source: palm/trunk/SOURCE/time_integration.f90 @ 687

Last change on this file since 687 was 668, checked in by suehring, 14 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 20.2 KB
Line 
1 SUBROUTINE time_integration
2
3!------------------------------------------------------------------------------!
4! Current revisions:
5! -----------------
6! Calls of exchange_horiz are modified.
7! Adaption to slooping surface.
8!
9! Former revisions:
10! -----------------
11! $Id: time_integration.f90 668 2010-12-23 13:22:58Z gryschka $
12!
13! 667  2010-12-23 12:06:00Z suehring/gryschka
14! Calls of exchange_horiz are modified.
15! Adaption to slooping surface.
16!
17! 449 2010-02-02 11:23:59Z raasch
18! Bugfix: exchange of ghost points for prho included
19!
20! 410 2009-12-04 17:05:40Z letzel
21! masked data output
22!
23! 388 2009-09-23 09:40:33Z raasch
24! Using prho instead of rho in diffusvities.
25! Coupling with independent precursor runs.
26! Bugfix: output of particle time series only if particle advection is switched
27!         on
28!
29! 151 2008-03-07 13:42:18Z raasch
30! inflow turbulence is imposed by calling new routine inflow_turbulence
31!
32! 108 2007-08-24 15:10:38Z letzel
33! Call of new routine surface_coupler,
34! presure solver is called after the first Runge-Kutta substep instead of the
35! last in case that call_psolver_at_all_substeps = .F.; for this case, the
36! random perturbation has to be added to the velocity fields also after the
37! first substep
38!
39! 97 2007-06-21 08:23:15Z raasch
40! diffusivities is called with argument rho in case of ocean runs,
41! new argument pt_/prho_reference in calls of diffusivities,
42! ghostpoint exchange for salinity and density
43!
44! 87 2007-05-22 15:46:47Z raasch
45! var_hom renamed pr_palm
46!
47! 75 2007-03-22 09:54:05Z raasch
48! Move call of user_actions( 'after_integration' ) below increment of times
49! and counters,
50! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
51! .._vector, these calls are now controlled by switch loop_optimization,
52! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz,
53! moisture renamed humidity
54!
55! RCS Log replace by Id keyword, revision history cleaned up
56!
57! Revision 1.8  2006/08/22 14:16:05  raasch
58! Disturbances are imposed only for the last Runge-Kutta-substep
59!
60! Revision 1.2  2004/04/30 13:03:40  raasch
61! decalpha-specific warning removed, routine name changed to time_integration,
62! particle advection is carried out only once during the intermediate steps,
63! impulse_advec renamed momentum_advec
64!
65! Revision 1.1  1997/08/11 06:19:04  raasch
66! Initial revision
67!
68!
69! Description:
70! ------------
71! Integration in time of the model equations, statistical analysis and graphic
72! output
73!------------------------------------------------------------------------------!
74
75    USE arrays_3d
76    USE averaging
77    USE control_parameters
78    USE cpulog
79#if defined( __dvrp_graphics )
80    USE DVRP
81#endif
82    USE grid_variables
83    USE indices
84    USE interaction_droplets_ptq_mod
85    USE interfaces
86    USE particle_attributes
87    USE pegrid
88    USE prognostic_equations_mod
89    USE statistics
90    USE user_actions_mod
91
92    IMPLICIT NONE
93
94    CHARACTER (LEN=9) ::  time_to_string
95    INTEGER ::  i, j, k
96
97!
98!-- At the beginning of a simulation determine the time step as well as
99!-- determine and print out the run control parameters
100    IF ( simulated_time == 0.0 )  CALL timestep
101
102    CALL run_control
103
104
105!
106!-- Data exchange between coupled models in case that a call has been omitted
107!-- at the end of the previous run of a job chain.
108    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
109!
110!--    In case of model termination initiated by the local model the coupler
111!--    must not be called because this would again cause an MPI hang.
112       DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
113          CALL surface_coupler
114          time_coupling = time_coupling - dt_coupling
115       ENDDO
116       IF (time_coupling == 0.0 .AND. time_since_reference_point < dt_coupling)&
117       THEN
118          time_coupling = time_since_reference_point
119       ENDIF
120    ENDIF
121
122
123#if defined( __dvrp_graphics )
124!
125!-- Time measurement with dvrp software 
126    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
127#endif
128
129!
130!-- Start of the time loop
131    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
132                .NOT. terminate_run )
133
134       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
135!
136!--    Determine size of next time step
137       IF ( simulated_time /= 0.0 )  CALL timestep
138!
139!--    Execute the user-defined actions
140       CALL user_actions( 'before_timestep' )
141
142!
143!--    Start of intermediate step loop
144       intermediate_timestep_count = 0
145       DO  WHILE ( intermediate_timestep_count < &
146                   intermediate_timestep_count_max )
147
148          intermediate_timestep_count = intermediate_timestep_count + 1
149
150!
151!--       Set the steering factors for the prognostic equations which depend
152!--       on the timestep scheme
153          CALL timestep_scheme_steering
154
155!
156!--       Solve the prognostic equations. A fast cache optimized version with
157!--       only one single loop is used in case of Piascek-Williams advection
158!--       scheme. NEC vector machines use a different version, because
159!--       in the other versions a good vectorization is prohibited due to
160!--       inlining problems.
161          IF ( loop_optimization == 'vector' )  THEN
162             CALL prognostic_equations_vector
163          ELSE
164             IF ( momentum_advec == 'ups-scheme'  .OR.  &
165                  scalar_advec == 'ups-scheme'   .OR.  &
166                  scalar_advec == 'bc-scheme' )        &
167             THEN
168                CALL prognostic_equations_noopt
169             ELSE
170                CALL prognostic_equations_cache
171             ENDIF
172          ENDIF
173
174!
175!--       Particle advection (only once during intermediate steps, because
176!--       it uses an Euler-step)
177          IF ( particle_advection  .AND.                         &
178               simulated_time >= particle_advection_start  .AND. &
179               intermediate_timestep_count == 1 )  THEN
180             CALL advec_particles
181             first_call_advec_particles = .FALSE.
182          ENDIF
183
184!
185!--       Interaction of droplets with temperature and specific humidity.
186!--       Droplet condensation and evaporation is calculated within
187!--       advec_particles.
188          IF ( cloud_droplets  .AND.  &
189               intermediate_timestep_count == intermediate_timestep_count_max )&
190          THEN
191             CALL interaction_droplets_ptq
192          ENDIF
193
194!
195!--       Exchange of ghost points (lateral boundary conditions)
196          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
197          CALL exchange_horiz( u_p, nbgp )
198          CALL exchange_horiz( v_p, nbgp )
199          CALL exchange_horiz( w_p, nbgp )
200          CALL exchange_horiz( pt_p, nbgp )
201          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
202          IF ( ocean )  THEN
203             CALL exchange_horiz( sa_p, nbgp )
204             CALL exchange_horiz( rho, nbgp )
205             CALL exchange_horiz( prho, nbgp )
206          ENDIF
207          IF (humidity  .OR.  passive_scalar) CALL exchange_horiz( q_p, nbgp )
208          IF ( cloud_droplets )  THEN
209             CALL exchange_horiz( ql, nbgp )
210             CALL exchange_horiz( ql_c, nbgp )
211             CALL exchange_horiz( ql_v, nbgp )
212             CALL exchange_horiz( ql_vp, nbgp )
213          ENDIF
214
215          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
216
217!
218!--       Apply time filter in case of leap-frog timestep
219          IF ( tsc(2) == 2.0  .AND.  timestep_scheme(1:8) == 'leapfrog' )  THEN
220             CALL asselin_filter
221          ENDIF
222
223!
224!--       Boundary conditions for the prognostic quantities (except of the
225!--       velocities at the outflow in case of a non-cyclic lateral wall)
226          CALL boundary_conds( 'main' )
227
228!
229!--       Swap the time levels in preparation for the next time step.
230          CALL swap_timelevel
231
232!
233!--       Temperature offset must be imposed at cyclic boundaries in x-direction
234!--       when a sloping surface is used
235          IF ( sloping_surface )  THEN
236             IF ( nxl ==  0 ) pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
237             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
238          ENDIF
239
240!
241!--       Impose a turbulent inflow using the recycling method
242          IF ( turbulent_inflow )  CALL  inflow_turbulence
243
244!
245!--       Impose a random perturbation on the horizontal velocity field
246          IF ( create_disturbances  .AND.                                      &
247               ( call_psolver_at_all_substeps  .AND.                           &
248               intermediate_timestep_count == intermediate_timestep_count_max )&
249          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
250               intermediate_timestep_count == 1 ) )                            &
251          THEN
252             time_disturb = time_disturb + dt_3d
253             IF ( time_disturb >= dt_disturb )  THEN
254                IF ( hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
255                   CALL disturb_field( nzb_u_inner, tend, u )
256                   CALL disturb_field( nzb_v_inner, tend, v )
257                ELSEIF ( bc_lr /= 'cyclic'  .OR.  bc_ns /= 'cyclic' )  THEN
258!
259!--                Runs with a non-cyclic lateral wall need perturbations
260!--                near the inflow throughout the whole simulation
261                   dist_range = 1
262                   CALL disturb_field( nzb_u_inner, tend, u )
263                   CALL disturb_field( nzb_v_inner, tend, v )
264                   dist_range = 0
265                ENDIF
266                time_disturb = time_disturb - dt_disturb
267             ENDIF
268          ENDIF
269
270!
271!--       Reduce the velocity divergence via the equation for perturbation
272!--       pressure.
273          IF ( intermediate_timestep_count == 1  .OR. &
274                call_psolver_at_all_substeps )  THEN
275             CALL pres
276          ENDIF
277
278!
279!--       If required, compute virtuell potential temperature
280          IF ( humidity ) CALL compute_vpt
281
282!
283!--       If required, compute liquid water content
284          IF ( cloud_physics ) CALL calc_liquid_water_content
285
286!
287!--       Compute the diffusion quantities
288          IF ( .NOT. constant_diffusion )  THEN
289
290!
291!--          First the vertical fluxes in the Prandtl layer are being computed
292             IF ( prandtl_layer )  THEN
293                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
294                CALL prandtl_fluxes
295                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
296             ENDIF
297
298!
299!--          Compute the diffusion coefficients
300             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
301             IF ( .NOT. humidity ) THEN
302                IF ( ocean )  THEN
303                   CALL diffusivities( prho, prho_reference )
304                ELSE
305                   CALL diffusivities( pt, pt_reference )
306                ENDIF
307             ELSE
308                CALL diffusivities( vpt, pt_reference )
309             ENDIF
310             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
311
312          ENDIF
313
314       ENDDO   ! Intermediate step loop
315
316!
317!--    Increase simulation time and output times
318       current_timestep_number    = current_timestep_number + 1
319       simulated_time             = simulated_time   + dt_3d
320       simulated_time_chr         = time_to_string( simulated_time )
321       time_since_reference_point = simulated_time - coupling_start_time
322
323       IF ( simulated_time >= skip_time_data_output_av )  THEN
324          time_do_av         = time_do_av       + dt_3d
325       ENDIF
326       IF ( simulated_time >= skip_time_do2d_xy )  THEN
327          time_do2d_xy       = time_do2d_xy     + dt_3d
328       ENDIF
329       IF ( simulated_time >= skip_time_do2d_xz )  THEN
330          time_do2d_xz       = time_do2d_xz     + dt_3d
331       ENDIF
332       IF ( simulated_time >= skip_time_do2d_yz )  THEN
333          time_do2d_yz       = time_do2d_yz     + dt_3d
334       ENDIF
335       IF ( simulated_time >= skip_time_do3d    )  THEN
336          time_do3d          = time_do3d        + dt_3d
337       ENDIF
338       DO  mid = 1, masks
339          IF ( simulated_time >= skip_time_domask(mid) )  THEN
340             time_domask(mid)= time_domask(mid) + dt_3d
341          ENDIF
342       ENDDO
343       time_dvrp          = time_dvrp        + dt_3d
344       IF ( simulated_time >= skip_time_dosp )  THEN
345          time_dosp       = time_dosp        + dt_3d
346       ENDIF
347       time_dots          = time_dots        + dt_3d
348       IF ( .NOT. first_call_advec_particles )  THEN
349          time_dopts      = time_dopts       + dt_3d
350       ENDIF
351       IF ( simulated_time >= skip_time_dopr )  THEN
352          time_dopr       = time_dopr        + dt_3d
353       ENDIF
354       time_dopr_listing          = time_dopr_listing        + dt_3d
355       time_run_control   = time_run_control + dt_3d
356
357!
358!--    Data exchange between coupled models
359       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
360          time_coupling = time_coupling + dt_3d
361
362!
363!--       In case of model termination initiated by the local model
364!--       (terminate_coupled > 0), the coupler must be skipped because it would
365!--       cause an MPI intercomminucation hang.
366!--       If necessary, the coupler will be called at the beginning of the
367!--       next restart run.
368          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
369             CALL surface_coupler
370             time_coupling = time_coupling - dt_coupling
371          ENDDO
372       ENDIF
373
374!
375!--    Execute user-defined actions
376       CALL user_actions( 'after_integration' )
377
378!
379!--    If Galilei transformation is used, determine the distance that the
380!--    model has moved so far
381       IF ( galilei_transformation )  THEN
382          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
383          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
384       ENDIF
385
386!
387!--    Check, if restart is necessary (because cpu-time is expiring or
388!--    because it is forced by user) and set stop flag
389!--    This call is skipped if the remote model has already initiated a restart.
390       IF ( .NOT. terminate_run )  CALL check_for_restart
391
392!
393!--    Carry out statistical analysis and output at the requested output times.
394!--    The MOD function is used for calculating the output time counters (like
395!--    time_dopr) in order to regard a possible decrease of the output time
396!--    interval in case of restart runs
397
398!
399!--    Set a flag indicating that so far no statistics have been created
400!--    for this time step
401       flow_statistics_called = .FALSE.
402
403!
404!--    If required, call flow_statistics for averaging in time
405       IF ( averaging_interval_pr /= 0.0  .AND.  &
406            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
407            simulated_time >= skip_time_dopr )  THEN
408          time_dopr_av = time_dopr_av + dt_3d
409          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
410             do_sum = .TRUE.
411             time_dopr_av = MOD( time_dopr_av, &
412                                    MAX( dt_averaging_input_pr, dt_3d ) )
413          ENDIF
414       ENDIF
415       IF ( do_sum )  CALL flow_statistics
416
417!
418!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
419       IF ( averaging_interval /= 0.0  .AND.                                &
420            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
421            simulated_time >= skip_time_data_output_av )                    &
422       THEN
423          time_do_sla = time_do_sla + dt_3d
424          IF ( time_do_sla >= dt_averaging_input )  THEN
425             CALL sum_up_3d_data
426             average_count_3d = average_count_3d + 1
427             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
428          ENDIF
429       ENDIF
430
431!
432!--    Calculate spectra for time averaging
433       IF ( averaging_interval_sp /= 0.0  .AND.  &
434            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
435            simulated_time >= skip_time_dosp )  THEN
436          time_dosp_av = time_dosp_av + dt_3d
437          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
438             CALL calc_spectra
439             time_dosp_av = MOD( time_dosp_av, &
440                                 MAX( dt_averaging_input_pr, dt_3d ) )
441          ENDIF
442       ENDIF
443
444!
445!--    Computation and output of run control parameters.
446!--    This is also done whenever the time step has changed or perturbations
447!--    have been imposed
448       IF ( time_run_control >= dt_run_control  .OR.                     &
449            ( dt_changed  .AND.  timestep_scheme(1:5) /= 'runge' )  .OR. &
450            disturbance_created )                                        &
451       THEN
452          CALL run_control
453          IF ( time_run_control >= dt_run_control )  THEN
454             time_run_control = MOD( time_run_control, &
455                                     MAX( dt_run_control, dt_3d ) )
456          ENDIF
457       ENDIF
458
459!
460!--    Profile output (ASCII) on file
461       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
462          CALL print_1d
463          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
464                                                           dt_3d ) )
465       ENDIF
466
467!
468!--    Graphic output for PROFIL
469       IF ( time_dopr >= dt_dopr )  THEN
470          IF ( dopr_n /= 0 )  CALL data_output_profiles
471          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
472          time_dopr_av = 0.0    ! due to averaging (see above)
473       ENDIF
474
475!
476!--    Graphic output for time series
477       IF ( time_dots >= dt_dots )  THEN
478          CALL data_output_tseries
479          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
480       ENDIF
481
482!
483!--    Output of spectra (formatted for use with PROFIL), in case of no
484!--    time averaging, spectra has to be calculated before
485       IF ( time_dosp >= dt_dosp )  THEN
486          IF ( average_count_sp == 0 )  CALL calc_spectra
487          CALL data_output_spectra
488          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
489       ENDIF
490
491!
492!--    2d-data output (cross-sections)
493       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
494          CALL data_output_2d( 'xy', 0 )
495          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
496       ENDIF
497       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
498          CALL data_output_2d( 'xz', 0 )
499          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
500       ENDIF
501       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
502          CALL data_output_2d( 'yz', 0 )
503          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
504       ENDIF
505
506!
507!--    3d-data output (volume data)
508       IF ( time_do3d >= dt_do3d )  THEN
509          CALL data_output_3d( 0 )
510          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
511       ENDIF
512
513!
514!--    masked data output
515       DO  mid = 1, masks
516          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
517             CALL data_output_mask( 0 )
518             time_domask(mid) = MOD( time_domask(mid),  &
519                                     MAX( dt_domask(mid), dt_3d ) )
520          ENDIF
521       ENDDO
522
523!
524!--    Output of time-averaged 2d/3d/masked data
525       IF ( time_do_av >= dt_data_output_av )  THEN
526          CALL average_3d_data
527          CALL data_output_2d( 'xy', 1 )
528          CALL data_output_2d( 'xz', 1 )
529          CALL data_output_2d( 'yz', 1 )
530          CALL data_output_3d( 1 )
531          DO  mid = 1, masks
532             CALL data_output_mask( 1 )
533          ENDDO
534          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
535       ENDIF
536
537!
538!--    Output of particle time series
539       IF ( particle_advection )  THEN
540          IF ( time_dopts >= dt_dopts  .OR. &
541               ( simulated_time >= particle_advection_start  .AND. &
542                 first_call_advec_particles ) )  THEN
543             CALL data_output_ptseries
544             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
545          ENDIF
546       ENDIF
547
548!
549!--    Output of dvrp-graphics (isosurface, particles, slicer)
550#if defined( __dvrp_graphics )
551       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
552#endif
553       IF ( time_dvrp >= dt_dvrp )  THEN
554          CALL data_output_dvrp
555          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
556       ENDIF
557#if defined( __dvrp_graphics )
558       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
559#endif
560
561!
562!--    If required, set the heat flux for the next time step at a random value
563       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
564
565!
566!--    Execute user-defined actions
567       CALL user_actions( 'after_timestep' )
568
569       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
570
571
572    ENDDO   ! time loop
573
574#if defined( __dvrp_graphics )
575    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
576#endif
577
578 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.