 59 | ! |
---|
| 60 | ! 2299 2017-06-29 10:14:38Z maronga |
---|
[2299] | 61 | ! Call of soil model adjusted to avoid prognostic equation for soil moisture |
---|
| 62 | ! during spinup. |
---|
| 63 | ! Better representation of diurnal cycle of near-surface temperature. |
---|
| 64 | ! Excluded prognostic equation for soil moisture during spinup. |
---|
| 65 | ! Added output of run control data for spinup. |
---|
| 66 | ! |
---|
| 67 | ! 2297 2017-06-28 14:35:57Z scharf |
---|
[2297] | 68 | ! bugfixes |
---|
| 69 | ! |
---|
| 70 | ! 2296 2017-06-28 07:53:56Z maronga |
---|
[2296] | 71 | ! Initial revision |
---|
| 72 | ! |
---|
| 73 | ! |
---|
| 74 | ! Description: |
---|
| 75 | ! ------------ |
---|
| 76 | !> Integration in time of the non-atmospheric model components such as land |
---|
| 77 | !> surface model and urban surface model |
---|
| 78 | !------------------------------------------------------------------------------! |
---|
| 79 | SUBROUTINE time_integration_spinup |
---|
| 80 | |
---|
| 81 | USE arrays_3d, & |
---|
[2818] | 82 | ONLY: pt, pt_p, u, u_init, v, v_init |
---|
[2296] | 83 | |
---|
| 84 | USE control_parameters, & |
---|
[2297] | 85 | ONLY: averaging_interval_pr, constant_diffusion, constant_flux_layer, & |
---|
| 86 | coupling_start_time, current_timestep_number, & |
---|
| 87 | data_output_during_spinup, disturbance_created, dopr_n, do_sum, & |
---|
[2728] | 88 | dt_averaging_input_pr, dt_dopr, dt_dots, dt_do2d_xy, dt_do3d, & |
---|
| 89 | dt_run_control, dt_spinup, dt_3d, humidity, & |
---|
| 90 | intermediate_timestep_count, & |
---|
[2297] | 91 | intermediate_timestep_count_max, land_surface, & |
---|
[2723] | 92 | simulated_time, simulated_time_chr, & |
---|
[2728] | 93 | skip_time_dopr, skip_time_do2d_xy, skip_time_do3d, spinup, & |
---|
| 94 | spinup_pt_amplitude, spinup_pt_mean, spinup_time, & |
---|
| 95 | timestep_count, timestep_scheme, time_dopr, time_dopr_av, & |
---|
| 96 | time_dots, time_do2d_xy, time_do3d, time_run_control, & |
---|
| 97 | time_since_reference_point, ug_surface, vg_surface, urban_surface |
---|
[2296] | 98 | |
---|
| 99 | USE constants, & |
---|
| 100 | ONLY: pi |
---|
| 101 | |
---|
| 102 | USE cpulog, & |
---|
| 103 | ONLY: cpu_log, log_point, log_point_s |
---|
| 104 | |
---|
[2544] | 105 | USE date_and_time_mod, & |
---|
| 106 | ONLY: day_of_year_init, time_utc_init |
---|
| 107 | |
---|
[2296] | 108 | USE indices, & |
---|
| 109 | ONLY: nbgp, nzb, nzt, nysg, nyng, nxlg, nxrg |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | USE land_surface_model_mod, & |
---|
[2299] | 113 | ONLY: lsm_energy_balance, lsm_soil_model, lsm_swap_timelevel |
---|
[2296] | 114 | |
---|
[2299] | 115 | USE pegrid, & |
---|
| 116 | ONLY: myid |
---|
[2296] | 117 | |
---|
| 118 | USE kinds |
---|
| 119 | |
---|
| 120 | USE radiation_model_mod, & |
---|
[2724] | 121 | ONLY: force_radiation_call, radiation, & |
---|
[2696] | 122 | radiation_control, rad_sw_in, time_radiation, & |
---|
| 123 | radiation_interaction, radiation_interactions |
---|
[2296] | 124 | |
---|
| 125 | USE statistics, & |
---|
| 126 | ONLY: flow_statistics_called |
---|
| 127 | |
---|
| 128 | USE surface_layer_fluxes_mod, & |
---|
| 129 | ONLY: surface_layer_fluxes |
---|
| 130 | |
---|
[2297] | 131 | USE surface_mod, & |
---|
| 132 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
[2296] | 133 | surf_usm_v |
---|
| 134 | |
---|
| 135 | USE urban_surface_mod, & |
---|
| 136 | ONLY: usm_material_heat_model, usm_material_model, & |
---|
[2696] | 137 | usm_surface_energy_balance, usm_swap_timelevel, & |
---|
| 138 | usm_green_heat_model, usm_temperature_near_surface |
---|
[2296] | 139 | |
---|
| 140 | |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | IMPLICIT NONE |
---|
| 144 | |
---|
| 145 | CHARACTER (LEN=9) :: time_to_string !< |
---|
| 146 | |
---|
[2299] | 147 | INTEGER(iwp) :: i !< running index |
---|
| 148 | INTEGER(iwp) :: j !< running index |
---|
| 149 | INTEGER(iwp) :: k !< running index |
---|
| 150 | INTEGER(iwp) :: l !< running index |
---|
| 151 | INTEGER(iwp) :: m !< running index |
---|
| 152 | |
---|
| 153 | INTEGER(iwp) :: current_timestep_number_spinup = 0 !< number if timestep during spinup |
---|
[2296] | 154 | |
---|
[2299] | 155 | LOGICAL :: run_control_header_spinup = .FALSE. !< flag parameter for steering whether the header information must be output |
---|
| 156 | |
---|
[2296] | 157 | REAL(wp) :: pt_spinup !< temporary storage of temperature |
---|
[2723] | 158 | REAL(wp) :: dt_save !< temporary storage for time step |
---|
[2296] | 159 | |
---|
[2728] | 160 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_save !< temporary storage of temperature |
---|
| 161 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_save !< temporary storage of u wind component |
---|
| 162 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_save !< temporary storage of v wind component |
---|
[2296] | 163 | |
---|
[2728] | 164 | |
---|
| 165 | ! |
---|
| 166 | !-- Save 3D arrays because they are to be changed for spinup purpose |
---|
[2296] | 167 | ALLOCATE( pt_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[2728] | 168 | ALLOCATE( u_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 169 | ALLOCATE( v_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[2296] | 170 | |
---|
[2299] | 171 | CALL exchange_horiz( pt, nbgp ) |
---|
[2728] | 172 | CALL exchange_horiz( u, nbgp ) |
---|
| 173 | CALL exchange_horiz( v, nbgp ) |
---|
| 174 | |
---|
[2299] | 175 | pt_save = pt |
---|
[2728] | 176 | u_save = u |
---|
| 177 | v_save = v |
---|
[2296] | 178 | |
---|
[2728] | 179 | ! |
---|
| 180 | !-- Set the same wall-adjacent velocity to all grid points. The sign of the |
---|
| 181 | !-- original velocity field must be preserved because the surface schemes crash |
---|
| 182 | !-- otherwise. The precise reason is still unknown. A minimum velocity of 0.1 |
---|
| 183 | !-- m/s is used to maintain turbulent transfer at the surface. |
---|
[2782] | 184 | IF ( land_surface ) THEN |
---|
| 185 | DO m = 1, surf_lsm_h%ns |
---|
| 186 | i = surf_lsm_h%i(m) |
---|
| 187 | j = surf_lsm_h%j(m) |
---|
| 188 | k = surf_lsm_h%k(m) |
---|
[2818] | 189 | u(k,j,i) = SIGN(1.0_wp,u_init(k)) * MAX(u_init(k),0.1_wp) |
---|
| 190 | v(k,j,i) = SIGN(1.0_wp,v_init(k)) * MAX(v_init(k),0.1_wp) |
---|
[2782] | 191 | ENDDO |
---|
[2728] | 192 | |
---|
[2782] | 193 | DO l = 0, 3 |
---|
| 194 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 195 | i = surf_lsm_v(l)%i(m) |
---|
| 196 | j = surf_lsm_v(l)%j(m) |
---|
| 197 | k = surf_lsm_v(l)%k(m) |
---|
[2818] | 198 | u(k,j,i) = SIGN(1.0_wp,u_init(k)) * MAX(u_init(k),0.1_wp) |
---|
| 199 | v(k,j,i) = SIGN(1.0_wp,v_init(k)) * MAX(v_init(k),0.1_wp) |
---|
[2782] | 200 | ENDDO |
---|
| 201 | ENDDO |
---|
| 202 | ENDIF |
---|
| 203 | |
---|
| 204 | IF ( urban_surface ) THEN |
---|
| 205 | DO m = 1, surf_usm_h%ns |
---|
| 206 | i = surf_usm_h%i(m) |
---|
| 207 | j = surf_usm_h%j(m) |
---|
| 208 | k = surf_usm_h%k(m) |
---|
[2818] | 209 | u(k,j,i) = SIGN(1.0_wp,u_init(k)) * MAX(u_init(k),0.1_wp) |
---|
| 210 | v(k,j,i) = SIGN(1.0_wp,v_init(k)) * MAX(v_init(k),0.1_wp) |
---|
[2782] | 211 | ENDDO |
---|
| 212 | |
---|
| 213 | DO l = 0, 3 |
---|
| 214 | DO m = 1, surf_usm_v(l)%ns |
---|
| 215 | i = surf_usm_v(l)%i(m) |
---|
| 216 | j = surf_usm_v(l)%j(m) |
---|
| 217 | k = surf_usm_v(l)%k(m) |
---|
[2818] | 218 | u(k,j,i) = SIGN(1.0_wp,u_init(k)) * MAX(u_init(k),0.1_wp) |
---|
| 219 | v(k,j,i) = SIGN(1.0_wp,v_init(k)) * MAX(v_init(k),0.1_wp) |
---|
[2782] | 220 | ENDDO |
---|
| 221 | ENDDO |
---|
| 222 | ENDIF |
---|
| 223 | |
---|
[2818] | 224 | CALL exchange_horiz( u, nbgp ) |
---|
| 225 | CALL exchange_horiz( v, nbgp ) |
---|
| 226 | |
---|
[2723] | 227 | dt_save = dt_3d |
---|
| 228 | dt_3d = dt_spinup |
---|
| 229 | |
---|
[2296] | 230 | CALL location_message( 'starting spinup-sequence', .TRUE. ) |
---|
| 231 | ! |
---|
| 232 | !-- Start of the time loop |
---|
| 233 | DO WHILE ( simulated_time < spinup_time ) |
---|
| 234 | |
---|
| 235 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'start' ) |
---|
| 236 | |
---|
| 237 | ! |
---|
| 238 | !-- Start of intermediate step loop |
---|
| 239 | intermediate_timestep_count = 0 |
---|
| 240 | DO WHILE ( intermediate_timestep_count < & |
---|
| 241 | intermediate_timestep_count_max ) |
---|
| 242 | |
---|
| 243 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 244 | |
---|
| 245 | ! |
---|
| 246 | !-- Set the steering factors for the prognostic equations which depend |
---|
| 247 | !-- on the timestep scheme |
---|
| 248 | CALL timestep_scheme_steering |
---|
| 249 | |
---|
| 250 | |
---|
[2299] | 251 | ! |
---|
| 252 | !-- Estimate a near-surface air temperature based on the position of the |
---|
| 253 | !-- sun and user input about mean temperature and amplitude. The time is |
---|
| 254 | !-- shifted by one hour to simulate a lag between air temperature and |
---|
| 255 | !-- incoming radiation |
---|
| 256 | pt_spinup = spinup_pt_mean + spinup_pt_amplitude & |
---|
| 257 | * solar_angle (time_utc_init + time_since_reference_point - 3600.0) |
---|
[2296] | 258 | |
---|
[2299] | 259 | ! |
---|
| 260 | !-- Map air temperature to all grid points in the vicinity of a surface |
---|
| 261 | !-- element |
---|
[2296] | 262 | IF ( land_surface ) THEN |
---|
| 263 | DO m = 1, surf_lsm_h%ns |
---|
| 264 | i = surf_lsm_h%i(m) |
---|
| 265 | j = surf_lsm_h%j(m) |
---|
| 266 | k = surf_lsm_h%k(m) |
---|
[2299] | 267 | pt(k,j,i) = pt_spinup |
---|
[2296] | 268 | ENDDO |
---|
| 269 | |
---|
| 270 | DO l = 0, 3 |
---|
| 271 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 272 | i = surf_lsm_v(l)%i(m) |
---|
| 273 | j = surf_lsm_v(l)%j(m) |
---|
| 274 | k = surf_lsm_v(l)%k(m) |
---|
[2299] | 275 | pt(k,j,i) = pt_spinup |
---|
[2296] | 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | ENDIF |
---|
| 279 | |
---|
| 280 | IF ( urban_surface ) THEN |
---|
| 281 | DO m = 1, surf_usm_h%ns |
---|
| 282 | i = surf_usm_h%i(m) |
---|
| 283 | j = surf_usm_h%j(m) |
---|
| 284 | k = surf_usm_h%k(m) |
---|
[2299] | 285 | pt(k,j,i) = pt_spinup |
---|
[2296] | 286 | ENDDO |
---|
| 287 | |
---|
| 288 | DO l = 0, 3 |
---|
| 289 | DO m = 1, surf_usm_v(l)%ns |
---|
| 290 | i = surf_usm_v(l)%i(m) |
---|
| 291 | j = surf_usm_v(l)%j(m) |
---|
| 292 | k = surf_usm_v(l)%k(m) |
---|
[2299] | 293 | pt(k,j,i) = pt_spinup |
---|
[2296] | 294 | ENDDO |
---|
| 295 | ENDDO |
---|
| 296 | ENDIF |
---|
| 297 | |
---|
[2818] | 298 | CALL exchange_horiz( pt, nbgp ) |
---|
| 299 | |
---|
| 300 | |
---|
[2296] | 301 | ! |
---|
| 302 | !-- Swap the time levels in preparation for the next time step. |
---|
| 303 | timestep_count = timestep_count + 1 |
---|
| 304 | |
---|
| 305 | IF ( land_surface ) THEN |
---|
| 306 | CALL lsm_swap_timelevel ( 0 ) |
---|
| 307 | ENDIF |
---|
| 308 | |
---|
| 309 | IF ( urban_surface ) THEN |
---|
| 310 | CALL usm_swap_timelevel ( 0 ) |
---|
| 311 | ENDIF |
---|
| 312 | |
---|
| 313 | IF ( land_surface ) THEN |
---|
| 314 | CALL lsm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
| 315 | ENDIF |
---|
| 316 | |
---|
| 317 | IF ( urban_surface ) THEN |
---|
| 318 | CALL usm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
| 319 | ENDIF |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- If required, compute virtual potential temperature |
---|
| 323 | IF ( humidity ) THEN |
---|
| 324 | CALL compute_vpt |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Compute the diffusion quantities |
---|
| 329 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 330 | |
---|
| 331 | ! |
---|
| 332 | !-- First the vertical (and horizontal) fluxes in the surface |
---|
| 333 | !-- (constant flux) layer are computed |
---|
| 334 | IF ( constant_flux_layer ) THEN |
---|
| 335 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) |
---|
| 336 | CALL surface_layer_fluxes |
---|
| 337 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) |
---|
| 338 | ENDIF |
---|
| 339 | |
---|
| 340 | ! |
---|
| 341 | !-- If required, solve the energy balance for the surface and run soil |
---|
[2299] | 342 | !-- model. Call for horizontal as well as vertical surfaces. |
---|
| 343 | !-- The prognostic equation for soil moisure is switched off |
---|
| 344 | IF ( land_surface ) THEN |
---|
[2296] | 345 | |
---|
| 346 | CALL cpu_log( log_point(54), 'land_surface', 'start' ) |
---|
| 347 | ! |
---|
| 348 | !-- Call for horizontal upward-facing surfaces |
---|
| 349 | CALL lsm_energy_balance( .TRUE., -1 ) |
---|
[2818] | 350 | CALL lsm_soil_model( .TRUE., -1, .TRUE. ) |
---|
[2296] | 351 | ! |
---|
| 352 | !-- Call for northward-facing surfaces |
---|
| 353 | CALL lsm_energy_balance( .FALSE., 0 ) |
---|
[2818] | 354 | CALL lsm_soil_model( .FALSE., 0, .TRUE. ) |
---|
[2296] | 355 | ! |
---|
| 356 | !-- Call for southward-facing surfaces |
---|
| 357 | CALL lsm_energy_balance( .FALSE., 1 ) |
---|
[2818] | 358 | CALL lsm_soil_model( .FALSE., 1, .TRUE. ) |
---|
[2296] | 359 | ! |
---|
| 360 | !-- Call for eastward-facing surfaces |
---|
| 361 | CALL lsm_energy_balance( .FALSE., 2 ) |
---|
[2818] | 362 | CALL lsm_soil_model( .FALSE., 2, .TRUE. ) |
---|
[2296] | 363 | ! |
---|
| 364 | !-- Call for westward-facing surfaces |
---|
| 365 | CALL lsm_energy_balance( .FALSE., 3 ) |
---|
[2818] | 366 | CALL lsm_soil_model( .FALSE., 3, .TRUE. ) |
---|
[2296] | 367 | |
---|
| 368 | CALL cpu_log( log_point(54), 'land_surface', 'stop' ) |
---|
| 369 | ENDIF |
---|
| 370 | |
---|
| 371 | ! |
---|
| 372 | !-- If required, solve the energy balance for urban surfaces and run |
---|
| 373 | !-- the material heat model |
---|
| 374 | IF (urban_surface) THEN |
---|
| 375 | CALL cpu_log( log_point(74), 'urban_surface', 'start' ) |
---|
| 376 | CALL usm_surface_energy_balance |
---|
| 377 | IF ( usm_material_model ) THEN |
---|
[2696] | 378 | CALL usm_green_heat_model |
---|
[2296] | 379 | CALL usm_material_heat_model |
---|
| 380 | ENDIF |
---|
[2696] | 381 | IF ( urban_surface ) THEN |
---|
| 382 | CALL usm_temperature_near_surface |
---|
| 383 | ENDIF |
---|
[2296] | 384 | CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) |
---|
| 385 | ENDIF |
---|
| 386 | |
---|
| 387 | ENDIF |
---|
| 388 | |
---|
| 389 | ! |
---|
| 390 | !-- If required, calculate radiative fluxes and heating rates |
---|
| 391 | IF ( radiation .AND. intermediate_timestep_count & |
---|
[2299] | 392 | == intermediate_timestep_count_max ) THEN |
---|
[2296] | 393 | |
---|
[2723] | 394 | time_radiation = time_radiation + dt_3d |
---|
[2296] | 395 | |
---|
[2724] | 396 | IF ( time_radiation >= dt_3d .OR. force_radiation_call ) & |
---|
[2296] | 397 | THEN |
---|
| 398 | |
---|
| 399 | CALL cpu_log( log_point(50), 'radiation', 'start' ) |
---|
| 400 | |
---|
| 401 | IF ( .NOT. force_radiation_call ) THEN |
---|
[2724] | 402 | time_radiation = time_radiation - dt_3d |
---|
[2296] | 403 | ENDIF |
---|
| 404 | |
---|
| 405 | CALL radiation_control |
---|
| 406 | |
---|
| 407 | CALL cpu_log( log_point(50), 'radiation', 'stop' ) |
---|
| 408 | |
---|
[2696] | 409 | IF ( radiation_interactions ) THEN |
---|
| 410 | CALL cpu_log( log_point(75), 'radiation_interaction', 'start' ) |
---|
| 411 | CALL radiation_interaction |
---|
| 412 | CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' ) |
---|
[2296] | 413 | ENDIF |
---|
| 414 | ENDIF |
---|
| 415 | ENDIF |
---|
| 416 | |
---|
| 417 | ENDDO ! Intermediate step loop |
---|
| 418 | |
---|
| 419 | ! |
---|
| 420 | !-- Increase simulation time and output times |
---|
[2299] | 421 | current_timestep_number_spinup = current_timestep_number_spinup + 1 |
---|
[2723] | 422 | simulated_time = simulated_time + dt_3d |
---|
[2296] | 423 | simulated_time_chr = time_to_string( simulated_time ) |
---|
| 424 | time_since_reference_point = simulated_time - coupling_start_time |
---|
| 425 | |
---|
| 426 | IF ( data_output_during_spinup ) THEN |
---|
[2723] | 427 | IF ( simulated_time >= skip_time_do2d_xy ) THEN |
---|
| 428 | time_do2d_xy = time_do2d_xy + dt_3d |
---|
| 429 | ENDIF |
---|
| 430 | IF ( simulated_time >= skip_time_do3d ) THEN |
---|
| 431 | time_do3d = time_do3d + dt_3d |
---|
| 432 | ENDIF |
---|
| 433 | time_dots = time_dots + dt_3d |
---|
[2296] | 434 | IF ( simulated_time >= skip_time_dopr ) THEN |
---|
[2723] | 435 | time_dopr = time_dopr + dt_3d |
---|
[2296] | 436 | ENDIF |
---|
[2723] | 437 | time_run_control = time_run_control + dt_3d |
---|
[2296] | 438 | |
---|
| 439 | ! |
---|
| 440 | !-- Carry out statistical analysis and output at the requested output times. |
---|
| 441 | !-- The MOD function is used for calculating the output time counters (like |
---|
| 442 | !-- time_dopr) in order to regard a possible decrease of the output time |
---|
| 443 | !-- interval in case of restart runs |
---|
| 444 | |
---|
| 445 | ! |
---|
| 446 | !-- Set a flag indicating that so far no statistics have been created |
---|
| 447 | !-- for this time step |
---|
| 448 | flow_statistics_called = .FALSE. |
---|
| 449 | |
---|
| 450 | ! |
---|
| 451 | !-- If required, call flow_statistics for averaging in time |
---|
| 452 | IF ( averaging_interval_pr /= 0.0_wp .AND. & |
---|
| 453 | ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & |
---|
| 454 | simulated_time >= skip_time_dopr ) THEN |
---|
[2723] | 455 | time_dopr_av = time_dopr_av + dt_3d |
---|
[2296] | 456 | IF ( time_dopr_av >= dt_averaging_input_pr ) THEN |
---|
| 457 | do_sum = .TRUE. |
---|
| 458 | time_dopr_av = MOD( time_dopr_av, & |
---|
[2723] | 459 | MAX( dt_averaging_input_pr, dt_3d ) ) |
---|
[2296] | 460 | ENDIF |
---|
| 461 | ENDIF |
---|
| 462 | IF ( do_sum ) CALL flow_statistics |
---|
| 463 | |
---|
| 464 | ! |
---|
| 465 | !-- Output of profiles |
---|
| 466 | IF ( time_dopr >= dt_dopr ) THEN |
---|
| 467 | IF ( dopr_n /= 0 ) CALL data_output_profiles |
---|
[2723] | 468 | time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) |
---|
[2296] | 469 | time_dopr_av = 0.0_wp ! due to averaging (see above) |
---|
| 470 | ENDIF |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | !-- Output of time series |
---|
| 474 | IF ( time_dots >= dt_dots ) THEN |
---|
| 475 | CALL data_output_tseries |
---|
[2723] | 476 | time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) |
---|
[2296] | 477 | ENDIF |
---|
| 478 | |
---|
[2723] | 479 | ! |
---|
| 480 | !-- 2d-data output (cross-sections) |
---|
| 481 | IF ( time_do2d_xy >= dt_do2d_xy ) THEN |
---|
| 482 | CALL data_output_2d( 'xy', 0 ) |
---|
| 483 | time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) |
---|
| 484 | ENDIF |
---|
| 485 | |
---|
| 486 | ! |
---|
| 487 | !-- 3d-data output (volume data) |
---|
| 488 | IF ( time_do3d >= dt_do3d ) THEN |
---|
| 489 | CALL data_output_3d( 0 ) |
---|
| 490 | time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) |
---|
| 491 | ENDIF |
---|
| 492 | |
---|
| 493 | |
---|
[2296] | 494 | ENDIF |
---|
| 495 | |
---|
| 496 | ! |
---|
| 497 | !-- Computation and output of run control parameters. |
---|
| 498 | !-- This is also done whenever perturbations have been imposed |
---|
[2299] | 499 | ! IF ( time_run_control >= dt_run_control .OR. & |
---|
| 500 | ! timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & |
---|
| 501 | ! THEN |
---|
| 502 | ! CALL run_control |
---|
| 503 | ! IF ( time_run_control >= dt_run_control ) THEN |
---|
| 504 | ! time_run_control = MOD( time_run_control, & |
---|
[2723] | 505 | ! MAX( dt_run_control, dt_3d ) ) |
---|
[2299] | 506 | ! ENDIF |
---|
| 507 | ! ENDIF |
---|
[2296] | 508 | |
---|
| 509 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'stop' ) |
---|
| 510 | |
---|
[2299] | 511 | |
---|
| 512 | ! |
---|
| 513 | !-- Run control output |
---|
[2296] | 514 | IF ( myid == 0 ) THEN |
---|
[2299] | 515 | ! |
---|
| 516 | !-- If necessary, write header |
---|
| 517 | IF ( .NOT. run_control_header_spinup ) THEN |
---|
| 518 | CALL check_open( 15 ) |
---|
| 519 | WRITE ( 15, 100 ) |
---|
| 520 | run_control_header_spinup = .TRUE. |
---|
| 521 | ENDIF |
---|
| 522 | ! |
---|
| 523 | !-- Write some general information about the spinup in run control file |
---|
[2723] | 524 | WRITE ( 15, 101 ) current_timestep_number_spinup, simulated_time_chr, dt_3d, pt_spinup |
---|
[2299] | 525 | ! |
---|
| 526 | !-- Write buffer contents to disc immediately |
---|
| 527 | FLUSH( 15 ) |
---|
[2296] | 528 | ENDIF |
---|
| 529 | |
---|
[2299] | 530 | |
---|
| 531 | |
---|
[2296] | 532 | ENDDO ! time loop |
---|
| 533 | |
---|
| 534 | ! |
---|
[2728] | 535 | !-- Write back saved arrays to the 3D arrays |
---|
| 536 | pt = pt_save |
---|
| 537 | pt_p = pt_save |
---|
| 538 | u = u_save |
---|
| 539 | v = v_save |
---|
[2296] | 540 | |
---|
[2723] | 541 | ! |
---|
| 542 | !-- Reset time step |
---|
| 543 | dt_3d = dt_save |
---|
| 544 | |
---|
[2296] | 545 | DEALLOCATE(pt_save) |
---|
[2728] | 546 | DEALLOCATE(u_save) |
---|
| 547 | DEALLOCATE(v_save) |
---|
[2296] | 548 | |
---|
[2299] | 549 | CALL location_message( 'finished spinup-sequence', .TRUE. ) |
---|
[2296] | 550 | |
---|
[2299] | 551 | |
---|
| 552 | ! |
---|
| 553 | !-- Formats |
---|
| 554 | 100 FORMAT (///'Spinup control output:'/ & |
---|
[2723] | 555 | '--------------------------------'// & |
---|
| 556 | 'ITER. HH:MM:SS DT PT(z_MO)'/ & |
---|
| 557 | '--------------------------------') |
---|
[2299] | 558 | 101 FORMAT (I5,2X,A9,1X,F6.2,3X,F6.2,2X,F6.2) |
---|
| 559 | |
---|
| 560 | CONTAINS |
---|
| 561 | |
---|
| 562 | ! |
---|
| 563 | !-- Returns the cosine of the solar zenith angle at a given time. This routine |
---|
| 564 | !-- is similar to that for calculation zenith (see radiation_model_mod.f90) |
---|
| 565 | FUNCTION solar_angle( local_time ) |
---|
| 566 | |
---|
| 567 | USE constants, & |
---|
[2544] | 568 | ONLY: pi |
---|
| 569 | |
---|
[2299] | 570 | USE kinds |
---|
| 571 | |
---|
| 572 | USE radiation_model_mod, & |
---|
[2544] | 573 | ONLY: decl_1, decl_2, decl_3, lat, lon |
---|
[2299] | 574 | |
---|
| 575 | IMPLICIT NONE |
---|
| 576 | |
---|
| 577 | |
---|
| 578 | REAL(wp) :: solar_angle !< cosine of the solar zenith angle |
---|
| 579 | |
---|
| 580 | REAL(wp) :: day !< day of the year |
---|
| 581 | REAL(wp) :: declination !< solar declination angle |
---|
| 582 | REAL(wp) :: hour_angle !< solar hour angle |
---|
| 583 | REAL(wp) :: time_utc !< current time in UTC |
---|
| 584 | REAL(wp), INTENT(IN) :: local_time |
---|
| 585 | ! |
---|
| 586 | !-- Calculate current day and time based on the initial values and simulation |
---|
| 587 | !-- time |
---|
| 588 | |
---|
[2544] | 589 | day = day_of_year_init + INT(FLOOR( local_time / 86400.0_wp ), KIND=iwp) |
---|
[2299] | 590 | time_utc = MOD(local_time, 86400.0_wp) |
---|
| 591 | |
---|
| 592 | |
---|
| 593 | ! |
---|
| 594 | !-- Calculate solar declination and hour angle |
---|
| 595 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day, KIND=wp) - decl_3) ) |
---|
| 596 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
| 597 | |
---|
| 598 | ! |
---|
| 599 | !-- Calculate cosine of solar zenith angle |
---|
| 600 | solar_angle = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
| 601 | * COS(hour_angle) |
---|
| 602 | |
---|
| 603 | |
---|
| 604 | END FUNCTION solar_angle |
---|
| 605 | |
---|
| 606 | |
---|
[2296] | 607 | END SUBROUTINE time_integration_spinup |
---|