source: palm/trunk/SOURCE/time_integration.f90 @ 70

Last change on this file since 70 was 63, checked in by raasch, 18 years ago

preliminary changes concerning update of BC-scheme

  • Property svn:keywords set to Id
File size: 16.3 KB
RevLine 
[1]1 SUBROUTINE time_integration
2
3!------------------------------------------------------------------------------!
4! Actual revisions:
5! -----------------
[46]6! Move call of user_actions( 'after_integration' ) below increment of times
[63]7! and counters,
8! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
9! .._vector, these calls are now controlled by switch loop_optimization
[1]10!
11! Former revisions:
12! -----------------
[3]13! $Id: time_integration.f90 63 2007-03-13 03:52:49Z raasch $
14! RCS Log replace by Id keyword, revision history cleaned up
15!
[1]16! Revision 1.8  2006/08/22 14:16:05  raasch
17! Disturbances are imposed only for the last Runge-Kutta-substep
18!
19! Revision 1.2  2004/04/30 13:03:40  raasch
20! decalpha-specific warning removed, routine name changed to time_integration,
21! particle advection is carried out only once during the intermediate steps,
22! impulse_advec renamed momentum_advec
23!
24! Revision 1.1  1997/08/11 06:19:04  raasch
25! Initial revision
26!
27!
28! Description:
29! ------------
30! Integration in time of the model equations, statistical analysis and graphic
31! output
32!------------------------------------------------------------------------------!
33
34    USE arrays_3d
35    USE averaging
36    USE control_parameters
37    USE cpulog
38#if defined( __dvrp_graphics )
39    USE DVRP
40#endif
41    USE grid_variables
42    USE indices
43    USE interaction_droplets_ptq_mod
44    USE interfaces
45    USE particle_attributes
46    USE pegrid
47    USE prognostic_equations_mod
48    USE statistics
49    USE user_actions_mod
50
51    IMPLICIT NONE
52
53    CHARACTER (LEN=9) ::  time_to_string
54    INTEGER ::  i, j, k
55
56!
57!-- At the beginning of a simulation determine the time step as well as
58!-- determine and print out the run control parameters
59    IF ( simulated_time == 0.0 )  CALL timestep
60    CALL run_control
61
62#if defined( __dvrp_graphics )
63!
64!-- Time measurement with dvrp software 
65    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
66#endif
67
68!
69!-- Start of the time loop
70    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
71                .NOT. terminate_run )
72
73       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
74
75!
76!--    Determine size of next time step
77       IF ( simulated_time /= 0.0 )  CALL timestep
78
79!
80!--    Execute the user-defined actions
81       CALL user_actions( 'before_timestep' )
82
83!
84!--    Start of intermediate step loop
85       intermediate_timestep_count = 0
86       DO  WHILE ( intermediate_timestep_count < &
87                   intermediate_timestep_count_max )
88
89          intermediate_timestep_count = intermediate_timestep_count + 1
90
91!
92!--       Set the steering factors for the prognostic equations which depend
93!--       on the timestep scheme
94          CALL timestep_scheme_steering
95
96!
97!--       Solve the prognostic equations. A fast cache optimized version with
98!--       only one single loop is used in case of Piascek-Williams advection
99!--       scheme. NEC vector machines use a different version, because
100!--       in the other versions a good vectorization is prohibited due to
101!--       inlining problems.
[63]102          IF ( loop_optimization == 'vector' )  THEN
103             CALL prognostic_equations_vector
[1]104          ELSE
105             IF ( momentum_advec == 'ups-scheme'  .OR.  &
106                  scalar_advec == 'ups-scheme'   .OR.  &
107                  scalar_advec == 'bc-scheme' )        &
108             THEN
[63]109                CALL prognostic_equations_noopt
[1]110             ELSE
[63]111                CALL prognostic_equations_cache
[1]112             ENDIF
113          ENDIF
114
115!
116!--       Particle advection (only once during intermediate steps, because
117!--       it uses an Euler-step)
[63]118          IF ( particle_advection  .AND.                         &
119               simulated_time >= particle_advection_start  .AND. &
[1]120               intermediate_timestep_count == 1 )  THEN
121             CALL advec_particles
122             first_call_advec_particles = .FALSE.
123          ENDIF
124
125!
126!--       Interaction of droplets with temperature and specific humidity.
127!--       Droplet condensation and evaporation is calculated within
128!--       advec_particles.
129          IF ( cloud_droplets  .AND.  &
130               intermediate_timestep_count == intermediate_timestep_count_max )&
131          THEN
132             CALL interaction_droplets_ptq
133          ENDIF
134
135!
136!--       Exchange of ghost points (lateral boundary conditions)
137          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
138          CALL exchange_horiz( u_p, uxrp,    0 )
139          CALL exchange_horiz( v_p,    0, vynp )
140          CALL exchange_horiz( w_p,    0,    0 )
141          CALL exchange_horiz( pt_p,   0,    0 )
142          IF ( .NOT. constant_diffusion       )  CALL exchange_horiz( e_p, 0, 0)
143          IF ( moisture  .OR.  passive_scalar )  CALL exchange_horiz( q_p, 0, 0)
144          IF ( cloud_droplets )  THEN
145             CALL exchange_horiz( ql,    0, 0 )
146             CALL exchange_horiz( ql_c,  0, 0 )
147             CALL exchange_horiz( ql_v,  0, 0 )
148             CALL exchange_horiz( ql_vp, 0, 0 )
149          ENDIF
150
151          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
152
153!
154!--       Apply time filter in case of leap-frog timestep
155          IF ( tsc(2) == 2.0  .AND.  timestep_scheme(1:8) == 'leapfrog' )  THEN
156             CALL asselin_filter
157          ENDIF
158
159!
160!--       Swap the time levels in preparation for the next time step.
161          CALL swap_timelevel
162
163!
164!--       Boundary conditions for the prognostic quantities (except of the
165!--       velocities at the outflow in case of a non-cyclic lateral wall)
166          CALL boundary_conds( 'main' )
167
168!
169!--       Temperature offset must be imposed at cyclic boundaries in x-direction
170!--       when a sloping surface is used
171          IF ( sloping_surface )  THEN
172             IF ( nxl ==  0 )  pt(:,:,nxl-1) = pt(:,:,nxl-1) - pt_slope_offset
173             IF ( nxr == nx )  pt(:,:,nxr+1) = pt(:,:,nxr+1) + pt_slope_offset
174          ENDIF
175
176!
177!--       Impose a random perturbation on the horizontal velocity field
178          IF ( create_disturbances  .AND.  &
179               intermediate_timestep_count == intermediate_timestep_count_max )&
180          THEN
181             time_disturb = time_disturb + dt_3d
182             IF ( time_disturb >= dt_disturb )  THEN
183                IF ( hom(nzb+5,1,var_hom,0) < disturbance_energy_limit )  THEN
184                   CALL disturb_field( nzb_u_inner, tend, u, uxrp, 0    )
185                   CALL disturb_field( nzb_v_inner, tend, v ,   0, vynp )
186                ELSEIF ( bc_lr /= 'cyclic'  .OR.  bc_ns /= 'cyclic' )  THEN
187!
188!--                Runs with a non-cyclic lateral wall need perturbations
189!--                near the inflow throughout the whole simulation
190                   dist_range = 1
191                   CALL disturb_field( nzb_u_inner, tend, u, uxrp, 0    )
192                   CALL disturb_field( nzb_v_inner, tend, v ,   0, vynp )
193                   dist_range = 0
194                ENDIF
195                time_disturb = time_disturb - dt_disturb
196             ENDIF
197          ENDIF
198
199!
200!--       Reduce the velocity divergence via the equation for perturbation
201!--       pressure.
202          IF ( intermediate_timestep_count == intermediate_timestep_count_max &
203               .OR.  call_psolver_at_all_substeps )  THEN
204             CALL pres
205          ENDIF
206
207!
208!--       In case of a non-cyclic lateral wall, set the boundary conditions for
209!--       the velocities at the outflow
210          IF ( bc_lr /= 'cyclic'  .OR.  bc_ns /= 'cyclic' )  THEN
211             CALL boundary_conds( 'outflow_uvw' )
212          ENDIF
213
214!
215!--       If required, compute virtuell potential temperature
216          IF ( moisture ) CALL compute_vpt
217
218!
219!--       If required, compute liquid water content
220          IF ( cloud_physics ) CALL calc_liquid_water_content
221
222!
223!--       Compute the diffusion quantities
224          IF ( .NOT. constant_diffusion )  THEN
225
226!
227!--          First the vertical fluxes in the Prandtl layer are being computed
228             IF ( prandtl_layer )  THEN
229                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
230                CALL prandtl_fluxes
231                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
232             ENDIF
233
234!
235!--          Compute the diffusion coefficients
236             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
237             IF ( .NOT. moisture ) THEN
238                CALL diffusivities( pt )
239             ELSE
240                CALL diffusivities( vpt )
241             ENDIF
242             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
243
244          ENDIF
245
246       ENDDO   ! Intermediate step loop
247
248!
249!--    Increase simulation time and output times
250       current_timestep_number = current_timestep_number + 1
251       simulated_time     = simulated_time   + dt_3d
252       simulated_time_chr = time_to_string( simulated_time )
253       IF ( simulated_time >= skip_time_data_output_av )  THEN
254          time_do_av         = time_do_av       + dt_3d
255       ENDIF
256       IF ( simulated_time >= skip_time_do2d_xy )  THEN
257          time_do2d_xy       = time_do2d_xy     + dt_3d
258       ENDIF
259       IF ( simulated_time >= skip_time_do2d_xz )  THEN
260          time_do2d_xz       = time_do2d_xz     + dt_3d
261       ENDIF
262       IF ( simulated_time >= skip_time_do2d_yz )  THEN
263          time_do2d_yz       = time_do2d_yz     + dt_3d
264       ENDIF
265       IF ( simulated_time >= skip_time_do3d    )  THEN
266          time_do3d          = time_do3d        + dt_3d
267       ENDIF
268       time_dvrp          = time_dvrp        + dt_3d
269       IF ( simulated_time >= skip_time_dosp )  THEN
270          time_dosp       = time_dosp        + dt_3d
271       ENDIF
272       time_dots          = time_dots        + dt_3d
273       IF ( .NOT. first_call_advec_particles )  THEN
274          time_dopts      = time_dopts       + dt_3d
275       ENDIF
276       IF ( simulated_time >= skip_time_dopr )  THEN
277          time_dopr       = time_dopr        + dt_3d
278       ENDIF
279       time_dopr_listing          = time_dopr_listing        + dt_3d
280       time_run_control   = time_run_control + dt_3d
281
282!
[46]283!--    Execute user-defined actions
284       CALL user_actions( 'after_integration' )
285
286!
[1]287!--    If Galilei transformation is used, determine the distance that the
288!--    model has moved so far
289       IF ( galilei_transformation )  THEN
290          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
291          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
292       ENDIF
293
294!
295!--    Check, if restart is necessary (because cpu-time is expiring or
296!--    because it is forced by user) and set stop flag
297       CALL check_for_restart
298
299!
300!--    Carry out statistical analysis and output at the requested output times.
301!--    The MOD function is used for calculating the output time counters (like
302!--    time_dopr) in order to regard a possible decrease of the output time
303!--    interval in case of restart runs
304
305!
306!--    Set a flag indicating that so far no statistics have been created
307!--    for this time step
308       flow_statistics_called = .FALSE.
309
310!
311!--    If required, call flow_statistics for averaging in time
312       IF ( averaging_interval_pr /= 0.0  .AND.  &
313            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
314            simulated_time >= skip_time_dopr )  THEN
315          time_dopr_av = time_dopr_av + dt_3d
316          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
317             do_sum = .TRUE.
318             time_dopr_av = MOD( time_dopr_av, &
319                                    MAX( dt_averaging_input_pr, dt_3d ) )
320          ENDIF
321       ENDIF
322       IF ( do_sum )  CALL flow_statistics
323
324!
325!--    Sum-up 3d-arrays for later output of time-averaged data
326       IF ( averaging_interval /= 0.0  .AND.                                &
327            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
328            simulated_time >= skip_time_data_output_av )                    &
329       THEN
330          time_do_sla = time_do_sla + dt_3d
331          IF ( time_do_sla >= dt_averaging_input )  THEN
332             CALL sum_up_3d_data
333             average_count_3d = average_count_3d + 1
334             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
335          ENDIF
336       ENDIF
337
338!
339!--    Calculate spectra for time averaging
340       IF ( averaging_interval_sp /= 0.0  .AND.  &
341            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
342            simulated_time >= skip_time_dosp )  THEN
343          time_dosp_av = time_dosp_av + dt_3d
344          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
345             CALL calc_spectra
346             time_dosp_av = MOD( time_dosp_av, &
347                                 MAX( dt_averaging_input_pr, dt_3d ) )
348          ENDIF
349       ENDIF
350
351!
352!--    Computation and output of run control parameters.
353!--    This is also done whenever the time step has changed or perturbations
354!--    have been imposed
355       IF ( time_run_control >= dt_run_control  .OR.                     &
356            ( dt_changed  .AND.  timestep_scheme(1:5) /= 'runge' )  .OR. &
357            disturbance_created )                                        &
358       THEN
359          CALL run_control
360          IF ( time_run_control >= dt_run_control )  THEN
361             time_run_control = MOD( time_run_control, &
362                                     MAX( dt_run_control, dt_3d ) )
363          ENDIF
364       ENDIF
365
366!
367!--    Profile output (ASCII) on file
368       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
369          CALL print_1d
370          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
371                                                           dt_3d ) )
372       ENDIF
373
374!
375!--    Graphic output for PROFIL
376       IF ( time_dopr >= dt_dopr )  THEN
377          IF ( dopr_n /= 0 )  CALL data_output_profiles
378          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
379          time_dopr_av = 0.0    ! due to averaging (see above)
380       ENDIF
381
382!
383!--    Graphic output for time series
384       IF ( time_dots >= dt_dots )  THEN
[48]385          CALL data_output_tseries
[1]386          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
387       ENDIF
388
389!
390!--    Output of spectra (formatted for use with PROFIL), in case of no
391!--    time averaging, spectra has to be calculated before
392       IF ( time_dosp >= dt_dosp )  THEN
393          IF ( average_count_sp == 0 )  CALL calc_spectra
394          CALL data_output_spectra
395          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
396       ENDIF
397
398!
399!--    2d-data output (cross-sections)
400       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
401          CALL data_output_2d( 'xy', 0 )
402          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
403       ENDIF
404       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
405          CALL data_output_2d( 'xz', 0 )
406          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
407       ENDIF
408       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
409          CALL data_output_2d( 'yz', 0 )
410          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
411       ENDIF
412
413!
414!--    3d-data output (volume data)
415       IF ( time_do3d >= dt_do3d )  THEN
416          CALL data_output_3d( 0 )
417          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
418       ENDIF
419
420!
421!--    Output of time-averaged 2d/3d-data
422       IF ( time_do_av >= dt_data_output_av )  THEN
423          CALL average_3d_data
424          CALL data_output_2d( 'xy', 1 )
425          CALL data_output_2d( 'xz', 1 )
426          CALL data_output_2d( 'yz', 1 )
427          CALL data_output_3d( 1 )
428          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
429       ENDIF
430
431!
432!--    Output of particle time series
433       IF ( time_dopts >= dt_dopts  .OR. &
434            ( simulated_time >= particle_advection_start  .AND. &
435              first_call_advec_particles ) )  THEN
436          CALL data_output_ptseries
437          time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
438       ENDIF
439
440!
441!--    Output of dvrp-graphics (isosurface, particles, slicer)
442#if defined( __dvrp_graphics )
443       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
444#endif
445       IF ( time_dvrp >= dt_dvrp )  THEN
446          CALL data_output_dvrp
447          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
448       ENDIF
449#if defined( __dvrp_graphics )
450       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
451#endif
452
453!
454!--    If required, set the heat flux for the next time step at a random value
455       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
456
457!
458!--    Execute user-defined actions
459       CALL user_actions( 'after_timestep' )
460
461       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
462
463    ENDDO   ! time loop
464
465#if defined( __dvrp_graphics )
466    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
467#endif
468
469 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.