source: palm/trunk/SOURCE/time_integration.f90 @ 2188

Last change on this file since 2188 was 2179, checked in by hellstea, 8 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 40.5 KB
RevLine 
[1682]1!> @file time_integration.f90
[2000]2!------------------------------------------------------------------------------!
[1036]3! This file is part of PALM.
4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[2101]17! Copyright 1997-2017 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1092]21! ------------------
[1928]22!
[2175]23!
[1366]24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 2179 2017-03-17 12:58:30Z raasch $
27!
[2179]28! 2178 2017-03-17 11:07:39Z hellstea
29! Setting perturbations at all times near inflow boundary is removed
30! in case of nested boundaries
31!
[2175]32! 2174 2017-03-13 08:18:57Z maronga
33! Added support for nesting with cloud microphysics
34!
[2119]35! 2118 2017-01-17 16:38:49Z raasch
36! OpenACC directives and related code removed
37!
[2051]38! 2050 2016-11-08 15:00:55Z gronemeier
39! Implement turbulent outflow condition
40!
[2032]41! 2031 2016-10-21 15:11:58Z knoop
42! renamed variable rho to rho_ocean
43!
[2012]44! 2011 2016-09-19 17:29:57Z kanani
45! Flag urban_surface is now defined in module control_parameters,
46! removed commented CALLs of global_min_max.
47!
[2008]48! 2007 2016-08-24 15:47:17Z kanani
49! Added CALLs for new urban surface model
50!
[2001]51! 2000 2016-08-20 18:09:15Z knoop
52! Forced header and separation lines into 80 columns
53!
[1977]54! 1976 2016-07-27 13:28:04Z maronga
55! Simplified calls to radiation model
56!
[1961]57! 1960 2016-07-12 16:34:24Z suehring
58! Separate humidity and passive scalar
59!
[1958]60! 1957 2016-07-07 10:43:48Z suehring
61! flight module added
62!
[1933]63! 1919 2016-05-27 14:51:23Z raasch
64! Initial version of purely vertical nesting introduced.
[1928]65!
[1919]66! 1918 2016-05-27 14:35:57Z raasch
67! determination of time step moved to the end of the time step loop,
68! the first time step is now always calculated before the time step loop (i.e.
69! also in case of restart runs)
70!
[1917]71! 1914 2016-05-26 14:44:07Z witha
72! Added call for wind turbine model
73!
[1879]74! 1878 2016-04-19 12:30:36Z hellstea
75! Synchronization for nested runs rewritten
76!
[1854]77! 1853 2016-04-11 09:00:35Z maronga
78! Adjusted for use with radiation_scheme = constant
79!
[1851]80! 1849 2016-04-08 11:33:18Z hoffmann
81! Adapted for modularization of microphysics
82!
[1834]83! 1833 2016-04-07 14:23:03Z raasch
84! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
85!
[1832]86! 1831 2016-04-07 13:15:51Z hoffmann
87! turbulence renamed collision_turbulence
88!
[1823]89! 1822 2016-04-07 07:49:42Z hoffmann
90! icloud_scheme replaced by microphysics_*
91!
[1809]92! 1808 2016-04-05 19:44:00Z raasch
93! output message in case unscheduled radiation calls removed
94!
[1798]95! 1797 2016-03-21 16:50:28Z raasch
96! introduction of different datatransfer modes
97!
[1792]98! 1791 2016-03-11 10:41:25Z raasch
99! call of pmci_update_new removed
100!
[1787]101! 1786 2016-03-08 05:49:27Z raasch
102! +module spectrum
103!
[1784]104! 1783 2016-03-06 18:36:17Z raasch
105! switch back of netcdf data format for mask output moved to the mask output
106! routine
107!
[1782]108! 1781 2016-03-03 15:12:23Z raasch
109! some pmc calls removed at the beginning (before timeloop),
110! pmc initialization moved to the main program
111!
[1765]112! 1764 2016-02-28 12:45:19Z raasch
113! PMC_ACTIVE flags removed,
114! bugfix: nest synchronization after first call of timestep
115!
[1763]116! 1762 2016-02-25 12:31:13Z hellstea
117! Introduction of nested domain feature
118!
[1737]119! 1736 2015-12-04 08:56:33Z raasch
120! no perturbations added to total domain if energy limit has been set zero
121!
[1692]122! 1691 2015-10-26 16:17:44Z maronga
123! Added option for spin-ups without land surface and radiation models. Moved calls
124! for radiation and lan surface schemes.
125!
[1683]126! 1682 2015-10-07 23:56:08Z knoop
127! Code annotations made doxygen readable
128!
[1672]129! 1671 2015-09-25 03:29:37Z raasch
130! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
131! for particles
132!
[1586]133! 1585 2015-04-30 07:05:52Z maronga
134! Moved call of radiation scheme. Added support for RRTM
135!
[1552]136! 1551 2015-03-03 14:18:16Z maronga
137! Added interface for different radiation schemes.
138!
[1497]139! 1496 2014-12-02 17:25:50Z maronga
140! Added calls for the land surface model and radiation scheme
141!
[1403]142! 1402 2014-05-09 14:25:13Z raasch
143! location messages modified
144!
[1385]145! 1384 2014-05-02 14:31:06Z raasch
146! location messages added
147!
[1381]148! 1380 2014-04-28 12:40:45Z heinze
149! CALL of nudge_ref added
150! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
151!
[1366]152! 1365 2014-04-22 15:03:56Z boeske
[1365]153! Reset sums_ls_l to zero at each timestep
154! +sums_ls_l
155! Calculation of reference state (previously in subroutine calc_mean_profile)
156
[1343]157! 1342 2014-03-26 17:04:47Z kanani
158! REAL constants defined as wp-kind
159!
[1321]160! 1320 2014-03-20 08:40:49Z raasch
[1320]161! ONLY-attribute added to USE-statements,
162! kind-parameters added to all INTEGER and REAL declaration statements,
163! kinds are defined in new module kinds,
164! old module precision_kind is removed,
165! revision history before 2012 removed,
166! comment fields (!:) to be used for variable explanations added to
167! all variable declaration statements
[1319]168! 1318 2014-03-17 13:35:16Z raasch
169! module interfaces removed
170!
[1309]171! 1308 2014-03-13 14:58:42Z fricke
172! +netcdf_data_format_save
173! For masked data, parallel netcdf output is not tested so far, hence
174! netcdf_data_format is switched back to non-paralell output.
175!
[1277]176! 1276 2014-01-15 13:40:41Z heinze
177! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
178!
[1258]179! 1257 2013-11-08 15:18:40Z raasch
180! acc-update-host directive for timestep removed
181!
[1242]182! 1241 2013-10-30 11:36:58Z heinze
183! Generalize calc_mean_profile for wider use
184! Determine shf and qsws in dependence on data from LSF_DATA
185! Determine ug and vg in dependence on data from LSF_DATA
[1222]186! 1221 2013-09-10 08:59:13Z raasch
187! host update of arrays before timestep is called
188!
[1182]189! 1179 2013-06-14 05:57:58Z raasch
190! mean profiles for reference state are only calculated if required,
191! small bugfix for background communication
192!
[1172]193! 1171 2013-05-30 11:27:45Z raasch
194! split of prognostic_equations deactivated (comment lines), for the time being
195!
[1132]196! 1128 2013-04-12 06:19:32Z raasch
[1128]197! asynchronous transfer of ghost point data realized for acc-optimized version:
198! prognostic_equations are first called two times for those points required for
199! the left-right and north-south exchange, respectively, and then for the
200! remaining points,
201! those parts requiring global communication moved from prognostic_equations to
202! here
[392]203!
[1116]204! 1115 2013-03-26 18:16:16Z hoffmann
205! calculation of qr and nr is restricted to precipitation
206!
[1114]207! 1113 2013-03-10 02:48:14Z raasch
208! GPU-porting of boundary conditions,
209! openACC directives updated
210! formal parameter removed from routine boundary_conds
211!
[1112]212! 1111 2013-03-08 23:54:10Z raasch
213! +internal timestep counter for cpu statistics added,
214! openACC directives updated
215!
[1093]216! 1092 2013-02-02 11:24:22Z raasch
217! unused variables removed
218!
[1066]219! 1065 2012-11-22 17:42:36Z hoffmann
220! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
221!
[1054]222! 1053 2012-11-13 17:11:03Z hoffmann
223! exchange of ghost points for nr, qr added
224!
[1037]225! 1036 2012-10-22 13:43:42Z raasch
226! code put under GPL (PALM 3.9)
227!
[1020]228! 1019 2012-09-28 06:46:45Z raasch
229! non-optimized version of prognostic_equations removed
230!
[1017]231! 1015 2012-09-27 09:23:24Z raasch
232! +call of prognostic_equations_acc
233!
[1002]234! 1001 2012-09-13 14:08:46Z raasch
235! all actions concerning leapfrog- and upstream-spline-scheme removed
236!
[850]237! 849 2012-03-15 10:35:09Z raasch
238! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
239!
[826]240! 825 2012-02-19 03:03:44Z raasch
241! wang_collision_kernel renamed wang_kernel
242!
[1]243! Revision 1.1  1997/08/11 06:19:04  raasch
244! Initial revision
245!
246!
247! Description:
248! ------------
[1682]249!> Integration in time of the model equations, statistical analysis and graphic
250!> output
[1]251!------------------------------------------------------------------------------!
[1682]252 SUBROUTINE time_integration
253 
[1]254
[1320]255    USE advec_ws,                                                              &
256        ONLY:  ws_statistics
257
258    USE arrays_3d,                                                             &
[2174]259        ONLY:  diss, dzu, e, e_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,&
260               ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean,     &
261               s, s_p, sa_p, tend, u, u_p, v, vpt, v_p, w, w_p
[1320]262
[1365]263    USE calc_mean_profile_mod,                                                 &
[1320]264        ONLY:  calc_mean_profile
265
266    USE control_parameters,                                                    &
267        ONLY:  advected_distance_x, advected_distance_y, average_count_3d,     &
[1833]268               averaging_interval, averaging_interval_pr,                      &
269               bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,                              &
[1380]270               bc_q_t_val, call_psolver_at_all_substeps, cloud_droplets,       &
[1691]271               cloud_physics, constant_flux_layer, constant_heatflux,          &
272               create_disturbances, dopr_n, constant_diffusion, coupling_mode, &
273               coupling_start_time, current_timestep_number,                   &
274               disturbance_created, disturbance_energy_limit, dist_range,      &
275               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr,       &
276               dt_coupling, dt_data_output_av, dt_disturb, dt_do2d_xy,         &
277               dt_do2d_xz, dt_do2d_yz, dt_do3d, dt_domask,dt_dopts, dt_dopr,   &
[1833]278               dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,              &
[1320]279               end_time, first_call_lpm, galilei_transformation, humidity,     &
[1822]280               intermediate_timestep_count,                                    &
[1320]281               intermediate_timestep_count_max, large_scale_forcing,           &
[1822]282               loop_optimization, lsf_surf, lsf_vert, masks,                   &
283               microphysics_seifert, mid, nest_domain,                         &
[1783]284               neutral, nr_timesteps_this_run, nudging,                        &
[2118]285               ocean, passive_scalar,                                          &
[1320]286               prho_reference, pt_reference, pt_slope_offset, random_heatflux, &
287               run_coupled, simulated_time, simulated_time_chr,                &
288               skip_time_do2d_xy, skip_time_do2d_xz, skip_time_do2d_yz,        &
289               skip_time_do3d, skip_time_domask, skip_time_dopr,               &
[1833]290               skip_time_data_output_av, sloping_surface,                      &
[1320]291               stop_dt, terminate_coupled, terminate_run, timestep_scheme,     &
292               time_coupling, time_do2d_xy, time_do2d_xz, time_do2d_yz,        &
293               time_do3d, time_domask, time_dopr, time_dopr_av,                &
294               time_dopr_listing, time_dopts, time_dosp, time_dosp_av,         &
295               time_dots, time_do_av, time_do_sla, time_disturb, time_dvrp,    &
[1496]296               time_run_control, time_since_reference_point,                   &
[2050]297               turbulent_inflow, turbulent_outflow, urban_surface,             &
[2011]298               use_initial_profile_as_reference,                               &
[1957]299               use_single_reference_value, u_gtrans, v_gtrans, virtual_flight, &
300               ws_scheme_mom, ws_scheme_sca
[1320]301
302    USE cpulog,                                                                &
303        ONLY:  cpu_log, log_point, log_point_s
304
[1957]305    USE flight_mod,                                                            &
306        ONLY:  flight_measurement
307
308
[1320]309    USE indices,                                                               &
[2118]310        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, &
311               nzb_u_inner, nzb_v_inner
[1320]312
313    USE interaction_droplets_ptq_mod,                                          &
314        ONLY:  interaction_droplets_ptq
315
[1918]316    USE interfaces
317
[1320]318    USE kinds
319
[1496]320    USE land_surface_model_mod,                                                &
[1691]321        ONLY:  land_surface, lsm_energy_balance, lsm_soil_model,               &
322               skip_time_do_lsm
[1496]323
[1320]324    USE ls_forcing_mod,                                                        &
325        ONLY:  ls_forcing_surf, ls_forcing_vert
326
[1849]327    USE microphysics_mod,                                                      &
328        ONLY: collision_turbulence
329
[1365]330    USE nudge_mod,                                                             &
[1380]331        ONLY:  calc_tnudge, nudge_ref
[1365]332
[1320]333    USE particle_attributes,                                                   &
[1671]334        ONLY:  particle_advection, particle_advection_start,                   &
335               use_sgs_for_particles, wang_kernel
[1320]336
[1]337    USE pegrid
338
[1762]339    USE pmc_interface,                                                         &
[1933]340        ONLY:  nested_run, nesting_mode, pmci_datatrans,                       &
341               pmci_ensure_nest_mass_conservation, pmci_synchronize
[1762]342
[1320]343    USE production_e_mod,                                                      &
344        ONLY:  production_e_init
345
[1402]346    USE progress_bar,                                                          &
347        ONLY:  finish_progress_bar, output_progress_bar
348
[1320]349    USE prognostic_equations_mod,                                              &
[2118]350        ONLY:  prognostic_equations_cache, prognostic_equations_vector
[1320]351
[1496]352    USE radiation_model_mod,                                                   &
[1976]353        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,&
354              skip_time_do_radiation, time_radiation
[1496]355
[1833]356    USE spectra_mod,                                                           &
357        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp,  &
358              skip_time_dosp
[1786]359
[1320]360    USE statistics,                                                            &
[1918]361        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l, u_max,         &
362               u_max_ijk, v_max, v_max_ijk, w_max, w_max_ijk
[1320]363
[1691]364    USE surface_layer_fluxes_mod,                                              &
365        ONLY:  surface_layer_fluxes
366
[2007]367    USE urban_surface_mod,                                                     &
[2011]368        ONLY:  usm_material_heat_model, usm_material_model,     &
[2007]369               usm_radiation, usm_surface_energy_balance             
370
[1320]371    USE user_actions_mod,                                                      &
372        ONLY:  user_actions
373
[1914]374    USE wind_turbine_model_mod,                                                &
375        ONLY:  wind_turbine, wtm_forces
376
[1]377    IMPLICIT NONE
378
[1682]379    CHARACTER (LEN=9) ::  time_to_string          !<
[1]380
[1918]381    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
382                            !< steering of run control output interval
383
[1]384!
[1918]385!-- At beginning determine the first time step
386    CALL timestep
[667]387
[1764]388!
389!-- Synchronize the timestep in case of nested run.
390    IF ( nested_run )  THEN
[1878]391!
392!--    Synchronization by unifying the time step.
393!--    Global minimum of all time-steps is used for all.
394       CALL pmci_synchronize
[1764]395    ENDIF
396
[1918]397!
398!-- Determine and print out the run control quantities before the first time
399!-- step of this run. For the initial run, some statistics (e.g. divergence)
400!-- need to be determined first.
401    IF ( simulated_time == 0.0_wp )  CALL flow_statistics
[1]402    CALL run_control
403
[108]404!
405!-- Data exchange between coupled models in case that a call has been omitted
406!-- at the end of the previous run of a job chain.
[291]407    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[108]408!
409!--    In case of model termination initiated by the local model the coupler
410!--    must not be called because this would again cause an MPI hang.
[1918]411       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
[108]412          CALL surface_coupler
413          time_coupling = time_coupling - dt_coupling
414       ENDDO
[1918]415       IF (time_coupling == 0.0_wp  .AND.                                      &
416           time_since_reference_point < dt_coupling )                          &
[348]417       THEN
418          time_coupling = time_since_reference_point
419       ENDIF
[108]420    ENDIF
421
[1]422#if defined( __dvrp_graphics )
423!
424!-- Time measurement with dvrp software 
425    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
426#endif
427
[1402]428    CALL location_message( 'start with time-stepping', .TRUE. )
[1]429!
430!-- Start of the time loop
431    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
432                .NOT. terminate_run )
433
434       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
[1221]435
[1]436!
[1241]437!--    Determine ug, vg and w_subs in dependence on data from external file
438!--    LSF_DATA
[1365]439       IF ( large_scale_forcing .AND. lsf_vert )  THEN
[1241]440           CALL ls_forcing_vert ( simulated_time )
[1365]441           sums_ls_l = 0.0_wp
[1241]442       ENDIF
443
444!
[1380]445!--    Set pt_init and q_init to the current profiles taken from
446!--    NUDGING_DATA
447       IF ( nudging )  THEN
448           CALL nudge_ref ( simulated_time )
449!
450!--        Store temperature gradient at the top boundary for possible Neumann
451!--        boundary condition
452           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
453           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
454       ENDIF
455
456!
[1]457!--    Execute the user-defined actions
458       CALL user_actions( 'before_timestep' )
459
460!
[1914]461!--    Calculate forces by wind turbines
462       IF ( wind_turbine )  THEN
463
464          CALL cpu_log( log_point(55), 'wind_turbine', 'start' )
465
466          CALL wtm_forces
467
468          CALL cpu_log( log_point(55), 'wind_turbine', 'stop' )
469
470       ENDIF       
471       
472!
[1]473!--    Start of intermediate step loop
474       intermediate_timestep_count = 0
475       DO  WHILE ( intermediate_timestep_count < &
476                   intermediate_timestep_count_max )
477
478          intermediate_timestep_count = intermediate_timestep_count + 1
479
480!
481!--       Set the steering factors for the prognostic equations which depend
482!--       on the timestep scheme
483          CALL timestep_scheme_steering
484
485!
[1128]486!--       Calculate those variables needed in the tendency terms which need
487!--       global communication
[1179]488          IF ( .NOT. use_single_reference_value  .AND. &
489               .NOT. use_initial_profile_as_reference )  THEN
490!
491!--          Horizontally averaged profiles to be used as reference state in
492!--          buoyancy terms (WARNING: only the respective last call of
493!--          calc_mean_profile defines the reference state!)
[1365]494             IF ( .NOT. neutral )  THEN
495                CALL calc_mean_profile( pt, 4 )
496                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
497             ENDIF
498             IF ( ocean )  THEN
[2031]499                CALL calc_mean_profile( rho_ocean, 64 )
[1365]500                ref_state(:)  = hom(:,1,64,0)
501             ENDIF
502             IF ( humidity )  THEN
503                CALL calc_mean_profile( vpt, 44 )
504                ref_state(:)  = hom(:,1,44,0)
505             ENDIF
506
[1179]507          ENDIF
508
[1128]509          IF ( .NOT. constant_diffusion )  CALL production_e_init
510          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  &
511               intermediate_timestep_count == 1 )  CALL ws_statistics
[1365]512!
513!--       In case of nudging calculate current nudging time scale and horizontal
[1380]514!--       means of u, v, pt and q
[1365]515          IF ( nudging )  THEN
516             CALL calc_tnudge( simulated_time )
517             CALL calc_mean_profile( u, 1 )
518             CALL calc_mean_profile( v, 2 )
519             CALL calc_mean_profile( pt, 4 )
520             CALL calc_mean_profile( q, 41 )
521          ENDIF
[1128]522
523!
[1]524!--       Solve the prognostic equations. A fast cache optimized version with
525!--       only one single loop is used in case of Piascek-Williams advection
526!--       scheme. NEC vector machines use a different version, because
527!--       in the other versions a good vectorization is prohibited due to
528!--       inlining problems.
[1019]529          IF ( loop_optimization == 'cache' )  THEN
530             CALL prognostic_equations_cache
531          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]532             CALL prognostic_equations_vector
[1]533          ENDIF
534
535!
[849]536!--       Particle transport/physics with the Lagrangian particle model
537!--       (only once during intermediate steps, because it uses an Euler-step)
[1128]538!--       ### particle model should be moved before prognostic_equations, in order
539!--       to regard droplet interactions directly
[63]540          IF ( particle_advection  .AND.                         &
541               simulated_time >= particle_advection_start  .AND. &
[1]542               intermediate_timestep_count == 1 )  THEN
[849]543             CALL lpm
544             first_call_lpm = .FALSE.
[1]545          ENDIF
546
547!
548!--       Interaction of droplets with temperature and specific humidity.
549!--       Droplet condensation and evaporation is calculated within
550!--       advec_particles.
551          IF ( cloud_droplets  .AND.  &
552               intermediate_timestep_count == intermediate_timestep_count_max )&
553          THEN
554             CALL interaction_droplets_ptq
555          ENDIF
556
557!
558!--       Exchange of ghost points (lateral boundary conditions)
[2118]559          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[1113]560
[2118]561          CALL exchange_horiz( u_p, nbgp )
562          CALL exchange_horiz( v_p, nbgp )
563          CALL exchange_horiz( w_p, nbgp )
564          CALL exchange_horiz( pt_p, nbgp )
565          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
566          IF ( ocean )  THEN
567             CALL exchange_horiz( sa_p, nbgp )
568             CALL exchange_horiz( rho_ocean, nbgp )
569             CALL exchange_horiz( prho, nbgp )
570          ENDIF
571          IF ( humidity )  THEN
572             CALL exchange_horiz( q_p, nbgp )
573             IF ( cloud_physics .AND. microphysics_seifert )  THEN
574                CALL exchange_horiz( qr_p, nbgp )
575                CALL exchange_horiz( nr_p, nbgp )
[1053]576             ENDIF
[2118]577          ENDIF
578          IF ( cloud_droplets )  THEN
579             CALL exchange_horiz( ql, nbgp )
580             CALL exchange_horiz( ql_c, nbgp )
581             CALL exchange_horiz( ql_v, nbgp )
582             CALL exchange_horiz( ql_vp, nbgp )
583          ENDIF
584          IF ( wang_kernel  .OR.  collision_turbulence  .OR.                &
585               use_sgs_for_particles )  THEN
586             CALL exchange_horiz( diss, nbgp )
587          ENDIF
588          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
[1]589
[2118]590          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
[1128]591
[1]592!
593!--       Boundary conditions for the prognostic quantities (except of the
594!--       velocities at the outflow in case of a non-cyclic lateral wall)
[1113]595          CALL boundary_conds
[1]596
597!
[73]598!--       Swap the time levels in preparation for the next time step.
599          CALL swap_timelevel
600
[1764]601          IF ( nested_run )  THEN
[1797]602
[1764]603             CALL cpu_log( log_point(60), 'nesting', 'start' )
[1762]604!
[1933]605!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
606!--          and pmci_child_datatrans are called inside the wrapper
[1797]607!--          subroutine pmci_datatrans according to the control parameters
608!--          nesting_mode and nesting_datatransfer_mode.
609!--          TO_DO: why is nesting_mode given as a parameter here?
610             CALL pmci_datatrans( nesting_mode )
[1762]611
[2174]612             IF ( TRIM( nesting_mode ) == 'two-way' .OR.                       &
[1933]613                  nesting_mode == 'vertical' )  THEN
[1762]614!
[1933]615!--             Exchange_horiz is needed for all parent-domains after the
[1764]616!--             anterpolation
617                CALL exchange_horiz( u, nbgp )
618                CALL exchange_horiz( v, nbgp )
619                CALL exchange_horiz( w, nbgp )
[2174]620                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
621
622                IF ( humidity )  THEN
623
624                   CALL exchange_horiz( q, nbgp )
625
626                   IF ( cloud_physics  .AND.  microphysics_seifert )  THEN
627!                        CALL exchange_horiz( qc, nbgp )
628                       CALL exchange_horiz( qr, nbgp )
629!                        CALL exchange_horiz( nc, nbgp )
630                       CALL exchange_horiz( nr, nbgp )
631                   ENDIF
632
633                ENDIF
634
635                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp )
636                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
[1762]637             ENDIF
638!
[1764]639!--          Correct the w top-BC in nest domains to ensure mass conservation.
[1933]640!--          This action must never be done for the root domain. Vertical
641!--          nesting implies mass conservation.
[1764]642             IF ( nest_domain )  THEN
643                CALL pmci_ensure_nest_mass_conservation
644             ENDIF
645
646             CALL cpu_log( log_point(60), 'nesting', 'stop' )
647
[1762]648          ENDIF
649
650!
[1]651!--       Temperature offset must be imposed at cyclic boundaries in x-direction
652!--       when a sloping surface is used
653          IF ( sloping_surface )  THEN
[707]654             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
655                                                    pt_slope_offset
656             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
657                                                    pt_slope_offset
[1]658          ENDIF
659
660!
[151]661!--       Impose a turbulent inflow using the recycling method
662          IF ( turbulent_inflow )  CALL  inflow_turbulence
663
664!
[2050]665!--       Set values at outflow boundary using the special outflow condition
666          IF ( turbulent_outflow )  CALL  outflow_turbulence
667
668!
[1]669!--       Impose a random perturbation on the horizontal velocity field
[106]670          IF ( create_disturbances  .AND.                                      &
671               ( call_psolver_at_all_substeps  .AND.                           &
[1]672               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]673          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
674               intermediate_timestep_count == 1 ) )                            &
[1]675          THEN
676             time_disturb = time_disturb + dt_3d
677             IF ( time_disturb >= dt_disturb )  THEN
[1736]678                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                 &
679                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[75]680                   CALL disturb_field( nzb_u_inner, tend, u )
681                   CALL disturb_field( nzb_v_inner, tend, v )
[2178]682                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )            &
683                     .AND. .NOT. nest_domain )  THEN
[1]684!
685!--                Runs with a non-cyclic lateral wall need perturbations
686!--                near the inflow throughout the whole simulation
687                   dist_range = 1
[75]688                   CALL disturb_field( nzb_u_inner, tend, u )
689                   CALL disturb_field( nzb_v_inner, tend, v )
[1]690                   dist_range = 0
691                ENDIF
692                time_disturb = time_disturb - dt_disturb
693             ENDIF
694          ENDIF
695
696!
697!--       Reduce the velocity divergence via the equation for perturbation
698!--       pressure.
[106]699          IF ( intermediate_timestep_count == 1  .OR. &
700                call_psolver_at_all_substeps )  THEN
[1]701             CALL pres
702          ENDIF
703
704!
705!--       If required, compute liquid water content
[1015]706          IF ( cloud_physics )  THEN
707             CALL calc_liquid_water_content
708          ENDIF
[2174]709!
[1115]710!--       If required, compute virtual potential temperature
711          IF ( humidity )  THEN
712             CALL compute_vpt 
713          ENDIF 
[1585]714
[1]715!
716!--       Compute the diffusion quantities
717          IF ( .NOT. constant_diffusion )  THEN
718
719!
[1276]720!--          Determine surface fluxes shf and qsws and surface values
721!--          pt_surface and q_surface in dependence on data from external
722!--          file LSF_DATA respectively
723             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND. &
724                 intermediate_timestep_count == intermediate_timestep_count_max )&
725             THEN
726                CALL ls_forcing_surf ( simulated_time )
727             ENDIF
728
729!
[1691]730!--          First the vertical fluxes in the surface (constant flux) layer are computed
731             IF ( constant_flux_layer )  THEN
732                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
733                CALL surface_layer_fluxes
734                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
[1]735             ENDIF
[1241]736
[1]737!
[1691]738!--          If required, solve the energy balance for the surface and run soil
739!--          model
740             IF ( land_surface .AND. simulated_time > skip_time_do_lsm)  THEN
741
742                CALL cpu_log( log_point(54), 'land_surface', 'start' )
743                CALL lsm_energy_balance
744                CALL lsm_soil_model
745                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
746             ENDIF
[2007]747
[1691]748!
[2007]749!--          If required, solve the energy balance for urban surfaces and run
750!--          the material heat model
751             IF (urban_surface) THEN
752                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
753                CALL usm_surface_energy_balance
754                IF ( usm_material_model )  THEN
755                   CALL usm_material_heat_model
756                ENDIF
757                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
758             ENDIF
759
760!
[1]761!--          Compute the diffusion coefficients
762             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]763             IF ( .NOT. humidity ) THEN
[97]764                IF ( ocean )  THEN
[388]765                   CALL diffusivities( prho, prho_reference )
[97]766                ELSE
767                   CALL diffusivities( pt, pt_reference )
768                ENDIF
[1]769             ELSE
[97]770                CALL diffusivities( vpt, pt_reference )
[1]771             ENDIF
772             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
773
774          ENDIF
775
[1691]776!
777!--       If required, calculate radiative fluxes and heating rates
778          IF ( radiation .AND. intermediate_timestep_count                     &
779               == intermediate_timestep_count_max .AND. simulated_time >    &
780               skip_time_do_radiation )  THEN
781
782               time_radiation = time_radiation + dt_3d
783
784             IF ( time_radiation >= dt_radiation .OR. force_radiation_call )   &
785             THEN
786
787                CALL cpu_log( log_point(50), 'radiation', 'start' )
788
789                IF ( .NOT. force_radiation_call )  THEN
790                   time_radiation = time_radiation - dt_radiation
791                ENDIF
792
[1976]793                CALL radiation_control
[1691]794
795                CALL cpu_log( log_point(50), 'radiation', 'stop' )
[2007]796
797                IF (urban_surface)  THEN
798                   CALL cpu_log( log_point(75), 'usm_radiation', 'start' )
799                   CALL usm_radiation
800                   CALL cpu_log( log_point(75), 'usm_radiation', 'stop' )
801                ENDIF
802
[1691]803             ENDIF
804          ENDIF
805
[1]806       ENDDO   ! Intermediate step loop
807
808!
809!--    Increase simulation time and output times
[1111]810       nr_timesteps_this_run      = nr_timesteps_this_run + 1
[291]811       current_timestep_number    = current_timestep_number + 1
812       simulated_time             = simulated_time   + dt_3d
813       simulated_time_chr         = time_to_string( simulated_time )
814       time_since_reference_point = simulated_time - coupling_start_time
815
[1957]816
817
[1]818       IF ( simulated_time >= skip_time_data_output_av )  THEN
819          time_do_av         = time_do_av       + dt_3d
820       ENDIF
821       IF ( simulated_time >= skip_time_do2d_xy )  THEN
822          time_do2d_xy       = time_do2d_xy     + dt_3d
823       ENDIF
824       IF ( simulated_time >= skip_time_do2d_xz )  THEN
825          time_do2d_xz       = time_do2d_xz     + dt_3d
826       ENDIF
827       IF ( simulated_time >= skip_time_do2d_yz )  THEN
828          time_do2d_yz       = time_do2d_yz     + dt_3d
829       ENDIF
830       IF ( simulated_time >= skip_time_do3d    )  THEN
831          time_do3d          = time_do3d        + dt_3d
832       ENDIF
[410]833       DO  mid = 1, masks
834          IF ( simulated_time >= skip_time_domask(mid) )  THEN
835             time_domask(mid)= time_domask(mid) + dt_3d
836          ENDIF
837       ENDDO
[1]838       time_dvrp          = time_dvrp        + dt_3d
839       IF ( simulated_time >= skip_time_dosp )  THEN
840          time_dosp       = time_dosp        + dt_3d
841       ENDIF
842       time_dots          = time_dots        + dt_3d
[849]843       IF ( .NOT. first_call_lpm )  THEN
[1]844          time_dopts      = time_dopts       + dt_3d
845       ENDIF
846       IF ( simulated_time >= skip_time_dopr )  THEN
847          time_dopr       = time_dopr        + dt_3d
848       ENDIF
849       time_dopr_listing          = time_dopr_listing        + dt_3d
850       time_run_control   = time_run_control + dt_3d
851
852!
[102]853!--    Data exchange between coupled models
[291]854       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[102]855          time_coupling = time_coupling + dt_3d
[343]856
[108]857!
858!--       In case of model termination initiated by the local model
859!--       (terminate_coupled > 0), the coupler must be skipped because it would
860!--       cause an MPI intercomminucation hang.
861!--       If necessary, the coupler will be called at the beginning of the
862!--       next restart run.
863          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]864             CALL surface_coupler
865             time_coupling = time_coupling - dt_coupling
866          ENDDO
867       ENDIF
868
869!
[46]870!--    Execute user-defined actions
871       CALL user_actions( 'after_integration' )
872
873!
[1]874!--    If Galilei transformation is used, determine the distance that the
875!--    model has moved so far
876       IF ( galilei_transformation )  THEN
877          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
878          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
879       ENDIF
880
881!
882!--    Check, if restart is necessary (because cpu-time is expiring or
883!--    because it is forced by user) and set stop flag
[108]884!--    This call is skipped if the remote model has already initiated a restart.
885       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]886
887!
888!--    Carry out statistical analysis and output at the requested output times.
889!--    The MOD function is used for calculating the output time counters (like
890!--    time_dopr) in order to regard a possible decrease of the output time
891!--    interval in case of restart runs
892
893!
894!--    Set a flag indicating that so far no statistics have been created
895!--    for this time step
896       flow_statistics_called = .FALSE.
897
898!
899!--    If required, call flow_statistics for averaging in time
[1342]900       IF ( averaging_interval_pr /= 0.0_wp  .AND.  &
[1]901            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
902            simulated_time >= skip_time_dopr )  THEN
903          time_dopr_av = time_dopr_av + dt_3d
904          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
905             do_sum = .TRUE.
906             time_dopr_av = MOD( time_dopr_av, &
907                                    MAX( dt_averaging_input_pr, dt_3d ) )
908          ENDIF
909       ENDIF
910       IF ( do_sum )  CALL flow_statistics
911
912!
[410]913!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[1342]914       IF ( averaging_interval /= 0.0_wp  .AND.                                &
[1]915            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
916            simulated_time >= skip_time_data_output_av )                    &
917       THEN
918          time_do_sla = time_do_sla + dt_3d
919          IF ( time_do_sla >= dt_averaging_input )  THEN
920             CALL sum_up_3d_data
921             average_count_3d = average_count_3d + 1
922             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
923          ENDIF
924       ENDIF
925
926!
927!--    Calculate spectra for time averaging
[1342]928       IF ( averaging_interval_sp /= 0.0_wp  .AND.  &
[1]929            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
930            simulated_time >= skip_time_dosp )  THEN
931          time_dosp_av = time_dosp_av + dt_3d
932          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
933             CALL calc_spectra
934             time_dosp_av = MOD( time_dosp_av, &
935                                 MAX( dt_averaging_input_pr, dt_3d ) )
936          ENDIF
937       ENDIF
938
939!
[1957]940!--    Call flight module and output data
941       IF ( virtual_flight )  THEN
942          CALL flight_measurement
943          CALL data_output_flight
944       ENDIF
945
946!
[1]947!--    Profile output (ASCII) on file
948       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
949          CALL print_1d
950          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
951                                                           dt_3d ) )
952       ENDIF
953
954!
955!--    Graphic output for PROFIL
956       IF ( time_dopr >= dt_dopr )  THEN
957          IF ( dopr_n /= 0 )  CALL data_output_profiles
958          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
[1342]959          time_dopr_av = 0.0_wp    ! due to averaging (see above)
[1]960       ENDIF
961
962!
963!--    Graphic output for time series
964       IF ( time_dots >= dt_dots )  THEN
[48]965          CALL data_output_tseries
[1]966          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
967       ENDIF
968
969!
970!--    Output of spectra (formatted for use with PROFIL), in case of no
971!--    time averaging, spectra has to be calculated before
972       IF ( time_dosp >= dt_dosp )  THEN
973          IF ( average_count_sp == 0 )  CALL calc_spectra
974          CALL data_output_spectra
975          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
976       ENDIF
977
978!
979!--    2d-data output (cross-sections)
980       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
981          CALL data_output_2d( 'xy', 0 )
982          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
983       ENDIF
984       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
985          CALL data_output_2d( 'xz', 0 )
986          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
987       ENDIF
988       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
989          CALL data_output_2d( 'yz', 0 )
990          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
991       ENDIF
992
993!
994!--    3d-data output (volume data)
995       IF ( time_do3d >= dt_do3d )  THEN
996          CALL data_output_3d( 0 )
997          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
998       ENDIF
999
1000!
[1783]1001!--    Masked data output
[410]1002       DO  mid = 1, masks
1003          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
1004             CALL data_output_mask( 0 )
1005             time_domask(mid) = MOD( time_domask(mid),  &
1006                                     MAX( dt_domask(mid), dt_3d ) )
1007          ENDIF
1008       ENDDO
1009
1010!
1011!--    Output of time-averaged 2d/3d/masked data
[1]1012       IF ( time_do_av >= dt_data_output_av )  THEN
1013          CALL average_3d_data
1014          CALL data_output_2d( 'xy', 1 )
1015          CALL data_output_2d( 'xz', 1 )
1016          CALL data_output_2d( 'yz', 1 )
1017          CALL data_output_3d( 1 )
[410]1018          DO  mid = 1, masks
1019             CALL data_output_mask( 1 )
1020          ENDDO
[1]1021          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1022       ENDIF
1023
1024!
1025!--    Output of particle time series
[253]1026       IF ( particle_advection )  THEN
1027          IF ( time_dopts >= dt_dopts  .OR. &
1028               ( simulated_time >= particle_advection_start  .AND. &
[849]1029                 first_call_lpm ) )  THEN
[253]1030             CALL data_output_ptseries
1031             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1032          ENDIF
[1]1033       ENDIF
1034
1035!
1036!--    Output of dvrp-graphics (isosurface, particles, slicer)
1037#if defined( __dvrp_graphics )
1038       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1039#endif
1040       IF ( time_dvrp >= dt_dvrp )  THEN
1041          CALL data_output_dvrp
1042          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1043       ENDIF
1044#if defined( __dvrp_graphics )
1045       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1046#endif
1047
1048!
1049!--    If required, set the heat flux for the next time step at a random value
1050       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
1051
1052!
1053!--    Execute user-defined actions
1054       CALL user_actions( 'after_timestep' )
1055
[1402]1056!
[1918]1057!--    Determine size of next time step. Save timestep dt_3d because it is
1058!--    newly calculated in routine timestep, but required further below for
1059!--    steering the run control output interval
1060       dt_3d_old = dt_3d
1061       CALL timestep
1062
1063!
[1925]1064!--    Synchronize the timestep in case of nested run.
1065       IF ( nested_run )  THEN
1066!
1067!--       Synchronize by unifying the time step.
1068!--       Global minimum of all time-steps is used for all.
1069          CALL pmci_synchronize
1070       ENDIF
1071
1072!
[1918]1073!--    Computation and output of run control parameters.
1074!--    This is also done whenever perturbations have been imposed
1075       IF ( time_run_control >= dt_run_control  .OR.                     &
1076            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
1077       THEN
1078          CALL run_control
1079          IF ( time_run_control >= dt_run_control )  THEN
1080             time_run_control = MOD( time_run_control, &
1081                                     MAX( dt_run_control, dt_3d_old ) )
1082          ENDIF
1083       ENDIF
1084
1085!
[1402]1086!--    Output elapsed simulated time in form of a progress bar on stdout
1087       IF ( myid == 0 )  CALL output_progress_bar
1088
[1]1089       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1090
[667]1091
[1]1092    ENDDO   ! time loop
1093
[1402]1094    IF ( myid == 0 )  CALL finish_progress_bar
1095
[1]1096#if defined( __dvrp_graphics )
1097    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1098#endif
1099
[1402]1100    CALL location_message( 'finished time-stepping', .TRUE. )
[1384]1101
[1]1102 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.