source: palm/trunk/SOURCE/time_integration.f90 @ 772

Last change on this file since 772 was 708, checked in by raasch, 14 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 20.4 KB
Line 
1 SUBROUTINE time_integration
2
3!------------------------------------------------------------------------------!
4! Current revisions:
5! -----------------
6!
7!
8! Former revisions:
9! -----------------
10! $Id: time_integration.f90 708 2011-03-29 12:34:54Z heinze $
11!
12! 707 2011-03-29 11:39:40Z raasch
13! bc_lr/ns replaced by bc_lr/ns_cyc, calls of exchange_horiz are modified,
14! adaption to sloping surface
15!
16! 667  2010-12-23 12:06:00Z suehring/gryschka
17! Calls of exchange_horiz are modified.
18! Adaption to slooping surface.
19!
20! 449 2010-02-02 11:23:59Z raasch
21! Bugfix: exchange of ghost points for prho included
22!
23! 410 2009-12-04 17:05:40Z letzel
24! masked data output
25!
26! 388 2009-09-23 09:40:33Z raasch
27! Using prho instead of rho in diffusvities.
28! Coupling with independent precursor runs.
29! Bugfix: output of particle time series only if particle advection is switched
30!         on
31!
32! 151 2008-03-07 13:42:18Z raasch
33! inflow turbulence is imposed by calling new routine inflow_turbulence
34!
35! 108 2007-08-24 15:10:38Z letzel
36! Call of new routine surface_coupler,
37! presure solver is called after the first Runge-Kutta substep instead of the
38! last in case that call_psolver_at_all_substeps = .F.; for this case, the
39! random perturbation has to be added to the velocity fields also after the
40! first substep
41!
42! 97 2007-06-21 08:23:15Z raasch
43! diffusivities is called with argument rho in case of ocean runs,
44! new argument pt_/prho_reference in calls of diffusivities,
45! ghostpoint exchange for salinity and density
46!
47! 87 2007-05-22 15:46:47Z raasch
48! var_hom renamed pr_palm
49!
50! 75 2007-03-22 09:54:05Z raasch
51! Move call of user_actions( 'after_integration' ) below increment of times
52! and counters,
53! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
54! .._vector, these calls are now controlled by switch loop_optimization,
55! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz,
56! moisture renamed humidity
57!
58! RCS Log replace by Id keyword, revision history cleaned up
59!
60! Revision 1.8  2006/08/22 14:16:05  raasch
61! Disturbances are imposed only for the last Runge-Kutta-substep
62!
63! Revision 1.2  2004/04/30 13:03:40  raasch
64! decalpha-specific warning removed, routine name changed to time_integration,
65! particle advection is carried out only once during the intermediate steps,
66! impulse_advec renamed momentum_advec
67!
68! Revision 1.1  1997/08/11 06:19:04  raasch
69! Initial revision
70!
71!
72! Description:
73! ------------
74! Integration in time of the model equations, statistical analysis and graphic
75! output
76!------------------------------------------------------------------------------!
77
78    USE arrays_3d
79    USE averaging
80    USE control_parameters
81    USE cpulog
82#if defined( __dvrp_graphics )
83    USE DVRP
84#endif
85    USE grid_variables
86    USE indices
87    USE interaction_droplets_ptq_mod
88    USE interfaces
89    USE particle_attributes
90    USE pegrid
91    USE prognostic_equations_mod
92    USE statistics
93    USE user_actions_mod
94
95    IMPLICIT NONE
96
97    CHARACTER (LEN=9) ::  time_to_string
98    INTEGER ::  i, j, k
99
100!
101!-- At the beginning of a simulation determine the time step as well as
102!-- determine and print out the run control parameters
103    IF ( simulated_time == 0.0 )  CALL timestep
104
105    CALL run_control
106
107
108!
109!-- Data exchange between coupled models in case that a call has been omitted
110!-- at the end of the previous run of a job chain.
111    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
112!
113!--    In case of model termination initiated by the local model the coupler
114!--    must not be called because this would again cause an MPI hang.
115       DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
116          CALL surface_coupler
117          time_coupling = time_coupling - dt_coupling
118       ENDDO
119       IF (time_coupling == 0.0 .AND. time_since_reference_point < dt_coupling)&
120       THEN
121          time_coupling = time_since_reference_point
122       ENDIF
123    ENDIF
124
125
126#if defined( __dvrp_graphics )
127!
128!-- Time measurement with dvrp software 
129    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
130#endif
131
132!
133!-- Start of the time loop
134    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
135                .NOT. terminate_run )
136
137       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
138!
139!--    Determine size of next time step
140       IF ( simulated_time /= 0.0 )  CALL timestep
141!
142!--    Execute the user-defined actions
143       CALL user_actions( 'before_timestep' )
144
145!
146!--    Start of intermediate step loop
147       intermediate_timestep_count = 0
148       DO  WHILE ( intermediate_timestep_count < &
149                   intermediate_timestep_count_max )
150
151          intermediate_timestep_count = intermediate_timestep_count + 1
152
153!
154!--       Set the steering factors for the prognostic equations which depend
155!--       on the timestep scheme
156          CALL timestep_scheme_steering
157
158!
159!--       Solve the prognostic equations. A fast cache optimized version with
160!--       only one single loop is used in case of Piascek-Williams advection
161!--       scheme. NEC vector machines use a different version, because
162!--       in the other versions a good vectorization is prohibited due to
163!--       inlining problems.
164          IF ( loop_optimization == 'vector' )  THEN
165             CALL prognostic_equations_vector
166          ELSE
167             IF ( momentum_advec == 'ups-scheme'  .OR.  &
168                  scalar_advec == 'ups-scheme'   .OR.  &
169                  scalar_advec == 'bc-scheme' )        &
170             THEN
171                CALL prognostic_equations_noopt
172             ELSE
173                CALL prognostic_equations_cache
174             ENDIF
175          ENDIF
176
177!
178!--       Particle advection (only once during intermediate steps, because
179!--       it uses an Euler-step)
180          IF ( particle_advection  .AND.                         &
181               simulated_time >= particle_advection_start  .AND. &
182               intermediate_timestep_count == 1 )  THEN
183             CALL advec_particles
184             first_call_advec_particles = .FALSE.
185          ENDIF
186
187!
188!--       Interaction of droplets with temperature and specific humidity.
189!--       Droplet condensation and evaporation is calculated within
190!--       advec_particles.
191          IF ( cloud_droplets  .AND.  &
192               intermediate_timestep_count == intermediate_timestep_count_max )&
193          THEN
194             CALL interaction_droplets_ptq
195          ENDIF
196
197!
198!--       Exchange of ghost points (lateral boundary conditions)
199          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
200          CALL exchange_horiz( u_p, nbgp )
201          CALL exchange_horiz( v_p, nbgp )
202          CALL exchange_horiz( w_p, nbgp )
203          CALL exchange_horiz( pt_p, nbgp )
204          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
205          IF ( ocean )  THEN
206             CALL exchange_horiz( sa_p, nbgp )
207             CALL exchange_horiz( rho, nbgp )
208             CALL exchange_horiz( prho, nbgp )
209          ENDIF
210          IF (humidity  .OR.  passive_scalar) CALL exchange_horiz( q_p, nbgp )
211          IF ( cloud_droplets )  THEN
212             CALL exchange_horiz( ql, nbgp )
213             CALL exchange_horiz( ql_c, nbgp )
214             CALL exchange_horiz( ql_v, nbgp )
215             CALL exchange_horiz( ql_vp, nbgp )
216          ENDIF
217
218          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
219
220!
221!--       Apply time filter in case of leap-frog timestep
222          IF ( tsc(2) == 2.0  .AND.  timestep_scheme(1:8) == 'leapfrog' )  THEN
223             CALL asselin_filter
224          ENDIF
225
226!
227!--       Boundary conditions for the prognostic quantities (except of the
228!--       velocities at the outflow in case of a non-cyclic lateral wall)
229          CALL boundary_conds( 'main' )
230
231!
232!--       Swap the time levels in preparation for the next time step.
233          CALL swap_timelevel
234
235!
236!--       Temperature offset must be imposed at cyclic boundaries in x-direction
237!--       when a sloping surface is used
238          IF ( sloping_surface )  THEN
239             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
240                                                    pt_slope_offset
241             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
242                                                    pt_slope_offset
243          ENDIF
244
245!
246!--       Impose a turbulent inflow using the recycling method
247          IF ( turbulent_inflow )  CALL  inflow_turbulence
248
249!
250!--       Impose a random perturbation on the horizontal velocity field
251          IF ( create_disturbances  .AND.                                      &
252               ( call_psolver_at_all_substeps  .AND.                           &
253               intermediate_timestep_count == intermediate_timestep_count_max )&
254          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
255               intermediate_timestep_count == 1 ) )                            &
256          THEN
257             time_disturb = time_disturb + dt_3d
258             IF ( time_disturb >= dt_disturb )  THEN
259                IF ( hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
260                   CALL disturb_field( nzb_u_inner, tend, u )
261                   CALL disturb_field( nzb_v_inner, tend, v )
262                ELSEIF ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )  THEN
263!
264!--                Runs with a non-cyclic lateral wall need perturbations
265!--                near the inflow throughout the whole simulation
266                   dist_range = 1
267                   CALL disturb_field( nzb_u_inner, tend, u )
268                   CALL disturb_field( nzb_v_inner, tend, v )
269                   dist_range = 0
270                ENDIF
271                time_disturb = time_disturb - dt_disturb
272             ENDIF
273          ENDIF
274
275!
276!--       Reduce the velocity divergence via the equation for perturbation
277!--       pressure.
278          IF ( intermediate_timestep_count == 1  .OR. &
279                call_psolver_at_all_substeps )  THEN
280             CALL pres
281          ENDIF
282
283!
284!--       If required, compute virtuell potential temperature
285          IF ( humidity ) CALL compute_vpt
286
287!
288!--       If required, compute liquid water content
289          IF ( cloud_physics ) CALL calc_liquid_water_content
290
291!
292!--       Compute the diffusion quantities
293          IF ( .NOT. constant_diffusion )  THEN
294
295!
296!--          First the vertical fluxes in the Prandtl layer are being computed
297             IF ( prandtl_layer )  THEN
298                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
299                CALL prandtl_fluxes
300                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
301             ENDIF
302
303!
304!--          Compute the diffusion coefficients
305             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
306             IF ( .NOT. humidity ) THEN
307                IF ( ocean )  THEN
308                   CALL diffusivities( prho, prho_reference )
309                ELSE
310                   CALL diffusivities( pt, pt_reference )
311                ENDIF
312             ELSE
313                CALL diffusivities( vpt, pt_reference )
314             ENDIF
315             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
316
317          ENDIF
318
319       ENDDO   ! Intermediate step loop
320
321!
322!--    Increase simulation time and output times
323       current_timestep_number    = current_timestep_number + 1
324       simulated_time             = simulated_time   + dt_3d
325       simulated_time_chr         = time_to_string( simulated_time )
326       time_since_reference_point = simulated_time - coupling_start_time
327
328       IF ( simulated_time >= skip_time_data_output_av )  THEN
329          time_do_av         = time_do_av       + dt_3d
330       ENDIF
331       IF ( simulated_time >= skip_time_do2d_xy )  THEN
332          time_do2d_xy       = time_do2d_xy     + dt_3d
333       ENDIF
334       IF ( simulated_time >= skip_time_do2d_xz )  THEN
335          time_do2d_xz       = time_do2d_xz     + dt_3d
336       ENDIF
337       IF ( simulated_time >= skip_time_do2d_yz )  THEN
338          time_do2d_yz       = time_do2d_yz     + dt_3d
339       ENDIF
340       IF ( simulated_time >= skip_time_do3d    )  THEN
341          time_do3d          = time_do3d        + dt_3d
342       ENDIF
343       DO  mid = 1, masks
344          IF ( simulated_time >= skip_time_domask(mid) )  THEN
345             time_domask(mid)= time_domask(mid) + dt_3d
346          ENDIF
347       ENDDO
348       time_dvrp          = time_dvrp        + dt_3d
349       IF ( simulated_time >= skip_time_dosp )  THEN
350          time_dosp       = time_dosp        + dt_3d
351       ENDIF
352       time_dots          = time_dots        + dt_3d
353       IF ( .NOT. first_call_advec_particles )  THEN
354          time_dopts      = time_dopts       + dt_3d
355       ENDIF
356       IF ( simulated_time >= skip_time_dopr )  THEN
357          time_dopr       = time_dopr        + dt_3d
358       ENDIF
359       time_dopr_listing          = time_dopr_listing        + dt_3d
360       time_run_control   = time_run_control + dt_3d
361
362!
363!--    Data exchange between coupled models
364       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
365          time_coupling = time_coupling + dt_3d
366
367!
368!--       In case of model termination initiated by the local model
369!--       (terminate_coupled > 0), the coupler must be skipped because it would
370!--       cause an MPI intercomminucation hang.
371!--       If necessary, the coupler will be called at the beginning of the
372!--       next restart run.
373          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
374             CALL surface_coupler
375             time_coupling = time_coupling - dt_coupling
376          ENDDO
377       ENDIF
378
379!
380!--    Execute user-defined actions
381       CALL user_actions( 'after_integration' )
382
383!
384!--    If Galilei transformation is used, determine the distance that the
385!--    model has moved so far
386       IF ( galilei_transformation )  THEN
387          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
388          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
389       ENDIF
390
391!
392!--    Check, if restart is necessary (because cpu-time is expiring or
393!--    because it is forced by user) and set stop flag
394!--    This call is skipped if the remote model has already initiated a restart.
395       IF ( .NOT. terminate_run )  CALL check_for_restart
396
397!
398!--    Carry out statistical analysis and output at the requested output times.
399!--    The MOD function is used for calculating the output time counters (like
400!--    time_dopr) in order to regard a possible decrease of the output time
401!--    interval in case of restart runs
402
403!
404!--    Set a flag indicating that so far no statistics have been created
405!--    for this time step
406       flow_statistics_called = .FALSE.
407
408!
409!--    If required, call flow_statistics for averaging in time
410       IF ( averaging_interval_pr /= 0.0  .AND.  &
411            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
412            simulated_time >= skip_time_dopr )  THEN
413          time_dopr_av = time_dopr_av + dt_3d
414          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
415             do_sum = .TRUE.
416             time_dopr_av = MOD( time_dopr_av, &
417                                    MAX( dt_averaging_input_pr, dt_3d ) )
418          ENDIF
419       ENDIF
420       IF ( do_sum )  CALL flow_statistics
421
422!
423!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
424       IF ( averaging_interval /= 0.0  .AND.                                &
425            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
426            simulated_time >= skip_time_data_output_av )                    &
427       THEN
428          time_do_sla = time_do_sla + dt_3d
429          IF ( time_do_sla >= dt_averaging_input )  THEN
430             CALL sum_up_3d_data
431             average_count_3d = average_count_3d + 1
432             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
433          ENDIF
434       ENDIF
435
436!
437!--    Calculate spectra for time averaging
438       IF ( averaging_interval_sp /= 0.0  .AND.  &
439            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
440            simulated_time >= skip_time_dosp )  THEN
441          time_dosp_av = time_dosp_av + dt_3d
442          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
443             CALL calc_spectra
444             time_dosp_av = MOD( time_dosp_av, &
445                                 MAX( dt_averaging_input_pr, dt_3d ) )
446          ENDIF
447       ENDIF
448
449!
450!--    Computation and output of run control parameters.
451!--    This is also done whenever the time step has changed or perturbations
452!--    have been imposed
453       IF ( time_run_control >= dt_run_control  .OR.                     &
454            ( dt_changed  .AND.  timestep_scheme(1:5) /= 'runge' )  .OR. &
455            disturbance_created )                                        &
456       THEN
457          CALL run_control
458          IF ( time_run_control >= dt_run_control )  THEN
459             time_run_control = MOD( time_run_control, &
460                                     MAX( dt_run_control, dt_3d ) )
461          ENDIF
462       ENDIF
463
464!
465!--    Profile output (ASCII) on file
466       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
467          CALL print_1d
468          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
469                                                           dt_3d ) )
470       ENDIF
471
472!
473!--    Graphic output for PROFIL
474       IF ( time_dopr >= dt_dopr )  THEN
475          IF ( dopr_n /= 0 )  CALL data_output_profiles
476          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
477          time_dopr_av = 0.0    ! due to averaging (see above)
478       ENDIF
479
480!
481!--    Graphic output for time series
482       IF ( time_dots >= dt_dots )  THEN
483          CALL data_output_tseries
484          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
485       ENDIF
486
487!
488!--    Output of spectra (formatted for use with PROFIL), in case of no
489!--    time averaging, spectra has to be calculated before
490       IF ( time_dosp >= dt_dosp )  THEN
491          IF ( average_count_sp == 0 )  CALL calc_spectra
492          CALL data_output_spectra
493          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
494       ENDIF
495
496!
497!--    2d-data output (cross-sections)
498       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
499          CALL data_output_2d( 'xy', 0 )
500          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
501       ENDIF
502       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
503          CALL data_output_2d( 'xz', 0 )
504          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
505       ENDIF
506       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
507          CALL data_output_2d( 'yz', 0 )
508          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
509       ENDIF
510
511!
512!--    3d-data output (volume data)
513       IF ( time_do3d >= dt_do3d )  THEN
514          CALL data_output_3d( 0 )
515          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
516       ENDIF
517
518!
519!--    masked data output
520       DO  mid = 1, masks
521          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
522             CALL data_output_mask( 0 )
523             time_domask(mid) = MOD( time_domask(mid),  &
524                                     MAX( dt_domask(mid), dt_3d ) )
525          ENDIF
526       ENDDO
527
528!
529!--    Output of time-averaged 2d/3d/masked data
530       IF ( time_do_av >= dt_data_output_av )  THEN
531          CALL average_3d_data
532          CALL data_output_2d( 'xy', 1 )
533          CALL data_output_2d( 'xz', 1 )
534          CALL data_output_2d( 'yz', 1 )
535          CALL data_output_3d( 1 )
536          DO  mid = 1, masks
537             CALL data_output_mask( 1 )
538          ENDDO
539          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
540       ENDIF
541
542!
543!--    Output of particle time series
544       IF ( particle_advection )  THEN
545          IF ( time_dopts >= dt_dopts  .OR. &
546               ( simulated_time >= particle_advection_start  .AND. &
547                 first_call_advec_particles ) )  THEN
548             CALL data_output_ptseries
549             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
550          ENDIF
551       ENDIF
552
553!
554!--    Output of dvrp-graphics (isosurface, particles, slicer)
555#if defined( __dvrp_graphics )
556       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
557#endif
558       IF ( time_dvrp >= dt_dvrp )  THEN
559          CALL data_output_dvrp
560          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
561       ENDIF
562#if defined( __dvrp_graphics )
563       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
564#endif
565
566!
567!--    If required, set the heat flux for the next time step at a random value
568       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
569
570!
571!--    Execute user-defined actions
572       CALL user_actions( 'after_timestep' )
573
574       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
575
576
577    ENDDO   ! time loop
578
579#if defined( __dvrp_graphics )
580    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
581#endif
582
583 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.