source: palm/trunk/SOURCE/time_integration.f90 @ 4157

Last change on this file since 4157 was 4144, checked in by raasch, 5 years ago

relational operators .EQ., .NE., etc. replaced by ==, /=, etc.

  • Property svn:keywords set to Id
File size: 80.8 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4144 2019-08-06 09:11:47Z suehring $
27! relational operators .EQ., .NE., etc. replaced by ==, /=, etc.
28!
29! 4126 2019-07-30 11:09:11Z gronemeier
30! renamed routine to calculate uv exposure
31!
32! 4111 2019-07-22 18:16:57Z suehring
33! advc_flags_1 / advc_flags_2 renamed to advc_flags_m / advc_flags_s
34!
35! 4069 2019-07-01 14:05:51Z Giersch
36! Masked output running index mid has been introduced as a local variable to
37! avoid runtime error (Loop variable has been modified) in time_integration
38!
39! 4064 2019-07-01 05:33:33Z gronemeier
40! Moved call to radiation module out of intermediate time loop
41!
42! 4048 2019-06-21 21:00:21Z knoop
43! Moved production_e_init call into turbulence_closure_mod
44!
45! 4047 2019-06-21 18:58:09Z knoop
46! Added remainings of swap_timelevel upon its dissolution
47!
48! 4043 2019-06-18 16:59:00Z schwenkel
49! Further LPM modularization
50!
51! 4039 2019-06-18 10:32:41Z suehring
52! Rename subroutines in module for diagnostic quantities
53!
54! 4029 2019-06-14 14:04:35Z raasch
55! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
56! bugfix: decycling of chemistry species after nesting data transfer
57!
58! 4022 2019-06-12 11:52:39Z suehring
59! Call synthetic turbulence generator at last RK3 substep right after boundary
60! conditions are updated in offline nesting in order to assure that
61! perturbations are always imposed
62!
63! 4017 2019-06-06 12:16:46Z schwenkel
64! Mass (volume) flux correction included to ensure global mass conservation for child domains.
65!
66! 3994 2019-05-22 18:08:09Z suehring
67! output of turbulence intensity added
68!
69! 3988 2019-05-22 11:32:37Z kanani
70! Implement steerable output interval for virtual measurements
71!
72! 3968 2019-05-13 11:04:01Z suehring
73! replace nspec_out with n_matched_vars
74!
75! 3929 2019-04-24 12:52:08Z banzhafs
76! Reverse changes back from revision 3878: use chem_boundary_conds instead of
77! chem_boundary_conds_decycle
78!
79!
80! 3885 2019-04-11 11:29:34Z kanani
81! Changes related to global restructuring of location messages and introduction
82! of additional debug messages
83!
84! 3879 2019-04-08 20:25:23Z knoop
85! Moved wtm_forces to module_interface_actions
86!
87! 3872 2019-04-08 15:03:06Z knoop
88! Modifications made for salsa:
89! - Call salsa_emission_update at each time step but do the checks within
90!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
91!   and next_aero_emission_update <= time_since_reference_point ).
92! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
93!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
94! - Apply nesting for salsa variables
95! - Removed cpu_log calls speciffic for salsa.
96!
97! 3833 2019-03-28 15:04:04Z forkel
98! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
99!
100! 3820 2019-03-27 11:53:41Z forkel
101! renamed do_emiss to emissions_anthropogenic (ecc)
102!
103!
104! 3774 2019-03-04 10:52:49Z moh.hefny
105! rephrase if statement to avoid unallocated array in case of
106! nesting_offline is false (crashing during debug mode)
107!
108! 3761 2019-02-25 15:31:42Z raasch $
109! module section re-formatted and openacc required variables moved to separate section,
110! re-formatting to 100 char line width
111!
112! 3745 2019-02-15 18:57:56Z suehring
113! Call indoor model after first timestep
114!
115! 3744 2019-02-15 18:38:58Z suehring
116! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
117! time_integration to make sure averaged input is updated before calculating.
118!
119! 3739 2019-02-13 08:05:17Z dom_dwd_user
120! Removed everything related to "time_bio_results" as this is never used.
121!
122! 3724 2019-02-06 16:28:23Z kanani
123! Correct double-used log_point_s unit
124!
125! 3719 2019-02-06 13:10:18Z kanani
126! - removed wind_turbine cpu measurement, since same time is measured inside
127!   wtm_forces subroutine as special measures
128! - moved the numerous vnest cpulog to special measures
129! - extended radiation cpulog over entire radiation part,
130!   moved radiation_interactions cpulog to special measures
131! - moved some cpu_log calls to this routine for better overview
132!
133! 3705 2019-01-29 19:56:39Z suehring
134! Data output for virtual measurements added
135!
136! 3704 2019-01-29 19:51:41Z suehring
137! Rename subroutines for surface-data output
138!
139! 3647 2019-01-02 14:10:44Z kanani
140! Bugfix: add time_since_reference_point to IF clause for data_output calls
141! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
142! Clean up indoor_model and biometeorology model call.
143!
144! 3646 2018-12-28 17:58:49Z kanani
145! Bugfix: use time_since_reference_point instead of simulated_time where
146! required (relevant when using wall/soil spinup)
147!
148! 3634 2018-12-18 12:31:28Z knoop
149! OpenACC port for SPEC
150!
151! 3597 2018-12-04 08:40:18Z maronga
152! Removed call to calculation of near air (10 cm) potential temperature (now in
153! surface layer fluxes)
154!
155! 3589 2018-11-30 15:09:51Z suehring
156! Move the control parameter "salsa" from salsa_mod to control_parameters
157! (M. Kurppa)
158!
159! 3582 2018-11-29 19:16:36Z suehring
160! dom_dwd_user, Schrempf:
161! Changes due to merge of uv exposure model into biometeorology_mod.
162!
163! 3525 2018-11-14 16:06:14Z kanani
164! Changes related to clean-up of biometeorology (dom_dwd_user)
165!
166! 3524 2018-11-14 13:36:44Z raasch
167! unused variables removed
168!
169! 3484 2018-11-02 14:41:25Z hellstea
170! pmci_ensure_nest_mass_conservation is premanently removed
171!
172! 3473 2018-10-30 20:50:15Z suehring
173! new module for virtual measurements introduced
174!
175! 3472 2018-10-30 20:43:50Z suehring
176! Add indoor model (kanani, srissman, tlang)
177!
178! 3467 2018-10-30 19:05:21Z suehring
179! Implementation of a new aerosol module salsa.
180!
181! 3448 2018-10-29 18:14:31Z kanani
182! Add biometeorology
183!
184! 3421 2018-10-24 18:39:32Z gronemeier
185! Surface data output
186!
187! 3418 2018-10-24 16:07:39Z kanani
188! call to material_heat_model now with check if spinup runs (rvtils)
189!
190! 3378 2018-10-19 12:34:59Z kanani
191! merge from radiation branch (r3362) into trunk
192! (moh.hefny):
193! Bugfix in the if statement to call radiation_interaction
194!
195! 3347 2018-10-15 14:21:08Z suehring
196! - offline nesting separated from large-scale forcing module
197! - changes for synthetic turbulence generator
198!
199! 3343 2018-10-15 10:38:52Z suehring
200! - Formatting, clean-up, comments (kanani)
201! - Added CALL to chem_emissions_setup (Russo)
202! - Code added for decycling chemistry (basit)
203!
204! 3294 2018-10-01 02:37:10Z raasch
205! changes concerning modularization of ocean option
206!
207! 3274 2018-09-24 15:42:55Z knoop
208! Modularization of all bulk cloud physics code components
209!
210! 3241 2018-09-12 15:02:00Z raasch
211! unused variables removed
212!
213! 3198 2018-08-15 09:23:10Z sward
214! Added multi_agent_system_end; defined start time for MAS relative to
215! time_since_reference_point
216!
217! 3183 2018-07-27 14:25:55Z suehring
218! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
219! Rename subroutines and variables in COSMO nesting mode
220!
221! 3182 2018-07-27 13:36:03Z suehring
222! Added multi agent system
223!
224! 3042 2018-05-25 10:44:37Z schwenkel
225! Changed the name specific humidity to mixing ratio
226!
227! 3040 2018-05-25 10:22:08Z schwenkel
228! Fixed bug in IF statement
229! Ensure that the time when calling the radiation to be the time step of the
230! pre-calculated time when first calculate the positions of the sun
231!
232! 3004 2018-04-27 12:33:25Z Giersch
233! First call of flow_statistics has been removed. It is already called in
234! run_control itself
235!
236! 2984 2018-04-18 11:51:30Z hellstea
237! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
238! as seemingly unnecessary.
239!
240! 2941 2018-04-03 11:54:58Z kanani
241! Deduct spinup_time from RUN_CONTROL output of main 3d run
242! (use time_since_reference_point instead of simulated_time)
243!
244! 2938 2018-03-27 15:52:42Z suehring
245! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
246!
247! 2936 2018-03-27 14:49:27Z suehring
248! Little formatting adjustment.
249!
250! 2817 2018-02-19 16:32:21Z knoop
251! Preliminary gust module interface implemented
252!
253! 2801 2018-02-14 16:01:55Z thiele
254! Changed lpm from subroutine to module.
255! Introduce particle transfer in nested models.
256!
257! 2776 2018-01-31 10:44:42Z Giersch
258! Variable use_synthetic_turbulence_generator has been abbreviated
259!
260! 2773 2018-01-30 14:12:54Z suehring
261! - Nesting for chemical species
262!
263! 2766 2018-01-22 17:17:47Z kanani
264! Removed preprocessor directive __chem
265!
266! 2718 2018-01-02 08:49:38Z maronga
267! Corrected "Former revisions" section
268!
269! 2696 2017-12-14 17:12:51Z kanani
270! - Change in file header (GPL part)
271! - Implementation of uv exposure model (FK)
272! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
273! - renamed diffusivities to tcm_diffusivities (TG)
274! - implement prognostic equation for diss (TG)
275! - Moved/commented CALL to chem_emissions (FK)
276! - Added CALL to chem_emissions (FK)
277! - Implementation of chemistry module (FK)
278! - Calls for setting boundary conditions in USM and LSM (MS)
279! - Large-scale forcing with larger-scale models implemented (MS)
280! - Rename usm_radiation into radiation_interactions; merge with branch
281!   radiation (MS)
282! - added call for usm_green_heat_model for green building surfaces (RvT)
283! - added call for usm_temperature_near_surface for use in indoor model (RvT)
284!
285! 2617 2017-11-16 12:47:24Z suehring
286! Bugfix, assure that the reference state does not become zero.
287!
288! 2563 2017-10-19 15:36:10Z Giersch
289! Variable wind_turbine moved to module control_parameters
290!
291! 2365 2017-08-21 14:59:59Z kanani
292! Vertical grid nesting implemented (SadiqHuq)
293!
294! 2320 2017-07-21 12:47:43Z suehring
295! Set bottom boundary conditions after nesting interpolation and anterpolation
296!
297! 2299 2017-06-29 10:14:38Z maronga
298! Call of soil model adjusted
299!
300! 2292 2017-06-20 09:51:42Z schwenkel
301! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
302! includes two more prognostic equations for cloud drop concentration (nc) 
303! and cloud water content (qc).
304!
305! 2271 2017-06-09 12:34:55Z sward
306! Start timestep message changed
307!
308! 2259 2017-06-08 09:09:11Z gronemeier
309! Implemented synthetic turbulence generator
310!
311! 2233 2017-05-30 18:08:54Z suehring
312!
313! 2232 2017-05-30 17:47:52Z suehring
314! Adjustments to new topography and surface concept
315! Modify passed parameters for disturb_field
316!
317! 2178 2017-03-17 11:07:39Z hellstea
318! Setting perturbations at all times near inflow boundary is removed
319! in case of nested boundaries
320!
321! 2174 2017-03-13 08:18:57Z maronga
322! Added support for nesting with cloud microphysics
323!
324! 2118 2017-01-17 16:38:49Z raasch
325! OpenACC directives and related code removed
326!
327! 2050 2016-11-08 15:00:55Z gronemeier
328! Implement turbulent outflow condition
329!
330! 2031 2016-10-21 15:11:58Z knoop
331! renamed variable rho to rho_ocean
332!
333! 2011 2016-09-19 17:29:57Z kanani
334! Flag urban_surface is now defined in module control_parameters,
335! removed commented CALLs of global_min_max.
336!
337! 2007 2016-08-24 15:47:17Z kanani
338! Added CALLs for new urban surface model
339!
340! 2000 2016-08-20 18:09:15Z knoop
341! Forced header and separation lines into 80 columns
342!
343! 1976 2016-07-27 13:28:04Z maronga
344! Simplified calls to radiation model
345!
346! 1960 2016-07-12 16:34:24Z suehring
347! Separate humidity and passive scalar
348!
349! 1957 2016-07-07 10:43:48Z suehring
350! flight module added
351!
352! 1919 2016-05-27 14:51:23Z raasch
353! Initial version of purely vertical nesting introduced.
354!
355! 1918 2016-05-27 14:35:57Z raasch
356! determination of time step moved to the end of the time step loop,
357! the first time step is now always calculated before the time step loop (i.e.
358! also in case of restart runs)
359!
360! 1914 2016-05-26 14:44:07Z witha
361! Added call for wind turbine model
362!
363! 1878 2016-04-19 12:30:36Z hellstea
364! Synchronization for nested runs rewritten
365!
366! 1853 2016-04-11 09:00:35Z maronga
367! Adjusted for use with radiation_scheme = constant
368!
369! 1849 2016-04-08 11:33:18Z hoffmann
370! Adapted for modularization of microphysics
371!
372! 1833 2016-04-07 14:23:03Z raasch
373! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
374!
375! 1831 2016-04-07 13:15:51Z hoffmann
376! turbulence renamed collision_turbulence
377!
378! 1822 2016-04-07 07:49:42Z hoffmann
379! icloud_scheme replaced by microphysics_*
380!
381! 1808 2016-04-05 19:44:00Z raasch
382! output message in case unscheduled radiation calls removed
383!
384! 1797 2016-03-21 16:50:28Z raasch
385! introduction of different datatransfer modes
386!
387! 1791 2016-03-11 10:41:25Z raasch
388! call of pmci_update_new removed
389!
390! 1786 2016-03-08 05:49:27Z raasch
391! +module spectrum
392!
393! 1783 2016-03-06 18:36:17Z raasch
394! switch back of netcdf data format for mask output moved to the mask output
395! routine
396!
397! 1781 2016-03-03 15:12:23Z raasch
398! some pmc calls removed at the beginning (before timeloop),
399! pmc initialization moved to the main program
400!
401! 1764 2016-02-28 12:45:19Z raasch
402! PMC_ACTIVE flags removed,
403! bugfix: nest synchronization after first call of timestep
404!
405! 1762 2016-02-25 12:31:13Z hellstea
406! Introduction of nested domain feature
407!
408! 1736 2015-12-04 08:56:33Z raasch
409! no perturbations added to total domain if energy limit has been set zero
410!
411! 1691 2015-10-26 16:17:44Z maronga
412! Added option for spin-ups without land surface and radiation models. Moved calls
413! for radiation and lan surface schemes.
414!
415! 1682 2015-10-07 23:56:08Z knoop
416! Code annotations made doxygen readable
417!
418! 1671 2015-09-25 03:29:37Z raasch
419! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
420! for particles
421!
422! 1585 2015-04-30 07:05:52Z maronga
423! Moved call of radiation scheme. Added support for RRTM
424!
425! 1551 2015-03-03 14:18:16Z maronga
426! Added interface for different radiation schemes.
427!
428! 1496 2014-12-02 17:25:50Z maronga
429! Added calls for the land surface model and radiation scheme
430!
431! 1402 2014-05-09 14:25:13Z raasch
432! location messages modified
433!
434! 1384 2014-05-02 14:31:06Z raasch
435! location messages added
436!
437! 1380 2014-04-28 12:40:45Z heinze
438! CALL of nudge_ref added
439! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
440!
441! 1365 2014-04-22 15:03:56Z boeske
442! Reset sums_ls_l to zero at each timestep
443! +sums_ls_l
444! Calculation of reference state (previously in subroutine calc_mean_profile)
445
446! 1342 2014-03-26 17:04:47Z kanani
447! REAL constants defined as wp-kind
448!
449! 1320 2014-03-20 08:40:49Z raasch
450! ONLY-attribute added to USE-statements,
451! kind-parameters added to all INTEGER and REAL declaration statements,
452! kinds are defined in new module kinds,
453! old module precision_kind is removed,
454! revision history before 2012 removed,
455! comment fields (!:) to be used for variable explanations added to
456! all variable declaration statements
457! 1318 2014-03-17 13:35:16Z raasch
458! module interfaces removed
459!
460! 1308 2014-03-13 14:58:42Z fricke
461! +netcdf_data_format_save
462! For masked data, parallel netcdf output is not tested so far, hence
463! netcdf_data_format is switched back to non-paralell output.
464!
465! 1276 2014-01-15 13:40:41Z heinze
466! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
467!
468! 1257 2013-11-08 15:18:40Z raasch
469! acc-update-host directive for timestep removed
470!
471! 1241 2013-10-30 11:36:58Z heinze
472! Generalize calc_mean_profile for wider use
473! Determine shf and qsws in dependence on data from LSF_DATA
474! Determine ug and vg in dependence on data from LSF_DATA
475! 1221 2013-09-10 08:59:13Z raasch
476! host update of arrays before timestep is called
477!
478! 1179 2013-06-14 05:57:58Z raasch
479! mean profiles for reference state are only calculated if required,
480! small bugfix for background communication
481!
482! 1171 2013-05-30 11:27:45Z raasch
483! split of prognostic_equations deactivated (comment lines), for the time being
484!
485! 1128 2013-04-12 06:19:32Z raasch
486! asynchronous transfer of ghost point data realized for acc-optimized version:
487! prognostic_equations are first called two times for those points required for
488! the left-right and north-south exchange, respectively, and then for the
489! remaining points,
490! those parts requiring global communication moved from prognostic_equations to
491! here
492!
493! 1115 2013-03-26 18:16:16Z hoffmann
494! calculation of qr and nr is restricted to precipitation
495!
496! 1113 2013-03-10 02:48:14Z raasch
497! GPU-porting of boundary conditions,
498! openACC directives updated
499! formal parameter removed from routine boundary_conds
500!
501! 1111 2013-03-08 23:54:10Z raasch
502! +internal timestep counter for cpu statistics added,
503! openACC directives updated
504!
505! 1092 2013-02-02 11:24:22Z raasch
506! unused variables removed
507!
508! 1065 2012-11-22 17:42:36Z hoffmann
509! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
510!
511! 1053 2012-11-13 17:11:03Z hoffmann
512! exchange of ghost points for nr, qr added
513!
514! 1036 2012-10-22 13:43:42Z raasch
515! code put under GPL (PALM 3.9)
516!
517! 1019 2012-09-28 06:46:45Z raasch
518! non-optimized version of prognostic_equations removed
519!
520! 1015 2012-09-27 09:23:24Z raasch
521! +call of prognostic_equations_acc
522!
523! 1001 2012-09-13 14:08:46Z raasch
524! all actions concerning leapfrog- and upstream-spline-scheme removed
525!
526! 849 2012-03-15 10:35:09Z raasch
527! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
528!
529! 825 2012-02-19 03:03:44Z raasch
530! wang_collision_kernel renamed wang_kernel
531!
532! Revision 1.1  1997/08/11 06:19:04  raasch
533! Initial revision
534!
535!
536! Description:
537! ------------
538!> Integration in time of the model equations, statistical analysis and graphic
539!> output
540!------------------------------------------------------------------------------!
541 SUBROUTINE time_integration
542 
543
544    USE advec_ws,                                                                                  &
545        ONLY:  ws_statistics
546
547    USE arrays_3d,                                                                                 &
548        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
549               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
550               tend, u, u_p, v, vpt, v_p, w, w_p
551
552    USE biometeorology_mod,                                                                        &
553        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, bio_calculate_uv_exposure,       &
554               uv_exposure
555
556    USE bulk_cloud_model_mod,                                                                      &
557        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
558              microphysics_morrison, microphysics_seifert
559
560    USE calc_mean_profile_mod,                                                                     &
561        ONLY:  calc_mean_profile
562
563    USE chem_emissions_mod,                                                                        &
564        ONLY:  chem_emissions_setup
565
566    USE chem_gasphase_mod,                                                                         &
567        ONLY:  nvar
568
569    USE chem_modules,                                                                              &
570        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
571
572    USE chemistry_model_mod,                                                                       &
573        ONLY:  chem_boundary_conds
574
575    USE control_parameters,                                                                        &
576        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
577               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
578               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
579               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
580               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
581               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
582               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
583               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
584               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
585               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
586               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
587               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
588               multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,         &
589               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
590               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
591               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
592               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
593               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
594               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
595               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
596               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
597               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
598               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
599               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
600               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count
601
602    USE cpulog,                                                                                    &
603        ONLY:  cpu_log, log_point, log_point_s
604
605    USE date_and_time_mod,                                                                         &
606        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
607
608    USE diagnostic_output_quantities_mod,                                                          &
609        ONLY:  doq_calculate,                                                                      &
610               timestep_number_at_prev_calc
611
612    USE flight_mod,                                                                                &
613        ONLY:  flight_measurement
614
615    USE indices,                                                                                   &
616        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
617
618    USE indoor_model_mod,                                                                          &
619        ONLY:  dt_indoor, im_main_heatcool, time_indoor
620
621    USE interfaces
622
623    USE kinds
624
625    USE land_surface_model_mod,                                                                    &
626        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
627
628    USE lagrangian_particle_model_mod,                                                             &
629        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
630
631    USE lsf_nudging_mod,                                                                           &
632        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
633
634    USE module_interface,                                                                          &
635        ONLY:  module_interface_actions, module_interface_swap_timelevel
636
637    USE multi_agent_system_mod,                                                                    &
638        ONLY:  agents_active, multi_agent_system
639
640    USE nesting_offl_mod,                                                                          &
641        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
642
643    USE netcdf_data_input_mod,                                                                     &
644        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
645
646    USE ocean_mod,                                                                                 &
647        ONLY:  prho_reference
648
649    USE particle_attributes,                                                                       &
650        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
651
652    USE pegrid
653
654    USE pmc_interface,                                                                             &
655        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
656        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical,           &
657        pmci_set_swaplevel
658
659    USE progress_bar,                                                                              &
660        ONLY:  finish_progress_bar, output_progress_bar
661
662    USE prognostic_equations_mod,                                                                  &
663        ONLY:  prognostic_equations_cache, prognostic_equations_vector
664
665    USE radiation_model_mod,                                                                       &
666        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
667              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
668
669    USE salsa_mod,                                                                                 &
670        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
671              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
672              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
673
674    USE spectra_mod,                                                                               &
675        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
676
677    USE statistics,                                                                                &
678        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
679
680
681    USE surface_layer_fluxes_mod,                                                                  &
682        ONLY:  surface_layer_fluxes
683
684    USE surface_data_output_mod,                                                                   &
685        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
686               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
687               skip_time_dosurf_av, time_dosurf, time_dosurf_av
688
689    USE surface_mod,                                                                               &
690        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
691
692    USE synthetic_turbulence_generator_mod,                                                        &
693        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
694               time_stg_adjust, time_stg_call, use_syn_turb_gen
695
696    USE turbulence_closure_mod,                                                                    &
697        ONLY:  tcm_diffusivities
698
699    USE urban_surface_mod,                                                                         &
700        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
701               usm_surface_energy_balance, usm_green_heat_model
702
703    USE vertical_nesting_mod,                                                                      &
704        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
705               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
706               vnest_start_time
707
708    USE virtual_measurement_mod,                                                                   &
709        ONLY:  dt_virtual_measurement,                                                             &
710               time_virtual_measurement,                                                           &
711               vm_data_output,                                                                     &
712               vm_sampling,                                                                        &
713               vm_time_start
714
715
716#if defined( _OPENACC )
717    USE arrays_3d,                                                             &
718        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
719               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
720               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
721               v_stokes_zu, zu
722
723    USE control_parameters,                                                                        &
724        ONLY:  tsc
725
726    USE indices,                                                                                   &
727        ONLY:  advc_flags_m, advc_flags_s, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
728
729    USE statistics,                                                                                &
730        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
731               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
732               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
733               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
734
735    USE surface_mod,                                                                               &
736        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
737#endif
738
739
740    IMPLICIT NONE
741
742    CHARACTER (LEN=9) ::  time_to_string   !<
743
744    INTEGER(iwp) ::  ib        !< index for aerosol size bins
745    INTEGER(iwp) ::  ic        !< index for aerosol mass bins
746    INTEGER(iwp) ::  icc       !< additional index for aerosol mass bins
747    INTEGER(iwp) ::  ig        !< index for salsa gases
748    INTEGER(iwp) ::  lsp
749    INTEGER(iwp) ::  lsp_usr   !<
750    INTEGER(iwp) ::  mid       !< masked output running index
751    INTEGER(iwp) ::  n         !< loop counter for chemistry species
752
753    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
754                            !< steering of run control output interval
755    REAL(wp) ::  time_since_reference_point_save  !< original value of
756                                                  !< time_since_reference_point
757
758
759!
760!-- Copy data from arrays_3d
761!$ACC DATA &
762!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
763!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
764!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
765!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
766!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
767!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
768!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
769!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
770!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
771
772!$ACC DATA &
773!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
774!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
775!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
776!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
777!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
778!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
779!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
780!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
781!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
782!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
783!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
784
785!$ACC DATA &
786!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
787!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
788!$ACC COPYIN(zu(nzb:nzt+1)) &
789!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
790!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
791!$ACC COPYIN(ddzw(1:nzt+1)) &
792!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
793!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
794!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
795!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
796!$ACC COPYIN(ref_state(0:nz+1)) &
797!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
798!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
799!$ACC COPYIN(pt_init(0:nz+1)) &
800!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
801
802!
803!-- Copy data from control_parameters
804!$ACC DATA &
805!$ACC COPYIN(tsc(1:5))
806
807!
808!-- Copy data from indices
809!$ACC DATA &
810!$ACC COPYIN(advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
811!$ACC COPYIN(advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
812!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
813
814!
815!-- Copy data from surface_mod
816!$ACC DATA &
817!$ACC COPYIN(bc_h(0:1)) &
818!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
819!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
820!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
821!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
822!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
823!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
824
825!
826!-- Copy data from statistics
827!$ACC DATA &
828!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
829!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
830!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
831!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
832!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
833!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
834!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
835!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
836!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
837!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
838!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
839!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
840!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
841!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
842!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
843!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
844!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
845!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
846!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
847
848#if defined( _OPENACC )
849    CALL enter_surface_arrays
850#endif
851
852!
853!-- At beginning determine the first time step
854    CALL timestep
855!
856!-- Synchronize the timestep in case of nested run.
857    IF ( nested_run )  THEN
858!
859!--    Synchronization by unifying the time step.
860!--    Global minimum of all time-steps is used for all.
861       CALL pmci_synchronize
862    ENDIF
863
864!
865!-- Determine and print out the run control quantities before the first time
866!-- step of this run. For the initial run, some statistics (e.g. divergence)
867!-- need to be determined first --> CALL flow_statistics at the beginning of
868!-- run_control
869    CALL run_control
870!
871!-- Data exchange between coupled models in case that a call has been omitted
872!-- at the end of the previous run of a job chain.
873    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
874!
875!--    In case of model termination initiated by the local model the coupler
876!--    must not be called because this would again cause an MPI hang.
877       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
878          CALL surface_coupler
879          time_coupling = time_coupling - dt_coupling
880       ENDDO
881       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
882          time_coupling = time_since_reference_point
883       ENDIF
884    ENDIF
885
886    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
887
888!
889!-- Start of the time loop
890    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
891
892       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
893!
894!--    Vertical nesting: initialize fine grid
895       IF ( vnested ) THEN
896          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
897             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
898             CALL vnest_init_fine
899             vnest_init = .TRUE.
900             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
901          ENDIF
902       ENDIF
903!
904!--    Determine ug, vg and w_subs in dependence on data from external file
905!--    LSF_DATA
906       IF ( large_scale_forcing .AND. lsf_vert )  THEN
907           CALL ls_forcing_vert ( simulated_time )
908           sums_ls_l = 0.0_wp
909       ENDIF
910
911!
912!--    Set pt_init and q_init to the current profiles taken from
913!--    NUDGING_DATA
914       IF ( nudging )  THEN
915           CALL nudge_ref ( simulated_time )
916!
917!--        Store temperature gradient at the top boundary for possible Neumann
918!--        boundary condition
919           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
920           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
921           IF ( air_chemistry )  THEN
922              DO  lsp = 1, nvar
923                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
924                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
925                               / dzu(nzt+1)
926              ENDDO
927           ENDIF
928           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
929              DO  ib = 1, nbins_aerosol
930                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
931                               dzu(nzt+1)
932                 DO  ic = 1, ncomponents_mass
933                    icc = ( ic - 1 ) * nbins_aerosol + ib
934                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
935                                  dzu(nzt+1)
936                 ENDDO
937              ENDDO
938              IF ( .NOT. salsa_gases_from_chem )  THEN
939                 DO  ig = 1, ngases_salsa
940                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
941                                  dzu(nzt+1)
942                 ENDDO
943              ENDIF
944           ENDIF
945       ENDIF
946!
947!--    If forcing by larger-scale models is applied, check if new data
948!--    at domain boundaries need to be read.
949       IF ( nesting_offline ) THEN
950          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
951               CALL netcdf_data_input_offline_nesting
952       ENDIF
953
954!
955!--    Execute all other module actions routunes
956       CALL module_interface_actions( 'before_timestep' )
957       
958!
959!--    Start of intermediate step loop
960       intermediate_timestep_count = 0
961       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
962
963          intermediate_timestep_count = intermediate_timestep_count + 1
964
965!
966!--       Set the steering factors for the prognostic equations which depend
967!--       on the timestep scheme
968          CALL timestep_scheme_steering
969
970!
971!--       Calculate those variables needed in the tendency terms which need
972!--       global communication
973          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
974          THEN
975!
976!--          Horizontally averaged profiles to be used as reference state in
977!--          buoyancy terms (WARNING: only the respective last call of
978!--          calc_mean_profile defines the reference state!)
979             IF ( .NOT. neutral )  THEN
980                CALL calc_mean_profile( pt, 4 )
981                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
982             ENDIF
983             IF ( ocean_mode )  THEN
984                CALL calc_mean_profile( rho_ocean, 64 )
985                ref_state(:)  = hom(:,1,64,0)
986             ENDIF
987             IF ( humidity )  THEN
988                CALL calc_mean_profile( vpt, 44 )
989                ref_state(:)  = hom(:,1,44,0)
990             ENDIF
991!
992!--          Assure that ref_state does not become zero at any level
993!--          ( might be the case if a vertical level is completely occupied
994!--            with topography ).
995             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
996          ENDIF
997
998          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
999          THEN
1000             CALL ws_statistics
1001          ENDIF
1002!
1003!--       In case of nudging calculate current nudging time scale and horizontal
1004!--       means of u, v, pt and q
1005          IF ( nudging )  THEN
1006             CALL calc_tnudge( simulated_time )
1007             CALL calc_mean_profile( u, 1 )
1008             CALL calc_mean_profile( v, 2 )
1009             CALL calc_mean_profile( pt, 4 )
1010             CALL calc_mean_profile( q, 41 )
1011          ENDIF
1012!
1013!--       Execute all other module actions routunes
1014          CALL module_interface_actions( 'before_prognostic_equations' )
1015!
1016!--       Solve the prognostic equations. A fast cache optimized version with
1017!--       only one single loop is used in case of Piascek-Williams advection
1018!--       scheme. NEC vector machines use a different version, because
1019!--       in the other versions a good vectorization is prohibited due to
1020!--       inlining problems.
1021          IF ( loop_optimization == 'cache' )  THEN
1022             CALL prognostic_equations_cache
1023          ELSEIF ( loop_optimization == 'vector' )  THEN
1024             CALL prognostic_equations_vector
1025          ENDIF
1026
1027!
1028!--       Particle transport/physics with the Lagrangian particle model
1029!--       (only once during intermediate steps, because it uses an Euler-step)
1030!--       ### particle model should be moved before prognostic_equations, in order
1031!--       to regard droplet interactions directly
1032          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1033               .AND.  intermediate_timestep_count == 1 )                                           &
1034          THEN
1035             CALL module_interface_actions( 'after_prognostic_equations' )
1036             first_call_lpm = .FALSE.
1037          ENDIF
1038
1039!
1040!--       Interaction of droplets with temperature and mixing ratio.
1041!--       Droplet condensation and evaporation is calculated within
1042!--       advec_particles.
1043          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1044          THEN
1045             CALL lpm_interaction_droplets_ptq
1046          ENDIF
1047
1048!
1049!--       Movement of agents in multi agent system
1050          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1051               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1052               intermediate_timestep_count == 1 )                                                  &
1053          THEN
1054             CALL multi_agent_system
1055             first_call_mas = .FALSE.
1056          ENDIF
1057
1058!
1059!--       Exchange of ghost points (lateral boundary conditions)
1060          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1061
1062          CALL exchange_horiz( u_p, nbgp )
1063          CALL exchange_horiz( v_p, nbgp )
1064          CALL exchange_horiz( w_p, nbgp )
1065          CALL exchange_horiz( pt_p, nbgp )
1066          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1067          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1068               .OR.  use_sgs_for_particles )  THEN
1069             IF ( rans_tke_e )  THEN
1070                CALL exchange_horiz( diss_p, nbgp )
1071             ELSE
1072                CALL exchange_horiz( diss, nbgp )
1073             ENDIF
1074          ENDIF
1075          IF ( ocean_mode )  THEN
1076             CALL exchange_horiz( sa_p, nbgp )
1077             CALL exchange_horiz( rho_ocean, nbgp )
1078             CALL exchange_horiz( prho, nbgp )
1079          ENDIF
1080          IF ( humidity )  THEN
1081             CALL exchange_horiz( q_p, nbgp )
1082             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1083                CALL exchange_horiz( qc_p, nbgp )
1084                CALL exchange_horiz( nc_p, nbgp )
1085             ENDIF
1086             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1087                CALL exchange_horiz( qr_p, nbgp )
1088                CALL exchange_horiz( nr_p, nbgp )
1089             ENDIF
1090          ENDIF
1091          IF ( cloud_droplets )  THEN
1092             CALL exchange_horiz( ql, nbgp )
1093             CALL exchange_horiz( ql_c, nbgp )
1094             CALL exchange_horiz( ql_v, nbgp )
1095             CALL exchange_horiz( ql_vp, nbgp )
1096          ENDIF
1097          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1098          IF ( air_chemistry )  THEN
1099             DO  lsp = 1, nvar
1100                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1101             ENDDO
1102          ENDIF
1103
1104          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1105             DO  ib = 1, nbins_aerosol
1106                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1107                DO  ic = 1, ncomponents_mass
1108                   icc = ( ic - 1 ) * nbins_aerosol + ib
1109                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1110                ENDDO
1111             ENDDO
1112             IF ( .NOT. salsa_gases_from_chem )  THEN
1113                DO  ig = 1, ngases_salsa
1114                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1115                ENDDO
1116             ENDIF
1117          ENDIF
1118          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1119
1120!
1121!--       Boundary conditions for the prognostic quantities (except of the
1122!--       velocities at the outflow in case of a non-cyclic lateral wall)
1123          CALL boundary_conds
1124
1125!
1126!--       Boundary conditions for prognostic quantitites of other modules:
1127!--       Here, only decycling is carried out
1128          IF ( air_chemistry )  THEN
1129
1130             DO  lsp = 1, nvar
1131                lsp_usr = 1
1132                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1133                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1134                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1135                                                chem_species(lsp)%conc_pr_init )
1136                   ENDIF
1137                   lsp_usr = lsp_usr + 1
1138                ENDDO
1139             ENDDO
1140
1141          ENDIF
1142
1143          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1144
1145             DO  ib = 1, nbins_aerosol
1146                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1147                DO  ic = 1, ncomponents_mass
1148                   icc = ( ic - 1 ) * nbins_aerosol + ib
1149                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1150                ENDDO
1151             ENDDO
1152             IF ( .NOT. salsa_gases_from_chem )  THEN
1153                DO  ig = 1, ngases_salsa
1154                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1155                ENDDO
1156             ENDIF
1157
1158          ENDIF
1159
1160!
1161!--       Incrementing timestep counter
1162          timestep_count = timestep_count + 1
1163
1164          CALL cpu_log( log_point(28), 'swap_timelevel', 'start' )
1165!
1166!--       Set the swap level for all modules
1167          CALL module_interface_swap_timelevel( MOD( timestep_count, 2) )
1168!
1169!--       Set the swap level for steering the pmc data transfer
1170          IF ( nested_run )  CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 )  !> @todo: why the +1 ?
1171
1172          CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' )
1173
1174!
1175!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1176          IF ( vnest_init ) THEN
1177             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1178             CALL vnest_anterpolate
1179             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1180          ENDIF
1181
1182          IF ( nested_run )  THEN
1183
1184             CALL cpu_log( log_point(60), 'nesting', 'start' )
1185!
1186!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1187!--          and pmci_child_datatrans are called inside the wrapper
1188!--          subroutine pmci_datatrans according to the control parameters
1189!--          nesting_mode and nesting_datatransfer_mode.
1190!--          TO_DO: why is nesting_mode given as a parameter here?
1191             CALL pmci_datatrans( nesting_mode )
1192
1193             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1194
1195                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
1196!
1197!--             Exchange_horiz is needed for all parent-domains after the
1198!--             anterpolation
1199                CALL exchange_horiz( u, nbgp )
1200                CALL exchange_horiz( v, nbgp )
1201                CALL exchange_horiz( w, nbgp )
1202                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1203
1204                IF ( humidity )  THEN
1205
1206                   CALL exchange_horiz( q, nbgp )
1207
1208                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1209                       CALL exchange_horiz( qc, nbgp )
1210                       CALL exchange_horiz( nc, nbgp )
1211                   ENDIF
1212                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1213                       CALL exchange_horiz( qr, nbgp )
1214                       CALL exchange_horiz( nr, nbgp )
1215                   ENDIF
1216
1217                ENDIF
1218
1219                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1220
1221                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1222
1223                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1224                   CALL exchange_horiz( diss, nbgp )
1225                ENDIF
1226
1227                IF ( air_chemistry )  THEN
1228                   DO  n = 1, nvar
1229                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1230                   ENDDO
1231                ENDIF
1232
1233                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1234                   DO  ib = 1, nbins_aerosol
1235                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1236                      DO  ic = 1, ncomponents_mass
1237                         icc = ( ic - 1 ) * nbins_aerosol + ib
1238                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1239                      ENDDO
1240                   ENDDO
1241                   IF ( .NOT. salsa_gases_from_chem )  THEN
1242                      DO  ig = 1, ngases_salsa
1243                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1244                      ENDDO
1245                   ENDIF
1246                ENDIF
1247                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
1248
1249             ENDIF
1250
1251!
1252!--          Set boundary conditions again after interpolation and anterpolation.
1253             CALL pmci_boundary_conds
1254
1255!
1256!--          Set chemistry boundary conditions (decycling)
1257             IF ( air_chemistry )  THEN
1258                DO  lsp = 1, nvar
1259                   lsp_usr = 1
1260                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1261                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1262                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1263                                                   chem_species(lsp)%conc_pr_init )
1264                      ENDIF
1265                      lsp_usr = lsp_usr + 1
1266                   ENDDO
1267                ENDDO
1268             ENDIF
1269
1270!
1271!--          Set SALSA boundary conditions (decycling)
1272             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1273                DO  ib = 1, nbins_aerosol
1274                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1275                   DO  ic = 1, ncomponents_mass
1276                      icc = ( ic - 1 ) * nbins_aerosol + ib
1277                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1278                   ENDDO
1279                ENDDO
1280                IF ( .NOT. salsa_gases_from_chem )  THEN
1281                   DO  ig = 1, ngases_salsa
1282                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1283                   ENDDO
1284                ENDIF
1285             ENDIF
1286
1287             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1288
1289          ENDIF
1290
1291!
1292!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1293!--       when a sloping surface is used
1294          IF ( sloping_surface )  THEN
1295             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1296             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1297          ENDIF
1298
1299!
1300!--       Impose a turbulent inflow using the recycling method
1301          IF ( turbulent_inflow )  CALL inflow_turbulence
1302
1303!
1304!--       Set values at outflow boundary using the special outflow condition
1305          IF ( turbulent_outflow )  CALL outflow_turbulence
1306
1307!
1308!--       Impose a random perturbation on the horizontal velocity field
1309          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1310               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1311               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1312          THEN
1313             time_disturb = time_disturb + dt_3d
1314             IF ( time_disturb >= dt_disturb )  THEN
1315                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1316                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1317                   CALL disturb_field( 'u', tend, u )
1318                   CALL disturb_field( 'v', tend, v )
1319                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1320                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1321                THEN
1322!
1323!--                Runs with a non-cyclic lateral wall need perturbations
1324!--                near the inflow throughout the whole simulation
1325                   dist_range = 1
1326                   CALL disturb_field( 'u', tend, u )
1327                   CALL disturb_field( 'v', tend, v )
1328                   dist_range = 0
1329                ENDIF
1330                time_disturb = time_disturb - dt_disturb
1331             ENDIF
1332          ENDIF
1333
1334!
1335!--       Map forcing data derived from larger scale model onto domain
1336!--       boundaries.
1337          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1338                                       intermediate_timestep_count_max  )                          &
1339             CALL nesting_offl_bc
1340!
1341!--       Impose a turbulent inflow using synthetic generated turbulence.
1342          IF ( use_syn_turb_gen  .AND.                                                             &
1343               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1344             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1345             CALL stg_main
1346             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1347          ENDIF
1348!
1349!--       Ensure mass conservation. This need to be done after imposing
1350!--       synthetic turbulence and top boundary condition for pressure is set to
1351!--       Neumann conditions.
1352!--       Is this also required in case of Dirichlet?
1353          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1354!
1355!--       Reduce the velocity divergence via the equation for perturbation
1356!--       pressure.
1357          IF ( intermediate_timestep_count == 1  .OR. &
1358                call_psolver_at_all_substeps )  THEN
1359
1360             IF (  vnest_init ) THEN
1361!
1362!--             Compute pressure in the CG, interpolate top boundary conditions
1363!--             to the FG and then compute pressure in the FG
1364                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1365
1366                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1367                CALL vnest_boundary_conds
1368                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1369 
1370                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1371
1372!--             Anterpolate TKE, satisfy Germano Identity
1373                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1374                CALL vnest_anterpolate_e
1375                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1376
1377             ELSE
1378!               
1379!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1380                IF ( child_domain )  THEN
1381                   IF ( nesting_mode == 'vertical' )  THEN
1382                      CALL pmci_ensure_nest_mass_conservation_vertical
1383                   ELSE
1384                      CALL pmci_ensure_nest_mass_conservation
1385                   ENDIF
1386                ENDIF
1387               
1388                CALL pres
1389
1390             ENDIF
1391
1392          ENDIF
1393
1394!
1395!--       If required, compute liquid water content
1396          IF ( bulk_cloud_model )  THEN
1397             CALL calc_liquid_water_content
1398          ENDIF
1399!
1400!--       If required, compute virtual potential temperature
1401          IF ( humidity )  THEN
1402             CALL compute_vpt 
1403          ENDIF 
1404
1405!
1406!--       Compute the diffusion quantities
1407          IF ( .NOT. constant_diffusion )  THEN
1408
1409!
1410!--          Determine surface fluxes shf and qsws and surface values
1411!--          pt_surface and q_surface in dependence on data from external
1412!--          file LSF_DATA respectively
1413             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1414                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1415             THEN
1416                CALL ls_forcing_surf( simulated_time )
1417             ENDIF
1418
1419!
1420!--          First the vertical (and horizontal) fluxes in the surface
1421!--          (constant flux) layer are computed
1422             IF ( constant_flux_layer )  THEN
1423                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1424                CALL surface_layer_fluxes
1425                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1426             ENDIF
1427!
1428!--          If required, solve the energy balance for the surface and run soil
1429!--          model. Call for horizontal as well as vertical surfaces
1430             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1431
1432                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1433!
1434!--             Call for horizontal upward-facing surfaces
1435                CALL lsm_energy_balance( .TRUE., -1 )
1436                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1437!
1438!--             Call for northward-facing surfaces
1439                CALL lsm_energy_balance( .FALSE., 0 )
1440                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1441!
1442!--             Call for southward-facing surfaces
1443                CALL lsm_energy_balance( .FALSE., 1 )
1444                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1445!
1446!--             Call for eastward-facing surfaces
1447                CALL lsm_energy_balance( .FALSE., 2 )
1448                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1449!
1450!--             Call for westward-facing surfaces
1451                CALL lsm_energy_balance( .FALSE., 3 )
1452                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1453               
1454!
1455!--             At the end, set boundary conditons for potential temperature
1456!--             and humidity after running the land-surface model. This
1457!--             might be important for the nesting, where arrays are transfered.
1458                CALL lsm_boundary_condition
1459
1460               
1461                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1462             ENDIF
1463!
1464!--          If required, solve the energy balance for urban surfaces and run
1465!--          the material heat model
1466             IF (urban_surface) THEN
1467                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1468               
1469                CALL usm_surface_energy_balance( .FALSE. )
1470                IF ( usm_material_model )  THEN
1471                   CALL usm_green_heat_model
1472                   CALL usm_material_heat_model ( .FALSE. )
1473                ENDIF
1474
1475!
1476!--             At the end, set boundary conditons for potential temperature
1477!--             and humidity after running the urban-surface model. This
1478!--             might be important for the nesting, where arrays are transfered.
1479                CALL usm_boundary_condition
1480
1481                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1482             ENDIF
1483!
1484!--          Compute the diffusion coefficients
1485             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1486             IF ( .NOT. humidity ) THEN
1487                IF ( ocean_mode )  THEN
1488                   CALL tcm_diffusivities( prho, prho_reference )
1489                ELSE
1490                   CALL tcm_diffusivities( pt, pt_reference )
1491                ENDIF
1492             ELSE
1493                CALL tcm_diffusivities( vpt, pt_reference )
1494             ENDIF
1495             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1496!
1497!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1498             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1499
1500          ENDIF
1501
1502       ENDDO   ! Intermediate step loop
1503
1504!
1505!--    Will be used at some point by flow_statistics.
1506       !$ACC UPDATE &
1507       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1508       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1509       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1510       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1511       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1512       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1513       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1514       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1515       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1516       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1517       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1518       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1519       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1520       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1521       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1522
1523!
1524!--    If required, calculate radiative fluxes and heating rates
1525       IF ( radiation  .AND.  time_since_reference_point > skip_time_do_radiation )  THEN
1526
1527          time_radiation = time_radiation + dt_3d
1528
1529          IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1530
1531             CALL cpu_log( log_point(50), 'radiation', 'start' )
1532
1533             IF ( .NOT. force_radiation_call )  THEN
1534                time_radiation = time_radiation - dt_radiation
1535             ENDIF
1536
1537!
1538!--          Adjust the current time to the time step of the radiation model.
1539!--          Needed since radiation is pre-calculated and stored only on apparent
1540!--          solar positions
1541             time_since_reference_point_save = time_since_reference_point
1542             time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1543                                                       dt_radiation ), wp ) * dt_radiation
1544
1545             CALL radiation_control
1546
1547             IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1548                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1549                CALL radiation_interaction
1550                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1551             ENDIF
1552 
1553!
1554!--          Return the current time to its original value
1555             time_since_reference_point = time_since_reference_point_save
1556
1557             CALL cpu_log( log_point(50), 'radiation', 'stop' )
1558
1559          ENDIF
1560       ENDIF
1561
1562!
1563!--    If required, consider chemical emissions
1564       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1565!
1566!--       Update the time --> kanani: revise location of this CALL
1567          CALL calc_date_and_time
1568!
1569!--       Call emission routine only once an hour
1570          IF ( hour_of_year  >  hour_call_emis )  THEN
1571             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1572             hour_call_emis = hour_of_year
1573          ENDIF
1574       ENDIF
1575!
1576!--    If required, consider aerosol emissions for the salsa model
1577       IF ( salsa )  THEN
1578!
1579!--       Call emission routine to update emissions if needed
1580          CALL salsa_emission_update
1581
1582       ENDIF
1583!
1584!--    If required, calculate indoor temperature, waste heat, heat flux
1585!--    through wall, etc.
1586!--    dt_indoor steers the frequency of the indoor model calculations.
1587!--    Note, at first timestep indoor model is called, in order to provide
1588!--    a waste heat flux.
1589       IF ( indoor_model )  THEN
1590
1591          time_indoor = time_indoor + dt_3d
1592
1593          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1594
1595             time_indoor = time_indoor - dt_indoor
1596
1597             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1598             CALL im_main_heatcool
1599             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1600
1601          ENDIF
1602       ENDIF
1603!
1604!--    Increase simulation time and output times
1605       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1606       current_timestep_number    = current_timestep_number + 1
1607       simulated_time             = simulated_time   + dt_3d
1608       time_since_reference_point = simulated_time - coupling_start_time
1609       simulated_time_chr         = time_to_string( time_since_reference_point )
1610
1611
1612
1613
1614       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1615          time_do_av         = time_do_av       + dt_3d
1616       ENDIF
1617       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1618          time_do2d_xy       = time_do2d_xy     + dt_3d
1619       ENDIF
1620       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1621          time_do2d_xz       = time_do2d_xz     + dt_3d
1622       ENDIF
1623       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1624          time_do2d_yz       = time_do2d_yz     + dt_3d
1625       ENDIF
1626       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1627          time_do3d          = time_do3d        + dt_3d
1628       ENDIF
1629       DO  mid = 1, masks
1630          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1631             time_domask(mid)= time_domask(mid) + dt_3d
1632          ENDIF
1633       ENDDO
1634       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1635          time_dosp       = time_dosp        + dt_3d
1636       ENDIF
1637       time_dots          = time_dots        + dt_3d
1638       IF ( .NOT. first_call_lpm )  THEN
1639          time_dopts      = time_dopts       + dt_3d
1640       ENDIF
1641       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1642          time_dopr       = time_dopr        + dt_3d
1643       ENDIF
1644       time_dopr_listing  = time_dopr_listing + dt_3d
1645       time_run_control   = time_run_control + dt_3d
1646!
1647!--    Increment time-counter for surface output
1648       IF ( surface_output )  THEN
1649          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1650             time_dosurf    = time_dosurf + dt_3d
1651          ENDIF
1652          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1653             time_dosurf_av = time_dosurf_av + dt_3d
1654          ENDIF
1655       ENDIF
1656!
1657!--    Increment time-counter for virtual measurements
1658       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1659          time_virtual_measurement = time_virtual_measurement + dt_3d
1660       ENDIF
1661!
1662!--    In case of synthetic turbulence generation and parametrized turbulence
1663!--    information, update the time counter and if required, adjust the
1664!--    STG to new atmospheric conditions.
1665       IF ( use_syn_turb_gen  )  THEN
1666          IF ( parametrize_inflow_turbulence )  THEN
1667             time_stg_adjust = time_stg_adjust + dt_3d
1668             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1669                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1670                CALL stg_adjust
1671                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1672             ENDIF
1673          ENDIF
1674          time_stg_call = time_stg_call + dt_3d
1675       ENDIF
1676
1677!
1678!--    Data exchange between coupled models
1679       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1680          time_coupling = time_coupling + dt_3d
1681
1682!
1683!--       In case of model termination initiated by the local model
1684!--       (terminate_coupled > 0), the coupler must be skipped because it would
1685!--       cause an MPI intercomminucation hang.
1686!--       If necessary, the coupler will be called at the beginning of the
1687!--       next restart run.
1688          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1689             CALL surface_coupler
1690             time_coupling = time_coupling - dt_coupling
1691          ENDDO
1692       ENDIF
1693
1694!
1695!--    Biometeorology calculation of stationary thermal indices
1696!--    Todo (kanani): biometeorology needs own time_... treatment.
1697!--                   It might be that time_do2d_xy differs from time_do3d,
1698!--                   and then we might get trouble with the biomet output,
1699!--                   because we can have 2d and/or 3d biomet output!!
1700       IF ( biometeorology                                                                         &
1701            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1702                  .OR.                                                                             &
1703            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1704                    ) )  THEN
1705!
1706!--       If required, do thermal comfort calculations
1707          IF ( thermal_comfort )  THEN
1708             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1709          ENDIF
1710!
1711!--       If required, do UV exposure calculations
1712          IF ( uv_exposure )  THEN
1713             CALL bio_calculate_uv_exposure
1714          ENDIF
1715       ENDIF
1716
1717!
1718!--    Execute alle other module actions routunes
1719       CALL module_interface_actions( 'after_integration' )
1720
1721!
1722!--    If Galilei transformation is used, determine the distance that the
1723!--    model has moved so far
1724       IF ( galilei_transformation )  THEN
1725          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1726          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1727       ENDIF
1728
1729!
1730!--    Check, if restart is necessary (because cpu-time is expiring or
1731!--    because it is forced by user) and set stop flag
1732!--    This call is skipped if the remote model has already initiated a restart.
1733       IF ( .NOT. terminate_run )  CALL check_for_restart
1734
1735!
1736!--    Carry out statistical analysis and output at the requested output times.
1737!--    The MOD function is used for calculating the output time counters (like
1738!--    time_dopr) in order to regard a possible decrease of the output time
1739!--    interval in case of restart runs
1740
1741!
1742!--    Set a flag indicating that so far no statistics have been created
1743!--    for this time step
1744       flow_statistics_called = .FALSE.
1745
1746!
1747!--    If required, call flow_statistics for averaging in time
1748       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1749            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1750            time_since_reference_point >= skip_time_dopr )  THEN
1751          time_dopr_av = time_dopr_av + dt_3d
1752          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1753             do_sum = .TRUE.
1754             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1755          ENDIF
1756       ENDIF
1757       IF ( do_sum )  CALL flow_statistics
1758
1759!
1760!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1761       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1762            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1763            time_since_reference_point >= skip_time_data_output_av )                               &
1764       THEN
1765          time_do_sla = time_do_sla + dt_3d
1766          IF ( time_do_sla >= dt_averaging_input )  THEN
1767             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1768                CALL doq_calculate
1769
1770             CALL sum_up_3d_data
1771             average_count_3d = average_count_3d + 1
1772             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1773          ENDIF
1774       ENDIF
1775!
1776!--    Average surface data
1777       IF ( surface_output )  THEN
1778          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1779                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1780                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1781             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1782                CALL surface_data_output_averaging
1783                average_count_surf = average_count_surf + 1
1784             ENDIF
1785          ENDIF
1786       ENDIF
1787
1788!
1789!--    Calculate spectra for time averaging
1790       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1791            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1792          time_dosp_av = time_dosp_av + dt_3d
1793          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1794             CALL calc_spectra
1795             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1796          ENDIF
1797       ENDIF
1798
1799!
1800!--    Call flight module and output data
1801       IF ( virtual_flight )  THEN
1802          CALL flight_measurement
1803          CALL data_output_flight
1804       ENDIF
1805!
1806!--    Take virtual measurements
1807       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1808                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1809          CALL vm_sampling
1810          CALL vm_data_output
1811          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1812                                          MAX( dt_virtual_measurement, dt_3d ) )
1813       ENDIF
1814!
1815!--    Profile output (ASCII) on file
1816       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1817          CALL print_1d
1818          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1819       ENDIF
1820
1821!
1822!--    Graphic output for PROFIL
1823       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1824          IF ( dopr_n /= 0 )  CALL data_output_profiles
1825          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1826          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1827       ENDIF
1828
1829!
1830!--    Graphic output for time series
1831       IF ( time_dots >= dt_dots )  THEN
1832          CALL data_output_tseries
1833          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1834       ENDIF
1835
1836!
1837!--    Output of spectra (formatted for use with PROFIL), in case of no
1838!--    time averaging, spectra has to be calculated before
1839       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1840          IF ( average_count_sp == 0 )  CALL calc_spectra
1841          CALL data_output_spectra
1842          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1843       ENDIF
1844
1845!
1846!--    2d-data output (cross-sections)
1847       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1848          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1849             CALL doq_calculate
1850
1851          CALL data_output_2d( 'xy', 0 )
1852          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1853       ENDIF
1854       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1855          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1856
1857             CALL doq_calculate
1858          CALL data_output_2d( 'xz', 0 )
1859          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1860       ENDIF
1861       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1862          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1863             CALL doq_calculate
1864
1865          CALL data_output_2d( 'yz', 0 )
1866          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1867       ENDIF
1868
1869!
1870!--    3d-data output (volume data)
1871       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1872          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1873             CALL doq_calculate
1874
1875          CALL data_output_3d( 0 )
1876          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1877       ENDIF
1878
1879!
1880!--    Masked data output
1881       DO  mid = 1, masks
1882          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1883               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1884             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1885                CALL doq_calculate
1886
1887             CALL data_output_mask( 0, mid )
1888             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1889          ENDIF
1890       ENDDO
1891
1892!
1893!--    Output of time-averaged 2d/3d/masked data
1894       IF ( time_do_av >= dt_data_output_av                                                        &
1895            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1896          CALL average_3d_data
1897!
1898!--       Udate thermal comfort indices based on updated averaged input
1899          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1900             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1901          ENDIF
1902          CALL data_output_2d( 'xy', 1 )
1903          CALL data_output_2d( 'xz', 1 )
1904          CALL data_output_2d( 'yz', 1 )
1905          CALL data_output_3d( 1 )
1906          DO  mid = 1, masks
1907             CALL data_output_mask( 1, mid )
1908          ENDDO
1909          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1910       ENDIF
1911!
1912!--    Output of surface data, instantaneous and averaged data
1913       IF ( surface_output )  THEN
1914          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1915             CALL surface_data_output( 0 )
1916             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1917          ENDIF
1918          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1919             CALL surface_data_output( 1 )
1920             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1921          ENDIF
1922       ENDIF
1923
1924!
1925!--    Output of particle time series
1926       IF ( particle_advection )  THEN
1927          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1928               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1929                 first_call_lpm ) )  THEN
1930             CALL lpm_data_output_ptseries
1931             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1932          ENDIF
1933       ENDIF
1934
1935!
1936!--    If required, set the heat flux for the next time step to a random value
1937       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1938          IF ( surf_def_h(0)%ns >= 1 )  THEN
1939             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1940             CALL disturb_heatflux( surf_def_h(0) )
1941             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1942          ENDIF
1943          IF ( surf_lsm_h%ns    >= 1 )  THEN
1944             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1945             CALL disturb_heatflux( surf_lsm_h    )
1946             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1947          ENDIF
1948          IF ( surf_usm_h%ns    >= 1 )  THEN
1949             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1950             CALL disturb_heatflux( surf_usm_h    )
1951             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1952          ENDIF
1953       ENDIF
1954
1955!
1956!--    Execute alle other module actions routunes
1957       CALL module_interface_actions( 'after_timestep' )
1958
1959!
1960!--    Determine size of next time step. Save timestep dt_3d because it is
1961!--    newly calculated in routine timestep, but required further below for
1962!--    steering the run control output interval
1963       dt_3d_old = dt_3d
1964       CALL timestep
1965
1966!
1967!--    Synchronize the timestep in case of nested run.
1968       IF ( nested_run )  THEN
1969!
1970!--       Synchronize by unifying the time step.
1971!--       Global minimum of all time-steps is used for all.
1972          CALL pmci_synchronize
1973       ENDIF
1974
1975!
1976!--    Computation and output of run control parameters.
1977!--    This is also done whenever perturbations have been imposed
1978       IF ( time_run_control >= dt_run_control  .OR.                                               &
1979            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1980       THEN
1981          CALL run_control
1982          IF ( time_run_control >= dt_run_control )  THEN
1983             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1984          ENDIF
1985       ENDIF
1986
1987!
1988!--    Output elapsed simulated time in form of a progress bar on stdout
1989       IF ( myid == 0 )  CALL output_progress_bar
1990
1991       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1992
1993
1994    ENDDO   ! time loop
1995
1996#if defined( _OPENACC )
1997    CALL exit_surface_arrays
1998#endif
1999!$ACC END DATA
2000!$ACC END DATA
2001!$ACC END DATA
2002!$ACC END DATA
2003!$ACC END DATA
2004!$ACC END DATA
2005!$ACC END DATA
2006
2007!
2008!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
2009    IF ( vnest_init )  CALL vnest_deallocate
2010
2011    IF ( myid == 0 )  CALL finish_progress_bar
2012
2013    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
2014
2015 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.