source: palm/trunk/SOURCE/time_integration.f90 @ 3748

Last change on this file since 3748 was 3745, checked in by suehring, 6 years ago

document last commit

  • Property svn:keywords set to Id
File size: 72.9 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3745 2019-02-15 18:57:56Z suehring $
27! Call indoor model after first timestep
28!
29! 3744 2019-02-15 18:38:58Z suehring
30! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
31! time_integration to make sure averaged input is updated before calculating.
32!
33! 3739 2019-02-13 08:05:17Z dom_dwd_user
34! Removed everything related to "time_bio_results" as this is never used.
35!
36! 3724 2019-02-06 16:28:23Z kanani
37! Correct double-used log_point_s unit
38!
39! 3719 2019-02-06 13:10:18Z kanani
40! - removed wind_turbine cpu measurement, since same time is measured inside
41!   wtm_forces subroutine as special measures
42! - moved the numerous vnest cpulog to special measures
43! - extended radiation cpulog over entire radiation part,
44!   moved radiation_interactions cpulog to special measures
45! - moved some cpu_log calls to this routine for better overview
46!
47! 3705 2019-01-29 19:56:39Z suehring
48! Data output for virtual measurements added
49!
50! 3704 2019-01-29 19:51:41Z suehring
51! Rename subroutines for surface-data output
52!
53! 3647 2019-01-02 14:10:44Z kanani
54! Bugfix: add time_since_reference_point to IF clause for data_output calls
55! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
56! Clean up indoor_model and biometeorology model call.
57!
58! 3646 2018-12-28 17:58:49Z kanani
59! Bugfix: use time_since_reference_point instead of simulated_time where
60! required (relevant when using wall/soil spinup)
61!
62! 3634 2018-12-18 12:31:28Z knoop
63! OpenACC port for SPEC
64!
65! 3597 2018-12-04 08:40:18Z maronga
66! Removed call to calculation of near air (10 cm) potential temperature (now in
67! surface layer fluxes)
68!
69! 3589 2018-11-30 15:09:51Z suehring
70! Move the control parameter "salsa" from salsa_mod to control_parameters
71! (M. Kurppa)
72!
73! 3582 2018-11-29 19:16:36Z suehring
74! dom_dwd_user, Schrempf:
75! Changes due to merge of uv exposure model into biometeorology_mod.
76!
77! 3525 2018-11-14 16:06:14Z kanani
78! Changes related to clean-up of biometeorology (dom_dwd_user)
79!
80! 3524 2018-11-14 13:36:44Z raasch
81! unused variables removed
82!
83! 3484 2018-11-02 14:41:25Z hellstea
84! pmci_ensure_nest_mass_conservation is premanently removed
85!
86! 3473 2018-10-30 20:50:15Z suehring
87! new module for virtual measurements introduced
88!
89! 3472 2018-10-30 20:43:50Z suehring
90! Add indoor model (kanani, srissman, tlang)
91!
92! 3467 2018-10-30 19:05:21Z suehring
93! Implementation of a new aerosol module salsa.
94!
95! 3448 2018-10-29 18:14:31Z kanani
96! Add biometeorology
97!
98! 3421 2018-10-24 18:39:32Z gronemeier
99! Surface data output
100!
101! 3418 2018-10-24 16:07:39Z kanani
102! call to material_heat_model now with check if spinup runs (rvtils)
103!
104! 3378 2018-10-19 12:34:59Z kanani
105! merge from radiation branch (r3362) into trunk
106! (moh.hefny):
107! Bugfix in the if statement to call radiation_interaction
108!
109! 3347 2018-10-15 14:21:08Z suehring
110! - offline nesting separated from large-scale forcing module
111! - changes for synthetic turbulence generator
112!
113! 3343 2018-10-15 10:38:52Z suehring
114! - Formatting, clean-up, comments (kanani)
115! - Added CALL to chem_emissions_setup (Russo)
116! - Code added for decycling chemistry (basit)
117!
118! 3294 2018-10-01 02:37:10Z raasch
119! changes concerning modularization of ocean option
120!
121! 3274 2018-09-24 15:42:55Z knoop
122! Modularization of all bulk cloud physics code components
123!
124! 3241 2018-09-12 15:02:00Z raasch
125! unused variables removed
126!
127! 3198 2018-08-15 09:23:10Z sward
128! Added multi_agent_system_end; defined start time for MAS relative to
129! time_since_reference_point
130!
131! 3183 2018-07-27 14:25:55Z suehring
132! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
133! Rename subroutines and variables in COSMO nesting mode
134!
135! 3182 2018-07-27 13:36:03Z suehring
136! Added multi agent system
137!
138! 3042 2018-05-25 10:44:37Z schwenkel
139! Changed the name specific humidity to mixing ratio
140!
141! 3040 2018-05-25 10:22:08Z schwenkel
142! Fixed bug in IF statement
143! Ensure that the time when calling the radiation to be the time step of the
144! pre-calculated time when first calculate the positions of the sun
145!
146! 3004 2018-04-27 12:33:25Z Giersch
147! First call of flow_statistics has been removed. It is already called in
148! run_control itself
149!
150! 2984 2018-04-18 11:51:30Z hellstea
151! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
152! as seemingly unnecessary.
153!
154! 2941 2018-04-03 11:54:58Z kanani
155! Deduct spinup_time from RUN_CONTROL output of main 3d run
156! (use time_since_reference_point instead of simulated_time)
157!
158! 2938 2018-03-27 15:52:42Z suehring
159! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
160!
161! 2936 2018-03-27 14:49:27Z suehring
162! Little formatting adjustment.
163!
164! 2817 2018-02-19 16:32:21Z knoop
165! Preliminary gust module interface implemented
166!
167! 2801 2018-02-14 16:01:55Z thiele
168! Changed lpm from subroutine to module.
169! Introduce particle transfer in nested models.
170!
171! 2776 2018-01-31 10:44:42Z Giersch
172! Variable use_synthetic_turbulence_generator has been abbreviated
173!
174! 2773 2018-01-30 14:12:54Z suehring
175! - Nesting for chemical species
176!
177! 2766 2018-01-22 17:17:47Z kanani
178! Removed preprocessor directive __chem
179!
180! 2718 2018-01-02 08:49:38Z maronga
181! Corrected "Former revisions" section
182!
183! 2696 2017-12-14 17:12:51Z kanani
184! - Change in file header (GPL part)
185! - Implementation of uv exposure model (FK)
186! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
187! - renamed diffusivities to tcm_diffusivities (TG)
188! - implement prognostic equation for diss (TG)
189! - Moved/commented CALL to chem_emissions (FK)
190! - Added CALL to chem_emissions (FK)
191! - Implementation of chemistry module (FK)
192! - Calls for setting boundary conditions in USM and LSM (MS)
193! - Large-scale forcing with larger-scale models implemented (MS)
194! - Rename usm_radiation into radiation_interactions; merge with branch
195!   radiation (MS)
196! - added call for usm_green_heat_model for green building surfaces (RvT)
197! - added call for usm_temperature_near_surface for use in indoor model (RvT)
198!
199! 2617 2017-11-16 12:47:24Z suehring
200! Bugfix, assure that the reference state does not become zero.
201!
202! 2563 2017-10-19 15:36:10Z Giersch
203! Variable wind_turbine moved to module control_parameters
204!
205! 2365 2017-08-21 14:59:59Z kanani
206! Vertical grid nesting implemented (SadiqHuq)
207!
208! 2320 2017-07-21 12:47:43Z suehring
209! Set bottom boundary conditions after nesting interpolation and anterpolation
210!
211! 2299 2017-06-29 10:14:38Z maronga
212! Call of soil model adjusted
213!
214! 2292 2017-06-20 09:51:42Z schwenkel
215! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
216! includes two more prognostic equations for cloud drop concentration (nc) 
217! and cloud water content (qc).
218!
219! 2271 2017-06-09 12:34:55Z sward
220! Start timestep message changed
221!
222! 2259 2017-06-08 09:09:11Z gronemeier
223! Implemented synthetic turbulence generator
224!
225! 2233 2017-05-30 18:08:54Z suehring
226!
227! 2232 2017-05-30 17:47:52Z suehring
228! Adjustments to new topography and surface concept
229! Modify passed parameters for disturb_field
230!
231! 2178 2017-03-17 11:07:39Z hellstea
232! Setting perturbations at all times near inflow boundary is removed
233! in case of nested boundaries
234!
235! 2174 2017-03-13 08:18:57Z maronga
236! Added support for nesting with cloud microphysics
237!
238! 2118 2017-01-17 16:38:49Z raasch
239! OpenACC directives and related code removed
240!
241! 2050 2016-11-08 15:00:55Z gronemeier
242! Implement turbulent outflow condition
243!
244! 2031 2016-10-21 15:11:58Z knoop
245! renamed variable rho to rho_ocean
246!
247! 2011 2016-09-19 17:29:57Z kanani
248! Flag urban_surface is now defined in module control_parameters,
249! removed commented CALLs of global_min_max.
250!
251! 2007 2016-08-24 15:47:17Z kanani
252! Added CALLs for new urban surface model
253!
254! 2000 2016-08-20 18:09:15Z knoop
255! Forced header and separation lines into 80 columns
256!
257! 1976 2016-07-27 13:28:04Z maronga
258! Simplified calls to radiation model
259!
260! 1960 2016-07-12 16:34:24Z suehring
261! Separate humidity and passive scalar
262!
263! 1957 2016-07-07 10:43:48Z suehring
264! flight module added
265!
266! 1919 2016-05-27 14:51:23Z raasch
267! Initial version of purely vertical nesting introduced.
268!
269! 1918 2016-05-27 14:35:57Z raasch
270! determination of time step moved to the end of the time step loop,
271! the first time step is now always calculated before the time step loop (i.e.
272! also in case of restart runs)
273!
274! 1914 2016-05-26 14:44:07Z witha
275! Added call for wind turbine model
276!
277! 1878 2016-04-19 12:30:36Z hellstea
278! Synchronization for nested runs rewritten
279!
280! 1853 2016-04-11 09:00:35Z maronga
281! Adjusted for use with radiation_scheme = constant
282!
283! 1849 2016-04-08 11:33:18Z hoffmann
284! Adapted for modularization of microphysics
285!
286! 1833 2016-04-07 14:23:03Z raasch
287! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
288!
289! 1831 2016-04-07 13:15:51Z hoffmann
290! turbulence renamed collision_turbulence
291!
292! 1822 2016-04-07 07:49:42Z hoffmann
293! icloud_scheme replaced by microphysics_*
294!
295! 1808 2016-04-05 19:44:00Z raasch
296! output message in case unscheduled radiation calls removed
297!
298! 1797 2016-03-21 16:50:28Z raasch
299! introduction of different datatransfer modes
300!
301! 1791 2016-03-11 10:41:25Z raasch
302! call of pmci_update_new removed
303!
304! 1786 2016-03-08 05:49:27Z raasch
305! +module spectrum
306!
307! 1783 2016-03-06 18:36:17Z raasch
308! switch back of netcdf data format for mask output moved to the mask output
309! routine
310!
311! 1781 2016-03-03 15:12:23Z raasch
312! some pmc calls removed at the beginning (before timeloop),
313! pmc initialization moved to the main program
314!
315! 1764 2016-02-28 12:45:19Z raasch
316! PMC_ACTIVE flags removed,
317! bugfix: nest synchronization after first call of timestep
318!
319! 1762 2016-02-25 12:31:13Z hellstea
320! Introduction of nested domain feature
321!
322! 1736 2015-12-04 08:56:33Z raasch
323! no perturbations added to total domain if energy limit has been set zero
324!
325! 1691 2015-10-26 16:17:44Z maronga
326! Added option for spin-ups without land surface and radiation models. Moved calls
327! for radiation and lan surface schemes.
328!
329! 1682 2015-10-07 23:56:08Z knoop
330! Code annotations made doxygen readable
331!
332! 1671 2015-09-25 03:29:37Z raasch
333! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
334! for particles
335!
336! 1585 2015-04-30 07:05:52Z maronga
337! Moved call of radiation scheme. Added support for RRTM
338!
339! 1551 2015-03-03 14:18:16Z maronga
340! Added interface for different radiation schemes.
341!
342! 1496 2014-12-02 17:25:50Z maronga
343! Added calls for the land surface model and radiation scheme
344!
345! 1402 2014-05-09 14:25:13Z raasch
346! location messages modified
347!
348! 1384 2014-05-02 14:31:06Z raasch
349! location messages added
350!
351! 1380 2014-04-28 12:40:45Z heinze
352! CALL of nudge_ref added
353! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
354!
355! 1365 2014-04-22 15:03:56Z boeske
356! Reset sums_ls_l to zero at each timestep
357! +sums_ls_l
358! Calculation of reference state (previously in subroutine calc_mean_profile)
359
360! 1342 2014-03-26 17:04:47Z kanani
361! REAL constants defined as wp-kind
362!
363! 1320 2014-03-20 08:40:49Z raasch
364! ONLY-attribute added to USE-statements,
365! kind-parameters added to all INTEGER and REAL declaration statements,
366! kinds are defined in new module kinds,
367! old module precision_kind is removed,
368! revision history before 2012 removed,
369! comment fields (!:) to be used for variable explanations added to
370! all variable declaration statements
371! 1318 2014-03-17 13:35:16Z raasch
372! module interfaces removed
373!
374! 1308 2014-03-13 14:58:42Z fricke
375! +netcdf_data_format_save
376! For masked data, parallel netcdf output is not tested so far, hence
377! netcdf_data_format is switched back to non-paralell output.
378!
379! 1276 2014-01-15 13:40:41Z heinze
380! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
381!
382! 1257 2013-11-08 15:18:40Z raasch
383! acc-update-host directive for timestep removed
384!
385! 1241 2013-10-30 11:36:58Z heinze
386! Generalize calc_mean_profile for wider use
387! Determine shf and qsws in dependence on data from LSF_DATA
388! Determine ug and vg in dependence on data from LSF_DATA
389! 1221 2013-09-10 08:59:13Z raasch
390! host update of arrays before timestep is called
391!
392! 1179 2013-06-14 05:57:58Z raasch
393! mean profiles for reference state are only calculated if required,
394! small bugfix for background communication
395!
396! 1171 2013-05-30 11:27:45Z raasch
397! split of prognostic_equations deactivated (comment lines), for the time being
398!
399! 1128 2013-04-12 06:19:32Z raasch
400! asynchronous transfer of ghost point data realized for acc-optimized version:
401! prognostic_equations are first called two times for those points required for
402! the left-right and north-south exchange, respectively, and then for the
403! remaining points,
404! those parts requiring global communication moved from prognostic_equations to
405! here
406!
407! 1115 2013-03-26 18:16:16Z hoffmann
408! calculation of qr and nr is restricted to precipitation
409!
410! 1113 2013-03-10 02:48:14Z raasch
411! GPU-porting of boundary conditions,
412! openACC directives updated
413! formal parameter removed from routine boundary_conds
414!
415! 1111 2013-03-08 23:54:10Z raasch
416! +internal timestep counter for cpu statistics added,
417! openACC directives updated
418!
419! 1092 2013-02-02 11:24:22Z raasch
420! unused variables removed
421!
422! 1065 2012-11-22 17:42:36Z hoffmann
423! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
424!
425! 1053 2012-11-13 17:11:03Z hoffmann
426! exchange of ghost points for nr, qr added
427!
428! 1036 2012-10-22 13:43:42Z raasch
429! code put under GPL (PALM 3.9)
430!
431! 1019 2012-09-28 06:46:45Z raasch
432! non-optimized version of prognostic_equations removed
433!
434! 1015 2012-09-27 09:23:24Z raasch
435! +call of prognostic_equations_acc
436!
437! 1001 2012-09-13 14:08:46Z raasch
438! all actions concerning leapfrog- and upstream-spline-scheme removed
439!
440! 849 2012-03-15 10:35:09Z raasch
441! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
442!
443! 825 2012-02-19 03:03:44Z raasch
444! wang_collision_kernel renamed wang_kernel
445!
446! Revision 1.1  1997/08/11 06:19:04  raasch
447! Initial revision
448!
449!
450! Description:
451! ------------
452!> Integration in time of the model equations, statistical analysis and graphic
453!> output
454!------------------------------------------------------------------------------!
455 SUBROUTINE time_integration
456 
457
458    USE advec_ws,                                                              &
459        ONLY:  ws_statistics
460
461    USE arrays_3d,                                                             &
462        ONLY:  d, diss, diss_p, ddzu, dd2zu, ddzw, drho_air, drho_air_zw, dzu, &
463               dzw, e, e_p, kh, km, nc, nc_p, nr, nr_p, p, prho, pt, pt_p,     &
464               pt_init, ptdf_x, ptdf_y, q_init, q, qc, qc_p, ql, ql_c, ql_v,   &
465               ql_vp, qr, qr_p, q_p, rdf, rdf_sc, ref_state, rho_air,          &
466               rho_air_zw, rho_ocean, s, s_p, sa_p, te_m, tend, tpt_m, tu_m,   &
467               tv_m, tw_m, u, ug, u_init, u_p, u_stokes_zu, v, vg, v_init, vpt,&
468               v_p, v_stokes_zu, w, w_p, zu, heatflux_output_conversion,       &
469               momentumflux_output_conversion
470
471    USE biometeorology_mod,                                                    &
472        ONLY:  bio_calculate_thermal_index_maps,                               &
473               thermal_comfort, uvem_calc_exposure, uv_exposure
474
475    USE bulk_cloud_model_mod,                                                  &
476        ONLY: bulk_cloud_model, calc_liquid_water_content,                     &
477              collision_turbulence, microphysics_morrison, microphysics_seifert
478
479    USE calc_mean_profile_mod,                                                 &
480        ONLY:  calc_mean_profile
481
482    USE chem_emissions_mod,                                                    &
483        ONLY:  chem_emissions_setup
484
485    USE chem_modules,                                                          &
486        ONLY:  bc_cs_t_val, cs_name, do_emis, nspec, nspec_out
487
488    USE chemistry_model_mod,                                                   &
489        ONLY:  chem_boundary_conds, chem_species
490
491    USE control_parameters,                                                    &
492        ONLY:  advected_distance_x, advected_distance_y, air_chemistry,        &
493               average_count_3d, averaging_interval, averaging_interval_pr,    &
494               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val, bc_q_t_val, biometeorology,  &
495               call_psolver_at_all_substeps,  child_domain, cloud_droplets,    &
496               constant_flux_layer, constant_heatflux,                         &
497               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
498               coupling_start_time, current_timestep_number,                   &
499               disturbance_created, disturbance_energy_limit, dist_range,      &
500               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
501               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
502               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
503               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control, end_time,    &
504               first_call_lpm, first_call_mas, galilei_transformation,         &
505               humidity, indoor_model, intermediate_timestep_count,            &
506               intermediate_timestep_count_max,                                &
507               land_surface, large_scale_forcing,                              &
508               loop_optimization, lsf_surf, lsf_vert, masks, mid,              &
509               multi_agent_system_end, multi_agent_system_start,               &
510               nesting_offline, neutral, nr_timesteps_this_run, nudging,       &
511               ocean_mode, passive_scalar, pt_reference,                       &
512               pt_slope_offset, random_heatflux, rans_mode,                    &
513               rans_tke_e, run_coupled, salsa,                                 &
514               simulated_time, simulated_time_chr,                             &
515               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
516               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
517               skip_time_data_output_av, sloping_surface, stop_dt,             &
518               surface_output, terminate_coupled, terminate_run,               &
519               timestep_scheme,                                                &
520               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
521               time_do3d, time_domask, time_dopr, time_dopr_av,                &
522               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
523               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
524               time_run_control, time_since_reference_point, tsc,              &
525               turbulent_inflow, turbulent_outflow, urban_surface,             &
526               use_initial_profile_as_reference,                               &
527               use_single_reference_value, u_gtrans, v_gtrans,                 &
528               virtual_flight, virtual_measurement, wind_turbine,              &
529               ws_scheme_mom, ws_scheme_sca 
530
531    USE cpulog,                                                                &
532        ONLY:  cpu_log, log_point, log_point_s
533
534    USE date_and_time_mod,                                                     &
535        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
536
537    USE flight_mod,                                                            &
538        ONLY:  flight_measurement
539
540    USE indices,                                                               &
541        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
542               nz, nzb_max, advc_flags_1, advc_flags_2, wall_flags_0
543
544    USE indoor_model_mod,                                                      &
545        ONLY:  dt_indoor, im_main_heatcool, skip_time_do_indoor, time_indoor
546
547    USE interaction_droplets_ptq_mod,                                          &
548        ONLY:  interaction_droplets_ptq
549
550    USE interfaces
551
552    USE kinds
553
554    USE land_surface_model_mod,                                                &
555        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model,     &
556               skip_time_do_lsm
557
558    USE lsf_nudging_mod,                                                       &
559        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
560
561    USE module_interface,                                                      &
562        ONLY:  module_interface_actions
563
564    USE multi_agent_system_mod,                                                &
565        ONLY:  agents_active, multi_agent_system
566
567    USE nesting_offl_mod,                                                      &
568        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
569       
570    USE netcdf_data_input_mod,                                                 &
571        ONLY:  chem_emis, chem_emis_att, nest_offl,                            &
572               netcdf_data_input_offline_nesting
573
574    USE ocean_mod,                                                             &
575        ONLY:  prho_reference
576
577    USE particle_attributes,                                                   &
578        ONLY:  particle_advection, particle_advection_start,                   &
579               use_sgs_for_particles, wang_kernel
580
581    USE pegrid
582
583    USE pmc_interface,                                                         &
584        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans,  &
585               pmci_synchronize
586
587    USE progress_bar,                                                          &
588        ONLY:  finish_progress_bar, output_progress_bar
589
590    USE prognostic_equations_mod,                                              &
591        ONLY:  prognostic_equations_cache, prognostic_equations_vector
592
593    USE radiation_model_mod,                                                   &
594        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
595              radiation_interaction, radiation_interactions,                   &
596              skip_time_do_radiation, time_radiation
597         
598    USE salsa_mod,                                                             &
599        ONLY: aerosol_number, aerosol_mass, nbins, ncc_tot, ngast,             &
600              salsa_boundary_conds, salsa_gas, salsa_gases_from_chem,          &
601              skip_time_do_salsa                     
602   
603    USE salsa_util_mod,                                                        &
604           ONLY:  sums_salsa_ws_l     
605
606    USE spectra_mod,                                                           &
607        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
608              skip_time_dosp
609
610    USE statistics,                                                            &
611        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l,                &
612               rmask, statistic_regions, weight_substep, sums_l, sums_l_l,     &
613               sums_us2_ws_l, sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l,   &
614               sums_ws2_ws_l, sums_wspts_ws_l, sums_wsqs_ws_l, sums_wssas_ws_l,&
615               sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l,              &
616               sums_wsnrs_ws_l, sums_wsss_ws_l
617
618    USE surface_layer_fluxes_mod,                                              &
619        ONLY:  surface_layer_fluxes
620
621    USE surface_mod,                                                           &
622        ONLY:  bc_h, surf_def_h, surf_lsm_h, surf_usm_h,                       &
623               enter_surface_arrays, exit_surface_arrays
624
625    USE surface_data_output_mod,                                               &
626        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf,         &
627               dt_dosurf_av, surface_data_output,                              &
628               surface_data_output_averaging, skip_time_dosurf,                &
629               skip_time_dosurf_av, time_dosurf, time_dosurf_av
630
631    USE turbulence_closure_mod,                                                &
632        ONLY:  tcm_diffusivities, production_e_init
633
634    USE urban_surface_mod,                                                     &
635        ONLY:  usm_boundary_condition, usm_material_heat_model,                &
636               usm_material_model,                                             &
637               usm_surface_energy_balance, usm_green_heat_model
638
639    USE synthetic_turbulence_generator_mod,                                    &
640        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence,      &
641               stg_adjust, stg_main, time_stg_adjust, time_stg_call,           &
642               use_syn_turb_gen
643
644
645    USE wind_turbine_model_mod,                                                &
646        ONLY:  wtm_forces
647
648    USE lpm_mod,                                                               &
649        ONLY:  lpm
650
651    USE vertical_nesting_mod,                                                  &
652        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e,                &
653               vnest_boundary_conds, vnest_boundary_conds_khkm,                & 
654               vnest_deallocate, vnest_init, vnest_init_fine,                  &
655               vnest_start_time
656               
657    USE virtual_measurement_mod,                                               &
658        ONLY:  vm_data_output, vm_sampling, vm_time_start
659
660    IMPLICIT NONE
661
662    CHARACTER (LEN=9) ::  time_to_string   !<
663   
664    INTEGER(iwp)      ::  b !< index for aerosol size bins   
665    INTEGER(iwp)      ::  c !< index for chemical compounds in aerosol size bins
666    INTEGER(iwp)      ::  g !< index for gaseous compounds
667    INTEGER(iwp)      ::  lsp
668    INTEGER(iwp)      ::  lsp_usr   !<
669    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
670
671    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
672                            !< steering of run control output interval
673    REAL(wp) ::  time_since_reference_point_save  !< original value of
674                                                  !< time_since_reference_point
675
676
677! Copy data from arrays_3d
678!$ACC DATA &
679!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
680!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
681!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
682!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
683!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
684!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
685!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
686!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
687!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
688
689!$ACC DATA &
690!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
691!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
692!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
693!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
694!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
695!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
696!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
698!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
701
702!$ACC DATA &
703!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
704!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
705!$ACC COPYIN(zu(nzb:nzt+1)) &
706!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
707!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
708!$ACC COPYIN(ddzw(1:nzt+1)) &
709!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
710!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
711!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
712!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
713!$ACC COPYIN(ref_state(0:nz+1)) &
714!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
715!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
716!$ACC COPYIN(pt_init(0:nz+1)) &
717!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
718
719! Copy data from control_parameters
720!$ACC DATA &
721!$ACC COPYIN(tsc(1:5))
722
723! Copy data from indices
724!$ACC DATA &
725!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
726!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
727!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
728
729! Copy data from surface_mod
730!$ACC DATA &
731!$ACC COPYIN(bc_h(0:1)) &
732!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
733!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
734!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
735!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
736!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
737!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
738
739! Copy data from statistics
740!$ACC DATA &
741!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
742!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
743!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
744!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
745!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
746!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
747!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
748!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
749!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
750!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
751!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
752!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
753!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
754!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
755!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
756!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
757!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
758!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
759!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
760
761#ifdef _OPENACC
762    CALL enter_surface_arrays
763#endif
764
765!
766!-- At beginning determine the first time step
767    CALL timestep
768!
769!-- Synchronize the timestep in case of nested run.
770    IF ( nested_run )  THEN
771!
772!--    Synchronization by unifying the time step.
773!--    Global minimum of all time-steps is used for all.
774       CALL pmci_synchronize
775    ENDIF
776
777!
778!-- Determine and print out the run control quantities before the first time
779!-- step of this run. For the initial run, some statistics (e.g. divergence)
780!-- need to be determined first --> CALL flow_statistics at the beginning of
781!-- run_control
782    CALL run_control
783!
784!-- Data exchange between coupled models in case that a call has been omitted
785!-- at the end of the previous run of a job chain.
786    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled .AND. .NOT. vnested)  THEN
787!
788!--    In case of model termination initiated by the local model the coupler
789!--    must not be called because this would again cause an MPI hang.
790       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
791          CALL surface_coupler
792          time_coupling = time_coupling - dt_coupling
793       ENDDO
794       IF (time_coupling == 0.0_wp  .AND.                                      &
795           time_since_reference_point < dt_coupling )                          &
796       THEN
797          time_coupling = time_since_reference_point
798       ENDIF
799    ENDIF
800
801#if defined( __dvrp_graphics )
802!
803!-- Time measurement with dvrp software 
804    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
805#endif
806
807    CALL location_message( 'starting timestep-sequence', .TRUE. )
808!
809!-- Start of the time loop
810    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
811                .NOT. terminate_run )
812
813       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
814!
815!--    Vertical nesting: initialize fine grid
816       IF ( vnested ) THEN
817          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
818             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
819             CALL vnest_init_fine
820             vnest_init = .TRUE.
821             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
822          ENDIF
823       ENDIF
824!
825!--    Determine ug, vg and w_subs in dependence on data from external file
826!--    LSF_DATA
827       IF ( large_scale_forcing .AND. lsf_vert )  THEN
828           CALL ls_forcing_vert ( simulated_time )
829           sums_ls_l = 0.0_wp
830       ENDIF
831
832!
833!--    Set pt_init and q_init to the current profiles taken from
834!--    NUDGING_DATA
835       IF ( nudging )  THEN
836           CALL nudge_ref ( simulated_time )
837!
838!--        Store temperature gradient at the top boundary for possible Neumann
839!--        boundary condition
840           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
841           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
842           IF ( air_chemistry )  THEN
843              DO  lsp = 1, nspec
844                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)       &
845                                - chem_species(lsp)%conc_pr_init(nzt) )       &
846                               / dzu(nzt+1)
847              ENDDO
848           ENDIF
849       ENDIF
850!
851!--    If forcing by larger-scale models is applied, check if new data
852!--    at domain boundaries need to be read.
853       IF ( nesting_offline )  THEN
854          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point )&
855             CALL netcdf_data_input_offline_nesting
856       ENDIF
857
858!
859!--    Execute alle other module actions routunes
860       CALL module_interface_actions( 'before_timestep' )
861
862!
863!--    Calculate forces by wind turbines
864       IF ( wind_turbine )  CALL wtm_forces 
865       
866!
867!--    Start of intermediate step loop
868       intermediate_timestep_count = 0
869       DO  WHILE ( intermediate_timestep_count < &
870                   intermediate_timestep_count_max )
871
872          intermediate_timestep_count = intermediate_timestep_count + 1
873
874!
875!--       Set the steering factors for the prognostic equations which depend
876!--       on the timestep scheme
877          CALL timestep_scheme_steering
878
879!
880!--       Calculate those variables needed in the tendency terms which need
881!--       global communication
882          IF ( .NOT. use_single_reference_value  .AND. &
883               .NOT. use_initial_profile_as_reference )  THEN
884!
885!--          Horizontally averaged profiles to be used as reference state in
886!--          buoyancy terms (WARNING: only the respective last call of
887!--          calc_mean_profile defines the reference state!)
888             IF ( .NOT. neutral )  THEN
889                CALL calc_mean_profile( pt, 4 )
890                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
891             ENDIF
892             IF ( ocean_mode )  THEN
893                CALL calc_mean_profile( rho_ocean, 64 )
894                ref_state(:)  = hom(:,1,64,0)
895             ENDIF
896             IF ( humidity )  THEN
897                CALL calc_mean_profile( vpt, 44 )
898                ref_state(:)  = hom(:,1,44,0)
899             ENDIF
900!
901!--          Assure that ref_state does not become zero at any level
902!--          ( might be the case if a vertical level is completely occupied
903!--            with topography ).
904             ref_state = MERGE( MAXVAL(ref_state), ref_state,                  &
905                                ref_state == 0.0_wp )
906          ENDIF
907
908          IF ( .NOT. constant_diffusion )  CALL production_e_init
909          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
910               intermediate_timestep_count == 1 )  CALL ws_statistics
911!
912!--       In case of nudging calculate current nudging time scale and horizontal
913!--       means of u, v, pt and q
914          IF ( nudging )  THEN
915             CALL calc_tnudge( simulated_time )
916             CALL calc_mean_profile( u, 1 )
917             CALL calc_mean_profile( v, 2 )
918             CALL calc_mean_profile( pt, 4 )
919             CALL calc_mean_profile( q, 41 )
920          ENDIF
921
922!
923!--       Solve the prognostic equations. A fast cache optimized version with
924!--       only one single loop is used in case of Piascek-Williams advection
925!--       scheme. NEC vector machines use a different version, because
926!--       in the other versions a good vectorization is prohibited due to
927!--       inlining problems.
928          IF ( loop_optimization == 'cache' )  THEN
929             CALL prognostic_equations_cache
930          ELSEIF ( loop_optimization == 'vector' )  THEN
931             CALL prognostic_equations_vector
932          ENDIF
933
934!
935!--       Particle transport/physics with the Lagrangian particle model
936!--       (only once during intermediate steps, because it uses an Euler-step)
937!--       ### particle model should be moved before prognostic_equations, in order
938!--       to regard droplet interactions directly
939          IF ( particle_advection  .AND.                         &
940               time_since_reference_point >= particle_advection_start  .AND. &
941               intermediate_timestep_count == 1 )  THEN
942             CALL lpm
943             first_call_lpm = .FALSE.
944          ENDIF
945
946!
947!--       Interaction of droplets with temperature and mixing ratio.
948!--       Droplet condensation and evaporation is calculated within
949!--       advec_particles.
950          IF ( cloud_droplets  .AND.  &
951               intermediate_timestep_count == intermediate_timestep_count_max )&
952          THEN
953             CALL interaction_droplets_ptq
954          ENDIF
955
956!
957!--       Movement of agents in multi agent system
958          IF ( agents_active  .AND.                                            &
959               time_since_reference_point >= multi_agent_system_start  .AND.   &
960               time_since_reference_point <= multi_agent_system_end    .AND.   &
961               intermediate_timestep_count == 1 )  THEN
962             CALL multi_agent_system
963             first_call_mas = .FALSE.
964          ENDIF
965
966!
967!--       Exchange of ghost points (lateral boundary conditions)
968          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
969
970          CALL exchange_horiz( u_p, nbgp )
971          CALL exchange_horiz( v_p, nbgp )
972          CALL exchange_horiz( w_p, nbgp )
973          CALL exchange_horiz( pt_p, nbgp )
974          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
975          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence       &
976               .OR.  use_sgs_for_particles )  THEN
977             IF ( rans_tke_e )  THEN
978                CALL exchange_horiz( diss_p, nbgp )
979             ELSE
980                CALL exchange_horiz( diss, nbgp )
981             ENDIF
982          ENDIF
983          IF ( ocean_mode )  THEN
984             CALL exchange_horiz( sa_p, nbgp )
985             CALL exchange_horiz( rho_ocean, nbgp )
986             CALL exchange_horiz( prho, nbgp )
987          ENDIF
988          IF ( humidity )  THEN
989             CALL exchange_horiz( q_p, nbgp )
990             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
991                CALL exchange_horiz( qc_p, nbgp )
992                CALL exchange_horiz( nc_p, nbgp )
993             ENDIF
994             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
995                CALL exchange_horiz( qr_p, nbgp )
996                CALL exchange_horiz( nr_p, nbgp )
997             ENDIF
998          ENDIF
999          IF ( cloud_droplets )  THEN
1000             CALL exchange_horiz( ql, nbgp )
1001             CALL exchange_horiz( ql_c, nbgp )
1002             CALL exchange_horiz( ql_v, nbgp )
1003             CALL exchange_horiz( ql_vp, nbgp )
1004          ENDIF
1005          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1006          IF ( air_chemistry )  THEN
1007             DO  lsp = 1, nspec
1008                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1009!
1010!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1011                lsp_usr = 1
1012                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1013                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1014                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,              &
1015                                                chem_species(lsp)%conc_pr_init )
1016                   ENDIF
1017                   lsp_usr = lsp_usr + 1
1018                ENDDO
1019             ENDDO
1020          ENDIF
1021
1022          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )&
1023          THEN
1024             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'start' )
1025             DO  b = 1, nbins
1026                CALL exchange_horiz( aerosol_number(b)%conc_p, nbgp )
1027                CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1028                CALL salsa_boundary_conds( aerosol_number(b)%conc_p,           &
1029                                           aerosol_number(b)%init )
1030                CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1031                DO  c = 1, ncc_tot
1032                   CALL exchange_horiz( aerosol_mass((c-1)*nbins+b)%conc_p,    &
1033                                        nbgp )
1034                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1035                   CALL salsa_boundary_conds( aerosol_mass((c-1)*nbins+b)%conc_p,&
1036                                              aerosol_mass((c-1)*nbins+b)%init )
1037                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1038                ENDDO
1039             ENDDO
1040             IF ( .NOT. salsa_gases_from_chem )  THEN
1041                DO  g = 1, ngast
1042                   CALL exchange_horiz( salsa_gas(g)%conc_p, nbgp ) 
1043                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'start' )
1044                   CALL salsa_boundary_conds( salsa_gas(g)%conc_p,             &
1045                                              salsa_gas(g)%init )
1046                   CALL cpu_log( log_point_s(93), 'salsa decycle', 'stop' )
1047             ENDDO
1048             ENDIF
1049             CALL cpu_log( log_point_s(91), 'salsa exch-horiz ', 'stop' )
1050          ENDIF         
1051          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1052
1053!
1054!--       Boundary conditions for the prognostic quantities (except of the
1055!--       velocities at the outflow in case of a non-cyclic lateral wall)
1056          CALL boundary_conds
1057!
1058!--       Swap the time levels in preparation for the next time step.
1059          CALL swap_timelevel
1060
1061!
1062!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1063          IF ( vnest_init ) THEN
1064             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1065             CALL vnest_anterpolate
1066             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1067          ENDIF
1068
1069          IF ( nested_run )  THEN
1070
1071             CALL cpu_log( log_point(60), 'nesting', 'start' )
1072!
1073!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1074!--          and pmci_child_datatrans are called inside the wrapper
1075!--          subroutine pmci_datatrans according to the control parameters
1076!--          nesting_mode and nesting_datatransfer_mode.
1077!--          TO_DO: why is nesting_mode given as a parameter here?
1078             CALL pmci_datatrans( nesting_mode )
1079
1080             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
1081                  nesting_mode == 'vertical' )  THEN
1082!
1083!--             Exchange_horiz is needed for all parent-domains after the
1084!--             anterpolation
1085                CALL exchange_horiz( u, nbgp )
1086                CALL exchange_horiz( v, nbgp )
1087                CALL exchange_horiz( w, nbgp )
1088                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1089
1090                IF ( humidity )  THEN
1091
1092                   CALL exchange_horiz( q, nbgp )
1093
1094                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1095                       CALL exchange_horiz( qc, nbgp )
1096                       CALL exchange_horiz( nc, nbgp )
1097                   ENDIF
1098                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1099                       CALL exchange_horiz( qr, nbgp )
1100                       CALL exchange_horiz( nr, nbgp )
1101                   ENDIF
1102
1103                ENDIF
1104
1105                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1106               
1107                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1108
1109                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.         &
1110                                                      rans_tke_e )             &
1111                   CALL exchange_horiz( diss, nbgp )
1112
1113                IF ( air_chemistry )  THEN
1114                   DO  n = 1, nspec     
1115                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1116                   ENDDO
1117                ENDIF
1118
1119             ENDIF
1120!
1121!--          Set boundary conditions again after interpolation and anterpolation.
1122             CALL pmci_boundary_conds
1123
1124             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1125
1126          ENDIF
1127
1128!
1129!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1130!--       when a sloping surface is used
1131          IF ( sloping_surface )  THEN
1132             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
1133                                                    pt_slope_offset
1134             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
1135                                                    pt_slope_offset
1136          ENDIF
1137
1138!
1139!--       Impose a turbulent inflow using the recycling method
1140          IF ( turbulent_inflow )  CALL inflow_turbulence
1141
1142!
1143!--       Set values at outflow boundary using the special outflow condition
1144          IF ( turbulent_outflow )  CALL outflow_turbulence
1145
1146!
1147!--       Impose a random perturbation on the horizontal velocity field
1148          IF ( create_disturbances  .AND.                                      &
1149               ( call_psolver_at_all_substeps  .AND.                           &
1150               intermediate_timestep_count == intermediate_timestep_count_max )&
1151          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
1152               intermediate_timestep_count == 1 ) )                            &
1153          THEN
1154             time_disturb = time_disturb + dt_3d
1155             IF ( time_disturb >= dt_disturb )  THEN
1156                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
1157                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1158                   CALL disturb_field( 'u', tend, u )
1159                   CALL disturb_field( 'v', tend, v )
1160                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
1161                     .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )  &
1162                THEN
1163!
1164!--                Runs with a non-cyclic lateral wall need perturbations
1165!--                near the inflow throughout the whole simulation
1166                   dist_range = 1
1167                   CALL disturb_field( 'u', tend, u )
1168                   CALL disturb_field( 'v', tend, v )
1169                   dist_range = 0
1170                ENDIF
1171                time_disturb = time_disturb - dt_disturb
1172             ENDIF
1173          ENDIF
1174
1175!
1176!--       Map forcing data derived from larger scale model onto domain
1177!--       boundaries.
1178          IF ( nesting_offline  .AND.  intermediate_timestep_count ==          &
1179                                       intermediate_timestep_count_max  )      &
1180             CALL nesting_offl_bc
1181!
1182!--       Impose a turbulent inflow using synthetic generated turbulence,
1183!--       only once per time step.
1184          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.    &
1185             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1186             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1187             CALL stg_main
1188             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1189          ENDIF
1190!
1191!--       Ensure mass conservation. This need to be done after imposing
1192!--       synthetic turbulence and top boundary condition for pressure is set to
1193!--       Neumann conditions.
1194!--       Is this also required in case of Dirichlet?
1195          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1196!
1197!--       Reduce the velocity divergence via the equation for perturbation
1198!--       pressure.
1199          IF ( intermediate_timestep_count == 1  .OR. &
1200                call_psolver_at_all_substeps )  THEN
1201
1202             IF (  vnest_init ) THEN
1203!
1204!--             Compute pressure in the CG, interpolate top boundary conditions
1205!--             to the FG and then compute pressure in the FG
1206                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1207
1208                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1209                CALL vnest_boundary_conds
1210                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1211 
1212                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1213
1214!--             Anterpolate TKE, satisfy Germano Identity
1215                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1216                CALL vnest_anterpolate_e
1217                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1218
1219             ELSE
1220
1221                CALL pres
1222
1223             ENDIF
1224
1225          ENDIF
1226
1227!
1228!--       If required, compute liquid water content
1229          IF ( bulk_cloud_model )  THEN
1230             CALL calc_liquid_water_content
1231          ENDIF
1232!
1233!--       If required, compute virtual potential temperature
1234          IF ( humidity )  THEN
1235             CALL compute_vpt 
1236          ENDIF 
1237
1238!
1239!--       Compute the diffusion quantities
1240          IF ( .NOT. constant_diffusion )  THEN
1241
1242!
1243!--          Determine surface fluxes shf and qsws and surface values
1244!--          pt_surface and q_surface in dependence on data from external
1245!--          file LSF_DATA respectively
1246             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
1247                 intermediate_timestep_count == intermediate_timestep_count_max )&
1248             THEN
1249                CALL ls_forcing_surf( simulated_time )
1250             ENDIF
1251
1252!
1253!--          First the vertical (and horizontal) fluxes in the surface
1254!--          (constant flux) layer are computed
1255             IF ( constant_flux_layer )  THEN
1256                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1257                CALL surface_layer_fluxes
1258                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1259             ENDIF
1260!
1261!--          If required, solve the energy balance for the surface and run soil
1262!--          model. Call for horizontal as well as vertical surfaces
1263             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1264
1265                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1266!
1267!--             Call for horizontal upward-facing surfaces
1268                CALL lsm_energy_balance( .TRUE., -1 )
1269                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1270!
1271!--             Call for northward-facing surfaces
1272                CALL lsm_energy_balance( .FALSE., 0 )
1273                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1274!
1275!--             Call for southward-facing surfaces
1276                CALL lsm_energy_balance( .FALSE., 1 )
1277                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1278!
1279!--             Call for eastward-facing surfaces
1280                CALL lsm_energy_balance( .FALSE., 2 )
1281                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1282!
1283!--             Call for westward-facing surfaces
1284                CALL lsm_energy_balance( .FALSE., 3 )
1285                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1286               
1287!
1288!--             At the end, set boundary conditons for potential temperature
1289!--             and humidity after running the land-surface model. This
1290!--             might be important for the nesting, where arrays are transfered.
1291                CALL lsm_boundary_condition
1292
1293               
1294                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1295             ENDIF
1296!
1297!--          If required, solve the energy balance for urban surfaces and run
1298!--          the material heat model
1299             IF (urban_surface) THEN
1300                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1301               
1302                CALL usm_surface_energy_balance( .FALSE. )
1303                IF ( usm_material_model )  THEN
1304                   CALL usm_green_heat_model
1305                   CALL usm_material_heat_model ( .FALSE. )
1306                ENDIF
1307
1308!
1309!--             At the end, set boundary conditons for potential temperature
1310!--             and humidity after running the urban-surface model. This
1311!--             might be important for the nesting, where arrays are transfered.
1312                CALL usm_boundary_condition
1313
1314                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1315             ENDIF
1316!
1317!--          Compute the diffusion coefficients
1318             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1319             IF ( .NOT. humidity ) THEN
1320                IF ( ocean_mode )  THEN
1321                   CALL tcm_diffusivities( prho, prho_reference )
1322                ELSE
1323                   CALL tcm_diffusivities( pt, pt_reference )
1324                ENDIF
1325             ELSE
1326                CALL tcm_diffusivities( vpt, pt_reference )
1327             ENDIF
1328             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1329!
1330!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1331             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1332
1333          ENDIF
1334
1335!
1336!--       If required, calculate radiative fluxes and heating rates
1337          IF ( radiation .AND. intermediate_timestep_count                     &
1338               == intermediate_timestep_count_max .AND. time_since_reference_point >    &
1339               skip_time_do_radiation )  THEN
1340
1341               time_radiation = time_radiation + dt_3d
1342
1343             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
1344             THEN
1345
1346                CALL cpu_log( log_point(50), 'radiation', 'start' )
1347
1348                IF ( .NOT. force_radiation_call )  THEN
1349                   time_radiation = time_radiation - dt_radiation
1350                ENDIF
1351
1352!
1353!--             Adjust the current time to the time step of the radiation model.
1354!--             Needed since radiation is pre-calculated and stored only on apparent
1355!--             solar positions
1356                time_since_reference_point_save = time_since_reference_point
1357                time_since_reference_point =                                   &
1358                                    REAL( FLOOR( time_since_reference_point /  &
1359                                                 dt_radiation), wp )           &
1360                                             * dt_radiation
1361
1362                CALL radiation_control
1363
1364                IF ( ( urban_surface  .OR.  land_surface )  .AND.               &
1365                     radiation_interactions )  THEN
1366                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1367                   CALL radiation_interaction
1368                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1369                ENDIF
1370   
1371!
1372!--             Return the current time to its original value
1373                time_since_reference_point = time_since_reference_point_save
1374
1375                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1376
1377             ENDIF
1378          ENDIF
1379
1380       ENDDO   ! Intermediate step loop
1381
1382!
1383!--    Will be used at some point by flow_statistics.
1384       !$ACC UPDATE &
1385       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1386       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1387       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1388       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1389       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1390       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1391       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1392       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1393       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1394       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1395       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1396       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1397       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1398       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1399       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1400
1401!
1402!--    If required, consider chemical emissions
1403       IF ( air_chemistry  .AND.  do_emis )  THEN
1404!
1405!--       Update the time --> kanani: revise location of this CALL
1406          CALL calc_date_and_time
1407!
1408!--       Call emission routine only once an hour
1409          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1410             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1411             hour_call_emis = hour_of_year
1412          ENDIF
1413       ENDIF
1414
1415!
1416!--    If required, calculate indoor temperature, waste heat, heat flux
1417!--    through wall, etc.
1418!--    dt_indoor steers the frequency of the indoor model calculations.
1419!--    Note, at first timestep indoor model is called, in order to provide
1420!--    a waste heat flux.
1421       IF ( indoor_model )  THEN
1422
1423          time_indoor = time_indoor + dt_3d
1424
1425          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  &
1426          THEN
1427
1428             time_indoor = time_indoor - dt_indoor
1429
1430             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1431             CALL im_main_heatcool
1432             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1433
1434          ENDIF
1435       ENDIF
1436!
1437!--    Increase simulation time and output times
1438       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1439       current_timestep_number    = current_timestep_number + 1
1440       simulated_time             = simulated_time   + dt_3d
1441       time_since_reference_point = simulated_time - coupling_start_time
1442       simulated_time_chr         = time_to_string( time_since_reference_point )
1443
1444
1445
1446
1447       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1448          time_do_av         = time_do_av       + dt_3d
1449       ENDIF
1450       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1451          time_do2d_xy       = time_do2d_xy     + dt_3d
1452       ENDIF
1453       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1454          time_do2d_xz       = time_do2d_xz     + dt_3d
1455       ENDIF
1456       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1457          time_do2d_yz       = time_do2d_yz     + dt_3d
1458       ENDIF
1459       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1460          time_do3d          = time_do3d        + dt_3d
1461       ENDIF
1462       DO  mid = 1, masks
1463          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1464             time_domask(mid)= time_domask(mid) + dt_3d
1465          ENDIF
1466       ENDDO
1467       time_dvrp          = time_dvrp        + dt_3d
1468       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1469          time_dosp       = time_dosp        + dt_3d
1470       ENDIF
1471       time_dots          = time_dots        + dt_3d
1472       IF ( .NOT. first_call_lpm )  THEN
1473          time_dopts      = time_dopts       + dt_3d
1474       ENDIF
1475       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1476          time_dopr       = time_dopr        + dt_3d
1477       ENDIF
1478       time_dopr_listing  = time_dopr_listing + dt_3d
1479       time_run_control   = time_run_control + dt_3d
1480!
1481!--    Increment time-counter for surface output
1482       IF ( surface_output )  THEN
1483          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1484             time_dosurf    = time_dosurf + dt_3d
1485          ENDIF
1486          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1487             time_dosurf_av = time_dosurf_av + dt_3d
1488          ENDIF
1489       ENDIF
1490!
1491!--    In case of synthetic turbulence generation and parametrized turbulence
1492!--    information, update the time counter and if required, adjust the
1493!--    STG to new atmospheric conditions.
1494       IF ( use_syn_turb_gen  )  THEN
1495          IF ( parametrize_inflow_turbulence )  THEN
1496             time_stg_adjust = time_stg_adjust + dt_3d
1497             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1498                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1499                CALL stg_adjust
1500                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1501             ENDIF
1502          ENDIF
1503          time_stg_call = time_stg_call + dt_3d
1504       ENDIF
1505
1506!
1507!--    Data exchange between coupled models
1508       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled                   &
1509                                          .AND. .NOT. vnested )  THEN
1510          time_coupling = time_coupling + dt_3d
1511
1512!
1513!--       In case of model termination initiated by the local model
1514!--       (terminate_coupled > 0), the coupler must be skipped because it would
1515!--       cause an MPI intercomminucation hang.
1516!--       If necessary, the coupler will be called at the beginning of the
1517!--       next restart run.
1518          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
1519             CALL surface_coupler
1520             time_coupling = time_coupling - dt_coupling
1521          ENDDO
1522       ENDIF
1523
1524!
1525!--    Biometeorology calculation of stationary thermal indices
1526!--    Todo (kanani): biometeorology needs own time_... treatment.
1527!--                   It might be that time_do2d_xy differs from time_do3d,
1528!--                   and then we might get trouble with the biomet output,
1529!--                   because we can have 2d and/or 3d biomet output!!
1530       IF (         biometeorology  &
1531             .AND.  ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )          &
1532                      .OR.                                                                                   &
1533                      ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1534                    ) )  THEN
1535!
1536!--       If required, do thermal comfort calculations
1537          IF ( thermal_comfort )  THEN
1538             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1539          ENDIF
1540!
1541!--       If required, do UV exposure calculations
1542          IF ( uv_exposure )  THEN
1543             CALL uvem_calc_exposure
1544          ENDIF
1545       ENDIF
1546
1547!
1548!--    Execute alle other module actions routunes
1549       CALL module_interface_actions( 'after_integration' )
1550
1551!
1552!--    If Galilei transformation is used, determine the distance that the
1553!--    model has moved so far
1554       IF ( galilei_transformation )  THEN
1555          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1556          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1557       ENDIF
1558
1559!
1560!--    Check, if restart is necessary (because cpu-time is expiring or
1561!--    because it is forced by user) and set stop flag
1562!--    This call is skipped if the remote model has already initiated a restart.
1563       IF ( .NOT. terminate_run )  CALL check_for_restart
1564
1565!
1566!--    Carry out statistical analysis and output at the requested output times.
1567!--    The MOD function is used for calculating the output time counters (like
1568!--    time_dopr) in order to regard a possible decrease of the output time
1569!--    interval in case of restart runs
1570
1571!
1572!--    Set a flag indicating that so far no statistics have been created
1573!--    for this time step
1574       flow_statistics_called = .FALSE.
1575
1576!
1577!--    If required, call flow_statistics for averaging in time
1578       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
1579            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
1580            time_since_reference_point >= skip_time_dopr )  THEN
1581          time_dopr_av = time_dopr_av + dt_3d
1582          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1583             do_sum = .TRUE.
1584             time_dopr_av = MOD( time_dopr_av, &
1585                                    MAX( dt_averaging_input_pr, dt_3d ) )
1586          ENDIF
1587       ENDIF
1588       IF ( do_sum )  CALL flow_statistics
1589
1590!
1591!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1592       IF ( averaging_interval /= 0.0_wp  .AND.                                &
1593            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.    &
1594            time_since_reference_point >= skip_time_data_output_av )           &
1595       THEN
1596          time_do_sla = time_do_sla + dt_3d
1597          IF ( time_do_sla >= dt_averaging_input )  THEN
1598             CALL sum_up_3d_data
1599             average_count_3d = average_count_3d + 1
1600             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1601          ENDIF
1602       ENDIF
1603!
1604!--    Average surface data
1605       IF ( surface_output )  THEN
1606          IF (         averaging_interval_surf /= 0.0_wp                               &
1607                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf    &
1608                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1609             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1610                CALL surface_data_output_averaging
1611                average_count_surf = average_count_surf + 1
1612             ENDIF
1613          ENDIF
1614       ENDIF
1615
1616!
1617!--    Calculate spectra for time averaging
1618       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
1619            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
1620            time_since_reference_point >= skip_time_dosp )  THEN
1621          time_dosp_av = time_dosp_av + dt_3d
1622          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1623             CALL calc_spectra
1624             time_dosp_av = MOD( time_dosp_av, &
1625                                 MAX( dt_averaging_input_pr, dt_3d ) )
1626          ENDIF
1627       ENDIF
1628
1629!
1630!--    Call flight module and output data
1631       IF ( virtual_flight )  THEN
1632          CALL flight_measurement
1633          CALL data_output_flight
1634       ENDIF
1635!
1636!--    Take virtual measurements
1637       IF ( virtual_measurement  .AND.                                         &
1638            vm_time_start <= time_since_reference_point )  THEN
1639          CALL vm_sampling
1640          CALL vm_data_output
1641       ENDIF
1642
1643!
1644!--    Profile output (ASCII) on file
1645       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1646          CALL print_1d
1647          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing,    &
1648                                                           dt_3d ) )
1649       ENDIF
1650
1651!
1652!--    Graphic output for PROFIL
1653       IF (        time_dopr >= dt_dopr                                        &
1654            .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1655          IF ( dopr_n /= 0 )  CALL data_output_profiles
1656          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1657          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1658       ENDIF
1659
1660!
1661!--    Graphic output for time series
1662       IF ( time_dots >= dt_dots )  THEN
1663          CALL data_output_tseries
1664          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1665       ENDIF
1666
1667!
1668!--    Output of spectra (formatted for use with PROFIL), in case of no
1669!--    time averaging, spectra has to be calculated before
1670       IF (         time_dosp >= dt_dosp                                       &
1671             .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1672          IF ( average_count_sp == 0 )  CALL calc_spectra
1673          CALL data_output_spectra
1674          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1675       ENDIF
1676
1677!
1678!--    2d-data output (cross-sections)
1679       IF (         time_do2d_xy >= dt_do2d_xy                                 &
1680             .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1681          CALL data_output_2d( 'xy', 0 )
1682          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1683       ENDIF
1684       IF (         time_do2d_xz >= dt_do2d_xz                                 &
1685             .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1686          CALL data_output_2d( 'xz', 0 )
1687          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1688       ENDIF
1689       IF (         time_do2d_yz >= dt_do2d_yz                                 &
1690             .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1691          CALL data_output_2d( 'yz', 0 )
1692          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1693       ENDIF
1694
1695!
1696!--    3d-data output (volume data)
1697       IF (         time_do3d >= dt_do3d                                       &
1698             .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1699          CALL data_output_3d( 0 )
1700          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1701       ENDIF
1702
1703!
1704!--    Masked data output
1705       DO  mid = 1, masks
1706          IF (         time_domask(mid) >= dt_domask(mid)                      &
1707                .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1708             CALL data_output_mask( 0 )
1709             time_domask(mid) = MOD( time_domask(mid),                         &
1710                                     MAX( dt_domask(mid), dt_3d ) )
1711          ENDIF
1712       ENDDO
1713
1714!
1715!--    Output of time-averaged 2d/3d/masked data
1716       IF (         time_do_av >= dt_data_output_av                            &
1717             .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1718          CALL average_3d_data
1719!
1720!--       Udate thermal comfort indices based on updated averaged input
1721          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1722             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1723          ENDIF
1724          CALL data_output_2d( 'xy', 1 )
1725          CALL data_output_2d( 'xz', 1 )
1726          CALL data_output_2d( 'yz', 1 )
1727          CALL data_output_3d( 1 )
1728          DO  mid = 1, masks
1729             CALL data_output_mask( 1 )
1730          ENDDO
1731          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1732       ENDIF
1733!
1734!--    Output of surface data, instantaneous and averaged data
1735       IF ( surface_output )  THEN
1736          IF (         time_dosurf >= dt_dosurf                                &
1737                .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1738             CALL surface_data_output( 0 )
1739             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1740          ENDIF
1741          IF (         time_dosurf_av >= dt_dosurf_av                          &
1742                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1743             CALL surface_data_output( 1 )
1744             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1745          ENDIF
1746       ENDIF
1747
1748!
1749!--    Output of particle time series
1750       IF ( particle_advection )  THEN
1751          IF ( time_dopts >= dt_dopts  .OR.                                    &
1752               ( time_since_reference_point >= particle_advection_start  .AND. &
1753                 first_call_lpm ) )  THEN
1754             CALL data_output_ptseries
1755             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1756          ENDIF
1757       ENDIF
1758
1759!
1760!--    Output of dvrp-graphics (isosurface, particles, slicer)
1761#if defined( __dvrp_graphics )
1762       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1763#endif
1764       IF ( time_dvrp >= dt_dvrp )  THEN
1765          CALL data_output_dvrp
1766          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1767       ENDIF
1768#if defined( __dvrp_graphics )
1769       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1770#endif
1771
1772!
1773!--    If required, set the heat flux for the next time step to a random value
1774       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1775          IF ( surf_def_h(0)%ns >= 1 )  THEN
1776             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1777             CALL disturb_heatflux( surf_def_h(0) )
1778             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1779          ENDIF
1780          IF ( surf_lsm_h%ns    >= 1 )  THEN
1781             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1782             CALL disturb_heatflux( surf_lsm_h    )
1783             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1784          ENDIF
1785          IF ( surf_usm_h%ns    >= 1 )  THEN
1786             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1787             CALL disturb_heatflux( surf_usm_h    )
1788             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1789          ENDIF
1790       ENDIF
1791
1792!
1793!--    Execute alle other module actions routunes
1794       CALL module_interface_actions( 'after_timestep' )
1795
1796!
1797!--    Determine size of next time step. Save timestep dt_3d because it is
1798!--    newly calculated in routine timestep, but required further below for
1799!--    steering the run control output interval
1800       dt_3d_old = dt_3d
1801       CALL timestep
1802
1803!
1804!--    Synchronize the timestep in case of nested run.
1805       IF ( nested_run )  THEN
1806!
1807!--       Synchronize by unifying the time step.
1808!--       Global minimum of all time-steps is used for all.
1809          CALL pmci_synchronize
1810       ENDIF
1811
1812!
1813!--    Computation and output of run control parameters.
1814!--    This is also done whenever perturbations have been imposed
1815       IF ( time_run_control >= dt_run_control  .OR.                     &
1816            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1817       THEN
1818          CALL run_control
1819          IF ( time_run_control >= dt_run_control )  THEN
1820             time_run_control = MOD( time_run_control, &
1821                                     MAX( dt_run_control, dt_3d_old ) )
1822          ENDIF
1823       ENDIF
1824
1825!
1826!--    Output elapsed simulated time in form of a progress bar on stdout
1827       IF ( myid == 0 )  CALL output_progress_bar
1828
1829       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1830
1831
1832    ENDDO   ! time loop
1833
1834#ifdef _OPENACC
1835    CALL exit_surface_arrays
1836#endif
1837!$ACC END DATA
1838!$ACC END DATA
1839!$ACC END DATA
1840!$ACC END DATA
1841!$ACC END DATA
1842!$ACC END DATA
1843!$ACC END DATA
1844
1845!
1846!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1847    IF ( vnest_init )  CALL vnest_deallocate
1848
1849    IF ( myid == 0 )  CALL finish_progress_bar
1850
1851#if defined( __dvrp_graphics )
1852    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1853#endif
1854
1855    CALL location_message( 'finished time-stepping', .TRUE. )
1856
1857 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.