[2296] | 1 | !> @file time_integration_spinup.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
| 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: time_integration_spinup.f90 2299 2017-06-29 10:14:38Z suehring $ |
---|
[2299] | 27 | ! Call of soil model adjusted to avoid prognostic equation for soil moisture |
---|
| 28 | ! during spinup. |
---|
| 29 | ! Better representation of diurnal cycle of near-surface temperature. |
---|
| 30 | ! Excluded prognostic equation for soil moisture during spinup. |
---|
| 31 | ! Added output of run control data for spinup. |
---|
| 32 | ! |
---|
| 33 | ! 2297 2017-06-28 14:35:57Z scharf |
---|
[2297] | 34 | ! bugfixes |
---|
| 35 | ! |
---|
| 36 | ! 2296 2017-06-28 07:53:56Z maronga |
---|
[2296] | 37 | ! Initial revision |
---|
| 38 | ! |
---|
| 39 | ! |
---|
| 40 | ! Description: |
---|
| 41 | ! ------------ |
---|
| 42 | !> Integration in time of the non-atmospheric model components such as land |
---|
| 43 | !> surface model and urban surface model |
---|
| 44 | !------------------------------------------------------------------------------! |
---|
| 45 | SUBROUTINE time_integration_spinup |
---|
| 46 | |
---|
| 47 | USE arrays_3d, & |
---|
| 48 | ONLY: pt, pt_p |
---|
| 49 | |
---|
| 50 | USE control_parameters, & |
---|
[2297] | 51 | ONLY: averaging_interval_pr, constant_diffusion, constant_flux_layer, & |
---|
| 52 | coupling_start_time, current_timestep_number, & |
---|
| 53 | data_output_during_spinup, disturbance_created, dopr_n, do_sum, & |
---|
| 54 | dt_averaging_input_pr, dt_dopr, dt_dots, dt_run_control, & |
---|
| 55 | dt_spinup, humidity, intermediate_timestep_count, & |
---|
| 56 | intermediate_timestep_count_max, land_surface, & |
---|
[2299] | 57 | simulated_time, simulated_time_chr, & |
---|
[2297] | 58 | skip_time_dopr, spinup, spinup_pt_amplitude, spinup_pt_mean, & |
---|
| 59 | spinup_time, timestep_count, timestep_scheme, time_dopr, & |
---|
| 60 | time_dopr_av, time_dots, time_run_control, & |
---|
| 61 | time_since_reference_point, urban_surface |
---|
[2296] | 62 | |
---|
| 63 | USE constants, & |
---|
| 64 | ONLY: pi |
---|
| 65 | |
---|
| 66 | USE cpulog, & |
---|
| 67 | ONLY: cpu_log, log_point, log_point_s |
---|
| 68 | |
---|
| 69 | USE indices, & |
---|
| 70 | ONLY: nbgp, nzb, nzt, nysg, nyng, nxlg, nxrg |
---|
| 71 | |
---|
| 72 | |
---|
| 73 | USE land_surface_model_mod, & |
---|
[2299] | 74 | ONLY: lsm_energy_balance, lsm_soil_model, lsm_swap_timelevel |
---|
[2296] | 75 | |
---|
[2299] | 76 | USE pegrid, & |
---|
| 77 | ONLY: myid |
---|
[2296] | 78 | |
---|
| 79 | USE kinds |
---|
| 80 | |
---|
| 81 | USE radiation_model_mod, & |
---|
| 82 | ONLY: dt_radiation, force_radiation_call, radiation, & |
---|
[2299] | 83 | radiation_control, rad_sw_in, time_radiation, time_utc_init |
---|
[2296] | 84 | |
---|
| 85 | USE statistics, & |
---|
| 86 | ONLY: flow_statistics_called |
---|
| 87 | |
---|
| 88 | USE surface_layer_fluxes_mod, & |
---|
| 89 | ONLY: surface_layer_fluxes |
---|
| 90 | |
---|
[2297] | 91 | USE surface_mod, & |
---|
| 92 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
[2296] | 93 | surf_usm_v |
---|
| 94 | |
---|
| 95 | USE urban_surface_mod, & |
---|
| 96 | ONLY: usm_material_heat_model, usm_material_model, & |
---|
| 97 | usm_radiation, usm_surface_energy_balance, usm_swap_timelevel |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | IMPLICIT NONE |
---|
| 103 | |
---|
| 104 | CHARACTER (LEN=9) :: time_to_string !< |
---|
| 105 | |
---|
[2299] | 106 | INTEGER(iwp) :: i !< running index |
---|
| 107 | INTEGER(iwp) :: j !< running index |
---|
| 108 | INTEGER(iwp) :: k !< running index |
---|
| 109 | INTEGER(iwp) :: l !< running index |
---|
| 110 | INTEGER(iwp) :: m !< running index |
---|
| 111 | |
---|
| 112 | INTEGER(iwp) :: current_timestep_number_spinup = 0 !< number if timestep during spinup |
---|
[2296] | 113 | |
---|
[2299] | 114 | LOGICAL :: run_control_header_spinup = .FALSE. !< flag parameter for steering whether the header information must be output |
---|
| 115 | |
---|
[2296] | 116 | REAL(wp) :: pt_spinup !< temporary storage of temperature |
---|
| 117 | |
---|
| 118 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_save !< temporary storage of temperature |
---|
| 119 | |
---|
| 120 | ALLOCATE( pt_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 121 | |
---|
[2299] | 122 | CALL exchange_horiz( pt, nbgp ) |
---|
| 123 | pt_save = pt |
---|
[2296] | 124 | |
---|
| 125 | CALL location_message( 'starting spinup-sequence', .TRUE. ) |
---|
| 126 | ! |
---|
| 127 | !-- Start of the time loop |
---|
| 128 | DO WHILE ( simulated_time < spinup_time ) |
---|
| 129 | |
---|
| 130 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'start' ) |
---|
| 131 | |
---|
| 132 | ! |
---|
| 133 | !-- Start of intermediate step loop |
---|
| 134 | intermediate_timestep_count = 0 |
---|
| 135 | DO WHILE ( intermediate_timestep_count < & |
---|
| 136 | intermediate_timestep_count_max ) |
---|
| 137 | |
---|
| 138 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 139 | |
---|
| 140 | ! |
---|
| 141 | !-- Set the steering factors for the prognostic equations which depend |
---|
| 142 | !-- on the timestep scheme |
---|
| 143 | CALL timestep_scheme_steering |
---|
| 144 | |
---|
| 145 | |
---|
[2299] | 146 | ! |
---|
| 147 | !-- Estimate a near-surface air temperature based on the position of the |
---|
| 148 | !-- sun and user input about mean temperature and amplitude. The time is |
---|
| 149 | !-- shifted by one hour to simulate a lag between air temperature and |
---|
| 150 | !-- incoming radiation |
---|
| 151 | pt_spinup = spinup_pt_mean + spinup_pt_amplitude & |
---|
| 152 | * solar_angle (time_utc_init + time_since_reference_point - 3600.0) |
---|
[2296] | 153 | |
---|
[2299] | 154 | ! |
---|
| 155 | !-- Map air temperature to all grid points in the vicinity of a surface |
---|
| 156 | !-- element |
---|
[2296] | 157 | IF ( land_surface ) THEN |
---|
| 158 | DO m = 1, surf_lsm_h%ns |
---|
| 159 | i = surf_lsm_h%i(m) |
---|
| 160 | j = surf_lsm_h%j(m) |
---|
| 161 | k = surf_lsm_h%k(m) |
---|
[2299] | 162 | pt(k,j,i) = pt_spinup |
---|
[2296] | 163 | ENDDO |
---|
| 164 | |
---|
| 165 | DO l = 0, 3 |
---|
| 166 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 167 | i = surf_lsm_v(l)%i(m) |
---|
| 168 | j = surf_lsm_v(l)%j(m) |
---|
| 169 | k = surf_lsm_v(l)%k(m) |
---|
[2299] | 170 | pt(k,j,i) = pt_spinup |
---|
[2296] | 171 | ENDDO |
---|
| 172 | ENDDO |
---|
| 173 | ENDIF |
---|
| 174 | |
---|
| 175 | IF ( urban_surface ) THEN |
---|
| 176 | DO m = 1, surf_usm_h%ns |
---|
| 177 | i = surf_usm_h%i(m) |
---|
| 178 | j = surf_usm_h%j(m) |
---|
| 179 | k = surf_usm_h%k(m) |
---|
[2299] | 180 | pt(k,j,i) = pt_spinup |
---|
[2296] | 181 | ENDDO |
---|
| 182 | |
---|
| 183 | DO l = 0, 3 |
---|
| 184 | DO m = 1, surf_usm_v(l)%ns |
---|
| 185 | i = surf_usm_v(l)%i(m) |
---|
| 186 | j = surf_usm_v(l)%j(m) |
---|
| 187 | k = surf_usm_v(l)%k(m) |
---|
[2299] | 188 | pt(k,j,i) = pt_spinup |
---|
[2296] | 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | ENDIF |
---|
| 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Swap the time levels in preparation for the next time step. |
---|
| 195 | timestep_count = timestep_count + 1 |
---|
| 196 | |
---|
| 197 | IF ( land_surface ) THEN |
---|
| 198 | CALL lsm_swap_timelevel ( 0 ) |
---|
| 199 | ENDIF |
---|
| 200 | |
---|
| 201 | IF ( urban_surface ) THEN |
---|
| 202 | CALL usm_swap_timelevel ( 0 ) |
---|
| 203 | ENDIF |
---|
| 204 | |
---|
| 205 | IF ( land_surface ) THEN |
---|
| 206 | CALL lsm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
| 209 | IF ( urban_surface ) THEN |
---|
| 210 | CALL usm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
| 211 | ENDIF |
---|
| 212 | |
---|
| 213 | ! |
---|
| 214 | !-- If required, compute virtual potential temperature |
---|
| 215 | IF ( humidity ) THEN |
---|
| 216 | CALL compute_vpt |
---|
| 217 | ENDIF |
---|
| 218 | |
---|
| 219 | ! |
---|
| 220 | !-- Compute the diffusion quantities |
---|
| 221 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 222 | |
---|
| 223 | ! |
---|
| 224 | !-- First the vertical (and horizontal) fluxes in the surface |
---|
| 225 | !-- (constant flux) layer are computed |
---|
| 226 | IF ( constant_flux_layer ) THEN |
---|
| 227 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) |
---|
| 228 | CALL surface_layer_fluxes |
---|
| 229 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) |
---|
| 230 | ENDIF |
---|
| 231 | |
---|
| 232 | ! |
---|
| 233 | !-- If required, solve the energy balance for the surface and run soil |
---|
[2299] | 234 | !-- model. Call for horizontal as well as vertical surfaces. |
---|
| 235 | !-- The prognostic equation for soil moisure is switched off |
---|
| 236 | IF ( land_surface ) THEN |
---|
[2296] | 237 | |
---|
| 238 | CALL cpu_log( log_point(54), 'land_surface', 'start' ) |
---|
| 239 | ! |
---|
| 240 | !-- Call for horizontal upward-facing surfaces |
---|
| 241 | CALL lsm_energy_balance( .TRUE., -1 ) |
---|
[2299] | 242 | CALL lsm_soil_model( .TRUE., -1, .FALSE. ) |
---|
[2296] | 243 | ! |
---|
| 244 | !-- Call for northward-facing surfaces |
---|
| 245 | CALL lsm_energy_balance( .FALSE., 0 ) |
---|
[2299] | 246 | CALL lsm_soil_model( .FALSE., 0, .FALSE. ) |
---|
[2296] | 247 | ! |
---|
| 248 | !-- Call for southward-facing surfaces |
---|
| 249 | CALL lsm_energy_balance( .FALSE., 1 ) |
---|
[2299] | 250 | CALL lsm_soil_model( .FALSE., 1, .FALSE. ) |
---|
[2296] | 251 | ! |
---|
| 252 | !-- Call for eastward-facing surfaces |
---|
| 253 | CALL lsm_energy_balance( .FALSE., 2 ) |
---|
[2299] | 254 | CALL lsm_soil_model( .FALSE., 2, .FALSE. ) |
---|
[2296] | 255 | ! |
---|
| 256 | !-- Call for westward-facing surfaces |
---|
| 257 | CALL lsm_energy_balance( .FALSE., 3 ) |
---|
[2299] | 258 | CALL lsm_soil_model( .FALSE., 3, .FALSE. ) |
---|
[2296] | 259 | |
---|
| 260 | CALL cpu_log( log_point(54), 'land_surface', 'stop' ) |
---|
| 261 | ENDIF |
---|
| 262 | |
---|
| 263 | ! |
---|
| 264 | !-- If required, solve the energy balance for urban surfaces and run |
---|
| 265 | !-- the material heat model |
---|
| 266 | IF (urban_surface) THEN |
---|
| 267 | CALL cpu_log( log_point(74), 'urban_surface', 'start' ) |
---|
| 268 | CALL usm_surface_energy_balance |
---|
| 269 | IF ( usm_material_model ) THEN |
---|
| 270 | CALL usm_material_heat_model |
---|
| 271 | ENDIF |
---|
| 272 | CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) |
---|
| 273 | ENDIF |
---|
| 274 | |
---|
| 275 | ENDIF |
---|
| 276 | |
---|
| 277 | ! |
---|
| 278 | !-- If required, calculate radiative fluxes and heating rates |
---|
| 279 | IF ( radiation .AND. intermediate_timestep_count & |
---|
[2299] | 280 | == intermediate_timestep_count_max ) THEN |
---|
[2296] | 281 | |
---|
| 282 | time_radiation = time_radiation + dt_spinup |
---|
| 283 | |
---|
| 284 | IF ( time_radiation >= dt_radiation .OR. force_radiation_call ) & |
---|
| 285 | THEN |
---|
| 286 | |
---|
| 287 | CALL cpu_log( log_point(50), 'radiation', 'start' ) |
---|
| 288 | |
---|
| 289 | IF ( .NOT. force_radiation_call ) THEN |
---|
| 290 | time_radiation = time_radiation - dt_radiation |
---|
| 291 | ENDIF |
---|
| 292 | |
---|
| 293 | CALL radiation_control |
---|
| 294 | |
---|
| 295 | CALL cpu_log( log_point(50), 'radiation', 'stop' ) |
---|
| 296 | |
---|
| 297 | IF (urban_surface) THEN |
---|
| 298 | CALL cpu_log( log_point(75), 'usm_radiation', 'start' ) |
---|
| 299 | CALL usm_radiation |
---|
| 300 | CALL cpu_log( log_point(75), 'usm_radiation', 'stop' ) |
---|
| 301 | ENDIF |
---|
| 302 | ENDIF |
---|
| 303 | ENDIF |
---|
| 304 | |
---|
| 305 | ENDDO ! Intermediate step loop |
---|
| 306 | |
---|
| 307 | ! |
---|
| 308 | !-- Increase simulation time and output times |
---|
[2299] | 309 | current_timestep_number_spinup = current_timestep_number_spinup + 1 |
---|
[2296] | 310 | simulated_time = simulated_time + dt_spinup |
---|
| 311 | simulated_time_chr = time_to_string( simulated_time ) |
---|
| 312 | time_since_reference_point = simulated_time - coupling_start_time |
---|
| 313 | |
---|
| 314 | IF ( data_output_during_spinup ) THEN |
---|
| 315 | time_dots = time_dots + dt_spinup |
---|
| 316 | IF ( simulated_time >= skip_time_dopr ) THEN |
---|
| 317 | time_dopr = time_dopr + dt_spinup |
---|
| 318 | ENDIF |
---|
| 319 | time_run_control = time_run_control + dt_spinup |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Carry out statistical analysis and output at the requested output times. |
---|
| 323 | !-- The MOD function is used for calculating the output time counters (like |
---|
| 324 | !-- time_dopr) in order to regard a possible decrease of the output time |
---|
| 325 | !-- interval in case of restart runs |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Set a flag indicating that so far no statistics have been created |
---|
| 329 | !-- for this time step |
---|
| 330 | flow_statistics_called = .FALSE. |
---|
| 331 | |
---|
| 332 | ! |
---|
| 333 | !-- If required, call flow_statistics for averaging in time |
---|
| 334 | IF ( averaging_interval_pr /= 0.0_wp .AND. & |
---|
| 335 | ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & |
---|
| 336 | simulated_time >= skip_time_dopr ) THEN |
---|
| 337 | time_dopr_av = time_dopr_av + dt_spinup |
---|
| 338 | IF ( time_dopr_av >= dt_averaging_input_pr ) THEN |
---|
| 339 | do_sum = .TRUE. |
---|
| 340 | time_dopr_av = MOD( time_dopr_av, & |
---|
| 341 | MAX( dt_averaging_input_pr, dt_spinup ) ) |
---|
| 342 | ENDIF |
---|
| 343 | ENDIF |
---|
| 344 | IF ( do_sum ) CALL flow_statistics |
---|
| 345 | |
---|
| 346 | ! |
---|
| 347 | !-- Output of profiles |
---|
| 348 | IF ( time_dopr >= dt_dopr ) THEN |
---|
| 349 | IF ( dopr_n /= 0 ) CALL data_output_profiles |
---|
| 350 | time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_spinup ) ) |
---|
| 351 | time_dopr_av = 0.0_wp ! due to averaging (see above) |
---|
| 352 | ENDIF |
---|
| 353 | |
---|
| 354 | ! |
---|
| 355 | !-- Output of time series |
---|
| 356 | IF ( time_dots >= dt_dots ) THEN |
---|
| 357 | CALL data_output_tseries |
---|
| 358 | time_dots = MOD( time_dots, MAX( dt_dots, dt_spinup ) ) |
---|
| 359 | ENDIF |
---|
| 360 | |
---|
| 361 | ENDIF |
---|
| 362 | |
---|
| 363 | ! |
---|
| 364 | !-- Computation and output of run control parameters. |
---|
| 365 | !-- This is also done whenever perturbations have been imposed |
---|
[2299] | 366 | ! IF ( time_run_control >= dt_run_control .OR. & |
---|
| 367 | ! timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & |
---|
| 368 | ! THEN |
---|
| 369 | ! CALL run_control |
---|
| 370 | ! IF ( time_run_control >= dt_run_control ) THEN |
---|
| 371 | ! time_run_control = MOD( time_run_control, & |
---|
| 372 | ! MAX( dt_run_control, dt_spinup ) ) |
---|
| 373 | ! ENDIF |
---|
| 374 | ! ENDIF |
---|
[2296] | 375 | |
---|
| 376 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'stop' ) |
---|
| 377 | |
---|
[2299] | 378 | |
---|
| 379 | ! |
---|
| 380 | !-- Run control output |
---|
[2296] | 381 | IF ( myid == 0 ) THEN |
---|
[2299] | 382 | ! |
---|
| 383 | !-- If necessary, write header |
---|
| 384 | IF ( .NOT. run_control_header_spinup ) THEN |
---|
| 385 | CALL check_open( 15 ) |
---|
| 386 | WRITE ( 15, 100 ) |
---|
| 387 | run_control_header_spinup = .TRUE. |
---|
| 388 | ENDIF |
---|
| 389 | ! |
---|
| 390 | !-- Write some general information about the spinup in run control file |
---|
| 391 | WRITE ( 15, 101 ) current_timestep_number_spinup, simulated_time_chr, dt_spinup, pt_spinup, rad_sw_in(0,nysg,nxlg) |
---|
| 392 | ! |
---|
| 393 | !-- Write buffer contents to disc immediately |
---|
| 394 | FLUSH( 15 ) |
---|
[2296] | 395 | ENDIF |
---|
| 396 | |
---|
[2299] | 397 | |
---|
| 398 | |
---|
[2296] | 399 | ENDDO ! time loop |
---|
| 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Write back saved temperature to the 3D arrays |
---|
| 403 | pt(:,:,:) = pt_save |
---|
| 404 | pt_p(:,:,:) = pt_save |
---|
| 405 | |
---|
| 406 | DEALLOCATE(pt_save) |
---|
| 407 | |
---|
[2299] | 408 | CALL location_message( 'finished spinup-sequence', .TRUE. ) |
---|
[2296] | 409 | |
---|
[2299] | 410 | |
---|
| 411 | ! |
---|
| 412 | !-- Formats |
---|
| 413 | 100 FORMAT (///'Spinup control output:'/ & |
---|
| 414 | '----------------------------------------'// & |
---|
| 415 | 'ITER. HH:MM:SS DT PT(z_MO) SWD'/ & |
---|
| 416 | '----------------------------------------') |
---|
| 417 | 101 FORMAT (I5,2X,A9,1X,F6.2,3X,F6.2,2X,F6.2) |
---|
| 418 | |
---|
| 419 | CONTAINS |
---|
| 420 | |
---|
| 421 | ! |
---|
| 422 | !-- Returns the cosine of the solar zenith angle at a given time. This routine |
---|
| 423 | !-- is similar to that for calculation zenith (see radiation_model_mod.f90) |
---|
| 424 | FUNCTION solar_angle( local_time ) |
---|
| 425 | |
---|
| 426 | USE constants, & |
---|
| 427 | ONLY: pi |
---|
| 428 | |
---|
| 429 | USE kinds |
---|
| 430 | |
---|
| 431 | USE radiation_model_mod, & |
---|
| 432 | ONLY: day_init, decl_1, decl_2, decl_3, lat, lon |
---|
| 433 | |
---|
| 434 | IMPLICIT NONE |
---|
| 435 | |
---|
| 436 | |
---|
| 437 | REAL(wp) :: solar_angle !< cosine of the solar zenith angle |
---|
| 438 | |
---|
| 439 | REAL(wp) :: day !< day of the year |
---|
| 440 | REAL(wp) :: declination !< solar declination angle |
---|
| 441 | REAL(wp) :: hour_angle !< solar hour angle |
---|
| 442 | REAL(wp) :: time_utc !< current time in UTC |
---|
| 443 | REAL(wp), INTENT(IN) :: local_time |
---|
| 444 | ! |
---|
| 445 | !-- Calculate current day and time based on the initial values and simulation |
---|
| 446 | !-- time |
---|
| 447 | |
---|
| 448 | day = day_init + INT(FLOOR( local_time / 86400.0_wp ), KIND=iwp) |
---|
| 449 | time_utc = MOD(local_time, 86400.0_wp) |
---|
| 450 | |
---|
| 451 | |
---|
| 452 | ! |
---|
| 453 | !-- Calculate solar declination and hour angle |
---|
| 454 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day, KIND=wp) - decl_3) ) |
---|
| 455 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
| 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Calculate cosine of solar zenith angle |
---|
| 459 | solar_angle = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
| 460 | * COS(hour_angle) |
---|
| 461 | |
---|
| 462 | |
---|
| 463 | END FUNCTION solar_angle |
---|
| 464 | |
---|
| 465 | |
---|
[2296] | 466 | END SUBROUTINE time_integration_spinup |
---|