[1] | 1 | SUBROUTINE time_integration |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[46] | 6 | ! Move call of user_actions( 'after_integration' ) below increment of times |
---|
[63] | 7 | ! and counters, |
---|
| 8 | ! calls of prognostic_equations_.. changed to .._noopt, .._cache, and |
---|
| 9 | ! .._vector, these calls are now controlled by switch loop_optimization |
---|
[1] | 10 | ! |
---|
| 11 | ! Former revisions: |
---|
| 12 | ! ----------------- |
---|
[3] | 13 | ! $Id: time_integration.f90 63 2007-03-13 03:52:49Z raasch $ |
---|
| 14 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 15 | ! |
---|
[1] | 16 | ! Revision 1.8 2006/08/22 14:16:05 raasch |
---|
| 17 | ! Disturbances are imposed only for the last Runge-Kutta-substep |
---|
| 18 | ! |
---|
| 19 | ! Revision 1.2 2004/04/30 13:03:40 raasch |
---|
| 20 | ! decalpha-specific warning removed, routine name changed to time_integration, |
---|
| 21 | ! particle advection is carried out only once during the intermediate steps, |
---|
| 22 | ! impulse_advec renamed momentum_advec |
---|
| 23 | ! |
---|
| 24 | ! Revision 1.1 1997/08/11 06:19:04 raasch |
---|
| 25 | ! Initial revision |
---|
| 26 | ! |
---|
| 27 | ! |
---|
| 28 | ! Description: |
---|
| 29 | ! ------------ |
---|
| 30 | ! Integration in time of the model equations, statistical analysis and graphic |
---|
| 31 | ! output |
---|
| 32 | !------------------------------------------------------------------------------! |
---|
| 33 | |
---|
| 34 | USE arrays_3d |
---|
| 35 | USE averaging |
---|
| 36 | USE control_parameters |
---|
| 37 | USE cpulog |
---|
| 38 | #if defined( __dvrp_graphics ) |
---|
| 39 | USE DVRP |
---|
| 40 | #endif |
---|
| 41 | USE grid_variables |
---|
| 42 | USE indices |
---|
| 43 | USE interaction_droplets_ptq_mod |
---|
| 44 | USE interfaces |
---|
| 45 | USE particle_attributes |
---|
| 46 | USE pegrid |
---|
| 47 | USE prognostic_equations_mod |
---|
| 48 | USE statistics |
---|
| 49 | USE user_actions_mod |
---|
| 50 | |
---|
| 51 | IMPLICIT NONE |
---|
| 52 | |
---|
| 53 | CHARACTER (LEN=9) :: time_to_string |
---|
| 54 | INTEGER :: i, j, k |
---|
| 55 | |
---|
| 56 | ! |
---|
| 57 | !-- At the beginning of a simulation determine the time step as well as |
---|
| 58 | !-- determine and print out the run control parameters |
---|
| 59 | IF ( simulated_time == 0.0 ) CALL timestep |
---|
| 60 | CALL run_control |
---|
| 61 | |
---|
| 62 | #if defined( __dvrp_graphics ) |
---|
| 63 | ! |
---|
| 64 | !-- Time measurement with dvrp software |
---|
| 65 | CALL DVRP_LOG_EVENT( 2, current_timestep_number ) |
---|
| 66 | #endif |
---|
| 67 | |
---|
| 68 | ! |
---|
| 69 | !-- Start of the time loop |
---|
| 70 | DO WHILE ( simulated_time < end_time .AND. .NOT. stop_dt .AND. & |
---|
| 71 | .NOT. terminate_run ) |
---|
| 72 | |
---|
| 73 | CALL cpu_log( log_point_s(10), 'timesteps', 'start' ) |
---|
| 74 | |
---|
| 75 | ! |
---|
| 76 | !-- Determine size of next time step |
---|
| 77 | IF ( simulated_time /= 0.0 ) CALL timestep |
---|
| 78 | |
---|
| 79 | ! |
---|
| 80 | !-- Execute the user-defined actions |
---|
| 81 | CALL user_actions( 'before_timestep' ) |
---|
| 82 | |
---|
| 83 | ! |
---|
| 84 | !-- Start of intermediate step loop |
---|
| 85 | intermediate_timestep_count = 0 |
---|
| 86 | DO WHILE ( intermediate_timestep_count < & |
---|
| 87 | intermediate_timestep_count_max ) |
---|
| 88 | |
---|
| 89 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 90 | |
---|
| 91 | ! |
---|
| 92 | !-- Set the steering factors for the prognostic equations which depend |
---|
| 93 | !-- on the timestep scheme |
---|
| 94 | CALL timestep_scheme_steering |
---|
| 95 | |
---|
| 96 | ! |
---|
| 97 | !-- Solve the prognostic equations. A fast cache optimized version with |
---|
| 98 | !-- only one single loop is used in case of Piascek-Williams advection |
---|
| 99 | !-- scheme. NEC vector machines use a different version, because |
---|
| 100 | !-- in the other versions a good vectorization is prohibited due to |
---|
| 101 | !-- inlining problems. |
---|
[63] | 102 | IF ( loop_optimization == 'vector' ) THEN |
---|
| 103 | CALL prognostic_equations_vector |
---|
[1] | 104 | ELSE |
---|
| 105 | IF ( momentum_advec == 'ups-scheme' .OR. & |
---|
| 106 | scalar_advec == 'ups-scheme' .OR. & |
---|
| 107 | scalar_advec == 'bc-scheme' ) & |
---|
| 108 | THEN |
---|
[63] | 109 | CALL prognostic_equations_noopt |
---|
[1] | 110 | ELSE |
---|
[63] | 111 | CALL prognostic_equations_cache |
---|
[1] | 112 | ENDIF |
---|
| 113 | ENDIF |
---|
| 114 | |
---|
| 115 | ! |
---|
| 116 | !-- Particle advection (only once during intermediate steps, because |
---|
| 117 | !-- it uses an Euler-step) |
---|
[63] | 118 | IF ( particle_advection .AND. & |
---|
| 119 | simulated_time >= particle_advection_start .AND. & |
---|
[1] | 120 | intermediate_timestep_count == 1 ) THEN |
---|
| 121 | CALL advec_particles |
---|
| 122 | first_call_advec_particles = .FALSE. |
---|
| 123 | ENDIF |
---|
| 124 | |
---|
| 125 | ! |
---|
| 126 | !-- Interaction of droplets with temperature and specific humidity. |
---|
| 127 | !-- Droplet condensation and evaporation is calculated within |
---|
| 128 | !-- advec_particles. |
---|
| 129 | IF ( cloud_droplets .AND. & |
---|
| 130 | intermediate_timestep_count == intermediate_timestep_count_max )& |
---|
| 131 | THEN |
---|
| 132 | CALL interaction_droplets_ptq |
---|
| 133 | ENDIF |
---|
| 134 | |
---|
| 135 | ! |
---|
| 136 | !-- Exchange of ghost points (lateral boundary conditions) |
---|
| 137 | CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' ) |
---|
| 138 | CALL exchange_horiz( u_p, uxrp, 0 ) |
---|
| 139 | CALL exchange_horiz( v_p, 0, vynp ) |
---|
| 140 | CALL exchange_horiz( w_p, 0, 0 ) |
---|
| 141 | CALL exchange_horiz( pt_p, 0, 0 ) |
---|
| 142 | IF ( .NOT. constant_diffusion ) CALL exchange_horiz( e_p, 0, 0) |
---|
| 143 | IF ( moisture .OR. passive_scalar ) CALL exchange_horiz( q_p, 0, 0) |
---|
| 144 | IF ( cloud_droplets ) THEN |
---|
| 145 | CALL exchange_horiz( ql, 0, 0 ) |
---|
| 146 | CALL exchange_horiz( ql_c, 0, 0 ) |
---|
| 147 | CALL exchange_horiz( ql_v, 0, 0 ) |
---|
| 148 | CALL exchange_horiz( ql_vp, 0, 0 ) |
---|
| 149 | ENDIF |
---|
| 150 | |
---|
| 151 | CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' ) |
---|
| 152 | |
---|
| 153 | ! |
---|
| 154 | !-- Apply time filter in case of leap-frog timestep |
---|
| 155 | IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN |
---|
| 156 | CALL asselin_filter |
---|
| 157 | ENDIF |
---|
| 158 | |
---|
| 159 | ! |
---|
| 160 | !-- Swap the time levels in preparation for the next time step. |
---|
| 161 | CALL swap_timelevel |
---|
| 162 | |
---|
| 163 | ! |
---|
| 164 | !-- Boundary conditions for the prognostic quantities (except of the |
---|
| 165 | !-- velocities at the outflow in case of a non-cyclic lateral wall) |
---|
| 166 | CALL boundary_conds( 'main' ) |
---|
| 167 | |
---|
| 168 | ! |
---|
| 169 | !-- Temperature offset must be imposed at cyclic boundaries in x-direction |
---|
| 170 | !-- when a sloping surface is used |
---|
| 171 | IF ( sloping_surface ) THEN |
---|
| 172 | IF ( nxl == 0 ) pt(:,:,nxl-1) = pt(:,:,nxl-1) - pt_slope_offset |
---|
| 173 | IF ( nxr == nx ) pt(:,:,nxr+1) = pt(:,:,nxr+1) + pt_slope_offset |
---|
| 174 | ENDIF |
---|
| 175 | |
---|
| 176 | ! |
---|
| 177 | !-- Impose a random perturbation on the horizontal velocity field |
---|
| 178 | IF ( create_disturbances .AND. & |
---|
| 179 | intermediate_timestep_count == intermediate_timestep_count_max )& |
---|
| 180 | THEN |
---|
| 181 | time_disturb = time_disturb + dt_3d |
---|
| 182 | IF ( time_disturb >= dt_disturb ) THEN |
---|
| 183 | IF ( hom(nzb+5,1,var_hom,0) < disturbance_energy_limit ) THEN |
---|
| 184 | CALL disturb_field( nzb_u_inner, tend, u, uxrp, 0 ) |
---|
| 185 | CALL disturb_field( nzb_v_inner, tend, v , 0, vynp ) |
---|
| 186 | ELSEIF ( bc_lr /= 'cyclic' .OR. bc_ns /= 'cyclic' ) THEN |
---|
| 187 | ! |
---|
| 188 | !-- Runs with a non-cyclic lateral wall need perturbations |
---|
| 189 | !-- near the inflow throughout the whole simulation |
---|
| 190 | dist_range = 1 |
---|
| 191 | CALL disturb_field( nzb_u_inner, tend, u, uxrp, 0 ) |
---|
| 192 | CALL disturb_field( nzb_v_inner, tend, v , 0, vynp ) |
---|
| 193 | dist_range = 0 |
---|
| 194 | ENDIF |
---|
| 195 | time_disturb = time_disturb - dt_disturb |
---|
| 196 | ENDIF |
---|
| 197 | ENDIF |
---|
| 198 | |
---|
| 199 | ! |
---|
| 200 | !-- Reduce the velocity divergence via the equation for perturbation |
---|
| 201 | !-- pressure. |
---|
| 202 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 203 | .OR. call_psolver_at_all_substeps ) THEN |
---|
| 204 | CALL pres |
---|
| 205 | ENDIF |
---|
| 206 | |
---|
| 207 | ! |
---|
| 208 | !-- In case of a non-cyclic lateral wall, set the boundary conditions for |
---|
| 209 | !-- the velocities at the outflow |
---|
| 210 | IF ( bc_lr /= 'cyclic' .OR. bc_ns /= 'cyclic' ) THEN |
---|
| 211 | CALL boundary_conds( 'outflow_uvw' ) |
---|
| 212 | ENDIF |
---|
| 213 | |
---|
| 214 | ! |
---|
| 215 | !-- If required, compute virtuell potential temperature |
---|
| 216 | IF ( moisture ) CALL compute_vpt |
---|
| 217 | |
---|
| 218 | ! |
---|
| 219 | !-- If required, compute liquid water content |
---|
| 220 | IF ( cloud_physics ) CALL calc_liquid_water_content |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- Compute the diffusion quantities |
---|
| 224 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 225 | |
---|
| 226 | ! |
---|
| 227 | !-- First the vertical fluxes in the Prandtl layer are being computed |
---|
| 228 | IF ( prandtl_layer ) THEN |
---|
| 229 | CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' ) |
---|
| 230 | CALL prandtl_fluxes |
---|
| 231 | CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' ) |
---|
| 232 | ENDIF |
---|
| 233 | |
---|
| 234 | ! |
---|
| 235 | !-- Compute the diffusion coefficients |
---|
| 236 | CALL cpu_log( log_point(17), 'diffusivities', 'start' ) |
---|
| 237 | IF ( .NOT. moisture ) THEN |
---|
| 238 | CALL diffusivities( pt ) |
---|
| 239 | ELSE |
---|
| 240 | CALL diffusivities( vpt ) |
---|
| 241 | ENDIF |
---|
| 242 | CALL cpu_log( log_point(17), 'diffusivities', 'stop' ) |
---|
| 243 | |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | ENDDO ! Intermediate step loop |
---|
| 247 | |
---|
| 248 | ! |
---|
| 249 | !-- Increase simulation time and output times |
---|
| 250 | current_timestep_number = current_timestep_number + 1 |
---|
| 251 | simulated_time = simulated_time + dt_3d |
---|
| 252 | simulated_time_chr = time_to_string( simulated_time ) |
---|
| 253 | IF ( simulated_time >= skip_time_data_output_av ) THEN |
---|
| 254 | time_do_av = time_do_av + dt_3d |
---|
| 255 | ENDIF |
---|
| 256 | IF ( simulated_time >= skip_time_do2d_xy ) THEN |
---|
| 257 | time_do2d_xy = time_do2d_xy + dt_3d |
---|
| 258 | ENDIF |
---|
| 259 | IF ( simulated_time >= skip_time_do2d_xz ) THEN |
---|
| 260 | time_do2d_xz = time_do2d_xz + dt_3d |
---|
| 261 | ENDIF |
---|
| 262 | IF ( simulated_time >= skip_time_do2d_yz ) THEN |
---|
| 263 | time_do2d_yz = time_do2d_yz + dt_3d |
---|
| 264 | ENDIF |
---|
| 265 | IF ( simulated_time >= skip_time_do3d ) THEN |
---|
| 266 | time_do3d = time_do3d + dt_3d |
---|
| 267 | ENDIF |
---|
| 268 | time_dvrp = time_dvrp + dt_3d |
---|
| 269 | IF ( simulated_time >= skip_time_dosp ) THEN |
---|
| 270 | time_dosp = time_dosp + dt_3d |
---|
| 271 | ENDIF |
---|
| 272 | time_dots = time_dots + dt_3d |
---|
| 273 | IF ( .NOT. first_call_advec_particles ) THEN |
---|
| 274 | time_dopts = time_dopts + dt_3d |
---|
| 275 | ENDIF |
---|
| 276 | IF ( simulated_time >= skip_time_dopr ) THEN |
---|
| 277 | time_dopr = time_dopr + dt_3d |
---|
| 278 | ENDIF |
---|
| 279 | time_dopr_listing = time_dopr_listing + dt_3d |
---|
| 280 | time_run_control = time_run_control + dt_3d |
---|
| 281 | |
---|
| 282 | ! |
---|
[46] | 283 | !-- Execute user-defined actions |
---|
| 284 | CALL user_actions( 'after_integration' ) |
---|
| 285 | |
---|
| 286 | ! |
---|
[1] | 287 | !-- If Galilei transformation is used, determine the distance that the |
---|
| 288 | !-- model has moved so far |
---|
| 289 | IF ( galilei_transformation ) THEN |
---|
| 290 | advected_distance_x = advected_distance_x + u_gtrans * dt_3d |
---|
| 291 | advected_distance_y = advected_distance_y + v_gtrans * dt_3d |
---|
| 292 | ENDIF |
---|
| 293 | |
---|
| 294 | ! |
---|
| 295 | !-- Check, if restart is necessary (because cpu-time is expiring or |
---|
| 296 | !-- because it is forced by user) and set stop flag |
---|
| 297 | CALL check_for_restart |
---|
| 298 | |
---|
| 299 | ! |
---|
| 300 | !-- Carry out statistical analysis and output at the requested output times. |
---|
| 301 | !-- The MOD function is used for calculating the output time counters (like |
---|
| 302 | !-- time_dopr) in order to regard a possible decrease of the output time |
---|
| 303 | !-- interval in case of restart runs |
---|
| 304 | |
---|
| 305 | ! |
---|
| 306 | !-- Set a flag indicating that so far no statistics have been created |
---|
| 307 | !-- for this time step |
---|
| 308 | flow_statistics_called = .FALSE. |
---|
| 309 | |
---|
| 310 | ! |
---|
| 311 | !-- If required, call flow_statistics for averaging in time |
---|
| 312 | IF ( averaging_interval_pr /= 0.0 .AND. & |
---|
| 313 | ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & |
---|
| 314 | simulated_time >= skip_time_dopr ) THEN |
---|
| 315 | time_dopr_av = time_dopr_av + dt_3d |
---|
| 316 | IF ( time_dopr_av >= dt_averaging_input_pr ) THEN |
---|
| 317 | do_sum = .TRUE. |
---|
| 318 | time_dopr_av = MOD( time_dopr_av, & |
---|
| 319 | MAX( dt_averaging_input_pr, dt_3d ) ) |
---|
| 320 | ENDIF |
---|
| 321 | ENDIF |
---|
| 322 | IF ( do_sum ) CALL flow_statistics |
---|
| 323 | |
---|
| 324 | ! |
---|
| 325 | !-- Sum-up 3d-arrays for later output of time-averaged data |
---|
| 326 | IF ( averaging_interval /= 0.0 .AND. & |
---|
| 327 | ( dt_data_output_av - time_do_av ) <= averaging_interval .AND. & |
---|
| 328 | simulated_time >= skip_time_data_output_av ) & |
---|
| 329 | THEN |
---|
| 330 | time_do_sla = time_do_sla + dt_3d |
---|
| 331 | IF ( time_do_sla >= dt_averaging_input ) THEN |
---|
| 332 | CALL sum_up_3d_data |
---|
| 333 | average_count_3d = average_count_3d + 1 |
---|
| 334 | time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) ) |
---|
| 335 | ENDIF |
---|
| 336 | ENDIF |
---|
| 337 | |
---|
| 338 | ! |
---|
| 339 | !-- Calculate spectra for time averaging |
---|
| 340 | IF ( averaging_interval_sp /= 0.0 .AND. & |
---|
| 341 | ( dt_dosp - time_dosp ) <= averaging_interval_sp .AND. & |
---|
| 342 | simulated_time >= skip_time_dosp ) THEN |
---|
| 343 | time_dosp_av = time_dosp_av + dt_3d |
---|
| 344 | IF ( time_dosp_av >= dt_averaging_input_pr ) THEN |
---|
| 345 | CALL calc_spectra |
---|
| 346 | time_dosp_av = MOD( time_dosp_av, & |
---|
| 347 | MAX( dt_averaging_input_pr, dt_3d ) ) |
---|
| 348 | ENDIF |
---|
| 349 | ENDIF |
---|
| 350 | |
---|
| 351 | ! |
---|
| 352 | !-- Computation and output of run control parameters. |
---|
| 353 | !-- This is also done whenever the time step has changed or perturbations |
---|
| 354 | !-- have been imposed |
---|
| 355 | IF ( time_run_control >= dt_run_control .OR. & |
---|
| 356 | ( dt_changed .AND. timestep_scheme(1:5) /= 'runge' ) .OR. & |
---|
| 357 | disturbance_created ) & |
---|
| 358 | THEN |
---|
| 359 | CALL run_control |
---|
| 360 | IF ( time_run_control >= dt_run_control ) THEN |
---|
| 361 | time_run_control = MOD( time_run_control, & |
---|
| 362 | MAX( dt_run_control, dt_3d ) ) |
---|
| 363 | ENDIF |
---|
| 364 | ENDIF |
---|
| 365 | |
---|
| 366 | ! |
---|
| 367 | !-- Profile output (ASCII) on file |
---|
| 368 | IF ( time_dopr_listing >= dt_dopr_listing ) THEN |
---|
| 369 | CALL print_1d |
---|
| 370 | time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, & |
---|
| 371 | dt_3d ) ) |
---|
| 372 | ENDIF |
---|
| 373 | |
---|
| 374 | ! |
---|
| 375 | !-- Graphic output for PROFIL |
---|
| 376 | IF ( time_dopr >= dt_dopr ) THEN |
---|
| 377 | IF ( dopr_n /= 0 ) CALL data_output_profiles |
---|
| 378 | time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) |
---|
| 379 | time_dopr_av = 0.0 ! due to averaging (see above) |
---|
| 380 | ENDIF |
---|
| 381 | |
---|
| 382 | ! |
---|
| 383 | !-- Graphic output for time series |
---|
| 384 | IF ( time_dots >= dt_dots ) THEN |
---|
[48] | 385 | CALL data_output_tseries |
---|
[1] | 386 | time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) |
---|
| 387 | ENDIF |
---|
| 388 | |
---|
| 389 | ! |
---|
| 390 | !-- Output of spectra (formatted for use with PROFIL), in case of no |
---|
| 391 | !-- time averaging, spectra has to be calculated before |
---|
| 392 | IF ( time_dosp >= dt_dosp ) THEN |
---|
| 393 | IF ( average_count_sp == 0 ) CALL calc_spectra |
---|
| 394 | CALL data_output_spectra |
---|
| 395 | time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) ) |
---|
| 396 | ENDIF |
---|
| 397 | |
---|
| 398 | ! |
---|
| 399 | !-- 2d-data output (cross-sections) |
---|
| 400 | IF ( time_do2d_xy >= dt_do2d_xy ) THEN |
---|
| 401 | CALL data_output_2d( 'xy', 0 ) |
---|
| 402 | time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) |
---|
| 403 | ENDIF |
---|
| 404 | IF ( time_do2d_xz >= dt_do2d_xz ) THEN |
---|
| 405 | CALL data_output_2d( 'xz', 0 ) |
---|
| 406 | time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) ) |
---|
| 407 | ENDIF |
---|
| 408 | IF ( time_do2d_yz >= dt_do2d_yz ) THEN |
---|
| 409 | CALL data_output_2d( 'yz', 0 ) |
---|
| 410 | time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) ) |
---|
| 411 | ENDIF |
---|
| 412 | |
---|
| 413 | ! |
---|
| 414 | !-- 3d-data output (volume data) |
---|
| 415 | IF ( time_do3d >= dt_do3d ) THEN |
---|
| 416 | CALL data_output_3d( 0 ) |
---|
| 417 | time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) |
---|
| 418 | ENDIF |
---|
| 419 | |
---|
| 420 | ! |
---|
| 421 | !-- Output of time-averaged 2d/3d-data |
---|
| 422 | IF ( time_do_av >= dt_data_output_av ) THEN |
---|
| 423 | CALL average_3d_data |
---|
| 424 | CALL data_output_2d( 'xy', 1 ) |
---|
| 425 | CALL data_output_2d( 'xz', 1 ) |
---|
| 426 | CALL data_output_2d( 'yz', 1 ) |
---|
| 427 | CALL data_output_3d( 1 ) |
---|
| 428 | time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) ) |
---|
| 429 | ENDIF |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- Output of particle time series |
---|
| 433 | IF ( time_dopts >= dt_dopts .OR. & |
---|
| 434 | ( simulated_time >= particle_advection_start .AND. & |
---|
| 435 | first_call_advec_particles ) ) THEN |
---|
| 436 | CALL data_output_ptseries |
---|
| 437 | time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) ) |
---|
| 438 | ENDIF |
---|
| 439 | |
---|
| 440 | ! |
---|
| 441 | !-- Output of dvrp-graphics (isosurface, particles, slicer) |
---|
| 442 | #if defined( __dvrp_graphics ) |
---|
| 443 | CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 ) |
---|
| 444 | #endif |
---|
| 445 | IF ( time_dvrp >= dt_dvrp ) THEN |
---|
| 446 | CALL data_output_dvrp |
---|
| 447 | time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) ) |
---|
| 448 | ENDIF |
---|
| 449 | #if defined( __dvrp_graphics ) |
---|
| 450 | CALL DVRP_LOG_EVENT( 2, current_timestep_number ) |
---|
| 451 | #endif |
---|
| 452 | |
---|
| 453 | ! |
---|
| 454 | !-- If required, set the heat flux for the next time step at a random value |
---|
| 455 | IF ( constant_heatflux .AND. random_heatflux ) CALL disturb_heatflux |
---|
| 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Execute user-defined actions |
---|
| 459 | CALL user_actions( 'after_timestep' ) |
---|
| 460 | |
---|
| 461 | CALL cpu_log( log_point_s(10), 'timesteps', 'stop' ) |
---|
| 462 | |
---|
| 463 | ENDDO ! time loop |
---|
| 464 | |
---|
| 465 | #if defined( __dvrp_graphics ) |
---|
| 466 | CALL DVRP_LOG_EVENT( -2, current_timestep_number ) |
---|
| 467 | #endif |
---|
| 468 | |
---|
| 469 | END SUBROUTINE time_integration |
---|