source: palm/trunk/SOURCE/time_integration.f90 @ 3724

Last change on this file since 3724 was 3724, checked in by kanani, 3 years ago

Correct double-used log_point_s units (bulk_cloud_model_mod, time_integration, turbulence_closure_mod)

  • Property svn:keywords set to Id
File size: 72.2 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3724 2019-02-06 16:28:23Z kanani $
27! Correct double-used log_point_s unit
28!
29! 3719 2019-02-06 13:10:18Z kanani
30! - removed wind_turbine cpu measurement, since same time is measured inside
31!   wtm_forces subroutine as special measures
32! - moved the numerous vnest cpulog to special measures
33! - extended radiation cpulog over entire radiation part,
34!   moved radiation_interactions cpulog to special measures
35! - moved some cpu_log calls to this routine for better overview
36!
37! 3705 2019-01-29 19:56:39Z suehring
38! Data output for virtual measurements added
39!
40! 3704 2019-01-29 19:51:41Z suehring
41! Rename subroutines for surface-data output
42!
43! 3647 2019-01-02 14:10:44Z kanani
44! Bugfix: add time_since_reference_point to IF clause for data_output calls
45! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
46! Clean up indoor_model and biometeorology model call.
47!
48! 3646 2018-12-28 17:58:49Z kanani
49! Bugfix: use time_since_reference_point instead of simulated_time where
50! required (relevant when using wall/soil spinup)
51!
52! 3634 2018-12-18 12:31:28Z knoop
53! OpenACC port for SPEC
54!
55! 3597 2018-12-04 08:40:18Z maronga
56! Removed call to calculation of near air (10 cm) potential temperature (now in
57! surface layer fluxes)
58!
59! 3589 2018-11-30 15:09:51Z suehring
60! Move the control parameter "salsa" from salsa_mod to control_parameters
61! (M. Kurppa)
62!
63! 3582 2018-11-29 19:16:36Z suehring
64! dom_dwd_user, Schrempf:
65! Changes due to merge of uv exposure model into biometeorology_mod.
66!
67! 3525 2018-11-14 16:06:14Z kanani
68! Changes related to clean-up of biometeorology (dom_dwd_user)
69!
70! 3524 2018-11-14 13:36:44Z raasch
71! unused variables removed
72!
73! 3484 2018-11-02 14:41:25Z hellstea
74! pmci_ensure_nest_mass_conservation is premanently removed
75!
76! 3473 2018-10-30 20:50:15Z suehring
77! new module for virtual measurements introduced
78!
79! 3472 2018-10-30 20:43:50Z suehring
80! Add indoor model (kanani, srissman, tlang)
81!
82! 3467 2018-10-30 19:05:21Z suehring
83! Implementation of a new aerosol module salsa.
84!
85! 3448 2018-10-29 18:14:31Z kanani
86! Add biometeorology
87!
88! 3421 2018-10-24 18:39:32Z gronemeier
89! Surface data output
90!
91! 3418 2018-10-24 16:07:39Z kanani
92! call to material_heat_model now with check if spinup runs (rvtils)
93!
94! 3378 2018-10-19 12:34:59Z kanani
95! merge from radiation branch (r3362) into trunk
96! (moh.hefny):
97! Bugfix in the if statement to call radiation_interaction
98!
99! 3347 2018-10-15 14:21:08Z suehring
100! - offline nesting separated from large-scale forcing module
101! - changes for synthetic turbulence generator
102!
103! 3343 2018-10-15 10:38:52Z suehring
104! - Formatting, clean-up, comments (kanani)
105! - Added CALL to chem_emissions_setup (Russo)
106! - Code added for decycling chemistry (basit)
107!
108! 3294 2018-10-01 02:37:10Z raasch
109! changes concerning modularization of ocean option
110!
111! 3274 2018-09-24 15:42:55Z knoop
112! Modularization of all bulk cloud physics code components
113!
114! 3241 2018-09-12 15:02:00Z raasch
115! unused variables removed
116!
117! 3198 2018-08-15 09:23:10Z sward
118! Added multi_agent_system_end; defined start time for MAS relative to
119! time_since_reference_point
120!
121! 3183 2018-07-27 14:25:55Z suehring
122! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
123! Rename subroutines and variables in COSMO nesting mode
124!
125! 3182 2018-07-27 13:36:03Z suehring
126! Added multi agent system
127!
128! 3042 2018-05-25 10:44:37Z schwenkel
129! Changed the name specific humidity to mixing ratio
130!
131! 3040 2018-05-25 10:22:08Z schwenkel
132! Fixed bug in IF statement
133! Ensure that the time when calling the radiation to be the time step of the
134! pre-calculated time when first calculate the positions of the sun
135!
136! 3004 2018-04-27 12:33:25Z Giersch
137! First call of flow_statistics has been removed. It is already called in
138! run_control itself
139!
140! 2984 2018-04-18 11:51:30Z hellstea
141! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
142! as seemingly unnecessary.
143!
144! 2941 2018-04-03 11:54:58Z kanani
145! Deduct spinup_time from RUN_CONTROL output of main 3d run
146! (use time_since_reference_point instead of simulated_time)
147!
148! 2938 2018-03-27 15:52:42Z suehring
149! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
150!
151! 2936 2018-03-27 14:49:27Z suehring
152! Little formatting adjustment.
153!
154! 2817 2018-02-19 16:32:21Z knoop
155! Preliminary gust module interface implemented
156!
157! 2801 2018-02-14 16:01:55Z thiele
158! Changed lpm from subroutine to module.
159! Introduce particle transfer in nested models.
160!
161! 2776 2018-01-31 10:44:42Z Giersch
162! Variable use_synthetic_turbulence_generator has been abbreviated
163!
164! 2773 2018-01-30 14:12:54Z suehring
165! - Nesting for chemical species
166!
167! 2766 2018-01-22 17:17:47Z kanani
168! Removed preprocessor directive __chem
169!
170! 2718 2018-01-02 08:49:38Z maronga
171! Corrected "Former revisions" section
172!
173! 2696 2017-12-14 17:12:51Z kanani
174! - Change in file header (GPL part)
175! - Implementation of uv exposure model (FK)
176! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
177! - renamed diffusivities to tcm_diffusivities (TG)
178! - implement prognostic equation for diss (TG)
179! - Moved/commented CALL to chem_emissions (FK)
180! - Added CALL to chem_emissions (FK)
181! - Implementation of chemistry module (FK)
182! - Calls for setting boundary conditions in USM and LSM (MS)
183! - Large-scale forcing with larger-scale models implemented (MS)
184! - Rename usm_radiation into radiation_interactions; merge with branch
185!   radiation (MS)
186! - added call for usm_green_heat_model for green building surfaces (RvT)
187! - added call for usm_temperature_near_surface for use in indoor model (RvT)
188!
189! 2617 2017-11-16 12:47:24Z suehring
190! Bugfix, assure that the reference state does not become zero.
191!
192! 2563 2017-10-19 15:36:10Z Giersch
193! Variable wind_turbine moved to module control_parameters
194!
195! 2365 2017-08-21 14:59:59Z kanani
196! Vertical grid nesting implemented (SadiqHuq)
197!
198! 2320 2017-07-21 12:47:43Z suehring
199! Set bottom boundary conditions after nesting interpolation and anterpolation
200!
201! 2299 2017-06-29 10:14:38Z maronga
202! Call of soil model adjusted
203!
204! 2292 2017-06-20 09:51:42Z schwenkel
205! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
206! includes two more prognostic equations for cloud drop concentration (nc) 
207! and cloud water content (qc).
208!
209! 2271 2017-06-09 12:34:55Z sward
210! Start timestep message changed
211!
212! 2259 2017-06-08 09:09:11Z gronemeier
213! Implemented synthetic turbulence generator
214!
215! 2233 2017-05-30 18:08:54Z suehring
216!
217! 2232 2017-05-30 17:47:52Z suehring
218! Adjustments to new topography and surface concept
219! Modify passed parameters for disturb_field
220!
221! 2178 2017-03-17 11:07:39Z hellstea
222! Setting perturbations at all times near inflow boundary is removed
223! in case of nested boundaries
224!
225! 2174 2017-03-13 08:18:57Z maronga
226! Added support for nesting with cloud microphysics
227!
228! 2118 2017-01-17 16:38:49Z raasch
229! OpenACC directives and related code removed
230!
231! 2050 2016-11-08 15:00:55Z gronemeier
232! Implement turbulent outflow condition
233!
234! 2031 2016-10-21 15:11:58Z knoop
235! renamed variable rho to rho_ocean
236!
237! 2011 2016-09-19 17:29:57Z kanani
238! Flag urban_surface is now defined in module control_parameters,
239! removed commented CALLs of global_min_max.
240!
241! 2007 2016-08-24 15:47:17Z kanani
242! Added CALLs for new urban surface model
243!
244! 2000 2016-08-20 18:09:15Z knoop
245! Forced header and separation lines into 80 columns
246!
247! 1976 2016-07-27 13:28:04Z maronga
248! Simplified calls to radiation model
249!
250! 1960 2016-07-12 16:34:24Z suehring
251! Separate humidity and passive scalar
252!
253! 1957 2016-07-07 10:43:48Z suehring
254! flight module added
255!
256! 1919 2016-05-27 14:51:23Z raasch
257! Initial version of purely vertical nesting introduced.
258!
259! 1918 2016-05-27 14:35:57Z raasch
260! determination of time step moved to the end of the time step loop,
261! the first time step is now always calculated before the time step loop (i.e.
262! also in case of restart runs)
263!
264! 1914 2016-05-26 14:44:07Z witha
265! Added call for wind turbine model
266!
267! 1878 2016-04-19 12:30:36Z hellstea
268! Synchronization for nested runs rewritten
269!
270! 1853 2016-04-11 09:00:35Z maronga
271! Adjusted for use with radiation_scheme = constant
272!
273! 1849 2016-04-08 11:33:18Z hoffmann
274! Adapted for modularization of microphysics
275!
276! 1833 2016-04-07 14:23:03Z raasch
277! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
278!
279! 1831 2016-04-07 13:15:51Z hoffmann
280! turbulence renamed collision_turbulence
281!
282! 1822 2016-04-07 07:49:42Z hoffmann
283! icloud_scheme replaced by microphysics_*
284!
285! 1808 2016-04-05 19:44:00Z raasch
286! output message in case unscheduled radiation calls removed
287!
288! 1797 2016-03-21 16:50:28Z raasch
289! introduction of different datatransfer modes
290!
291! 1791 2016-03-11 10:41:25Z raasch
292! call of pmci_update_new removed
293!
294! 1786 2016-03-08 05:49:27Z raasch
295! +module spectrum
296!
297! 1783 2016-03-06 18:36:17Z raasch
298! switch back of netcdf data format for mask output moved to the mask output
299! routine
300!
301! 1781 2016-03-03 15:12:23Z raasch
302! some pmc calls removed at the beginning (before timeloop),
303! pmc initialization moved to the main program
304!
305! 1764 2016-02-28 12:45:19Z raasch
306! PMC_ACTIVE flags removed,
307! bugfix: nest synchronization after first call of timestep
308!
309! 1762 2016-02-25 12:31:13Z hellstea
310! Introduction of nested domain feature
311!
312! 1736 2015-12-04 08:56:33Z raasch
313! no perturbations added to total domain if energy limit has been set zero
314!
315! 1691 2015-10-26 16:17:44Z maronga
316! Added option for spin-ups without land surface and radiation models. Moved calls
317! for radiation and lan surface schemes.
318!
319! 1682 2015-10-07 23:56:08Z knoop
320! Code annotations made doxygen readable
321!
322! 1671 2015-09-25 03:29:37Z raasch
323! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
324! for particles
325!
326! 1585 2015-04-30 07:05:52Z maronga
327! Moved call of radiation scheme. Added support for RRTM
328!
329! 1551 2015-03-03 14:18:16Z maronga
330! Added interface for different radiation schemes.
331!
332! 1496 2014-12-02 17:25:50Z maronga
333! Added calls for the land surface model and radiation scheme
334!
335! 1402 2014-05-09 14:25:13Z raasch
336! location messages modified
337!
338! 1384 2014-05-02 14:31:06Z raasch
339! location messages added
340!
341! 1380 2014-04-28 12:40:45Z heinze
342! CALL of nudge_ref added
343! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
344!
345! 1365 2014-04-22 15:03:56Z boeske
346! Reset sums_ls_l to zero at each timestep
347! +sums_ls_l
348! Calculation of reference state (previously in subroutine calc_mean_profile)
349
350! 1342 2014-03-26 17:04:47Z kanani
351! REAL constants defined as wp-kind
352!
353! 1320 2014-03-20 08:40:49Z raasch
354! ONLY-attribute added to USE-statements,
355! kind-parameters added to all INTEGER and REAL declaration statements,
356! kinds are defined in new module kinds,
357! old module precision_kind is removed,
358! revision history before 2012 removed,
359! comment fields (!:) to be used for variable explanations added to
360! all variable declaration statements
361! 1318 2014-03-17 13:35:16Z raasch
362! module interfaces removed
363!
364! 1308 2014-03-13 14:58:42Z fricke
365! +netcdf_data_format_save
366! For masked data, parallel netcdf output is not tested so far, hence
367! netcdf_data_format is switched back to non-paralell output.
368!
369! 1276 2014-01-15 13:40:41Z heinze
370! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
371!
372! 1257 2013-11-08 15:18:40Z raasch
373! acc-update-host directive for timestep removed
374!
375! 1241 2013-10-30 11:36:58Z heinze
376! Generalize calc_mean_profile for wider use
377! Determine shf and qsws in dependence on data from LSF_DATA
378! Determine ug and vg in dependence on data from LSF_DATA
379! 1221 2013-09-10 08:59:13Z raasch
380! host update of arrays before timestep is called
381!
382! 1179 2013-06-14 05:57:58Z raasch
383! mean profiles for reference state are only calculated if required,
384! small bugfix for background communication
385!
386! 1171 2013-05-30 11:27:45Z raasch
387! split of prognostic_equations deactivated (comment lines), for the time being
388!
389! 1128 2013-04-12 06:19:32Z raasch
390! asynchronous transfer of ghost point data realized for acc-optimized version:
391! prognostic_equations are first called two times for those points required for
392! the left-right and north-south exchange, respectively, and then for the
393! remaining points,
394! those parts requiring global communication moved from prognostic_equations to
395! here
396!
397! 1115 2013-03-26 18:16:16Z hoffmann
398! calculation of qr and nr is restricted to precipitation
399!
400! 1113 2013-03-10 02:48:14Z raasch
401! GPU-porting of boundary conditions,
402! openACC directives updated
403! formal parameter removed from routine boundary_conds
404!
405! 1111 2013-03-08 23:54:10Z raasch
406! +internal timestep counter for cpu statistics added,
407! openACC directives updated
408!
409! 1092 2013-02-02 11:24:22Z raasch
410! unused variables removed
411!
412! 1065 2012-11-22 17:42:36Z hoffmann
413! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
414!
415! 1053 2012-11-13 17:11:03Z hoffmann
416! exchange of ghost points for nr, qr added
417!
418! 1036 2012-10-22 13:43:42Z raasch
419! code put under GPL (PALM 3.9)
420!
421! 1019 2012-09-28 06:46:45Z raasch
422! non-optimized version of prognostic_equations removed
423!
424! 1015 2012-09-27 09:23:24Z raasch
425! +call of prognostic_equations_acc
426!
427! 1001 2012-09-13 14:08:46Z raasch
428! all actions concerning leapfrog- and upstream-spline-scheme removed
429!
430! 849 2012-03-15 10:35:09Z raasch
431! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
432!
433! 825 2012-02-19 03:03:44Z raasch
434! wang_collision_kernel renamed wang_kernel
435!
436! Revision 1.1  1997/08/11 06:19:04  raasch
437! Initial revision
438!
439!
440! Description:
441! ------------
442!> Integration in time of the model equations, statistical analysis and graphic
443!> output
444!------------------------------------------------------------------------------!
445 SUBROUTINE time_integration
446 
447
448    USE advec_ws,                                                              &
449        ONLY:  ws_statistics
450
451    USE arrays_3d,                                                             &
452        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
453               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
454               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
455               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
456               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
457               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
458               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
459               momentumflux_output_conversion
460
461    USE biometeorology_mod,                                                    &
462        ONLY:  bio_calculate_thermal_index_maps, time_bio_results,             &
463               thermal_comfort, uvem_calc_exposure, uv_exposure
464
465    USE bulk_cloud_model_mod,                                                  &
466        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
467              collision_turbulence, microphysics_morrison, microphysics_seifert
468
469    USE calc_mean_profile_mod,                                                 &
470        ONLY:  calc_mean_profile
471
472    USE chem_emissions_mod,                                                    &
473        ONLY:  chem_emissions_setup
474
475    USE chem_modules,                                                          &
476        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
477
478    USE chemistry_model_mod,                                                   &
479        ONLY:  chem_boundary_conds, chem_species
480
481    USE control_parameters,                                                    &
482        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
483               average_count_3d, averaging_interval, averaging_interval_pr,    &
484               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
485               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
486               constant_flux_layer, constant_heatflux,                         &
487               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
488               coupling_start_time, current_timestep_number,                   &
489               disturbance_created, disturbance_energy_limit, dist_range,      &
490               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
491               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
492               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
493               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
494               first_call_lpm, first_call_mas, galilei_transformation,         &
495               humidity, indoor_model, intermediate_timestep_count,            &
496               intermediate_timestep_count_max,                                &
497               land_surface, large_scale_forcing,                              &
498               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
499               multi_agent_system_end, multi_agent_system_start,               &
500               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
501               ocean_mode, passive_scalar, pt_reference,                       &
502               pt_slope_offset, random_heatflux, rans_mode,                    &
503               rans_tke_e, run_coupled, salsa,                                 &
504               simulated_time, simulated_time_chr,                             &
505               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
506               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
507               skip_time_data_output_av, sloping_surface, stop_dt,             &
508               surface_output, terminate_coupled, terminate_run,               &
509               timestep_scheme,                                                &
510               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
511               time_do3d, time_domask, time_dopr, time_dopr_av,                &
512               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
513               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
514               time_run_control, time_since_reference_point, tsc,              &
515               turbulent_inflow, turbulent_outflow, urban_surface,             &
516               use_initial_profile_as_reference,                               &
517               use_single_reference_value, u_gtrans, v_gtrans,                 &
518               virtual_flight, virtual_measurement, wind_turbine,              &
519               ws_scheme_mom, ws_scheme_sca
520
521    USE cpulog,                                                                &
522        ONLY:  cpu_log, log_point, log_point_s
523
524    USE date_and_time_mod,                                                     &
525        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
526
527    USE flight_mod,                                                            &
528        ONLY:  flight_measurement
529
530    USE indices,                                                               &
531        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
532               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
533
534    USE indoor_model_mod,                                                      &
535        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
536
537    USE interaction_droplets_ptq_mod,                                          &
538        ONLY:  interaction_droplets_ptq
539
540    USE interfaces
541
542    USE kinds
543
544    USE land_surface_model_mod,                                                &
545        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
546               skip_time_do_lsm
547
548    USE lsf_nudging_mod,                                                       &
549        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
550
551    USE module_interface,                                                      &
552        ONLY:  module_interface_actions
553
554    USE multi_agent_system_mod,                                                &
555        ONLY:  agents_active, multi_agent_system
556
557    USE nesting_offl_mod,                                                      &
558        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
559       
560    USE netcdf_data_input_mod,                                                 &
561        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
562               netcdf_data_input_offline_nesting
563
564    USE ocean_mod,                                                             &
565        ONLY:  prho_reference
566
567    USE particle_attributes,                                                   &
568        ONLY:  particle_advection, particle_advection_start,                   &
569               use_sgs_for_particles, wang_kernel
570
571    USE pegrid
572
573    USE pmc_interface,                                                         &
574        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
575               pmci_synchronize
576
577    USE progress_bar,                                                          &
578        ONLY:  finish_progress_bar, output_progress_bar
579
580    USE prognostic_equations_mod,                                              &
581        ONLY:  prognostic_equations_cache, prognostic_equations_vector
582
583    USE radiation_model_mod,                                                   &
584        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
585              radiation_interaction, radiation_interactions,                   &
586              skip_time_do_radiation, time_radiation
587         
588    USE salsa_mod,                                                             &
589        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
590              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
591              skip_time_do_salsa                     
592   
593    USE salsa_util_mod,                                                        &
594           ONLY:  sums_salsa_ws_l     
595
596    USE spectra_mod,                                                           &
597        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
598              skip_time_dosp
599
600    USE statistics,                                                            &
601        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
602               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
603               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
604               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
605               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
606               sums_wsnrs_ws_l, sums_wsss_ws_l
607
608    USE surface_layer_fluxes_mod,                                              &
609        ONLY:  surface_layer_fluxes
610
611    USE surface_mod,                                                           &
612        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
613               enter_surface_arrays, exit_surface_arrays
614
615    USE surface_data_output_mod,                                               &
616        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
617               dt_dosurf_av, surface_data_output,                              &
618               surface_data_output_averaging, skip_time_dosurf,                &
619               skip_time_dosurf_av, time_dosurf, time_dosurf_av
620
621    USE turbulence_closure_mod,                                                &
622        ONLY:  tcm_diffusivities, production_e_init
623
624    USE urban_surface_mod,                                                     &
625        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
626               usm_material_model,                                             &
627               usm_surface_energy_balance, usm_green_heat_model
628
629    USE synthetic_turbulence_generator_mod,                                    &
630        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
631               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
632               use_syn_turb_gen
633
634
635    USE wind_turbine_model_mod,                                                &
636        ONLY:  wtm_forces
637
638    USE lpm_mod,                                                               &
639        ONLY:  lpm
640
641    USE vertical_nesting_mod,                                                  &
642        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
643               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
644               vnest_deallocate, vnest_init, vnest_init_fine,                  &
645               vnest_start_time
646               
647    USE virtual_measurement_mod,                                               &
648        ONLY:  vm_data_output, vm_sampling, vm_time_start
649
650    IMPLICIT NONE
651
652    CHARACTER (LEN=9) ::  time_to_string   !<
653   
654    INTEGER(iwp)      ::  b !< index for aerosol size bins   
655    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
656    INTEGER(iwp)      ::  g !< index for gaseous compounds
657    INTEGER(iwp)      ::  lsp
658    INTEGER(iwp)      ::  lsp_usr   !<
659    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
660
661    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
662                            !< steering of run control output interval
663    REAL(wp) ::  time_since_reference_point_save  !< original value of
664                                                  !< time_since_reference_point
665
666
667! Copy data from arrays_3d
668!$ACC DATA &
669!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
670!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
671!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
672!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
673!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
674!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
675!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
676!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
677!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
678
679!$ACC DATA &
680!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
681!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
682!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
683!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
685!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
686!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
687!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
688!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
689!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
690!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
691
692!$ACC DATA &
693!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
694!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
695!$ACC COPYIN(zu(nzb:nzt+1)) &
696!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
697!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
698!$ACC COPYIN(ddzw(1:nzt+1)) &
699!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
700!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
701!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
702!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
703!$ACC COPYIN(ref_state(0:nz+1)) &
704!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
705!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
706!$ACC COPYIN(pt_init(0:nz+1)) &
707!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
708
709! Copy data from control_parameters
710!$ACC DATA &
711!$ACC COPYIN(tsc(1:5))
712
713! Copy data from indices
714!$ACC DATA &
715!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
717!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
718
719! Copy data from surface_mod
720!$ACC DATA &
721!$ACC COPYIN(bc_h(0:1)) &
722!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
723!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
724!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
725!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
726!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
727!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
728
729! Copy data from statistics
730!$ACC DATA &
731!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
732!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
733!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
734!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
735!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
736!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
737!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
738!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
739!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
740!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
741!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
742!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
743!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
744!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
745!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
746!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
747!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
748!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
749!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
750
751#ifdef _OPENACC
752    CALL enter_surface_arrays
753#endif
754
755!
756!-- At beginning determine the first time step
757    CALL timestep
758!
759!-- Synchronize the timestep in case of nested run.
760    IF ( nested_run )  THEN
761!
762!--    Synchronization by unifying the time step.
763!--    Global minimum of all time-steps is used for all.
764       CALL pmci_synchronize
765    ENDIF
766
767!
768!-- Determine and print out the run control quantities before the first time
769!-- step of this run. For the initial run, some statistics (e.g. divergence)
770!-- need to be determined first --> CALL flow_statistics at the beginning of
771!-- run_control
772    CALL run_control
773!
774!-- Data exchange between coupled models in case that a call has been omitted
775!-- at the end of the previous run of a job chain.
776    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
777!
778!--    In case of model termination initiated by the local model the coupler
779!--    must not be called because this would again cause an MPI hang.
780       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
781          CALL surface_coupler
782          time_coupling = time_coupling - dt_coupling
783       ENDDO
784       IF (time_coupling == 0.0_wp  .AND.                                      &
785           time_since_reference_point < dt_coupling )                          &
786       THEN
787          time_coupling = time_since_reference_point
788       ENDIF
789    ENDIF
790
791#if defined( __dvrp_graphics )
792!
793!-- Time measurement with dvrp software 
794    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
795#endif
796
797    CALL location_message( 'starting timestep-sequence', .TRUE. )
798!
799!-- Start of the time loop
800    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
801                .NOT. terminate_run )
802
803       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
804!
805!--    Vertical nesting: initialize fine grid
806       IF ( vnested ) THEN
807          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
808             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
809             CALL vnest_init_fine
810             vnest_init = .TRUE.
811             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
812          ENDIF
813       ENDIF
814!
815!--    Determine ug, vg and w_subs in dependence on data from external file
816!--    LSF_DATA
817       IF ( large_scale_forcing .AND. lsf_vert )  THEN
818           CALL ls_forcing_vert ( simulated_time )
819           sums_ls_l = 0.0_wp
820       ENDIF
821
822!
823!--    Set pt_init and q_init to the current profiles taken from
824!--    NUDGING_DATA
825       IF ( nudging )  THEN
826           CALL nudge_ref ( simulated_time )
827!
828!--        Store temperature gradient at the top boundary for possible Neumann
829!--        boundary condition
830           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
831           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
832           IF ( air_chemistry )  THEN
833              DO  lsp = 1, nspec
834                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
835                                - chem_species(lsp)%conc_pr_init(nzt) )       &
836                               / dzu(nzt+1)
837              ENDDO
838           ENDIF
839       ENDIF
840!
841!--    If forcing by larger-scale models is applied, check if new data
842!--    at domain boundaries need to be read.
843       IF ( nesting_offline )  THEN
844          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
845             CALL netcdf_data_input_offline_nesting
846       ENDIF
847
848!
849!--    Execute alle other module actions routunes
850       CALL module_interface_actions( 'before_timestep' )
851
852!
853!--    Calculate forces by wind turbines
854       IF ( wind_turbine )  CALL wtm_forces 
855       
856!
857!--    Start of intermediate step loop
858       intermediate_timestep_count = 0
859       DO  WHILE ( intermediate_timestep_count < &
860                   intermediate_timestep_count_max )
861
862          intermediate_timestep_count = intermediate_timestep_count + 1
863
864!
865!--       Set the steering factors for the prognostic equations which depend
866!--       on the timestep scheme
867          CALL timestep_scheme_steering
868
869!
870!--       Calculate those variables needed in the tendency terms which need
871!--       global communication
872          IF ( .NOT. use_single_reference_value  .AND. &
873               .NOT. use_initial_profile_as_reference )  THEN
874!
875!--          Horizontally averaged profiles to be used as reference state in
876!--          buoyancy terms (WARNING: only the respective last call of
877!--          calc_mean_profile defines the reference state!)
878             IF ( .NOT. neutral )  THEN
879                CALL calc_mean_profile( pt, 4 )
880                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
881             ENDIF
882             IF ( ocean_mode )  THEN
883                CALL calc_mean_profile( rho_ocean, 64 )
884                ref_state(:)  = hom(:,1,64,0)
885             ENDIF
886             IF ( humidity )  THEN
887                CALL calc_mean_profile( vpt, 44 )
888                ref_state(:)  = hom(:,1,44,0)
889             ENDIF
890!
891!--          Assure that ref_state does not become zero at any level
892!--          ( might be the case if a vertical level is completely occupied
893!--            with topography ).
894             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
895                                ref_state == 0.0_wp )
896          ENDIF
897
898          IF ( .NOT. constant_diffusion )  CALL production_e_init
899          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
900               intermediate_timestep_count == 1 )  CALL ws_statistics
901!
902!--       In case of nudging calculate current nudging time scale and horizontal
903!--       means of u, v, pt and q
904          IF ( nudging )  THEN
905             CALL calc_tnudge( simulated_time )
906             CALL calc_mean_profile( u, 1 )
907             CALL calc_mean_profile( v, 2 )
908             CALL calc_mean_profile( pt, 4 )
909             CALL calc_mean_profile( q, 41 )
910          ENDIF
911
912!
913!--       Solve the prognostic equations. A fast cache optimized version with
914!--       only one single loop is used in case of Piascek-Williams advection
915!--       scheme. NEC vector machines use a different version, because
916!--       in the other versions a good vectorization is prohibited due to
917!--       inlining problems.
918          IF ( loop_optimization == 'cache' )  THEN
919             CALL prognostic_equations_cache
920          ELSEIF ( loop_optimization == 'vector' )  THEN
921             CALL prognostic_equations_vector
922          ENDIF
923
924!
925!--       Particle transport/physics with the Lagrangian particle model
926!--       (only once during intermediate steps, because it uses an Euler-step)
927!--       ### particle model should be moved before prognostic_equations, in order
928!--       to regard droplet interactions directly
929          IF ( particle_advection  .AND.                         &
930               time_since_reference_point >= particle_advection_start  .AND. &
931               intermediate_timestep_count == 1 )  THEN
932             CALL lpm
933             first_call_lpm = .FALSE.
934          ENDIF
935
936!
937!--       Interaction of droplets with temperature and mixing ratio.
938!--       Droplet condensation and evaporation is calculated within
939!--       advec_particles.
940          IF ( cloud_droplets  .AND.  &
941               intermediate_timestep_count == intermediate_timestep_count_max )&
942          THEN
943             CALL interaction_droplets_ptq
944          ENDIF
945
946!
947!--       Movement of agents in multi agent system
948          IF ( agents_active  .AND.                                            &
949               time_since_reference_point >= multi_agent_system_start  .AND.   &
950               time_since_reference_point <= multi_agent_system_end    .AND.   &
951               intermediate_timestep_count == 1 )  THEN
952             CALL multi_agent_system
953             first_call_mas = .FALSE.
954          ENDIF
955
956!
957!--       Exchange of ghost points (lateral boundary conditions)
958          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
959
960          CALL exchange_horiz( u_p, nbgp )
961          CALL exchange_horiz( v_p, nbgp )
962          CALL exchange_horiz( w_p, nbgp )
963          CALL exchange_horiz( pt_p, nbgp )
964          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
965          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
966               .OR.  use_sgs_for_particles )  THEN
967             IF ( rans_tke_e )  THEN
968                CALL exchange_horiz( diss_p, nbgp )
969             ELSE
970                CALL exchange_horiz( diss, nbgp )
971             ENDIF
972          ENDIF
973          IF ( ocean_mode )  THEN
974             CALL exchange_horiz( sa_p, nbgp )
975             CALL exchange_horiz( rho_ocean, nbgp )
976             CALL exchange_horiz( prho, nbgp )
977          ENDIF
978          IF ( humidity )  THEN
979             CALL exchange_horiz( q_p, nbgp )
980             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
981                CALL exchange_horiz( qc_p, nbgp )
982                CALL exchange_horiz( nc_p, nbgp )
983             ENDIF
984             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
985                CALL exchange_horiz( qr_p, nbgp )
986                CALL exchange_horiz( nr_p, nbgp )
987             ENDIF
988          ENDIF
989          IF ( cloud_droplets )  THEN
990             CALL exchange_horiz( ql, nbgp )
991             CALL exchange_horiz( ql_c, nbgp )
992             CALL exchange_horiz( ql_v, nbgp )
993             CALL exchange_horiz( ql_vp, nbgp )
994          ENDIF
995          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
996          IF ( air_chemistry )  THEN
997             DO  lsp = 1, nspec
998                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
999!
1000!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1001                lsp_usr = 1
1002                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1003                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1004                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1005                                                chem_species(lsp)%conc_pr_init )
1006                   ENDIF
1007                   lsp_usr = lsp_usr + 1
1008                ENDDO
1009             ENDDO
1010          ENDIF
1011
1012          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1013          THEN
1014             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1015             DO  b = 1, nbins
1016                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1017                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1018                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1019                                           aerosol_number(b)%init )
1020                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1021                DO  c = 1, ncc_tot
1022                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1023                                        nbgp )
1024                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1025                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1026                                              aerosol_mass((c-1)*nbins+b)%init )
1027                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1028                ENDDO
1029             ENDDO
1030             IF ( .NOT. salsa_gases_from_chem )  THEN
1031                DO  g = 1, ngast
1032                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1033                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1034                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1035                                              salsa_gas(g)%init )
1036                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1037             ENDDO
1038             ENDIF
1039             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1040          ENDIF         
1041          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1042
1043!
1044!--       Boundary conditions for the prognostic quantities (except of the
1045!--       velocities at the outflow in case of a non-cyclic lateral wall)
1046          CALL boundary_conds
1047!
1048!--       Swap the time levels in preparation for the next time step.
1049          CALL swap_timelevel
1050
1051!
1052!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1053          IF ( vnest_init ) THEN
1054             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1055             CALL vnest_anterpolate
1056             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1057          ENDIF
1058
1059          IF ( nested_run )  THEN
1060
1061             CALL cpu_log( log_point(60), 'nesting', 'start' )
1062!
1063!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1064!--          and pmci_child_datatrans are called inside the wrapper
1065!--          subroutine pmci_datatrans according to the control parameters
1066!--          nesting_mode and nesting_datatransfer_mode.
1067!--          TO_DO: why is nesting_mode given as a parameter here?
1068             CALL pmci_datatrans( nesting_mode )
1069
1070             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1071                  nesting_mode == 'vertical' )  THEN
1072!
1073!--             Exchange_horiz is needed for all parent-domains after the
1074!--             anterpolation
1075                CALL exchange_horiz( u, nbgp )
1076                CALL exchange_horiz( v, nbgp )
1077                CALL exchange_horiz( w, nbgp )
1078                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1079
1080                IF ( humidity )  THEN
1081
1082                   CALL exchange_horiz( q, nbgp )
1083
1084                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1085                       CALL exchange_horiz( qc, nbgp )
1086                       CALL exchange_horiz( nc, nbgp )
1087                   ENDIF
1088                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1089                       CALL exchange_horiz( qr, nbgp )
1090                       CALL exchange_horiz( nr, nbgp )
1091                   ENDIF
1092
1093                ENDIF
1094
1095                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1096               
1097                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1098
1099                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1100                                                      rans_tke_e )             &
1101                   CALL exchange_horiz( diss, nbgp )
1102
1103                IF ( air_chemistry )  THEN
1104                   DO  n = 1, nspec     
1105                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1106                   ENDDO
1107                ENDIF
1108
1109             ENDIF
1110!
1111!--          Set boundary conditions again after interpolation and anterpolation.
1112             CALL pmci_boundary_conds
1113
1114             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1115
1116          ENDIF
1117
1118!
1119!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1120!--       when a sloping surface is used
1121          IF ( sloping_surface )  THEN
1122             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1123                                                    pt_slope_offset
1124             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1125                                                    pt_slope_offset
1126          ENDIF
1127
1128!
1129!--       Impose a turbulent inflow using the recycling method
1130          IF ( turbulent_inflow )  CALL inflow_turbulence
1131
1132!
1133!--       Set values at outflow boundary using the special outflow condition
1134          IF ( turbulent_outflow )  CALL outflow_turbulence
1135
1136!
1137!--       Impose a random perturbation on the horizontal velocity field
1138          IF ( create_disturbances  .AND.                                      &
1139               ( call_psolver_at_all_substeps  .AND.                           &
1140               intermediate_timestep_count == intermediate_timestep_count_max )&
1141          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1142               intermediate_timestep_count == 1 ) )                            &
1143          THEN
1144             time_disturb = time_disturb + dt_3d
1145             IF ( time_disturb >= dt_disturb )  THEN
1146                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1147                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1148                   CALL disturb_field( 'u', tend, u )
1149                   CALL disturb_field( 'v', tend, v )
1150                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1151                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1152                THEN
1153!
1154!--                Runs with a non-cyclic lateral wall need perturbations
1155!--                near the inflow throughout the whole simulation
1156                   dist_range = 1
1157                   CALL disturb_field( 'u', tend, u )
1158                   CALL disturb_field( 'v', tend, v )
1159                   dist_range = 0
1160                ENDIF
1161                time_disturb = time_disturb - dt_disturb
1162             ENDIF
1163          ENDIF
1164
1165!
1166!--       Map forcing data derived from larger scale model onto domain
1167!--       boundaries.
1168          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1169                                       intermediate_timestep_count_max  )      &
1170             CALL nesting_offl_bc
1171!
1172!--       Impose a turbulent inflow using synthetic generated turbulence,
1173!--       only once per time step.
1174          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1175             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1176             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1177             CALL stg_main
1178             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1179          ENDIF
1180!
1181!--       Ensure mass conservation. This need to be done after imposing
1182!--       synthetic turbulence and top boundary condition for pressure is set to
1183!--       Neumann conditions.
1184!--       Is this also required in case of Dirichlet?
1185          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1186!
1187!--       Reduce the velocity divergence via the equation for perturbation
1188!--       pressure.
1189          IF ( intermediate_timestep_count == 1  .OR. &
1190                call_psolver_at_all_substeps )  THEN
1191
1192             IF (  vnest_init ) THEN
1193!
1194!--             Compute pressure in the CG, interpolate top boundary conditions
1195!--             to the FG and then compute pressure in the FG
1196                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1197
1198                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1199                CALL vnest_boundary_conds
1200                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1201 
1202                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1203
1204!--             Anterpolate TKE, satisfy Germano Identity
1205                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1206                CALL vnest_anterpolate_e
1207                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1208
1209             ELSE
1210
1211                CALL pres
1212
1213             ENDIF
1214
1215          ENDIF
1216
1217!
1218!--       If required, compute liquid water content
1219          IF ( bulk_cloud_model )  THEN
1220             CALL calc_liquid_water_content
1221          ENDIF
1222!
1223!--       If required, compute virtual potential temperature
1224          IF ( humidity )  THEN
1225             CALL compute_vpt
1226          ENDIF
1227
1228!
1229!--       Compute the diffusion quantities
1230          IF ( .NOT. constant_diffusion )  THEN
1231
1232!
1233!--          Determine surface fluxes shf and qsws and surface values
1234!--          pt_surface and q_surface in dependence on data from external
1235!--          file LSF_DATA respectively
1236             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1237                 intermediate_timestep_count == intermediate_timestep_count_max )&
1238             THEN
1239                CALL ls_forcing_surf( simulated_time )
1240             ENDIF
1241
1242!
1243!--          First the vertical (and horizontal) fluxes in the surface
1244!--          (constant flux) layer are computed
1245             IF ( constant_flux_layer )  THEN
1246                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1247                CALL surface_layer_fluxes
1248                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1249             ENDIF
1250!
1251!--          If required, solve the energy balance for the surface and run soil
1252!--          model. Call for horizontal as well as vertical surfaces
1253             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1254
1255                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1256!
1257!--             Call for horizontal upward-facing surfaces
1258                CALL lsm_energy_balance( .TRUE., -1 )
1259                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1260!
1261!--             Call for northward-facing surfaces
1262                CALL lsm_energy_balance( .FALSE., 0 )
1263                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1264!
1265!--             Call for southward-facing surfaces
1266                CALL lsm_energy_balance( .FALSE., 1 )
1267                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1268!
1269!--             Call for eastward-facing surfaces
1270                CALL lsm_energy_balance( .FALSE., 2 )
1271                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1272!
1273!--             Call for westward-facing surfaces
1274                CALL lsm_energy_balance( .FALSE., 3 )
1275                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1276               
1277!
1278!--             At the end, set boundary conditons for potential temperature
1279!--             and humidity after running the land-surface model. This
1280!--             might be important for the nesting, where arrays are transfered.
1281                CALL lsm_boundary_condition
1282
1283               
1284                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1285             ENDIF
1286!
1287!--          If required, solve the energy balance for urban surfaces and run
1288!--          the material heat model
1289             IF (urban_surface) THEN
1290                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1291               
1292                CALL usm_surface_energy_balance( .FALSE. )
1293                IF ( usm_material_model )  THEN
1294                   CALL usm_green_heat_model
1295                   CALL usm_material_heat_model ( .FALSE. )
1296                ENDIF
1297
1298!
1299!--             At the end, set boundary conditons for potential temperature
1300!--             and humidity after running the urban-surface model. This
1301!--             might be important for the nesting, where arrays are transfered.
1302                CALL usm_boundary_condition
1303
1304                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1305             ENDIF
1306!
1307!--          Compute the diffusion coefficients
1308             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1309             IF ( .NOT. humidity ) THEN
1310                IF ( ocean_mode )  THEN
1311                   CALL tcm_diffusivities( prho, prho_reference )
1312                ELSE
1313                   CALL tcm_diffusivities( pt, pt_reference )
1314                ENDIF
1315             ELSE
1316                CALL tcm_diffusivities( vpt, pt_reference )
1317             ENDIF
1318             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1319!
1320!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1321             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1322
1323          ENDIF
1324
1325!
1326!--       If required, calculate radiative fluxes and heating rates
1327          IF ( radiation .AND. intermediate_timestep_count                     &
1328               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1329               skip_time_do_radiation )  THEN
1330
1331               time_radiation = time_radiation + dt_3d
1332
1333             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1334             THEN
1335
1336                CALL cpu_log( log_point(50), 'radiation', 'start' )
1337
1338                IF ( .NOT. force_radiation_call )  THEN
1339                   time_radiation = time_radiation - dt_radiation
1340                ENDIF
1341
1342!
1343!--             Adjust the current time to the time step of the radiation model.
1344!--             Needed since radiation is pre-calculated and stored only on apparent
1345!--             solar positions
1346                time_since_reference_point_save = time_since_reference_point
1347                time_since_reference_point =                                   &
1348                                    REAL( FLOOR( time_since_reference_point /  &
1349                                                 dt_radiation), wp )           &
1350                                             * dt_radiation
1351
1352                CALL radiation_control
1353
1354                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1355                     radiation_interactions )  THEN
1356                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1357                   CALL radiation_interaction
1358                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1359                ENDIF
1360   
1361!
1362!--             Return the current time to its original value
1363                time_since_reference_point = time_since_reference_point_save
1364
1365                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1366
1367             ENDIF
1368          ENDIF
1369
1370       ENDDO   ! Intermediate step loop
1371
1372!
1373!--    Will be used at some point by flow_statistics.
1374       !$ACC UPDATE &
1375       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1376       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1377       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1378       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1379       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1380       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1381       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1382       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1383       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1384       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1385       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1386       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1389       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1390
1391!
1392!--    If required, consider chemical emissions
1393       IF ( air_chemistry  .AND.  do_emis )  THEN
1394!
1395!--       Update the time --> kanani: revise location of this CALL
1396          CALL calc_date_and_time
1397!
1398!--       Call emission routine only once an hour
1399          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1400             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1401             hour_call_emis = hour_of_year
1402          ENDIF
1403       ENDIF
1404
1405!
1406!--    If required, calculate indoor temperature, waste heat, heat flux
1407!--    through wall, etc.
1408!--    dt_indoor steers the frequency of the indoor model calculations
1409       IF ( indoor_model )  THEN
1410
1411          time_indoor = time_indoor + dt_3d
1412
1413          IF ( time_indoor >= dt_indoor )  THEN
1414
1415             time_indoor = time_indoor - dt_indoor
1416
1417             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1418             CALL im_main_heatcool
1419             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1420
1421          ENDIF
1422       ENDIF
1423!
1424!--    Increase simulation time and output times
1425       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1426       current_timestep_number    = current_timestep_number + 1
1427       simulated_time             = simulated_time   + dt_3d
1428       time_since_reference_point = simulated_time - coupling_start_time
1429       simulated_time_chr         = time_to_string( time_since_reference_point )
1430
1431
1432
1433
1434       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1435          time_do_av         = time_do_av       + dt_3d
1436       ENDIF
1437       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1438          time_do2d_xy       = time_do2d_xy     + dt_3d
1439       ENDIF
1440       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1441          time_do2d_xz       = time_do2d_xz     + dt_3d
1442       ENDIF
1443       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1444          time_do2d_yz       = time_do2d_yz     + dt_3d
1445       ENDIF
1446       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1447          time_do3d          = time_do3d        + dt_3d
1448       ENDIF
1449       DO  mid = 1, masks
1450          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1451             time_domask(mid)= time_domask(mid) + dt_3d
1452          ENDIF
1453       ENDDO
1454       time_dvrp          = time_dvrp        + dt_3d
1455       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1456          time_dosp       = time_dosp        + dt_3d
1457       ENDIF
1458       time_dots          = time_dots        + dt_3d
1459       IF ( .NOT. first_call_lpm )  THEN
1460          time_dopts      = time_dopts       + dt_3d
1461       ENDIF
1462       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1463          time_dopr       = time_dopr        + dt_3d
1464       ENDIF
1465       time_dopr_listing  = time_dopr_listing + dt_3d
1466       time_run_control   = time_run_control + dt_3d
1467!
1468!--    Increment time-counter for surface output
1469       IF ( surface_output )  THEN
1470          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1471             time_dosurf    = time_dosurf + dt_3d
1472          ENDIF
1473          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1474             time_dosurf_av = time_dosurf_av + dt_3d
1475          ENDIF
1476       ENDIF
1477!
1478!--    In case of synthetic turbulence generation and parametrized turbulence
1479!--    information, update the time counter and if required, adjust the
1480!--    STG to new atmospheric conditions.
1481       IF ( use_syn_turb_gen  )  THEN
1482          IF ( parametrize_inflow_turbulence )  THEN
1483             time_stg_adjust = time_stg_adjust + dt_3d
1484             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1485                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1486                CALL stg_adjust
1487                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1488             ENDIF
1489          ENDIF
1490          time_stg_call = time_stg_call + dt_3d
1491       ENDIF
1492
1493!
1494!--    Data exchange between coupled models
1495       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1496                                          .AND. .NOT. vnested )  THEN
1497          time_coupling = time_coupling + dt_3d
1498
1499!
1500!--       In case of model termination initiated by the local model
1501!--       (terminate_coupled > 0), the coupler must be skipped because it would
1502!--       cause an MPI intercomminucation hang.
1503!--       If necessary, the coupler will be called at the beginning of the
1504!--       next restart run.
1505          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1506             CALL surface_coupler
1507             time_coupling = time_coupling - dt_coupling
1508          ENDDO
1509       ENDIF
1510
1511!
1512!--    Biometeorology calculation of stationary thermal indices
1513!--    Todo (kanani): biometeorology needs own time_... treatment.
1514!--                   It might be that time_do2d_xy differs from time_do3d,
1515!--                   and then we might get trouble with the biomet output,
1516!--                   because we can have 2d and/or 3d biomet output!!
1517       IF (         biometeorology  &
1518             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1519                      .OR.                                                                                   &
1520                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1521                    ) )  THEN
1522!
1523!--       If required, do thermal comfort calculations
1524          IF ( thermal_comfort )  THEN
1525             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1526             time_bio_results = time_since_reference_point
1527          ENDIF
1528!
1529!--       If required, do UV exposure calculations
1530          IF ( uv_exposure )  THEN
1531             CALL uvem_calc_exposure
1532          ENDIF
1533       ENDIF
1534
1535!
1536!--    Execute alle other module actions routunes
1537       CALL module_interface_actions( 'after_integration' )
1538
1539!
1540!--    If Galilei transformation is used, determine the distance that the
1541!--    model has moved so far
1542       IF ( galilei_transformation )  THEN
1543          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1544          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1545       ENDIF
1546
1547!
1548!--    Check, if restart is necessary (because cpu-time is expiring or
1549!--    because it is forced by user) and set stop flag
1550!--    This call is skipped if the remote model has already initiated a restart.
1551       IF ( .NOT. terminate_run )  CALL check_for_restart
1552
1553!
1554!--    Carry out statistical analysis and output at the requested output times.
1555!--    The MOD function is used for calculating the output time counters (like
1556!--    time_dopr) in order to regard a possible decrease of the output time
1557!--    interval in case of restart runs
1558
1559!
1560!--    Set a flag indicating that so far no statistics have been created
1561!--    for this time step
1562       flow_statistics_called = .FALSE.
1563
1564!
1565!--    If required, call flow_statistics for averaging in time
1566       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1567            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1568            time_since_reference_point >= skip_time_dopr )  THEN
1569          time_dopr_av = time_dopr_av + dt_3d
1570          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1571             do_sum = .TRUE.
1572             time_dopr_av = MOD( time_dopr_av, &
1573                                    MAX( dt_averaging_input_pr, dt_3d ) )
1574          ENDIF
1575       ENDIF
1576       IF ( do_sum )  CALL flow_statistics
1577
1578!
1579!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1580       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1581            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1582            time_since_reference_point >= skip_time_data_output_av )           &
1583       THEN
1584          time_do_sla = time_do_sla + dt_3d
1585          IF ( time_do_sla >= dt_averaging_input )  THEN
1586             CALL sum_up_3d_data
1587             average_count_3d = average_count_3d + 1
1588             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1589          ENDIF
1590       ENDIF
1591!
1592!--    Average surface data
1593       IF ( surface_output )  THEN
1594          IF (         averaging_interval_surf /= 0.0_wp                               &
1595                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1596                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1597             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1598                CALL surface_data_output_averaging
1599                average_count_surf = average_count_surf + 1
1600             ENDIF
1601          ENDIF
1602       ENDIF
1603
1604!
1605!--    Calculate spectra for time averaging
1606       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1607            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1608            time_since_reference_point >= skip_time_dosp )  THEN
1609          time_dosp_av = time_dosp_av + dt_3d
1610          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1611             CALL calc_spectra
1612             time_dosp_av = MOD( time_dosp_av, &
1613                                 MAX( dt_averaging_input_pr, dt_3d ) )
1614          ENDIF
1615       ENDIF
1616
1617!
1618!--    Call flight module and output data
1619       IF ( virtual_flight )  THEN
1620          CALL flight_measurement
1621          CALL data_output_flight
1622       ENDIF
1623!
1624!--    Take virtual measurements
1625       IF ( virtual_measurement  .AND.                                         &
1626            vm_time_start <= time_since_reference_point )  THEN
1627          CALL vm_sampling
1628          CALL vm_data_output
1629       ENDIF
1630
1631!
1632!--    Profile output (ASCII) on file
1633       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1634          CALL print_1d
1635          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
1636                                                           dt_3d ) )
1637       ENDIF
1638
1639!
1640!--    Graphic output for PROFIL
1641       IF (        time_dopr >= dt_dopr                                     &
1642            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1643          IF ( dopr_n /= 0 )  CALL data_output_profiles
1644          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1645          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1646       ENDIF
1647
1648!
1649!--    Graphic output for time series
1650       IF ( time_dots >= dt_dots )  THEN
1651          CALL data_output_tseries
1652          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1653       ENDIF
1654
1655!
1656!--    Output of spectra (formatted for use with PROFIL), in case of no
1657!--    time averaging, spectra has to be calculated before
1658       IF (         time_dosp >= dt_dosp                                     &
1659             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1660          IF ( average_count_sp == 0 )  CALL calc_spectra
1661          CALL data_output_spectra
1662          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1663       ENDIF
1664
1665!
1666!--    2d-data output (cross-sections)
1667       IF (         time_do2d_xy >= dt_do2d_xy                               &
1668             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1669          CALL data_output_2d( 'xy', 0 )
1670          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1671       ENDIF
1672       IF (         time_do2d_xz >= dt_do2d_xz                               &
1673             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1674          CALL data_output_2d( 'xz', 0 )
1675          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1676       ENDIF
1677       IF (         time_do2d_yz >= dt_do2d_yz                               &
1678             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1679          CALL data_output_2d( 'yz', 0 )
1680          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1681       ENDIF
1682
1683!
1684!--    3d-data output (volume data)
1685       IF (         time_do3d >= dt_do3d                                     & 
1686             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1687          CALL data_output_3d( 0 )
1688          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1689       ENDIF
1690
1691!
1692!--    Masked data output
1693       DO  mid = 1, masks
1694          IF (         time_domask(mid) >= dt_domask(mid)                          &
1695                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1696             CALL data_output_mask( 0 )
1697             time_domask(mid) = MOD( time_domask(mid),                             &
1698                                     MAX( dt_domask(mid), dt_3d ) )
1699          ENDIF
1700       ENDDO
1701
1702!
1703!--    Output of time-averaged 2d/3d/masked data
1704       IF (         time_do_av >= dt_data_output_av                                &
1705             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1706          CALL average_3d_data
1707          CALL data_output_2d( 'xy', 1 )
1708          CALL data_output_2d( 'xz', 1 )
1709          CALL data_output_2d( 'yz', 1 )
1710          CALL data_output_3d( 1 )
1711          DO  mid = 1, masks
1712             CALL data_output_mask( 1 )
1713          ENDDO
1714          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1715       ENDIF
1716!
1717!--    Output of surface data, instantaneous and averaged data
1718       IF ( surface_output )  THEN
1719          IF (         time_dosurf >= dt_dosurf                                    &
1720                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1721             CALL surface_data_output( 0 )
1722             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1723          ENDIF
1724          IF (         time_dosurf_av >= dt_dosurf_av                              &
1725                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1726             CALL surface_data_output( 1 )
1727             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1728          ENDIF
1729       ENDIF
1730
1731!
1732!--    Output of particle time series
1733       IF ( particle_advection )  THEN
1734          IF ( time_dopts >= dt_dopts  .OR.                                    &
1735               ( time_since_reference_point >= particle_advection_start  .AND. &
1736                 first_call_lpm ) )  THEN
1737             CALL data_output_ptseries
1738             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1739          ENDIF
1740       ENDIF
1741
1742!
1743!--    Output of dvrp-graphics (isosurface, particles, slicer)
1744#if defined( __dvrp_graphics )
1745       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1746#endif
1747       IF ( time_dvrp >= dt_dvrp )  THEN
1748          CALL data_output_dvrp
1749          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1750       ENDIF
1751#if defined( __dvrp_graphics )
1752       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1753#endif
1754
1755!
1756!--    If required, set the heat flux for the next time step to a random value
1757       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1758          IF ( surf_def_h(0)%ns >= 1 )  THEN
1759             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1760             CALL disturb_heatflux( surf_def_h(0) )
1761             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1762          ENDIF
1763          IF ( surf_lsm_h%ns    >= 1 )  THEN
1764             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1765             CALL disturb_heatflux( surf_lsm_h    )
1766             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1767          ENDIF
1768          IF ( surf_usm_h%ns    >= 1 )  THEN
1769             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1770             CALL disturb_heatflux( surf_usm_h    )
1771             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1772          ENDIF
1773       ENDIF
1774
1775!
1776!--    Execute alle other module actions routunes
1777       CALL module_interface_actions( 'after_timestep' )
1778
1779!
1780!--    Determine size of next time step. Save timestep dt_3d because it is
1781!--    newly calculated in routine timestep, but required further below for
1782!--    steering the run control output interval
1783       dt_3d_old = dt_3d
1784       CALL timestep
1785
1786!
1787!--    Synchronize the timestep in case of nested run.
1788       IF ( nested_run )  THEN
1789!
1790!--       Synchronize by unifying the time step.
1791!--       Global minimum of all time-steps is used for all.
1792          CALL pmci_synchronize
1793       ENDIF
1794
1795!
1796!--    Computation and output of run control parameters.
1797!--    This is also done whenever perturbations have been imposed
1798       IF ( time_run_control >= dt_run_control  .OR.                     &
1799            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1800       THEN
1801          CALL run_control
1802          IF ( time_run_control >= dt_run_control )  THEN
1803             time_run_control = MOD( time_run_control, &
1804                                     MAX( dt_run_control, dt_3d_old ) )
1805          ENDIF
1806       ENDIF
1807
1808!
1809!--    Output elapsed simulated time in form of a progress bar on stdout
1810       IF ( myid == 0 )  CALL output_progress_bar
1811
1812       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1813
1814
1815    ENDDO   ! time loop
1816
1817#ifdef _OPENACC
1818    CALL exit_surface_arrays
1819#endif
1820!$ACC END DATA
1821!$ACC END DATA
1822!$ACC END DATA
1823!$ACC END DATA
1824!$ACC END DATA
1825!$ACC END DATA
1826!$ACC END DATA
1827
1828!
1829!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1830    IF ( vnest_init )  CALL vnest_deallocate
1831
1832    IF ( myid == 0 )  CALL finish_progress_bar
1833
1834#if defined( __dvrp_graphics )
1835    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1836#endif
1837
1838    CALL location_message( 'finished time-stepping', .TRUE. )
1839
1840 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.