source: palm/trunk/SOURCE/time_integration.f90 @ 3768

Last change on this file since 3768 was 3761, checked in by raasch, 2 years ago

unused variables removed, OpenACC directives re-formatted, statements added to avoid compiler warnings

  • Property svn:keywords set to Id
File size: 72.4 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3761 2019-02-25 15:31:42Z raasch $
27! module section re-formatted and openacc required variables moved to separate section,
28! re-formatting to 100 char line width
29!
30! 3745 2019-02-15 18:57:56Z suehring
31! Call indoor model after first timestep
32!
33! 3744 2019-02-15 18:38:58Z suehring
34! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
35! time_integration to make sure averaged input is updated before calculating.
36!
37! 3739 2019-02-13 08:05:17Z dom_dwd_user
38! Removed everything related to "time_bio_results" as this is never used.
39!
40! 3724 2019-02-06 16:28:23Z kanani
41! Correct double-used log_point_s unit
42!
43! 3719 2019-02-06 13:10:18Z kanani
44! - removed wind_turbine cpu measurement, since same time is measured inside
45!   wtm_forces subroutine as special measures
46! - moved the numerous vnest cpulog to special measures
47! - extended radiation cpulog over entire radiation part,
48!   moved radiation_interactions cpulog to special measures
49! - moved some cpu_log calls to this routine for better overview
50!
51! 3705 2019-01-29 19:56:39Z suehring
52! Data output for virtual measurements added
53!
54! 3704 2019-01-29 19:51:41Z suehring
55! Rename subroutines for surface-data output
56!
57! 3647 2019-01-02 14:10:44Z kanani
58! Bugfix: add time_since_reference_point to IF clause for data_output calls
59! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
60! Clean up indoor_model and biometeorology model call.
61!
62! 3646 2018-12-28 17:58:49Z kanani
63! Bugfix: use time_since_reference_point instead of simulated_time where
64! required (relevant when using wall/soil spinup)
65!
66! 3634 2018-12-18 12:31:28Z knoop
67! OpenACC port for SPEC
68!
69! 3597 2018-12-04 08:40:18Z maronga
70! Removed call to calculation of near air (10 cm) potential temperature (now in
71! surface layer fluxes)
72!
73! 3589 2018-11-30 15:09:51Z suehring
74! Move the control parameter "salsa" from salsa_mod to control_parameters
75! (M. Kurppa)
76!
77! 3582 2018-11-29 19:16:36Z suehring
78! dom_dwd_user, Schrempf:
79! Changes due to merge of uv exposure model into biometeorology_mod.
80!
81! 3525 2018-11-14 16:06:14Z kanani
82! Changes related to clean-up of biometeorology (dom_dwd_user)
83!
84! 3524 2018-11-14 13:36:44Z raasch
85! unused variables removed
86!
87! 3484 2018-11-02 14:41:25Z hellstea
88! pmci_ensure_nest_mass_conservation is premanently removed
89!
90! 3473 2018-10-30 20:50:15Z suehring
91! new module for virtual measurements introduced
92!
93! 3472 2018-10-30 20:43:50Z suehring
94! Add indoor model (kanani, srissman, tlang)
95!
96! 3467 2018-10-30 19:05:21Z suehring
97! Implementation of a new aerosol module salsa.
98!
99! 3448 2018-10-29 18:14:31Z kanani
100! Add biometeorology
101!
102! 3421 2018-10-24 18:39:32Z gronemeier
103! Surface data output
104!
105! 3418 2018-10-24 16:07:39Z kanani
106! call to material_heat_model now with check if spinup runs (rvtils)
107!
108! 3378 2018-10-19 12:34:59Z kanani
109! merge from radiation branch (r3362) into trunk
110! (moh.hefny):
111! Bugfix in the if statement to call radiation_interaction
112!
113! 3347 2018-10-15 14:21:08Z suehring
114! - offline nesting separated from large-scale forcing module
115! - changes for synthetic turbulence generator
116!
117! 3343 2018-10-15 10:38:52Z suehring
118! - Formatting, clean-up, comments (kanani)
119! - Added CALL to chem_emissions_setup (Russo)
120! - Code added for decycling chemistry (basit)
121!
122! 3294 2018-10-01 02:37:10Z raasch
123! changes concerning modularization of ocean option
124!
125! 3274 2018-09-24 15:42:55Z knoop
126! Modularization of all bulk cloud physics code components
127!
128! 3241 2018-09-12 15:02:00Z raasch
129! unused variables removed
130!
131! 3198 2018-08-15 09:23:10Z sward
132! Added multi_agent_system_end; defined start time for MAS relative to
133! time_since_reference_point
134!
135! 3183 2018-07-27 14:25:55Z suehring
136! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
137! Rename subroutines and variables in COSMO nesting mode
138!
139! 3182 2018-07-27 13:36:03Z suehring
140! Added multi agent system
141!
142! 3042 2018-05-25 10:44:37Z schwenkel
143! Changed the name specific humidity to mixing ratio
144!
145! 3040 2018-05-25 10:22:08Z schwenkel
146! Fixed bug in IF statement
147! Ensure that the time when calling the radiation to be the time step of the
148! pre-calculated time when first calculate the positions of the sun
149!
150! 3004 2018-04-27 12:33:25Z Giersch
151! First call of flow_statistics has been removed. It is already called in
152! run_control itself
153!
154! 2984 2018-04-18 11:51:30Z hellstea
155! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
156! as seemingly unnecessary.
157!
158! 2941 2018-04-03 11:54:58Z kanani
159! Deduct spinup_time from RUN_CONTROL output of main 3d run
160! (use time_since_reference_point instead of simulated_time)
161!
162! 2938 2018-03-27 15:52:42Z suehring
163! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
164!
165! 2936 2018-03-27 14:49:27Z suehring
166! Little formatting adjustment.
167!
168! 2817 2018-02-19 16:32:21Z knoop
169! Preliminary gust module interface implemented
170!
171! 2801 2018-02-14 16:01:55Z thiele
172! Changed lpm from subroutine to module.
173! Introduce particle transfer in nested models.
174!
175! 2776 2018-01-31 10:44:42Z Giersch
176! Variable use_synthetic_turbulence_generator has been abbreviated
177!
178! 2773 2018-01-30 14:12:54Z suehring
179! - Nesting for chemical species
180!
181! 2766 2018-01-22 17:17:47Z kanani
182! Removed preprocessor directive __chem
183!
184! 2718 2018-01-02 08:49:38Z maronga
185! Corrected "Former revisions" section
186!
187! 2696 2017-12-14 17:12:51Z kanani
188! - Change in file header (GPL part)
189! - Implementation of uv exposure model (FK)
190! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
191! - renamed diffusivities to tcm_diffusivities (TG)
192! - implement prognostic equation for diss (TG)
193! - Moved/commented CALL to chem_emissions (FK)
194! - Added CALL to chem_emissions (FK)
195! - Implementation of chemistry module (FK)
196! - Calls for setting boundary conditions in USM and LSM (MS)
197! - Large-scale forcing with larger-scale models implemented (MS)
198! - Rename usm_radiation into radiation_interactions; merge with branch
199!   radiation (MS)
200! - added call for usm_green_heat_model for green building surfaces (RvT)
201! - added call for usm_temperature_near_surface for use in indoor model (RvT)
202!
203! 2617 2017-11-16 12:47:24Z suehring
204! Bugfix, assure that the reference state does not become zero.
205!
206! 2563 2017-10-19 15:36:10Z Giersch
207! Variable wind_turbine moved to module control_parameters
208!
209! 2365 2017-08-21 14:59:59Z kanani
210! Vertical grid nesting implemented (SadiqHuq)
211!
212! 2320 2017-07-21 12:47:43Z suehring
213! Set bottom boundary conditions after nesting interpolation and anterpolation
214!
215! 2299 2017-06-29 10:14:38Z maronga
216! Call of soil model adjusted
217!
218! 2292 2017-06-20 09:51:42Z schwenkel
219! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
220! includes two more prognostic equations for cloud drop concentration (nc) 
221! and cloud water content (qc).
222!
223! 2271 2017-06-09 12:34:55Z sward
224! Start timestep message changed
225!
226! 2259 2017-06-08 09:09:11Z gronemeier
227! Implemented synthetic turbulence generator
228!
229! 2233 2017-05-30 18:08:54Z suehring
230!
231! 2232 2017-05-30 17:47:52Z suehring
232! Adjustments to new topography and surface concept
233! Modify passed parameters for disturb_field
234!
235! 2178 2017-03-17 11:07:39Z hellstea
236! Setting perturbations at all times near inflow boundary is removed
237! in case of nested boundaries
238!
239! 2174 2017-03-13 08:18:57Z maronga
240! Added support for nesting with cloud microphysics
241!
242! 2118 2017-01-17 16:38:49Z raasch
243! OpenACC directives and related code removed
244!
245! 2050 2016-11-08 15:00:55Z gronemeier
246! Implement turbulent outflow condition
247!
248! 2031 2016-10-21 15:11:58Z knoop
249! renamed variable rho to rho_ocean
250!
251! 2011 2016-09-19 17:29:57Z kanani
252! Flag urban_surface is now defined in module control_parameters,
253! removed commented CALLs of global_min_max.
254!
255! 2007 2016-08-24 15:47:17Z kanani
256! Added CALLs for new urban surface model
257!
258! 2000 2016-08-20 18:09:15Z knoop
259! Forced header and separation lines into 80 columns
260!
261! 1976 2016-07-27 13:28:04Z maronga
262! Simplified calls to radiation model
263!
264! 1960 2016-07-12 16:34:24Z suehring
265! Separate humidity and passive scalar
266!
267! 1957 2016-07-07 10:43:48Z suehring
268! flight module added
269!
270! 1919 2016-05-27 14:51:23Z raasch
271! Initial version of purely vertical nesting introduced.
272!
273! 1918 2016-05-27 14:35:57Z raasch
274! determination of time step moved to the end of the time step loop,
275! the first time step is now always calculated before the time step loop (i.e.
276! also in case of restart runs)
277!
278! 1914 2016-05-26 14:44:07Z witha
279! Added call for wind turbine model
280!
281! 1878 2016-04-19 12:30:36Z hellstea
282! Synchronization for nested runs rewritten
283!
284! 1853 2016-04-11 09:00:35Z maronga
285! Adjusted for use with radiation_scheme = constant
286!
287! 1849 2016-04-08 11:33:18Z hoffmann
288! Adapted for modularization of microphysics
289!
290! 1833 2016-04-07 14:23:03Z raasch
291! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
292!
293! 1831 2016-04-07 13:15:51Z hoffmann
294! turbulence renamed collision_turbulence
295!
296! 1822 2016-04-07 07:49:42Z hoffmann
297! icloud_scheme replaced by microphysics_*
298!
299! 1808 2016-04-05 19:44:00Z raasch
300! output message in case unscheduled radiation calls removed
301!
302! 1797 2016-03-21 16:50:28Z raasch
303! introduction of different datatransfer modes
304!
305! 1791 2016-03-11 10:41:25Z raasch
306! call of pmci_update_new removed
307!
308! 1786 2016-03-08 05:49:27Z raasch
309! +module spectrum
310!
311! 1783 2016-03-06 18:36:17Z raasch
312! switch back of netcdf data format for mask output moved to the mask output
313! routine
314!
315! 1781 2016-03-03 15:12:23Z raasch
316! some pmc calls removed at the beginning (before timeloop),
317! pmc initialization moved to the main program
318!
319! 1764 2016-02-28 12:45:19Z raasch
320! PMC_ACTIVE flags removed,
321! bugfix: nest synchronization after first call of timestep
322!
323! 1762 2016-02-25 12:31:13Z hellstea
324! Introduction of nested domain feature
325!
326! 1736 2015-12-04 08:56:33Z raasch
327! no perturbations added to total domain if energy limit has been set zero
328!
329! 1691 2015-10-26 16:17:44Z maronga
330! Added option for spin-ups without land surface and radiation models. Moved calls
331! for radiation and lan surface schemes.
332!
333! 1682 2015-10-07 23:56:08Z knoop
334! Code annotations made doxygen readable
335!
336! 1671 2015-09-25 03:29:37Z raasch
337! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
338! for particles
339!
340! 1585 2015-04-30 07:05:52Z maronga
341! Moved call of radiation scheme. Added support for RRTM
342!
343! 1551 2015-03-03 14:18:16Z maronga
344! Added interface for different radiation schemes.
345!
346! 1496 2014-12-02 17:25:50Z maronga
347! Added calls for the land surface model and radiation scheme
348!
349! 1402 2014-05-09 14:25:13Z raasch
350! location messages modified
351!
352! 1384 2014-05-02 14:31:06Z raasch
353! location messages added
354!
355! 1380 2014-04-28 12:40:45Z heinze
356! CALL of nudge_ref added
357! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
358!
359! 1365 2014-04-22 15:03:56Z boeske
360! Reset sums_ls_l to zero at each timestep
361! +sums_ls_l
362! Calculation of reference state (previously in subroutine calc_mean_profile)
363
364! 1342 2014-03-26 17:04:47Z kanani
365! REAL constants defined as wp-kind
366!
367! 1320 2014-03-20 08:40:49Z raasch
368! ONLY-attribute added to USE-statements,
369! kind-parameters added to all INTEGER and REAL declaration statements,
370! kinds are defined in new module kinds,
371! old module precision_kind is removed,
372! revision history before 2012 removed,
373! comment fields (!:) to be used for variable explanations added to
374! all variable declaration statements
375! 1318 2014-03-17 13:35:16Z raasch
376! module interfaces removed
377!
378! 1308 2014-03-13 14:58:42Z fricke
379! +netcdf_data_format_save
380! For masked data, parallel netcdf output is not tested so far, hence
381! netcdf_data_format is switched back to non-paralell output.
382!
383! 1276 2014-01-15 13:40:41Z heinze
384! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
385!
386! 1257 2013-11-08 15:18:40Z raasch
387! acc-update-host directive for timestep removed
388!
389! 1241 2013-10-30 11:36:58Z heinze
390! Generalize calc_mean_profile for wider use
391! Determine shf and qsws in dependence on data from LSF_DATA
392! Determine ug and vg in dependence on data from LSF_DATA
393! 1221 2013-09-10 08:59:13Z raasch
394! host update of arrays before timestep is called
395!
396! 1179 2013-06-14 05:57:58Z raasch
397! mean profiles for reference state are only calculated if required,
398! small bugfix for background communication
399!
400! 1171 2013-05-30 11:27:45Z raasch
401! split of prognostic_equations deactivated (comment lines), for the time being
402!
403! 1128 2013-04-12 06:19:32Z raasch
404! asynchronous transfer of ghost point data realized for acc-optimized version:
405! prognostic_equations are first called two times for those points required for
406! the left-right and north-south exchange, respectively, and then for the
407! remaining points,
408! those parts requiring global communication moved from prognostic_equations to
409! here
410!
411! 1115 2013-03-26 18:16:16Z hoffmann
412! calculation of qr and nr is restricted to precipitation
413!
414! 1113 2013-03-10 02:48:14Z raasch
415! GPU-porting of boundary conditions,
416! openACC directives updated
417! formal parameter removed from routine boundary_conds
418!
419! 1111 2013-03-08 23:54:10Z raasch
420! +internal timestep counter for cpu statistics added,
421! openACC directives updated
422!
423! 1092 2013-02-02 11:24:22Z raasch
424! unused variables removed
425!
426! 1065 2012-11-22 17:42:36Z hoffmann
427! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
428!
429! 1053 2012-11-13 17:11:03Z hoffmann
430! exchange of ghost points for nr, qr added
431!
432! 1036 2012-10-22 13:43:42Z raasch
433! code put under GPL (PALM 3.9)
434!
435! 1019 2012-09-28 06:46:45Z raasch
436! non-optimized version of prognostic_equations removed
437!
438! 1015 2012-09-27 09:23:24Z raasch
439! +call of prognostic_equations_acc
440!
441! 1001 2012-09-13 14:08:46Z raasch
442! all actions concerning leapfrog- and upstream-spline-scheme removed
443!
444! 849 2012-03-15 10:35:09Z raasch
445! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
446!
447! 825 2012-02-19 03:03:44Z raasch
448! wang_collision_kernel renamed wang_kernel
449!
450! Revision 1.1  1997/08/11 06:19:04  raasch
451! Initial revision
452!
453!
454! Description:
455! ------------
456!> Integration in time of the model equations, statistical analysis and graphic
457!> output
458!------------------------------------------------------------------------------!
459 SUBROUTINE time_integration
460 
461
462    USE advec_ws,                                                                                  &
463        ONLY:  ws_statistics
464
465    USE arrays_3d,                                                                                 &
466        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
467               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
468               tend, u, u_p, v, vpt, v_p, w, w_p
469
470    USE biometeorology_mod,                                                                        &
471        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
472
473    USE bulk_cloud_model_mod,                                                                      &
474        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
475              microphysics_morrison, microphysics_seifert
476
477    USE calc_mean_profile_mod,                                                                     &
478        ONLY:  calc_mean_profile
479
480    USE chem_emissions_mod,                                                                        &
481        ONLY:  chem_emissions_setup
482
483    USE chem_modules,                                                                              &
484        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
485
486    USE chemistry_model_mod,                                                                       &
487        ONLY:  chem_boundary_conds, chem_species
488
489    USE control_parameters,                                                                        &
490        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
491               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
492               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
493               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
494               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
495               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
496               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
497               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
498               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
499               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
500               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
501               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
502               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
503               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
504               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
505               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
506               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
507               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
508               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
509               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
510               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
511               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
512               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
513               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
514               virtual_flight, virtual_measurement, wind_turbine, ws_scheme_mom, ws_scheme_sca
515
516    USE cpulog,                                                                                    &
517        ONLY:  cpu_log, log_point, log_point_s
518
519    USE date_and_time_mod,                                                                         &
520        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
521
522    USE flight_mod,                                                                                &
523        ONLY:  flight_measurement
524
525    USE indices,                                                                                   &
526        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
527
528    USE indoor_model_mod,                                                                          &
529        ONLY:  dt_indoor, im_main_heatcool, time_indoor
530
531    USE interaction_droplets_ptq_mod,                                                              &
532        ONLY:  interaction_droplets_ptq
533
534    USE interfaces
535
536    USE kinds
537
538    USE land_surface_model_mod,                                                                    &
539        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
540
541    USE lpm_mod,                                                                                   &
542        ONLY:  lpm
543
544    USE lsf_nudging_mod,                                                                           &
545        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
546
547    USE module_interface,                                                                          &
548        ONLY:  module_interface_actions
549
550    USE multi_agent_system_mod,                                                                    &
551        ONLY:  agents_active, multi_agent_system
552
553    USE nesting_offl_mod,                                                                          &
554        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
555       
556    USE netcdf_data_input_mod,                                                                     &
557        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
558
559    USE ocean_mod,                                                                                 &
560        ONLY:  prho_reference
561
562    USE particle_attributes,                                                                       &
563        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
564
565    USE pegrid
566
567    USE pmc_interface,                                                                             &
568        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
569
570    USE progress_bar,                                                                              &
571        ONLY:  finish_progress_bar, output_progress_bar
572
573    USE prognostic_equations_mod,                                                                  &
574        ONLY:  prognostic_equations_cache, prognostic_equations_vector
575
576    USE radiation_model_mod,                                                                       &
577        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
578              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
579         
580    USE salsa_mod,                                                                                 &
581        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast, salsa_boundary_conds,           &
582              salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
583
584    USE spectra_mod,                                                                               &
585        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
586
587    USE statistics,                                                                                &
588        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
589
590
591    USE surface_layer_fluxes_mod,                                                                  &
592        ONLY:  surface_layer_fluxes
593
594    USE surface_data_output_mod,                                                                   &
595        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
596               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
597               skip_time_dosurf_av, time_dosurf, time_dosurf_av
598
599    USE surface_mod,                                                                               &
600        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
601
602    USE synthetic_turbulence_generator_mod,                                                        &
603        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
604               time_stg_adjust, time_stg_call, use_syn_turb_gen
605
606    USE turbulence_closure_mod,                                                                    &
607        ONLY:  tcm_diffusivities, production_e_init
608
609    USE urban_surface_mod,                                                                         &
610        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
611               usm_surface_energy_balance, usm_green_heat_model
612
613    USE vertical_nesting_mod,                                                                      &
614        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
615               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
616               vnest_start_time
617               
618    USE virtual_measurement_mod,                                                                   &
619        ONLY:  vm_data_output, vm_sampling, vm_time_start
620
621    USE wind_turbine_model_mod,                                                                    &
622        ONLY:  wtm_forces
623
624
625#if defined( _OPENACC )
626    USE arrays_3d,                                                             &
627        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
628               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
629               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
630               v_stokes_zu, zu
631
632    USE control_parameters,                                                                        &
633        ONLY:  tsc
634
635    USE indices,                                                                                   &
636        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
637
638    USE statistics,                                                                                &
639        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
640               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
641               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
642               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep
643
644    USE salsa_util_mod,                                                                            &
645           ONLY:  sums_salsa_ws_l
646
647    USE surface_mod,                                                                               &
648        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
649#endif
650
651
652    IMPLICIT NONE
653
654    CHARACTER (LEN=9) ::  time_to_string   !<
655   
656    INTEGER(iwp)      ::  b !< index for aerosol size bins   
657    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
658    INTEGER(iwp)      ::  g !< index for gaseous compounds
659    INTEGER(iwp)      ::  lsp
660    INTEGER(iwp)      ::  lsp_usr   !<
661    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
662
663    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
664                            !< steering of run control output interval
665    REAL(wp) ::  time_since_reference_point_save  !< original value of
666                                                  !< time_since_reference_point
667
668
669!
670!-- Copy data from arrays_3d
671!$ACC DATA &
672!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
673!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
676!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
677!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
678!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
679!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
680!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
681
682!$ACC DATA &
683!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
685!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
686!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
687!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
688!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
689!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
690!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
691!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
692!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
693!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
694
695!$ACC DATA &
696!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
697!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
698!$ACC COPYIN(zu(nzb:nzt+1)) &
699!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
700!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
701!$ACC COPYIN(ddzw(1:nzt+1)) &
702!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
703!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
704!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
705!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
706!$ACC COPYIN(ref_state(0:nz+1)) &
707!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
708!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
709!$ACC COPYIN(pt_init(0:nz+1)) &
710!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
711
712!
713!-- Copy data from control_parameters
714!$ACC DATA &
715!$ACC COPYIN(tsc(1:5))
716
717!
718!-- Copy data from indices
719!$ACC DATA &
720!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
721!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
722!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
723
724!
725!-- Copy data from surface_mod
726!$ACC DATA &
727!$ACC COPYIN(bc_h(0:1)) &
728!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
729!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
730!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
731!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
732!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
733!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
734
735!
736!-- Copy data from statistics
737!$ACC DATA &
738!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
739!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
740!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
741!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
742!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
743!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
744!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
745!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
746!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
747!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
748!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
749!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
750!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
751!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
752!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
753!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
754!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
755!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
756!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
757
758#if defined( _OPENACC )
759    CALL enter_surface_arrays
760#endif
761
762!
763!-- At beginning determine the first time step
764    CALL timestep
765!
766!-- Synchronize the timestep in case of nested run.
767    IF ( nested_run )  THEN
768!
769!--    Synchronization by unifying the time step.
770!--    Global minimum of all time-steps is used for all.
771       CALL pmci_synchronize
772    ENDIF
773
774!
775!-- Determine and print out the run control quantities before the first time
776!-- step of this run. For the initial run, some statistics (e.g. divergence)
777!-- need to be determined first --> CALL flow_statistics at the beginning of
778!-- run_control
779    CALL run_control
780!
781!-- Data exchange between coupled models in case that a call has been omitted
782!-- at the end of the previous run of a job chain.
783    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
784!
785!--    In case of model termination initiated by the local model the coupler
786!--    must not be called because this would again cause an MPI hang.
787       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
788          CALL surface_coupler
789          time_coupling = time_coupling - dt_coupling
790       ENDDO
791       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
792          time_coupling = time_since_reference_point
793       ENDIF
794    ENDIF
795
796#if defined( __dvrp_graphics )
797!
798!-- Time measurement with dvrp software 
799    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
800#endif
801
802    CALL location_message( 'starting timestep-sequence', .TRUE. )
803
804!
805!-- Start of the time loop
806    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
807
808       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
809!
810!--    Vertical nesting: initialize fine grid
811       IF ( vnested ) THEN
812          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
813             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
814             CALL vnest_init_fine
815             vnest_init = .TRUE.
816             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
817          ENDIF
818       ENDIF
819!
820!--    Determine ug, vg and w_subs in dependence on data from external file
821!--    LSF_DATA
822       IF ( large_scale_forcing .AND. lsf_vert )  THEN
823           CALL ls_forcing_vert ( simulated_time )
824           sums_ls_l = 0.0_wp
825       ENDIF
826
827!
828!--    Set pt_init and q_init to the current profiles taken from
829!--    NUDGING_DATA
830       IF ( nudging )  THEN
831           CALL nudge_ref ( simulated_time )
832!
833!--        Store temperature gradient at the top boundary for possible Neumann
834!--        boundary condition
835           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
836           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
837           IF ( air_chemistry )  THEN
838              DO  lsp = 1, nspec
839                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
840                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
841                               / dzu(nzt+1)
842              ENDDO
843           ENDIF
844       ENDIF
845!
846!--    If forcing by larger-scale models is applied, check if new data
847!--    at domain boundaries need to be read.
848       IF ( nesting_offline .AND. nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
849       THEN
850             CALL netcdf_data_input_offline_nesting
851       ENDIF
852
853!
854!--    Execute alle other module actions routunes
855       CALL module_interface_actions( 'before_timestep' )
856
857!
858!--    Calculate forces by wind turbines
859       IF ( wind_turbine )  CALL wtm_forces 
860       
861!
862!--    Start of intermediate step loop
863       intermediate_timestep_count = 0
864       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
865
866          intermediate_timestep_count = intermediate_timestep_count + 1
867
868!
869!--       Set the steering factors for the prognostic equations which depend
870!--       on the timestep scheme
871          CALL timestep_scheme_steering
872
873!
874!--       Calculate those variables needed in the tendency terms which need
875!--       global communication
876          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
877          THEN
878!
879!--          Horizontally averaged profiles to be used as reference state in
880!--          buoyancy terms (WARNING: only the respective last call of
881!--          calc_mean_profile defines the reference state!)
882             IF ( .NOT. neutral )  THEN
883                CALL calc_mean_profile( pt, 4 )
884                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
885             ENDIF
886             IF ( ocean_mode )  THEN
887                CALL calc_mean_profile( rho_ocean, 64 )
888                ref_state(:)  = hom(:,1,64,0)
889             ENDIF
890             IF ( humidity )  THEN
891                CALL calc_mean_profile( vpt, 44 )
892                ref_state(:)  = hom(:,1,44,0)
893             ENDIF
894!
895!--          Assure that ref_state does not become zero at any level
896!--          ( might be the case if a vertical level is completely occupied
897!--            with topography ).
898             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
899          ENDIF
900
901          IF ( .NOT. constant_diffusion )  CALL production_e_init
902          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
903          THEN
904             CALL ws_statistics
905          ENDIF
906!
907!--       In case of nudging calculate current nudging time scale and horizontal
908!--       means of u, v, pt and q
909          IF ( nudging )  THEN
910             CALL calc_tnudge( simulated_time )
911             CALL calc_mean_profile( u, 1 )
912             CALL calc_mean_profile( v, 2 )
913             CALL calc_mean_profile( pt, 4 )
914             CALL calc_mean_profile( q, 41 )
915          ENDIF
916
917!
918!--       Solve the prognostic equations. A fast cache optimized version with
919!--       only one single loop is used in case of Piascek-Williams advection
920!--       scheme. NEC vector machines use a different version, because
921!--       in the other versions a good vectorization is prohibited due to
922!--       inlining problems.
923          IF ( loop_optimization == 'cache' )  THEN
924             CALL prognostic_equations_cache
925          ELSEIF ( loop_optimization == 'vector' )  THEN
926             CALL prognostic_equations_vector
927          ENDIF
928
929!
930!--       Particle transport/physics with the Lagrangian particle model
931!--       (only once during intermediate steps, because it uses an Euler-step)
932!--       ### particle model should be moved before prognostic_equations, in order
933!--       to regard droplet interactions directly
934          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
935               .AND.  intermediate_timestep_count == 1 )                                           &
936          THEN
937             CALL lpm
938             first_call_lpm = .FALSE.
939          ENDIF
940
941!
942!--       Interaction of droplets with temperature and mixing ratio.
943!--       Droplet condensation and evaporation is calculated within
944!--       advec_particles.
945          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
946          THEN
947             CALL interaction_droplets_ptq
948          ENDIF
949
950!
951!--       Movement of agents in multi agent system
952          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
953               time_since_reference_point <= multi_agent_system_end  .AND.                         &
954               intermediate_timestep_count == 1 )                                                  &
955          THEN
956             CALL multi_agent_system
957             first_call_mas = .FALSE.
958          ENDIF
959
960!
961!--       Exchange of ghost points (lateral boundary conditions)
962          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
963
964          CALL exchange_horiz( u_p, nbgp )
965          CALL exchange_horiz( v_p, nbgp )
966          CALL exchange_horiz( w_p, nbgp )
967          CALL exchange_horiz( pt_p, nbgp )
968          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
969          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
970               .OR.  use_sgs_for_particles )  THEN
971             IF ( rans_tke_e )  THEN
972                CALL exchange_horiz( diss_p, nbgp )
973             ELSE
974                CALL exchange_horiz( diss, nbgp )
975             ENDIF
976          ENDIF
977          IF ( ocean_mode )  THEN
978             CALL exchange_horiz( sa_p, nbgp )
979             CALL exchange_horiz( rho_ocean, nbgp )
980             CALL exchange_horiz( prho, nbgp )
981          ENDIF
982          IF ( humidity )  THEN
983             CALL exchange_horiz( q_p, nbgp )
984             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
985                CALL exchange_horiz( qc_p, nbgp )
986                CALL exchange_horiz( nc_p, nbgp )
987             ENDIF
988             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
989                CALL exchange_horiz( qr_p, nbgp )
990                CALL exchange_horiz( nr_p, nbgp )
991             ENDIF
992          ENDIF
993          IF ( cloud_droplets )  THEN
994             CALL exchange_horiz( ql, nbgp )
995             CALL exchange_horiz( ql_c, nbgp )
996             CALL exchange_horiz( ql_v, nbgp )
997             CALL exchange_horiz( ql_vp, nbgp )
998          ENDIF
999          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1000          IF ( air_chemistry )  THEN
1001             DO  lsp = 1, nspec
1002                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1003!
1004!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1005                lsp_usr = 1
1006                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1007                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1008                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1009                                                chem_species(lsp)%conc_pr_init )
1010                   ENDIF
1011                   lsp_usr = lsp_usr + 1
1012                ENDDO
1013             ENDDO
1014          ENDIF
1015
1016          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1017          THEN
1018             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1019             DO  b = 1, nbins
1020                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1021                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1022                CALL salsa_boundary_conds( aerosol_number(b)%conc_p, aerosol_number(b)%init )
1023                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1024                DO  c = 1, ncc_tot
1025                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p, nbgp )
1026                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1027                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,                  &
1028                                              aerosol_mass((c-1)*nbins+b)%init )
1029                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1030                ENDDO
1031             ENDDO
1032             IF ( .NOT. salsa_gases_from_chem )  THEN
1033                DO  g = 1, ngast
1034                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1035                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1036                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p, salsa_gas(g)%init )
1037                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1038             ENDDO
1039             ENDIF
1040             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1041          ENDIF         
1042          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1043
1044!
1045!--       Boundary conditions for the prognostic quantities (except of the
1046!--       velocities at the outflow in case of a non-cyclic lateral wall)
1047          CALL boundary_conds
1048!
1049!--       Swap the time levels in preparation for the next time step.
1050          CALL swap_timelevel
1051
1052!
1053!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1054          IF ( vnest_init ) THEN
1055             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1056             CALL vnest_anterpolate
1057             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1058          ENDIF
1059
1060          IF ( nested_run )  THEN
1061
1062             CALL cpu_log( log_point(60), 'nesting', 'start' )
1063!
1064!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1065!--          and pmci_child_datatrans are called inside the wrapper
1066!--          subroutine pmci_datatrans according to the control parameters
1067!--          nesting_mode and nesting_datatransfer_mode.
1068!--          TO_DO: why is nesting_mode given as a parameter here?
1069             CALL pmci_datatrans( nesting_mode )
1070
1071             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1072!
1073!--             Exchange_horiz is needed for all parent-domains after the
1074!--             anterpolation
1075                CALL exchange_horiz( u, nbgp )
1076                CALL exchange_horiz( v, nbgp )
1077                CALL exchange_horiz( w, nbgp )
1078                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1079
1080                IF ( humidity )  THEN
1081
1082                   CALL exchange_horiz( q, nbgp )
1083
1084                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1085                       CALL exchange_horiz( qc, nbgp )
1086                       CALL exchange_horiz( nc, nbgp )
1087                   ENDIF
1088                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1089                       CALL exchange_horiz( qr, nbgp )
1090                       CALL exchange_horiz( nr, nbgp )
1091                   ENDIF
1092
1093                ENDIF
1094
1095                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1096               
1097                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1098
1099                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1100                   CALL exchange_horiz( diss, nbgp )
1101                ENDIF
1102
1103                IF ( air_chemistry )  THEN
1104                   DO  n = 1, nspec     
1105                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1106                   ENDDO
1107                ENDIF
1108
1109             ENDIF
1110!
1111!--          Set boundary conditions again after interpolation and anterpolation.
1112             CALL pmci_boundary_conds
1113
1114             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1115
1116          ENDIF
1117
1118!
1119!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1120!--       when a sloping surface is used
1121          IF ( sloping_surface )  THEN
1122             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1123             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1124          ENDIF
1125
1126!
1127!--       Impose a turbulent inflow using the recycling method
1128          IF ( turbulent_inflow )  CALL inflow_turbulence
1129
1130!
1131!--       Set values at outflow boundary using the special outflow condition
1132          IF ( turbulent_outflow )  CALL outflow_turbulence
1133
1134!
1135!--       Impose a random perturbation on the horizontal velocity field
1136          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1137               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1138               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1139          THEN
1140             time_disturb = time_disturb + dt_3d
1141             IF ( time_disturb >= dt_disturb )  THEN
1142                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1143                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1144                   CALL disturb_field( 'u', tend, u )
1145                   CALL disturb_field( 'v', tend, v )
1146                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1147                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1148                THEN
1149!
1150!--                Runs with a non-cyclic lateral wall need perturbations
1151!--                near the inflow throughout the whole simulation
1152                   dist_range = 1
1153                   CALL disturb_field( 'u', tend, u )
1154                   CALL disturb_field( 'v', tend, v )
1155                   dist_range = 0
1156                ENDIF
1157                time_disturb = time_disturb - dt_disturb
1158             ENDIF
1159          ENDIF
1160
1161!
1162!--       Map forcing data derived from larger scale model onto domain
1163!--       boundaries.
1164          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1165                                       intermediate_timestep_count_max  )                          &
1166             CALL nesting_offl_bc
1167!
1168!--       Impose a turbulent inflow using synthetic generated turbulence,
1169!--       only once per time step.
1170          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1171             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1172             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1173             CALL stg_main
1174             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1175          ENDIF
1176!
1177!--       Ensure mass conservation. This need to be done after imposing
1178!--       synthetic turbulence and top boundary condition for pressure is set to
1179!--       Neumann conditions.
1180!--       Is this also required in case of Dirichlet?
1181          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1182!
1183!--       Reduce the velocity divergence via the equation for perturbation
1184!--       pressure.
1185          IF ( intermediate_timestep_count == 1  .OR. &
1186                call_psolver_at_all_substeps )  THEN
1187
1188             IF (  vnest_init ) THEN
1189!
1190!--             Compute pressure in the CG, interpolate top boundary conditions
1191!--             to the FG and then compute pressure in the FG
1192                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1193
1194                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1195                CALL vnest_boundary_conds
1196                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1197 
1198                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1199
1200!--             Anterpolate TKE, satisfy Germano Identity
1201                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1202                CALL vnest_anterpolate_e
1203                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1204
1205             ELSE
1206
1207                CALL pres
1208
1209             ENDIF
1210
1211          ENDIF
1212
1213!
1214!--       If required, compute liquid water content
1215          IF ( bulk_cloud_model )  THEN
1216             CALL calc_liquid_water_content
1217          ENDIF
1218!
1219!--       If required, compute virtual potential temperature
1220          IF ( humidity )  THEN
1221             CALL compute_vpt
1222          ENDIF
1223
1224!
1225!--       Compute the diffusion quantities
1226          IF ( .NOT. constant_diffusion )  THEN
1227
1228!
1229!--          Determine surface fluxes shf and qsws and surface values
1230!--          pt_surface and q_surface in dependence on data from external
1231!--          file LSF_DATA respectively
1232             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1233                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1234             THEN
1235                CALL ls_forcing_surf( simulated_time )
1236             ENDIF
1237
1238!
1239!--          First the vertical (and horizontal) fluxes in the surface
1240!--          (constant flux) layer are computed
1241             IF ( constant_flux_layer )  THEN
1242                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1243                CALL surface_layer_fluxes
1244                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1245             ENDIF
1246!
1247!--          If required, solve the energy balance for the surface and run soil
1248!--          model. Call for horizontal as well as vertical surfaces
1249             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1250
1251                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1252!
1253!--             Call for horizontal upward-facing surfaces
1254                CALL lsm_energy_balance( .TRUE., -1 )
1255                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1256!
1257!--             Call for northward-facing surfaces
1258                CALL lsm_energy_balance( .FALSE., 0 )
1259                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1260!
1261!--             Call for southward-facing surfaces
1262                CALL lsm_energy_balance( .FALSE., 1 )
1263                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1264!
1265!--             Call for eastward-facing surfaces
1266                CALL lsm_energy_balance( .FALSE., 2 )
1267                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1268!
1269!--             Call for westward-facing surfaces
1270                CALL lsm_energy_balance( .FALSE., 3 )
1271                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1272               
1273!
1274!--             At the end, set boundary conditons for potential temperature
1275!--             and humidity after running the land-surface model. This
1276!--             might be important for the nesting, where arrays are transfered.
1277                CALL lsm_boundary_condition
1278
1279               
1280                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1281             ENDIF
1282!
1283!--          If required, solve the energy balance for urban surfaces and run
1284!--          the material heat model
1285             IF (urban_surface) THEN
1286                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1287               
1288                CALL usm_surface_energy_balance( .FALSE. )
1289                IF ( usm_material_model )  THEN
1290                   CALL usm_green_heat_model
1291                   CALL usm_material_heat_model ( .FALSE. )
1292                ENDIF
1293
1294!
1295!--             At the end, set boundary conditons for potential temperature
1296!--             and humidity after running the urban-surface model. This
1297!--             might be important for the nesting, where arrays are transfered.
1298                CALL usm_boundary_condition
1299
1300                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1301             ENDIF
1302!
1303!--          Compute the diffusion coefficients
1304             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1305             IF ( .NOT. humidity ) THEN
1306                IF ( ocean_mode )  THEN
1307                   CALL tcm_diffusivities( prho, prho_reference )
1308                ELSE
1309                   CALL tcm_diffusivities( pt, pt_reference )
1310                ENDIF
1311             ELSE
1312                CALL tcm_diffusivities( vpt, pt_reference )
1313             ENDIF
1314             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1315!
1316!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1317             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1318
1319          ENDIF
1320
1321!
1322!--       If required, calculate radiative fluxes and heating rates
1323          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1324               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1325
1326               time_radiation = time_radiation + dt_3d
1327
1328             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1329
1330                CALL cpu_log( log_point(50), 'radiation', 'start' )
1331
1332                IF ( .NOT. force_radiation_call )  THEN
1333                   time_radiation = time_radiation - dt_radiation
1334                ENDIF
1335
1336!
1337!--             Adjust the current time to the time step of the radiation model.
1338!--             Needed since radiation is pre-calculated and stored only on apparent
1339!--             solar positions
1340                time_since_reference_point_save = time_since_reference_point
1341                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1342                                                          dt_radiation), wp ) * dt_radiation
1343
1344                CALL radiation_control
1345
1346                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1347                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1348                   CALL radiation_interaction
1349                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1350                ENDIF
1351   
1352!
1353!--             Return the current time to its original value
1354                time_since_reference_point = time_since_reference_point_save
1355
1356                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1357
1358             ENDIF
1359          ENDIF
1360
1361       ENDDO   ! Intermediate step loop
1362
1363!
1364!--    Will be used at some point by flow_statistics.
1365       !$ACC UPDATE &
1366       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1367       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1368       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1369       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1370       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1371       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1372       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1373       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1374       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1375       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1376       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1381
1382!
1383!--    If required, consider chemical emissions
1384       IF ( air_chemistry  .AND.  do_emis )  THEN
1385!
1386!--       Update the time --> kanani: revise location of this CALL
1387          CALL calc_date_and_time
1388!
1389!--       Call emission routine only once an hour
1390          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1391             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1392             hour_call_emis = hour_of_year
1393          ENDIF
1394       ENDIF
1395
1396!
1397!--    If required, calculate indoor temperature, waste heat, heat flux
1398!--    through wall, etc.
1399!--    dt_indoor steers the frequency of the indoor model calculations.
1400!--    Note, at first timestep indoor model is called, in order to provide
1401!--    a waste heat flux.
1402       IF ( indoor_model )  THEN
1403
1404          time_indoor = time_indoor + dt_3d
1405
1406          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1407
1408             time_indoor = time_indoor - dt_indoor
1409
1410             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1411             CALL im_main_heatcool
1412             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1413
1414          ENDIF
1415       ENDIF
1416!
1417!--    Increase simulation time and output times
1418       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1419       current_timestep_number    = current_timestep_number + 1
1420       simulated_time             = simulated_time   + dt_3d
1421       time_since_reference_point = simulated_time - coupling_start_time
1422       simulated_time_chr         = time_to_string( time_since_reference_point )
1423
1424
1425
1426
1427       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1428          time_do_av         = time_do_av       + dt_3d
1429       ENDIF
1430       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1431          time_do2d_xy       = time_do2d_xy     + dt_3d
1432       ENDIF
1433       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1434          time_do2d_xz       = time_do2d_xz     + dt_3d
1435       ENDIF
1436       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1437          time_do2d_yz       = time_do2d_yz     + dt_3d
1438       ENDIF
1439       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1440          time_do3d          = time_do3d        + dt_3d
1441       ENDIF
1442       DO  mid = 1, masks
1443          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1444             time_domask(mid)= time_domask(mid) + dt_3d
1445          ENDIF
1446       ENDDO
1447       time_dvrp          = time_dvrp        + dt_3d
1448       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1449          time_dosp       = time_dosp        + dt_3d
1450       ENDIF
1451       time_dots          = time_dots        + dt_3d
1452       IF ( .NOT. first_call_lpm )  THEN
1453          time_dopts      = time_dopts       + dt_3d
1454       ENDIF
1455       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1456          time_dopr       = time_dopr        + dt_3d
1457       ENDIF
1458       time_dopr_listing  = time_dopr_listing + dt_3d
1459       time_run_control   = time_run_control + dt_3d
1460!
1461!--    Increment time-counter for surface output
1462       IF ( surface_output )  THEN
1463          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1464             time_dosurf    = time_dosurf + dt_3d
1465          ENDIF
1466          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1467             time_dosurf_av = time_dosurf_av + dt_3d
1468          ENDIF
1469       ENDIF
1470!
1471!--    In case of synthetic turbulence generation and parametrized turbulence
1472!--    information, update the time counter and if required, adjust the
1473!--    STG to new atmospheric conditions.
1474       IF ( use_syn_turb_gen  )  THEN
1475          IF ( parametrize_inflow_turbulence )  THEN
1476             time_stg_adjust = time_stg_adjust + dt_3d
1477             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1478                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1479                CALL stg_adjust
1480                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1481             ENDIF
1482          ENDIF
1483          time_stg_call = time_stg_call + dt_3d
1484       ENDIF
1485
1486!
1487!--    Data exchange between coupled models
1488       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1489          time_coupling = time_coupling + dt_3d
1490
1491!
1492!--       In case of model termination initiated by the local model
1493!--       (terminate_coupled > 0), the coupler must be skipped because it would
1494!--       cause an MPI intercomminucation hang.
1495!--       If necessary, the coupler will be called at the beginning of the
1496!--       next restart run.
1497          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1498             CALL surface_coupler
1499             time_coupling = time_coupling - dt_coupling
1500          ENDDO
1501       ENDIF
1502
1503!
1504!--    Biometeorology calculation of stationary thermal indices
1505!--    Todo (kanani): biometeorology needs own time_... treatment.
1506!--                   It might be that time_do2d_xy differs from time_do3d,
1507!--                   and then we might get trouble with the biomet output,
1508!--                   because we can have 2d and/or 3d biomet output!!
1509       IF ( biometeorology                                                                         &
1510            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1511                  .OR.                                                                             &
1512            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1513                    ) )  THEN
1514!
1515!--       If required, do thermal comfort calculations
1516          IF ( thermal_comfort )  THEN
1517             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1518          ENDIF
1519!
1520!--       If required, do UV exposure calculations
1521          IF ( uv_exposure )  THEN
1522             CALL uvem_calc_exposure
1523          ENDIF
1524       ENDIF
1525
1526!
1527!--    Execute alle other module actions routunes
1528       CALL module_interface_actions( 'after_integration' )
1529
1530!
1531!--    If Galilei transformation is used, determine the distance that the
1532!--    model has moved so far
1533       IF ( galilei_transformation )  THEN
1534          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1535          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1536       ENDIF
1537
1538!
1539!--    Check, if restart is necessary (because cpu-time is expiring or
1540!--    because it is forced by user) and set stop flag
1541!--    This call is skipped if the remote model has already initiated a restart.
1542       IF ( .NOT. terminate_run )  CALL check_for_restart
1543
1544!
1545!--    Carry out statistical analysis and output at the requested output times.
1546!--    The MOD function is used for calculating the output time counters (like
1547!--    time_dopr) in order to regard a possible decrease of the output time
1548!--    interval in case of restart runs
1549
1550!
1551!--    Set a flag indicating that so far no statistics have been created
1552!--    for this time step
1553       flow_statistics_called = .FALSE.
1554
1555!
1556!--    If required, call flow_statistics for averaging in time
1557       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1558            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1559            time_since_reference_point >= skip_time_dopr )  THEN
1560          time_dopr_av = time_dopr_av + dt_3d
1561          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1562             do_sum = .TRUE.
1563             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1564          ENDIF
1565       ENDIF
1566       IF ( do_sum )  CALL flow_statistics
1567
1568!
1569!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1570       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1571            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1572            time_since_reference_point >= skip_time_data_output_av )                               &
1573       THEN
1574          time_do_sla = time_do_sla + dt_3d
1575          IF ( time_do_sla >= dt_averaging_input )  THEN
1576             CALL sum_up_3d_data
1577             average_count_3d = average_count_3d + 1
1578             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1579          ENDIF
1580       ENDIF
1581!
1582!--    Average surface data
1583       IF ( surface_output )  THEN
1584          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1585                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1586                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1587             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1588                CALL surface_data_output_averaging
1589                average_count_surf = average_count_surf + 1
1590             ENDIF
1591          ENDIF
1592       ENDIF
1593
1594!
1595!--    Calculate spectra for time averaging
1596       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1597            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1598          time_dosp_av = time_dosp_av + dt_3d
1599          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1600             CALL calc_spectra
1601             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1602          ENDIF
1603       ENDIF
1604
1605!
1606!--    Call flight module and output data
1607       IF ( virtual_flight )  THEN
1608          CALL flight_measurement
1609          CALL data_output_flight
1610       ENDIF
1611!
1612!--    Take virtual measurements
1613       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1614          CALL vm_sampling
1615          CALL vm_data_output
1616       ENDIF
1617
1618!
1619!--    Profile output (ASCII) on file
1620       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1621          CALL print_1d
1622          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1623       ENDIF
1624
1625!
1626!--    Graphic output for PROFIL
1627       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1628          IF ( dopr_n /= 0 )  CALL data_output_profiles
1629          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1630          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1631       ENDIF
1632
1633!
1634!--    Graphic output for time series
1635       IF ( time_dots >= dt_dots )  THEN
1636          CALL data_output_tseries
1637          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1638       ENDIF
1639
1640!
1641!--    Output of spectra (formatted for use with PROFIL), in case of no
1642!--    time averaging, spectra has to be calculated before
1643       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1644          IF ( average_count_sp == 0 )  CALL calc_spectra
1645          CALL data_output_spectra
1646          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1647       ENDIF
1648
1649!
1650!--    2d-data output (cross-sections)
1651       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1652          CALL data_output_2d( 'xy', 0 )
1653          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1654       ENDIF
1655       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1656          CALL data_output_2d( 'xz', 0 )
1657          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1658       ENDIF
1659       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1660          CALL data_output_2d( 'yz', 0 )
1661          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1662       ENDIF
1663
1664!
1665!--    3d-data output (volume data)
1666       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1667          CALL data_output_3d( 0 )
1668          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1669       ENDIF
1670
1671!
1672!--    Masked data output
1673       DO  mid = 1, masks
1674          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1675               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1676             CALL data_output_mask( 0 )
1677             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1678          ENDIF
1679       ENDDO
1680
1681!
1682!--    Output of time-averaged 2d/3d/masked data
1683       IF ( time_do_av >= dt_data_output_av                                                        &
1684            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1685          CALL average_3d_data
1686!
1687!--       Udate thermal comfort indices based on updated averaged input
1688          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1689             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1690          ENDIF
1691          CALL data_output_2d( 'xy', 1 )
1692          CALL data_output_2d( 'xz', 1 )
1693          CALL data_output_2d( 'yz', 1 )
1694          CALL data_output_3d( 1 )
1695          DO  mid = 1, masks
1696             CALL data_output_mask( 1 )
1697          ENDDO
1698          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1699       ENDIF
1700!
1701!--    Output of surface data, instantaneous and averaged data
1702       IF ( surface_output )  THEN
1703          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1704             CALL surface_data_output( 0 )
1705             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1706          ENDIF
1707          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1708             CALL surface_data_output( 1 )
1709             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1710          ENDIF
1711       ENDIF
1712
1713!
1714!--    Output of particle time series
1715       IF ( particle_advection )  THEN
1716          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1717               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1718                 first_call_lpm ) )  THEN
1719             CALL data_output_ptseries
1720             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1721          ENDIF
1722       ENDIF
1723
1724!
1725!--    Output of dvrp-graphics (isosurface, particles, slicer)
1726#if defined( __dvrp_graphics )
1727       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1728#endif
1729       IF ( time_dvrp >= dt_dvrp )  THEN
1730          CALL data_output_dvrp
1731          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1732       ENDIF
1733#if defined( __dvrp_graphics )
1734       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1735#endif
1736
1737!
1738!--    If required, set the heat flux for the next time step to a random value
1739       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1740          IF ( surf_def_h(0)%ns >= 1 )  THEN
1741             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1742             CALL disturb_heatflux( surf_def_h(0) )
1743             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1744          ENDIF
1745          IF ( surf_lsm_h%ns    >= 1 )  THEN
1746             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1747             CALL disturb_heatflux( surf_lsm_h    )
1748             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1749          ENDIF
1750          IF ( surf_usm_h%ns    >= 1 )  THEN
1751             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1752             CALL disturb_heatflux( surf_usm_h    )
1753             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1754          ENDIF
1755       ENDIF
1756
1757!
1758!--    Execute alle other module actions routunes
1759       CALL module_interface_actions( 'after_timestep' )
1760
1761!
1762!--    Determine size of next time step. Save timestep dt_3d because it is
1763!--    newly calculated in routine timestep, but required further below for
1764!--    steering the run control output interval
1765       dt_3d_old = dt_3d
1766       CALL timestep
1767
1768!
1769!--    Synchronize the timestep in case of nested run.
1770       IF ( nested_run )  THEN
1771!
1772!--       Synchronize by unifying the time step.
1773!--       Global minimum of all time-steps is used for all.
1774          CALL pmci_synchronize
1775       ENDIF
1776
1777!
1778!--    Computation and output of run control parameters.
1779!--    This is also done whenever perturbations have been imposed
1780       IF ( time_run_control >= dt_run_control  .OR.                                               &
1781            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1782       THEN
1783          CALL run_control
1784          IF ( time_run_control >= dt_run_control )  THEN
1785             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1786          ENDIF
1787       ENDIF
1788
1789!
1790!--    Output elapsed simulated time in form of a progress bar on stdout
1791       IF ( myid == 0 )  CALL output_progress_bar
1792
1793       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1794
1795
1796    ENDDO   ! time loop
1797
1798#if defined( _OPENACC )
1799    CALL exit_surface_arrays
1800#endif
1801!$ACC END DATA
1802!$ACC END DATA
1803!$ACC END DATA
1804!$ACC END DATA
1805!$ACC END DATA
1806!$ACC END DATA
1807!$ACC END DATA
1808
1809!
1810!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1811    IF ( vnest_init )  CALL vnest_deallocate
1812
1813    IF ( myid == 0 )  CALL finish_progress_bar
1814
1815#if defined( __dvrp_graphics )
1816    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1817#endif
1818
1819    CALL location_message( 'finished time-stepping', .TRUE. )
1820
1821 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.