source: palm/trunk/SOURCE/time_integration.f90 @ 3931

Last change on this file since 3931 was 3929, checked in by banzhafs, 6 years ago

Correct/complete module_interface introduction for chemistry model and bug fix in chem_depo subroutine

  • Property svn:keywords set to Id
File size: 75.4 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3929 2019-04-24 12:52:08Z schwenkel $
27! Reverse changes back from revision 3878: use chem_boundary_conds instead of
28! chem_boundary_conds_decycle
29!
30!
31! 3885 2019-04-11 11:29:34Z kanani
32! Changes related to global restructuring of location messages and introduction
33! of additional debug messages
34!
35! 3879 2019-04-08 20:25:23Z knoop
36! Moved wtm_forces to module_interface_actions
37!
38! 3872 2019-04-08 15:03:06Z knoop
39! Modifications made for salsa:
40! - Call salsa_emission_update at each time step but do the checks within
41!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
42!   and next_aero_emission_update <= time_since_reference_point ).
43! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
44!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
45! - Apply nesting for salsa variables
46! - Removed cpu_log calls speciffic for salsa.
47!
48! 3833 2019-03-28 15:04:04Z forkel
49! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
50!
51! 3820 2019-03-27 11:53:41Z forkel
52! renamed do_emiss to emissions_anthropogenic (ecc)
53!
54!
55! 3774 2019-03-04 10:52:49Z moh.hefny
56! rephrase if statement to avoid unallocated array in case of
57! nesting_offline is false (crashing during debug mode)
58!
59! 3761 2019-02-25 15:31:42Z raasch $
60! module section re-formatted and openacc required variables moved to separate section,
61! re-formatting to 100 char line width
62!
63! 3745 2019-02-15 18:57:56Z suehring
64! Call indoor model after first timestep
65!
66! 3744 2019-02-15 18:38:58Z suehring
67! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
68! time_integration to make sure averaged input is updated before calculating.
69!
70! 3739 2019-02-13 08:05:17Z dom_dwd_user
71! Removed everything related to "time_bio_results" as this is never used.
72!
73! 3724 2019-02-06 16:28:23Z kanani
74! Correct double-used log_point_s unit
75!
76! 3719 2019-02-06 13:10:18Z kanani
77! - removed wind_turbine cpu measurement, since same time is measured inside
78!   wtm_forces subroutine as special measures
79! - moved the numerous vnest cpulog to special measures
80! - extended radiation cpulog over entire radiation part,
81!   moved radiation_interactions cpulog to special measures
82! - moved some cpu_log calls to this routine for better overview
83!
84! 3705 2019-01-29 19:56:39Z suehring
85! Data output for virtual measurements added
86!
87! 3704 2019-01-29 19:51:41Z suehring
88! Rename subroutines for surface-data output
89!
90! 3647 2019-01-02 14:10:44Z kanani
91! Bugfix: add time_since_reference_point to IF clause for data_output calls
92! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
93! Clean up indoor_model and biometeorology model call.
94!
95! 3646 2018-12-28 17:58:49Z kanani
96! Bugfix: use time_since_reference_point instead of simulated_time where
97! required (relevant when using wall/soil spinup)
98!
99! 3634 2018-12-18 12:31:28Z knoop
100! OpenACC port for SPEC
101!
102! 3597 2018-12-04 08:40:18Z maronga
103! Removed call to calculation of near air (10 cm) potential temperature (now in
104! surface layer fluxes)
105!
106! 3589 2018-11-30 15:09:51Z suehring
107! Move the control parameter "salsa" from salsa_mod to control_parameters
108! (M. Kurppa)
109!
110! 3582 2018-11-29 19:16:36Z suehring
111! dom_dwd_user, Schrempf:
112! Changes due to merge of uv exposure model into biometeorology_mod.
113!
114! 3525 2018-11-14 16:06:14Z kanani
115! Changes related to clean-up of biometeorology (dom_dwd_user)
116!
117! 3524 2018-11-14 13:36:44Z raasch
118! unused variables removed
119!
120! 3484 2018-11-02 14:41:25Z hellstea
121! pmci_ensure_nest_mass_conservation is premanently removed
122!
123! 3473 2018-10-30 20:50:15Z suehring
124! new module for virtual measurements introduced
125!
126! 3472 2018-10-30 20:43:50Z suehring
127! Add indoor model (kanani, srissman, tlang)
128!
129! 3467 2018-10-30 19:05:21Z suehring
130! Implementation of a new aerosol module salsa.
131!
132! 3448 2018-10-29 18:14:31Z kanani
133! Add biometeorology
134!
135! 3421 2018-10-24 18:39:32Z gronemeier
136! Surface data output
137!
138! 3418 2018-10-24 16:07:39Z kanani
139! call to material_heat_model now with check if spinup runs (rvtils)
140!
141! 3378 2018-10-19 12:34:59Z kanani
142! merge from radiation branch (r3362) into trunk
143! (moh.hefny):
144! Bugfix in the if statement to call radiation_interaction
145!
146! 3347 2018-10-15 14:21:08Z suehring
147! - offline nesting separated from large-scale forcing module
148! - changes for synthetic turbulence generator
149!
150! 3343 2018-10-15 10:38:52Z suehring
151! - Formatting, clean-up, comments (kanani)
152! - Added CALL to chem_emissions_setup (Russo)
153! - Code added for decycling chemistry (basit)
154!
155! 3294 2018-10-01 02:37:10Z raasch
156! changes concerning modularization of ocean option
157!
158! 3274 2018-09-24 15:42:55Z knoop
159! Modularization of all bulk cloud physics code components
160!
161! 3241 2018-09-12 15:02:00Z raasch
162! unused variables removed
163!
164! 3198 2018-08-15 09:23:10Z sward
165! Added multi_agent_system_end; defined start time for MAS relative to
166! time_since_reference_point
167!
168! 3183 2018-07-27 14:25:55Z suehring
169! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
170! Rename subroutines and variables in COSMO nesting mode
171!
172! 3182 2018-07-27 13:36:03Z suehring
173! Added multi agent system
174!
175! 3042 2018-05-25 10:44:37Z schwenkel
176! Changed the name specific humidity to mixing ratio
177!
178! 3040 2018-05-25 10:22:08Z schwenkel
179! Fixed bug in IF statement
180! Ensure that the time when calling the radiation to be the time step of the
181! pre-calculated time when first calculate the positions of the sun
182!
183! 3004 2018-04-27 12:33:25Z Giersch
184! First call of flow_statistics has been removed. It is already called in
185! run_control itself
186!
187! 2984 2018-04-18 11:51:30Z hellstea
188! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
189! as seemingly unnecessary.
190!
191! 2941 2018-04-03 11:54:58Z kanani
192! Deduct spinup_time from RUN_CONTROL output of main 3d run
193! (use time_since_reference_point instead of simulated_time)
194!
195! 2938 2018-03-27 15:52:42Z suehring
196! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
197!
198! 2936 2018-03-27 14:49:27Z suehring
199! Little formatting adjustment.
200!
201! 2817 2018-02-19 16:32:21Z knoop
202! Preliminary gust module interface implemented
203!
204! 2801 2018-02-14 16:01:55Z thiele
205! Changed lpm from subroutine to module.
206! Introduce particle transfer in nested models.
207!
208! 2776 2018-01-31 10:44:42Z Giersch
209! Variable use_synthetic_turbulence_generator has been abbreviated
210!
211! 2773 2018-01-30 14:12:54Z suehring
212! - Nesting for chemical species
213!
214! 2766 2018-01-22 17:17:47Z kanani
215! Removed preprocessor directive __chem
216!
217! 2718 2018-01-02 08:49:38Z maronga
218! Corrected "Former revisions" section
219!
220! 2696 2017-12-14 17:12:51Z kanani
221! - Change in file header (GPL part)
222! - Implementation of uv exposure model (FK)
223! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
224! - renamed diffusivities to tcm_diffusivities (TG)
225! - implement prognostic equation for diss (TG)
226! - Moved/commented CALL to chem_emissions (FK)
227! - Added CALL to chem_emissions (FK)
228! - Implementation of chemistry module (FK)
229! - Calls for setting boundary conditions in USM and LSM (MS)
230! - Large-scale forcing with larger-scale models implemented (MS)
231! - Rename usm_radiation into radiation_interactions; merge with branch
232!   radiation (MS)
233! - added call for usm_green_heat_model for green building surfaces (RvT)
234! - added call for usm_temperature_near_surface for use in indoor model (RvT)
235!
236! 2617 2017-11-16 12:47:24Z suehring
237! Bugfix, assure that the reference state does not become zero.
238!
239! 2563 2017-10-19 15:36:10Z Giersch
240! Variable wind_turbine moved to module control_parameters
241!
242! 2365 2017-08-21 14:59:59Z kanani
243! Vertical grid nesting implemented (SadiqHuq)
244!
245! 2320 2017-07-21 12:47:43Z suehring
246! Set bottom boundary conditions after nesting interpolation and anterpolation
247!
248! 2299 2017-06-29 10:14:38Z maronga
249! Call of soil model adjusted
250!
251! 2292 2017-06-20 09:51:42Z schwenkel
252! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
253! includes two more prognostic equations for cloud drop concentration (nc) 
254! and cloud water content (qc).
255!
256! 2271 2017-06-09 12:34:55Z sward
257! Start timestep message changed
258!
259! 2259 2017-06-08 09:09:11Z gronemeier
260! Implemented synthetic turbulence generator
261!
262! 2233 2017-05-30 18:08:54Z suehring
263!
264! 2232 2017-05-30 17:47:52Z suehring
265! Adjustments to new topography and surface concept
266! Modify passed parameters for disturb_field
267!
268! 2178 2017-03-17 11:07:39Z hellstea
269! Setting perturbations at all times near inflow boundary is removed
270! in case of nested boundaries
271!
272! 2174 2017-03-13 08:18:57Z maronga
273! Added support for nesting with cloud microphysics
274!
275! 2118 2017-01-17 16:38:49Z raasch
276! OpenACC directives and related code removed
277!
278! 2050 2016-11-08 15:00:55Z gronemeier
279! Implement turbulent outflow condition
280!
281! 2031 2016-10-21 15:11:58Z knoop
282! renamed variable rho to rho_ocean
283!
284! 2011 2016-09-19 17:29:57Z kanani
285! Flag urban_surface is now defined in module control_parameters,
286! removed commented CALLs of global_min_max.
287!
288! 2007 2016-08-24 15:47:17Z kanani
289! Added CALLs for new urban surface model
290!
291! 2000 2016-08-20 18:09:15Z knoop
292! Forced header and separation lines into 80 columns
293!
294! 1976 2016-07-27 13:28:04Z maronga
295! Simplified calls to radiation model
296!
297! 1960 2016-07-12 16:34:24Z suehring
298! Separate humidity and passive scalar
299!
300! 1957 2016-07-07 10:43:48Z suehring
301! flight module added
302!
303! 1919 2016-05-27 14:51:23Z raasch
304! Initial version of purely vertical nesting introduced.
305!
306! 1918 2016-05-27 14:35:57Z raasch
307! determination of time step moved to the end of the time step loop,
308! the first time step is now always calculated before the time step loop (i.e.
309! also in case of restart runs)
310!
311! 1914 2016-05-26 14:44:07Z witha
312! Added call for wind turbine model
313!
314! 1878 2016-04-19 12:30:36Z hellstea
315! Synchronization for nested runs rewritten
316!
317! 1853 2016-04-11 09:00:35Z maronga
318! Adjusted for use with radiation_scheme = constant
319!
320! 1849 2016-04-08 11:33:18Z hoffmann
321! Adapted for modularization of microphysics
322!
323! 1833 2016-04-07 14:23:03Z raasch
324! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
325!
326! 1831 2016-04-07 13:15:51Z hoffmann
327! turbulence renamed collision_turbulence
328!
329! 1822 2016-04-07 07:49:42Z hoffmann
330! icloud_scheme replaced by microphysics_*
331!
332! 1808 2016-04-05 19:44:00Z raasch
333! output message in case unscheduled radiation calls removed
334!
335! 1797 2016-03-21 16:50:28Z raasch
336! introduction of different datatransfer modes
337!
338! 1791 2016-03-11 10:41:25Z raasch
339! call of pmci_update_new removed
340!
341! 1786 2016-03-08 05:49:27Z raasch
342! +module spectrum
343!
344! 1783 2016-03-06 18:36:17Z raasch
345! switch back of netcdf data format for mask output moved to the mask output
346! routine
347!
348! 1781 2016-03-03 15:12:23Z raasch
349! some pmc calls removed at the beginning (before timeloop),
350! pmc initialization moved to the main program
351!
352! 1764 2016-02-28 12:45:19Z raasch
353! PMC_ACTIVE flags removed,
354! bugfix: nest synchronization after first call of timestep
355!
356! 1762 2016-02-25 12:31:13Z hellstea
357! Introduction of nested domain feature
358!
359! 1736 2015-12-04 08:56:33Z raasch
360! no perturbations added to total domain if energy limit has been set zero
361!
362! 1691 2015-10-26 16:17:44Z maronga
363! Added option for spin-ups without land surface and radiation models. Moved calls
364! for radiation and lan surface schemes.
365!
366! 1682 2015-10-07 23:56:08Z knoop
367! Code annotations made doxygen readable
368!
369! 1671 2015-09-25 03:29:37Z raasch
370! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
371! for particles
372!
373! 1585 2015-04-30 07:05:52Z maronga
374! Moved call of radiation scheme. Added support for RRTM
375!
376! 1551 2015-03-03 14:18:16Z maronga
377! Added interface for different radiation schemes.
378!
379! 1496 2014-12-02 17:25:50Z maronga
380! Added calls for the land surface model and radiation scheme
381!
382! 1402 2014-05-09 14:25:13Z raasch
383! location messages modified
384!
385! 1384 2014-05-02 14:31:06Z raasch
386! location messages added
387!
388! 1380 2014-04-28 12:40:45Z heinze
389! CALL of nudge_ref added
390! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
391!
392! 1365 2014-04-22 15:03:56Z boeske
393! Reset sums_ls_l to zero at each timestep
394! +sums_ls_l
395! Calculation of reference state (previously in subroutine calc_mean_profile)
396
397! 1342 2014-03-26 17:04:47Z kanani
398! REAL constants defined as wp-kind
399!
400! 1320 2014-03-20 08:40:49Z raasch
401! ONLY-attribute added to USE-statements,
402! kind-parameters added to all INTEGER and REAL declaration statements,
403! kinds are defined in new module kinds,
404! old module precision_kind is removed,
405! revision history before 2012 removed,
406! comment fields (!:) to be used for variable explanations added to
407! all variable declaration statements
408! 1318 2014-03-17 13:35:16Z raasch
409! module interfaces removed
410!
411! 1308 2014-03-13 14:58:42Z fricke
412! +netcdf_data_format_save
413! For masked data, parallel netcdf output is not tested so far, hence
414! netcdf_data_format is switched back to non-paralell output.
415!
416! 1276 2014-01-15 13:40:41Z heinze
417! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
418!
419! 1257 2013-11-08 15:18:40Z raasch
420! acc-update-host directive for timestep removed
421!
422! 1241 2013-10-30 11:36:58Z heinze
423! Generalize calc_mean_profile for wider use
424! Determine shf and qsws in dependence on data from LSF_DATA
425! Determine ug and vg in dependence on data from LSF_DATA
426! 1221 2013-09-10 08:59:13Z raasch
427! host update of arrays before timestep is called
428!
429! 1179 2013-06-14 05:57:58Z raasch
430! mean profiles for reference state are only calculated if required,
431! small bugfix for background communication
432!
433! 1171 2013-05-30 11:27:45Z raasch
434! split of prognostic_equations deactivated (comment lines), for the time being
435!
436! 1128 2013-04-12 06:19:32Z raasch
437! asynchronous transfer of ghost point data realized for acc-optimized version:
438! prognostic_equations are first called two times for those points required for
439! the left-right and north-south exchange, respectively, and then for the
440! remaining points,
441! those parts requiring global communication moved from prognostic_equations to
442! here
443!
444! 1115 2013-03-26 18:16:16Z hoffmann
445! calculation of qr and nr is restricted to precipitation
446!
447! 1113 2013-03-10 02:48:14Z raasch
448! GPU-porting of boundary conditions,
449! openACC directives updated
450! formal parameter removed from routine boundary_conds
451!
452! 1111 2013-03-08 23:54:10Z raasch
453! +internal timestep counter for cpu statistics added,
454! openACC directives updated
455!
456! 1092 2013-02-02 11:24:22Z raasch
457! unused variables removed
458!
459! 1065 2012-11-22 17:42:36Z hoffmann
460! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
461!
462! 1053 2012-11-13 17:11:03Z hoffmann
463! exchange of ghost points for nr, qr added
464!
465! 1036 2012-10-22 13:43:42Z raasch
466! code put under GPL (PALM 3.9)
467!
468! 1019 2012-09-28 06:46:45Z raasch
469! non-optimized version of prognostic_equations removed
470!
471! 1015 2012-09-27 09:23:24Z raasch
472! +call of prognostic_equations_acc
473!
474! 1001 2012-09-13 14:08:46Z raasch
475! all actions concerning leapfrog- and upstream-spline-scheme removed
476!
477! 849 2012-03-15 10:35:09Z raasch
478! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
479!
480! 825 2012-02-19 03:03:44Z raasch
481! wang_collision_kernel renamed wang_kernel
482!
483! Revision 1.1  1997/08/11 06:19:04  raasch
484! Initial revision
485!
486!
487! Description:
488! ------------
489!> Integration in time of the model equations, statistical analysis and graphic
490!> output
491!------------------------------------------------------------------------------!
492 SUBROUTINE time_integration
493 
494
495    USE advec_ws,                                                                                  &
496        ONLY:  ws_statistics
497
498    USE arrays_3d,                                                                                 &
499        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
500               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
501               tend, u, u_p, v, vpt, v_p, w, w_p
502
503    USE biometeorology_mod,                                                                        &
504        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
505
506    USE bulk_cloud_model_mod,                                                                      &
507        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
508              microphysics_morrison, microphysics_seifert
509
510    USE calc_mean_profile_mod,                                                                     &
511        ONLY:  calc_mean_profile
512
513    USE chem_emissions_mod,                                                                        &
514        ONLY:  chem_emissions_setup
515
516    USE chem_gasphase_mod,                                                                         &
517        ONLY:  nvar
518
519    USE chem_modules,                                                                              &
520        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, nspec_out
521
522    USE chemistry_model_mod,                                                                       &
523        ONLY:  chem_boundary_conds
524
525    USE control_parameters,                                                                        &
526        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
527               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
528               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
529               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
530               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
531               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
532               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
533               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
534               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
535               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
536               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
537               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
538               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
539               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
540               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
541               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
542               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
543               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
544               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
545               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
546               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
547               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
548               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
549               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
550               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
551
552    USE cpulog,                                                                                    &
553        ONLY:  cpu_log, log_point, log_point_s
554
555    USE date_and_time_mod,                                                                         &
556        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
557
558    USE flight_mod,                                                                                &
559        ONLY:  flight_measurement
560
561    USE indices,                                                                                   &
562        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
563
564    USE indoor_model_mod,                                                                          &
565        ONLY:  dt_indoor, im_main_heatcool, time_indoor
566
567    USE interaction_droplets_ptq_mod,                                                              &
568        ONLY:  interaction_droplets_ptq
569
570    USE interfaces
571
572    USE kinds
573
574    USE land_surface_model_mod,                                                                    &
575        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
576
577    USE lpm_mod,                                                                                   &
578        ONLY:  lpm
579
580    USE lsf_nudging_mod,                                                                           &
581        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
582
583    USE module_interface,                                                                          &
584        ONLY:  module_interface_actions
585
586    USE multi_agent_system_mod,                                                                    &
587        ONLY:  agents_active, multi_agent_system
588
589    USE nesting_offl_mod,                                                                          &
590        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
591
592    USE netcdf_data_input_mod,                                                                     &
593        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
594
595    USE ocean_mod,                                                                                 &
596        ONLY:  prho_reference
597
598    USE particle_attributes,                                                                       &
599        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
600
601    USE pegrid
602
603    USE pmc_interface,                                                                             &
604        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
605
606    USE progress_bar,                                                                              &
607        ONLY:  finish_progress_bar, output_progress_bar
608
609    USE prognostic_equations_mod,                                                                  &
610        ONLY:  prognostic_equations_cache, prognostic_equations_vector
611
612    USE radiation_model_mod,                                                                       &
613        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
614              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
615
616    USE salsa_mod,                                                                                 &
617        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
618              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
619              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
620
621    USE spectra_mod,                                                                               &
622        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
623
624    USE statistics,                                                                                &
625        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
626
627
628    USE surface_layer_fluxes_mod,                                                                  &
629        ONLY:  surface_layer_fluxes
630
631    USE surface_data_output_mod,                                                                   &
632        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
633               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
634               skip_time_dosurf_av, time_dosurf, time_dosurf_av
635
636    USE surface_mod,                                                                               &
637        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
638
639    USE synthetic_turbulence_generator_mod,                                                        &
640        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
641               time_stg_adjust, time_stg_call, use_syn_turb_gen
642
643    USE turbulence_closure_mod,                                                                    &
644        ONLY:  tcm_diffusivities, production_e_init
645
646    USE urban_surface_mod,                                                                         &
647        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
648               usm_surface_energy_balance, usm_green_heat_model
649
650    USE vertical_nesting_mod,                                                                      &
651        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
652               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
653               vnest_start_time
654
655    USE virtual_measurement_mod,                                                                   &
656        ONLY:  vm_data_output, vm_sampling, vm_time_start
657
658
659#if defined( _OPENACC )
660    USE arrays_3d,                                                             &
661        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
662               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
663               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
664               v_stokes_zu, zu
665
666    USE control_parameters,                                                                        &
667        ONLY:  tsc
668
669    USE indices,                                                                                   &
670        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
671
672    USE statistics,                                                                                &
673        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
674               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
675               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
676               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
677
678    USE surface_mod,                                                                               &
679        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
680#endif
681
682
683    IMPLICIT NONE
684
685    CHARACTER (LEN=9) ::  time_to_string   !<
686
687    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
688    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
689    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
690    INTEGER(iwp)      ::  ig        !< index for salsa gases
691    INTEGER(iwp)      ::  lsp
692    INTEGER(iwp)      ::  lsp_usr   !<
693    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
694
695    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
696                            !< steering of run control output interval
697    REAL(wp) ::  time_since_reference_point_save  !< original value of
698                                                  !< time_since_reference_point
699
700
701!
702!-- Copy data from arrays_3d
703!$ACC DATA &
704!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
705!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
706!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
707!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
708!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
709!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
713
714!$ACC DATA &
715!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
717!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
718!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
719!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
720!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
721!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
722!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
723!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
724!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
725!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
726
727!$ACC DATA &
728!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
729!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
730!$ACC COPYIN(zu(nzb:nzt+1)) &
731!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
732!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
733!$ACC COPYIN(ddzw(1:nzt+1)) &
734!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
735!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
736!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
737!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
738!$ACC COPYIN(ref_state(0:nz+1)) &
739!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
740!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
741!$ACC COPYIN(pt_init(0:nz+1)) &
742!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
743
744!
745!-- Copy data from control_parameters
746!$ACC DATA &
747!$ACC COPYIN(tsc(1:5))
748
749!
750!-- Copy data from indices
751!$ACC DATA &
752!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
753!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
754!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
755
756!
757!-- Copy data from surface_mod
758!$ACC DATA &
759!$ACC COPYIN(bc_h(0:1)) &
760!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
761!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
762!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
763!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
764!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
765!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
766
767!
768!-- Copy data from statistics
769!$ACC DATA &
770!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
771!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
772!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
773!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
774!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
775!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
776!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
777!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
778!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
779!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
780!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
781!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
782!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
783!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
784!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
785!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
786!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
787!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
788!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
789
790#if defined( _OPENACC )
791    CALL enter_surface_arrays
792#endif
793
794!
795!-- At beginning determine the first time step
796    CALL timestep
797!
798!-- Synchronize the timestep in case of nested run.
799    IF ( nested_run )  THEN
800!
801!--    Synchronization by unifying the time step.
802!--    Global minimum of all time-steps is used for all.
803       CALL pmci_synchronize
804    ENDIF
805
806!
807!-- Determine and print out the run control quantities before the first time
808!-- step of this run. For the initial run, some statistics (e.g. divergence)
809!-- need to be determined first --> CALL flow_statistics at the beginning of
810!-- run_control
811    CALL run_control
812!
813!-- Data exchange between coupled models in case that a call has been omitted
814!-- at the end of the previous run of a job chain.
815    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
816!
817!--    In case of model termination initiated by the local model the coupler
818!--    must not be called because this would again cause an MPI hang.
819       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
820          CALL surface_coupler
821          time_coupling = time_coupling - dt_coupling
822       ENDDO
823       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
824          time_coupling = time_since_reference_point
825       ENDIF
826    ENDIF
827
828#if defined( __dvrp_graphics )
829!
830!-- Time measurement with dvrp software 
831    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
832#endif
833
834    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
835
836!
837!-- Start of the time loop
838    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
839
840       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
841!
842!--    Vertical nesting: initialize fine grid
843       IF ( vnested ) THEN
844          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
845             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
846             CALL vnest_init_fine
847             vnest_init = .TRUE.
848             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
849          ENDIF
850       ENDIF
851!
852!--    Determine ug, vg and w_subs in dependence on data from external file
853!--    LSF_DATA
854       IF ( large_scale_forcing .AND. lsf_vert )  THEN
855           CALL ls_forcing_vert ( simulated_time )
856           sums_ls_l = 0.0_wp
857       ENDIF
858
859!
860!--    Set pt_init and q_init to the current profiles taken from
861!--    NUDGING_DATA
862       IF ( nudging )  THEN
863           CALL nudge_ref ( simulated_time )
864!
865!--        Store temperature gradient at the top boundary for possible Neumann
866!--        boundary condition
867           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
868           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
869           IF ( air_chemistry )  THEN
870              DO  lsp = 1, nvar
871                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
872                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
873                               / dzu(nzt+1)
874              ENDDO
875           ENDIF
876           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
877              DO  ib = 1, nbins_aerosol
878                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
879                               dzu(nzt+1)
880                 DO  ic = 1, ncomponents_mass
881                    icc = ( ic - 1 ) * nbins_aerosol + ib
882                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
883                                  dzu(nzt+1)
884                 ENDDO
885              ENDDO
886              IF ( .NOT. salsa_gases_from_chem )  THEN
887                 DO  ig = 1, ngases_salsa
888                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
889                                  dzu(nzt+1)
890                 ENDDO
891              ENDIF
892           ENDIF
893       ENDIF
894!
895!--    If forcing by larger-scale models is applied, check if new data
896!--    at domain boundaries need to be read.
897       IF ( nesting_offline ) THEN
898          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
899               CALL netcdf_data_input_offline_nesting
900       ENDIF
901
902!
903!--    Execute all other module actions routunes
904       CALL module_interface_actions( 'before_timestep' )
905       
906!
907!--    Start of intermediate step loop
908       intermediate_timestep_count = 0
909       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
910
911          intermediate_timestep_count = intermediate_timestep_count + 1
912
913!
914!--       Set the steering factors for the prognostic equations which depend
915!--       on the timestep scheme
916          CALL timestep_scheme_steering
917
918!
919!--       Calculate those variables needed in the tendency terms which need
920!--       global communication
921          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
922          THEN
923!
924!--          Horizontally averaged profiles to be used as reference state in
925!--          buoyancy terms (WARNING: only the respective last call of
926!--          calc_mean_profile defines the reference state!)
927             IF ( .NOT. neutral )  THEN
928                CALL calc_mean_profile( pt, 4 )
929                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
930             ENDIF
931             IF ( ocean_mode )  THEN
932                CALL calc_mean_profile( rho_ocean, 64 )
933                ref_state(:)  = hom(:,1,64,0)
934             ENDIF
935             IF ( humidity )  THEN
936                CALL calc_mean_profile( vpt, 44 )
937                ref_state(:)  = hom(:,1,44,0)
938             ENDIF
939!
940!--          Assure that ref_state does not become zero at any level
941!--          ( might be the case if a vertical level is completely occupied
942!--            with topography ).
943             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
944          ENDIF
945
946          IF ( .NOT. constant_diffusion )  CALL production_e_init
947          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
948          THEN
949             CALL ws_statistics
950          ENDIF
951!
952!--       In case of nudging calculate current nudging time scale and horizontal
953!--       means of u, v, pt and q
954          IF ( nudging )  THEN
955             CALL calc_tnudge( simulated_time )
956             CALL calc_mean_profile( u, 1 )
957             CALL calc_mean_profile( v, 2 )
958             CALL calc_mean_profile( pt, 4 )
959             CALL calc_mean_profile( q, 41 )
960          ENDIF
961!
962!--       Execute all other module actions routunes
963          CALL module_interface_actions( 'before_prognostic_equations' )
964!
965!--       Solve the prognostic equations. A fast cache optimized version with
966!--       only one single loop is used in case of Piascek-Williams advection
967!--       scheme. NEC vector machines use a different version, because
968!--       in the other versions a good vectorization is prohibited due to
969!--       inlining problems.
970          IF ( loop_optimization == 'cache' )  THEN
971             CALL prognostic_equations_cache
972          ELSEIF ( loop_optimization == 'vector' )  THEN
973             CALL prognostic_equations_vector
974          ENDIF
975
976!
977!--       Particle transport/physics with the Lagrangian particle model
978!--       (only once during intermediate steps, because it uses an Euler-step)
979!--       ### particle model should be moved before prognostic_equations, in order
980!--       to regard droplet interactions directly
981          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
982               .AND.  intermediate_timestep_count == 1 )                                           &
983          THEN
984             CALL lpm
985             first_call_lpm = .FALSE.
986          ENDIF
987
988!
989!--       Interaction of droplets with temperature and mixing ratio.
990!--       Droplet condensation and evaporation is calculated within
991!--       advec_particles.
992          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
993          THEN
994             CALL interaction_droplets_ptq
995          ENDIF
996
997!
998!--       Movement of agents in multi agent system
999          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1000               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1001               intermediate_timestep_count == 1 )                                                  &
1002          THEN
1003             CALL multi_agent_system
1004             first_call_mas = .FALSE.
1005          ENDIF
1006
1007!
1008!--       Exchange of ghost points (lateral boundary conditions)
1009          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1010
1011          CALL exchange_horiz( u_p, nbgp )
1012          CALL exchange_horiz( v_p, nbgp )
1013          CALL exchange_horiz( w_p, nbgp )
1014          CALL exchange_horiz( pt_p, nbgp )
1015          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1016          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1017               .OR.  use_sgs_for_particles )  THEN
1018             IF ( rans_tke_e )  THEN
1019                CALL exchange_horiz( diss_p, nbgp )
1020             ELSE
1021                CALL exchange_horiz( diss, nbgp )
1022             ENDIF
1023          ENDIF
1024          IF ( ocean_mode )  THEN
1025             CALL exchange_horiz( sa_p, nbgp )
1026             CALL exchange_horiz( rho_ocean, nbgp )
1027             CALL exchange_horiz( prho, nbgp )
1028          ENDIF
1029          IF ( humidity )  THEN
1030             CALL exchange_horiz( q_p, nbgp )
1031             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1032                CALL exchange_horiz( qc_p, nbgp )
1033                CALL exchange_horiz( nc_p, nbgp )
1034             ENDIF
1035             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1036                CALL exchange_horiz( qr_p, nbgp )
1037                CALL exchange_horiz( nr_p, nbgp )
1038             ENDIF
1039          ENDIF
1040          IF ( cloud_droplets )  THEN
1041             CALL exchange_horiz( ql, nbgp )
1042             CALL exchange_horiz( ql_c, nbgp )
1043             CALL exchange_horiz( ql_v, nbgp )
1044             CALL exchange_horiz( ql_vp, nbgp )
1045          ENDIF
1046          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1047          IF ( air_chemistry )  THEN
1048             DO  lsp = 1, nvar
1049                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1050!
1051!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1052                lsp_usr = 1
1053                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1054                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1055                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1056                                                chem_species(lsp)%conc_pr_init )
1057                   ENDIF
1058                   lsp_usr = lsp_usr + 1
1059                ENDDO
1060             ENDDO
1061          ENDIF
1062
1063          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1064!
1065!--          Exchange ghost points and decycle boundary concentrations if needed
1066             DO  ib = 1, nbins_aerosol
1067                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1068                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1069                DO  ic = 1, ncomponents_mass
1070                   icc = ( ic - 1 ) * nbins_aerosol + ib
1071                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1072                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1073                ENDDO
1074             ENDDO
1075             IF ( .NOT. salsa_gases_from_chem )  THEN
1076                DO  ig = 1, ngases_salsa
1077                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1078                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1079                ENDDO
1080             ENDIF
1081          ENDIF
1082          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1083
1084!
1085!--       Boundary conditions for the prognostic quantities (except of the
1086!--       velocities at the outflow in case of a non-cyclic lateral wall)
1087          CALL boundary_conds
1088!
1089!--       Swap the time levels in preparation for the next time step.
1090          CALL swap_timelevel
1091
1092!
1093!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1094          IF ( vnest_init ) THEN
1095             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1096             CALL vnest_anterpolate
1097             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1098          ENDIF
1099
1100          IF ( nested_run )  THEN
1101
1102             CALL cpu_log( log_point(60), 'nesting', 'start' )
1103!
1104!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1105!--          and pmci_child_datatrans are called inside the wrapper
1106!--          subroutine pmci_datatrans according to the control parameters
1107!--          nesting_mode and nesting_datatransfer_mode.
1108!--          TO_DO: why is nesting_mode given as a parameter here?
1109             CALL pmci_datatrans( nesting_mode )
1110
1111             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1112!
1113!--             Exchange_horiz is needed for all parent-domains after the
1114!--             anterpolation
1115                CALL exchange_horiz( u, nbgp )
1116                CALL exchange_horiz( v, nbgp )
1117                CALL exchange_horiz( w, nbgp )
1118                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1119
1120                IF ( humidity )  THEN
1121
1122                   CALL exchange_horiz( q, nbgp )
1123
1124                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1125                       CALL exchange_horiz( qc, nbgp )
1126                       CALL exchange_horiz( nc, nbgp )
1127                   ENDIF
1128                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1129                       CALL exchange_horiz( qr, nbgp )
1130                       CALL exchange_horiz( nr, nbgp )
1131                   ENDIF
1132
1133                ENDIF
1134
1135                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1136
1137                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1138
1139                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1140                   CALL exchange_horiz( diss, nbgp )
1141                ENDIF
1142
1143                IF ( air_chemistry )  THEN
1144                   DO  n = 1, nvar
1145                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1146                   ENDDO
1147                ENDIF
1148
1149                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1150                   DO  ib = 1, nbins_aerosol
1151                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1152                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1153                      DO  ic = 1, ncomponents_mass
1154                         icc = ( ic - 1 ) * nbins_aerosol + ib
1155                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1156                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1157                      ENDDO
1158                   ENDDO
1159                   IF ( .NOT. salsa_gases_from_chem )  THEN
1160                      DO  ig = 1, ngases_salsa
1161                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1162                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1163                      ENDDO
1164                   ENDIF
1165                ENDIF
1166                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1167
1168             ENDIF
1169!
1170!--          Set boundary conditions again after interpolation and anterpolation.
1171             CALL pmci_boundary_conds
1172
1173             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1174
1175          ENDIF
1176
1177!
1178!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1179!--       when a sloping surface is used
1180          IF ( sloping_surface )  THEN
1181             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1182             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1183          ENDIF
1184
1185!
1186!--       Impose a turbulent inflow using the recycling method
1187          IF ( turbulent_inflow )  CALL inflow_turbulence
1188
1189!
1190!--       Set values at outflow boundary using the special outflow condition
1191          IF ( turbulent_outflow )  CALL outflow_turbulence
1192
1193!
1194!--       Impose a random perturbation on the horizontal velocity field
1195          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1196               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1197               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1198          THEN
1199             time_disturb = time_disturb + dt_3d
1200             IF ( time_disturb >= dt_disturb )  THEN
1201                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1202                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1203                   CALL disturb_field( 'u', tend, u )
1204                   CALL disturb_field( 'v', tend, v )
1205                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1206                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1207                THEN
1208!
1209!--                Runs with a non-cyclic lateral wall need perturbations
1210!--                near the inflow throughout the whole simulation
1211                   dist_range = 1
1212                   CALL disturb_field( 'u', tend, u )
1213                   CALL disturb_field( 'v', tend, v )
1214                   dist_range = 0
1215                ENDIF
1216                time_disturb = time_disturb - dt_disturb
1217             ENDIF
1218          ENDIF
1219
1220!
1221!--       Map forcing data derived from larger scale model onto domain
1222!--       boundaries.
1223          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1224                                       intermediate_timestep_count_max  )                          &
1225             CALL nesting_offl_bc
1226!
1227!--       Impose a turbulent inflow using synthetic generated turbulence,
1228!--       only once per time step.
1229          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1230             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1231             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1232             CALL stg_main
1233             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1234          ENDIF
1235!
1236!--       Ensure mass conservation. This need to be done after imposing
1237!--       synthetic turbulence and top boundary condition for pressure is set to
1238!--       Neumann conditions.
1239!--       Is this also required in case of Dirichlet?
1240          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1241!
1242!--       Reduce the velocity divergence via the equation for perturbation
1243!--       pressure.
1244          IF ( intermediate_timestep_count == 1  .OR. &
1245                call_psolver_at_all_substeps )  THEN
1246
1247             IF (  vnest_init ) THEN
1248!
1249!--             Compute pressure in the CG, interpolate top boundary conditions
1250!--             to the FG and then compute pressure in the FG
1251                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1252
1253                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1254                CALL vnest_boundary_conds
1255                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1256 
1257                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1258
1259!--             Anterpolate TKE, satisfy Germano Identity
1260                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1261                CALL vnest_anterpolate_e
1262                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1263
1264             ELSE
1265
1266                CALL pres
1267
1268             ENDIF
1269
1270          ENDIF
1271
1272!
1273!--       If required, compute liquid water content
1274          IF ( bulk_cloud_model )  THEN
1275             CALL calc_liquid_water_content
1276          ENDIF
1277!
1278!--       If required, compute virtual potential temperature
1279          IF ( humidity )  THEN
1280             CALL compute_vpt 
1281          ENDIF 
1282
1283!
1284!--       Compute the diffusion quantities
1285          IF ( .NOT. constant_diffusion )  THEN
1286
1287!
1288!--          Determine surface fluxes shf and qsws and surface values
1289!--          pt_surface and q_surface in dependence on data from external
1290!--          file LSF_DATA respectively
1291             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1292                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1293             THEN
1294                CALL ls_forcing_surf( simulated_time )
1295             ENDIF
1296
1297!
1298!--          First the vertical (and horizontal) fluxes in the surface
1299!--          (constant flux) layer are computed
1300             IF ( constant_flux_layer )  THEN
1301                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1302                CALL surface_layer_fluxes
1303                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1304             ENDIF
1305!
1306!--          If required, solve the energy balance for the surface and run soil
1307!--          model. Call for horizontal as well as vertical surfaces
1308             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1309
1310                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1311!
1312!--             Call for horizontal upward-facing surfaces
1313                CALL lsm_energy_balance( .TRUE., -1 )
1314                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1315!
1316!--             Call for northward-facing surfaces
1317                CALL lsm_energy_balance( .FALSE., 0 )
1318                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1319!
1320!--             Call for southward-facing surfaces
1321                CALL lsm_energy_balance( .FALSE., 1 )
1322                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1323!
1324!--             Call for eastward-facing surfaces
1325                CALL lsm_energy_balance( .FALSE., 2 )
1326                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1327!
1328!--             Call for westward-facing surfaces
1329                CALL lsm_energy_balance( .FALSE., 3 )
1330                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1331               
1332!
1333!--             At the end, set boundary conditons for potential temperature
1334!--             and humidity after running the land-surface model. This
1335!--             might be important for the nesting, where arrays are transfered.
1336                CALL lsm_boundary_condition
1337
1338               
1339                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1340             ENDIF
1341!
1342!--          If required, solve the energy balance for urban surfaces and run
1343!--          the material heat model
1344             IF (urban_surface) THEN
1345                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1346               
1347                CALL usm_surface_energy_balance( .FALSE. )
1348                IF ( usm_material_model )  THEN
1349                   CALL usm_green_heat_model
1350                   CALL usm_material_heat_model ( .FALSE. )
1351                ENDIF
1352
1353!
1354!--             At the end, set boundary conditons for potential temperature
1355!--             and humidity after running the urban-surface model. This
1356!--             might be important for the nesting, where arrays are transfered.
1357                CALL usm_boundary_condition
1358
1359                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1360             ENDIF
1361!
1362!--          Compute the diffusion coefficients
1363             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1364             IF ( .NOT. humidity ) THEN
1365                IF ( ocean_mode )  THEN
1366                   CALL tcm_diffusivities( prho, prho_reference )
1367                ELSE
1368                   CALL tcm_diffusivities( pt, pt_reference )
1369                ENDIF
1370             ELSE
1371                CALL tcm_diffusivities( vpt, pt_reference )
1372             ENDIF
1373             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1374!
1375!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1376             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1377
1378          ENDIF
1379
1380!
1381!--       If required, calculate radiative fluxes and heating rates
1382          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1383               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1384
1385               time_radiation = time_radiation + dt_3d
1386
1387             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1388
1389                CALL cpu_log( log_point(50), 'radiation', 'start' )
1390
1391                IF ( .NOT. force_radiation_call )  THEN
1392                   time_radiation = time_radiation - dt_radiation
1393                ENDIF
1394
1395!
1396!--             Adjust the current time to the time step of the radiation model.
1397!--             Needed since radiation is pre-calculated and stored only on apparent
1398!--             solar positions
1399                time_since_reference_point_save = time_since_reference_point
1400                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1401                                                          dt_radiation), wp ) * dt_radiation
1402
1403                CALL radiation_control
1404
1405                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1406                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1407                   CALL radiation_interaction
1408                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1409                ENDIF
1410   
1411!
1412!--             Return the current time to its original value
1413                time_since_reference_point = time_since_reference_point_save
1414
1415                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1416
1417             ENDIF
1418          ENDIF
1419
1420       ENDDO   ! Intermediate step loop
1421
1422!
1423!--    Will be used at some point by flow_statistics.
1424       !$ACC UPDATE &
1425       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1426       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1427       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1428       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1429       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1430       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1431       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1432       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1433       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1434       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1435       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1436       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1437       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1438       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1439       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1440
1441!
1442!--    If required, consider chemical emissions
1443       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1444!
1445!--       Update the time --> kanani: revise location of this CALL
1446          CALL calc_date_and_time
1447!
1448!--       Call emission routine only once an hour
1449          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1450             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1451             hour_call_emis = hour_of_year
1452          ENDIF
1453       ENDIF
1454!
1455!--    If required, consider aerosol emissions for the salsa model
1456       IF ( salsa )  THEN
1457!
1458!--       Call emission routine to update emissions if needed
1459          CALL salsa_emission_update
1460
1461       ENDIF
1462!
1463!--    If required, calculate indoor temperature, waste heat, heat flux
1464!--    through wall, etc.
1465!--    dt_indoor steers the frequency of the indoor model calculations.
1466!--    Note, at first timestep indoor model is called, in order to provide
1467!--    a waste heat flux.
1468       IF ( indoor_model )  THEN
1469
1470          time_indoor = time_indoor + dt_3d
1471
1472          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1473
1474             time_indoor = time_indoor - dt_indoor
1475
1476             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1477             CALL im_main_heatcool
1478             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1479
1480          ENDIF
1481       ENDIF
1482!
1483!--    Increase simulation time and output times
1484       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1485       current_timestep_number    = current_timestep_number + 1
1486       simulated_time             = simulated_time   + dt_3d
1487       time_since_reference_point = simulated_time - coupling_start_time
1488       simulated_time_chr         = time_to_string( time_since_reference_point )
1489
1490
1491
1492
1493       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1494          time_do_av         = time_do_av       + dt_3d
1495       ENDIF
1496       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1497          time_do2d_xy       = time_do2d_xy     + dt_3d
1498       ENDIF
1499       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1500          time_do2d_xz       = time_do2d_xz     + dt_3d
1501       ENDIF
1502       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1503          time_do2d_yz       = time_do2d_yz     + dt_3d
1504       ENDIF
1505       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1506          time_do3d          = time_do3d        + dt_3d
1507       ENDIF
1508       DO  mid = 1, masks
1509          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1510             time_domask(mid)= time_domask(mid) + dt_3d
1511          ENDIF
1512       ENDDO
1513       time_dvrp          = time_dvrp        + dt_3d
1514       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1515          time_dosp       = time_dosp        + dt_3d
1516       ENDIF
1517       time_dots          = time_dots        + dt_3d
1518       IF ( .NOT. first_call_lpm )  THEN
1519          time_dopts      = time_dopts       + dt_3d
1520       ENDIF
1521       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1522          time_dopr       = time_dopr        + dt_3d
1523       ENDIF
1524       time_dopr_listing  = time_dopr_listing + dt_3d
1525       time_run_control   = time_run_control + dt_3d
1526!
1527!--    Increment time-counter for surface output
1528       IF ( surface_output )  THEN
1529          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1530             time_dosurf    = time_dosurf + dt_3d
1531          ENDIF
1532          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1533             time_dosurf_av = time_dosurf_av + dt_3d
1534          ENDIF
1535       ENDIF
1536!
1537!--    In case of synthetic turbulence generation and parametrized turbulence
1538!--    information, update the time counter and if required, adjust the
1539!--    STG to new atmospheric conditions.
1540       IF ( use_syn_turb_gen  )  THEN
1541          IF ( parametrize_inflow_turbulence )  THEN
1542             time_stg_adjust = time_stg_adjust + dt_3d
1543             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1544                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1545                CALL stg_adjust
1546                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1547             ENDIF
1548          ENDIF
1549          time_stg_call = time_stg_call + dt_3d
1550       ENDIF
1551
1552!
1553!--    Data exchange between coupled models
1554       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1555          time_coupling = time_coupling + dt_3d
1556
1557!
1558!--       In case of model termination initiated by the local model
1559!--       (terminate_coupled > 0), the coupler must be skipped because it would
1560!--       cause an MPI intercomminucation hang.
1561!--       If necessary, the coupler will be called at the beginning of the
1562!--       next restart run.
1563          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1564             CALL surface_coupler
1565             time_coupling = time_coupling - dt_coupling
1566          ENDDO
1567       ENDIF
1568
1569!
1570!--    Biometeorology calculation of stationary thermal indices
1571!--    Todo (kanani): biometeorology needs own time_... treatment.
1572!--                   It might be that time_do2d_xy differs from time_do3d,
1573!--                   and then we might get trouble with the biomet output,
1574!--                   because we can have 2d and/or 3d biomet output!!
1575       IF ( biometeorology                                                                         &
1576            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1577                  .OR.                                                                             &
1578            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1579                    ) )  THEN
1580!
1581!--       If required, do thermal comfort calculations
1582          IF ( thermal_comfort )  THEN
1583             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1584          ENDIF
1585!
1586!--       If required, do UV exposure calculations
1587          IF ( uv_exposure )  THEN
1588             CALL uvem_calc_exposure
1589          ENDIF
1590       ENDIF
1591
1592!
1593!--    Execute alle other module actions routunes
1594       CALL module_interface_actions( 'after_integration' )
1595
1596!
1597!--    If Galilei transformation is used, determine the distance that the
1598!--    model has moved so far
1599       IF ( galilei_transformation )  THEN
1600          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1601          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1602       ENDIF
1603
1604!
1605!--    Check, if restart is necessary (because cpu-time is expiring or
1606!--    because it is forced by user) and set stop flag
1607!--    This call is skipped if the remote model has already initiated a restart.
1608       IF ( .NOT. terminate_run )  CALL check_for_restart
1609
1610!
1611!--    Carry out statistical analysis and output at the requested output times.
1612!--    The MOD function is used for calculating the output time counters (like
1613!--    time_dopr) in order to regard a possible decrease of the output time
1614!--    interval in case of restart runs
1615
1616!
1617!--    Set a flag indicating that so far no statistics have been created
1618!--    for this time step
1619       flow_statistics_called = .FALSE.
1620
1621!
1622!--    If required, call flow_statistics for averaging in time
1623       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1624            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1625            time_since_reference_point >= skip_time_dopr )  THEN
1626          time_dopr_av = time_dopr_av + dt_3d
1627          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1628             do_sum = .TRUE.
1629             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1630          ENDIF
1631       ENDIF
1632       IF ( do_sum )  CALL flow_statistics
1633
1634!
1635!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1636       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1637            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1638            time_since_reference_point >= skip_time_data_output_av )                               &
1639       THEN
1640          time_do_sla = time_do_sla + dt_3d
1641          IF ( time_do_sla >= dt_averaging_input )  THEN
1642             CALL sum_up_3d_data
1643             average_count_3d = average_count_3d + 1
1644             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1645          ENDIF
1646       ENDIF
1647!
1648!--    Average surface data
1649       IF ( surface_output )  THEN
1650          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1651                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1652                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1653             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1654                CALL surface_data_output_averaging
1655                average_count_surf = average_count_surf + 1
1656             ENDIF
1657          ENDIF
1658       ENDIF
1659
1660!
1661!--    Calculate spectra for time averaging
1662       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1663            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1664          time_dosp_av = time_dosp_av + dt_3d
1665          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1666             CALL calc_spectra
1667             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1668          ENDIF
1669       ENDIF
1670
1671!
1672!--    Call flight module and output data
1673       IF ( virtual_flight )  THEN
1674          CALL flight_measurement
1675          CALL data_output_flight
1676       ENDIF
1677!
1678!--    Take virtual measurements
1679       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1680          CALL vm_sampling
1681          CALL vm_data_output
1682       ENDIF
1683
1684!
1685!--    Profile output (ASCII) on file
1686       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1687          CALL print_1d
1688          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1689       ENDIF
1690
1691!
1692!--    Graphic output for PROFIL
1693       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1694          IF ( dopr_n /= 0 )  CALL data_output_profiles
1695          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1696          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1697       ENDIF
1698
1699!
1700!--    Graphic output for time series
1701       IF ( time_dots >= dt_dots )  THEN
1702          CALL data_output_tseries
1703          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1704       ENDIF
1705
1706!
1707!--    Output of spectra (formatted for use with PROFIL), in case of no
1708!--    time averaging, spectra has to be calculated before
1709       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1710          IF ( average_count_sp == 0 )  CALL calc_spectra
1711          CALL data_output_spectra
1712          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1713       ENDIF
1714
1715!
1716!--    2d-data output (cross-sections)
1717       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1718          CALL data_output_2d( 'xy', 0 )
1719          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1720       ENDIF
1721       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1722          CALL data_output_2d( 'xz', 0 )
1723          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1724       ENDIF
1725       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1726          CALL data_output_2d( 'yz', 0 )
1727          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1728       ENDIF
1729
1730!
1731!--    3d-data output (volume data)
1732       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1733          CALL data_output_3d( 0 )
1734          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1735       ENDIF
1736
1737!
1738!--    Masked data output
1739       DO  mid = 1, masks
1740          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1741               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1742             CALL data_output_mask( 0 )
1743             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1744          ENDIF
1745       ENDDO
1746
1747!
1748!--    Output of time-averaged 2d/3d/masked data
1749       IF ( time_do_av >= dt_data_output_av                                                        &
1750            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1751          CALL average_3d_data
1752!
1753!--       Udate thermal comfort indices based on updated averaged input
1754          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1755             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1756          ENDIF
1757          CALL data_output_2d( 'xy', 1 )
1758          CALL data_output_2d( 'xz', 1 )
1759          CALL data_output_2d( 'yz', 1 )
1760          CALL data_output_3d( 1 )
1761          DO  mid = 1, masks
1762             CALL data_output_mask( 1 )
1763          ENDDO
1764          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1765       ENDIF
1766!
1767!--    Output of surface data, instantaneous and averaged data
1768       IF ( surface_output )  THEN
1769          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1770             CALL surface_data_output( 0 )
1771             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1772          ENDIF
1773          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1774             CALL surface_data_output( 1 )
1775             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1776          ENDIF
1777       ENDIF
1778
1779!
1780!--    Output of particle time series
1781       IF ( particle_advection )  THEN
1782          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1783               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1784                 first_call_lpm ) )  THEN
1785             CALL data_output_ptseries
1786             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1787          ENDIF
1788       ENDIF
1789
1790!
1791!--    Output of dvrp-graphics (isosurface, particles, slicer)
1792#if defined( __dvrp_graphics )
1793       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1794#endif
1795       IF ( time_dvrp >= dt_dvrp )  THEN
1796          CALL data_output_dvrp
1797          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1798       ENDIF
1799#if defined( __dvrp_graphics )
1800       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1801#endif
1802
1803!
1804!--    If required, set the heat flux for the next time step to a random value
1805       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1806          IF ( surf_def_h(0)%ns >= 1 )  THEN
1807             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1808             CALL disturb_heatflux( surf_def_h(0) )
1809             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1810          ENDIF
1811          IF ( surf_lsm_h%ns    >= 1 )  THEN
1812             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1813             CALL disturb_heatflux( surf_lsm_h    )
1814             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1815          ENDIF
1816          IF ( surf_usm_h%ns    >= 1 )  THEN
1817             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1818             CALL disturb_heatflux( surf_usm_h    )
1819             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1820          ENDIF
1821       ENDIF
1822
1823!
1824!--    Execute alle other module actions routunes
1825       CALL module_interface_actions( 'after_timestep' )
1826
1827!
1828!--    Determine size of next time step. Save timestep dt_3d because it is
1829!--    newly calculated in routine timestep, but required further below for
1830!--    steering the run control output interval
1831       dt_3d_old = dt_3d
1832       CALL timestep
1833
1834!
1835!--    Synchronize the timestep in case of nested run.
1836       IF ( nested_run )  THEN
1837!
1838!--       Synchronize by unifying the time step.
1839!--       Global minimum of all time-steps is used for all.
1840          CALL pmci_synchronize
1841       ENDIF
1842
1843!
1844!--    Computation and output of run control parameters.
1845!--    This is also done whenever perturbations have been imposed
1846       IF ( time_run_control >= dt_run_control  .OR.                                               &
1847            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1848       THEN
1849          CALL run_control
1850          IF ( time_run_control >= dt_run_control )  THEN
1851             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1852          ENDIF
1853       ENDIF
1854
1855!
1856!--    Output elapsed simulated time in form of a progress bar on stdout
1857       IF ( myid == 0 )  CALL output_progress_bar
1858
1859       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1860
1861
1862    ENDDO   ! time loop
1863
1864#if defined( _OPENACC )
1865    CALL exit_surface_arrays
1866#endif
1867!$ACC END DATA
1868!$ACC END DATA
1869!$ACC END DATA
1870!$ACC END DATA
1871!$ACC END DATA
1872!$ACC END DATA
1873!$ACC END DATA
1874
1875!
1876!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1877    IF ( vnest_init )  CALL vnest_deallocate
1878
1879    IF ( myid == 0 )  CALL finish_progress_bar
1880
1881#if defined( __dvrp_graphics )
1882    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1883#endif
1884
1885    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1886
1887 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.