source: palm/trunk/SOURCE/time_integration.f90 @ 1069

Last change on this file since 1069 was 1066, checked in by hoffmann, 12 years ago

last commit documented

  • Property svn:keywords set to Id
File size: 22.4 KB
RevLine 
[1]1 SUBROUTINE time_integration
2
[1036]3!--------------------------------------------------------------------------------!
4! This file is part of PALM.
5!
6! PALM is free software: you can redistribute it and/or modify it under the terms
7! of the GNU General Public License as published by the Free Software Foundation,
8! either version 3 of the License, or (at your option) any later version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2012  Leibniz University Hannover
18!--------------------------------------------------------------------------------!
19!
[484]20! Current revisions:
[1]21! -----------------
[392]22!
23! Former revisions:
24! -----------------
25! $Id: time_integration.f90 1066 2012-11-22 17:52:43Z maronga $
26!
[1066]27! 1065 2012-11-22 17:42:36Z hoffmann
28! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
29!
[1054]30! 1053 2012-11-13 17:11:03Z hoffmann
31! exchange of ghost points for nr, qr added
32!
[1037]33! 1036 2012-10-22 13:43:42Z raasch
34! code put under GPL (PALM 3.9)
35!
[1020]36! 1019 2012-09-28 06:46:45Z raasch
37! non-optimized version of prognostic_equations removed
38!
[1017]39! 1015 2012-09-27 09:23:24Z raasch
40! +call of prognostic_equations_acc
41!
[1002]42! 1001 2012-09-13 14:08:46Z raasch
43! all actions concerning leapfrog- and upstream-spline-scheme removed
44!
[850]45! 849 2012-03-15 10:35:09Z raasch
46! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
47!
[826]48! 825 2012-02-19 03:03:44Z raasch
49! wang_collision_kernel renamed wang_kernel
50!
[791]51! 790 2011-11-29 03:11:20Z raasch
52! exchange of ghostpoints for array diss
53!
[708]54! 707 2011-03-29 11:39:40Z raasch
55! bc_lr/ns replaced by bc_lr/ns_cyc, calls of exchange_horiz are modified,
56! adaption to sloping surface
57!
[668]58! 667  2010-12-23 12:06:00Z suehring/gryschka
59! Calls of exchange_horiz are modified.
60! Adaption to slooping surface.
61!
[482]62! 449 2010-02-02 11:23:59Z raasch
63! Bugfix: exchange of ghost points for prho included
64!
[449]65! 410 2009-12-04 17:05:40Z letzel
66! masked data output
67!
[392]68! 388 2009-09-23 09:40:33Z raasch
[388]69! Using prho instead of rho in diffusvities.
[291]70! Coupling with independent precursor runs.
71! Bugfix: output of particle time series only if particle advection is switched
[253]72!         on
[110]73!
[198]74! 151 2008-03-07 13:42:18Z raasch
75! inflow turbulence is imposed by calling new routine inflow_turbulence
76!
[110]77! 108 2007-08-24 15:10:38Z letzel
[106]78! Call of new routine surface_coupler,
79! presure solver is called after the first Runge-Kutta substep instead of the
80! last in case that call_psolver_at_all_substeps = .F.; for this case, the
81! random perturbation has to be added to the velocity fields also after the
82! first substep
[77]83!
[98]84! 97 2007-06-21 08:23:15Z raasch
85! diffusivities is called with argument rho in case of ocean runs,
86! new argument pt_/prho_reference in calls of diffusivities,
87! ghostpoint exchange for salinity and density
88!
[90]89! 87 2007-05-22 15:46:47Z raasch
90! var_hom renamed pr_palm
91!
[77]92! 75 2007-03-22 09:54:05Z raasch
[46]93! Move call of user_actions( 'after_integration' ) below increment of times
[63]94! and counters,
95! calls of prognostic_equations_.. changed to .._noopt, .._cache, and
[75]96! .._vector, these calls are now controlled by switch loop_optimization,
97! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz,
98! moisture renamed humidity
[1]99!
[3]100! RCS Log replace by Id keyword, revision history cleaned up
101!
[1]102! Revision 1.8  2006/08/22 14:16:05  raasch
103! Disturbances are imposed only for the last Runge-Kutta-substep
104!
105! Revision 1.2  2004/04/30 13:03:40  raasch
106! decalpha-specific warning removed, routine name changed to time_integration,
107! particle advection is carried out only once during the intermediate steps,
108! impulse_advec renamed momentum_advec
109!
110! Revision 1.1  1997/08/11 06:19:04  raasch
111! Initial revision
112!
113!
114! Description:
115! ------------
116! Integration in time of the model equations, statistical analysis and graphic
117! output
118!------------------------------------------------------------------------------!
119
120    USE arrays_3d
121    USE averaging
122    USE control_parameters
123    USE cpulog
124#if defined( __dvrp_graphics )
125    USE DVRP
126#endif
127    USE grid_variables
128    USE indices
129    USE interaction_droplets_ptq_mod
130    USE interfaces
131    USE particle_attributes
132    USE pegrid
133    USE prognostic_equations_mod
134    USE statistics
135    USE user_actions_mod
136
137    IMPLICIT NONE
138
139    CHARACTER (LEN=9) ::  time_to_string
140    INTEGER ::  i, j, k
141
142!
143!-- At the beginning of a simulation determine the time step as well as
144!-- determine and print out the run control parameters
145    IF ( simulated_time == 0.0 )  CALL timestep
[667]146
[1]147    CALL run_control
148
[667]149
[108]150!
151!-- Data exchange between coupled models in case that a call has been omitted
152!-- at the end of the previous run of a job chain.
[291]153    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[108]154!
155!--    In case of model termination initiated by the local model the coupler
156!--    must not be called because this would again cause an MPI hang.
157       DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
158          CALL surface_coupler
159          time_coupling = time_coupling - dt_coupling
160       ENDDO
[348]161       IF (time_coupling == 0.0 .AND. time_since_reference_point < dt_coupling)&
162       THEN
163          time_coupling = time_since_reference_point
164       ENDIF
[108]165    ENDIF
166
167
[1]168#if defined( __dvrp_graphics )
169!
170!-- Time measurement with dvrp software 
171    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
172#endif
173
174!
175!-- Start of the time loop
176    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. &
177                .NOT. terminate_run )
178
179       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
180!
181!--    Determine size of next time step
182       IF ( simulated_time /= 0.0 )  CALL timestep
183!
184!--    Execute the user-defined actions
185       CALL user_actions( 'before_timestep' )
186
187!
188!--    Start of intermediate step loop
189       intermediate_timestep_count = 0
190       DO  WHILE ( intermediate_timestep_count < &
191                   intermediate_timestep_count_max )
192
193          intermediate_timestep_count = intermediate_timestep_count + 1
194
195!
196!--       Set the steering factors for the prognostic equations which depend
197!--       on the timestep scheme
198          CALL timestep_scheme_steering
199
200!
201!--       Solve the prognostic equations. A fast cache optimized version with
202!--       only one single loop is used in case of Piascek-Williams advection
203!--       scheme. NEC vector machines use a different version, because
204!--       in the other versions a good vectorization is prohibited due to
205!--       inlining problems.
[1019]206          IF ( loop_optimization == 'cache' )  THEN
207             CALL prognostic_equations_cache
208          ELSEIF ( loop_optimization == 'vector' )  THEN
[63]209             CALL prognostic_equations_vector
[1015]210          ELSEIF ( loop_optimization == 'acc' )  THEN
211             CALL prognostic_equations_acc
[1]212          ENDIF
213
214!
[849]215!--       Particle transport/physics with the Lagrangian particle model
216!--       (only once during intermediate steps, because it uses an Euler-step)
[63]217          IF ( particle_advection  .AND.                         &
218               simulated_time >= particle_advection_start  .AND. &
[1]219               intermediate_timestep_count == 1 )  THEN
[849]220             CALL lpm
221             first_call_lpm = .FALSE.
[1]222          ENDIF
223
224!
225!--       Interaction of droplets with temperature and specific humidity.
226!--       Droplet condensation and evaporation is calculated within
227!--       advec_particles.
228          IF ( cloud_droplets  .AND.  &
229               intermediate_timestep_count == intermediate_timestep_count_max )&
230          THEN
231             CALL interaction_droplets_ptq
232          ENDIF
233
234!
235!--       Exchange of ghost points (lateral boundary conditions)
236          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
[667]237          CALL exchange_horiz( u_p, nbgp )
238          CALL exchange_horiz( v_p, nbgp )
239          CALL exchange_horiz( w_p, nbgp )
240          CALL exchange_horiz( pt_p, nbgp )
241          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
[95]242          IF ( ocean )  THEN
[667]243             CALL exchange_horiz( sa_p, nbgp )
244             CALL exchange_horiz( rho, nbgp )
245             CALL exchange_horiz( prho, nbgp )
[95]246          ENDIF
[1053]247          IF (humidity  .OR.  passive_scalar)  THEN
248             CALL exchange_horiz( q_p, nbgp )
249             IF ( cloud_physics .AND. icloud_scheme == 0 )  THEN
250                CALL exchange_horiz( qr_p, nbgp )
251                CALL exchange_horiz( nr_p, nbgp )
252             ENDIF
253          ENDIF
[1]254          IF ( cloud_droplets )  THEN
[667]255             CALL exchange_horiz( ql, nbgp )
256             CALL exchange_horiz( ql_c, nbgp )
257             CALL exchange_horiz( ql_v, nbgp )
258             CALL exchange_horiz( ql_vp, nbgp )
[1]259          ENDIF
[1065]260          IF ( wang_kernel  .OR.  turbulence )  CALL exchange_horiz( diss, nbgp )
[1]261
262          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
263
264!
265!--       Boundary conditions for the prognostic quantities (except of the
266!--       velocities at the outflow in case of a non-cyclic lateral wall)
267          CALL boundary_conds( 'main' )
268
269!
[73]270!--       Swap the time levels in preparation for the next time step.
271          CALL swap_timelevel
272
273!
[1]274!--       Temperature offset must be imposed at cyclic boundaries in x-direction
275!--       when a sloping surface is used
276          IF ( sloping_surface )  THEN
[707]277             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - &
278                                                    pt_slope_offset
279             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + &
280                                                    pt_slope_offset
[1]281          ENDIF
282
283!
[151]284!--       Impose a turbulent inflow using the recycling method
285          IF ( turbulent_inflow )  CALL  inflow_turbulence
286
287!
[1]288!--       Impose a random perturbation on the horizontal velocity field
[106]289          IF ( create_disturbances  .AND.                                      &
290               ( call_psolver_at_all_substeps  .AND.                           &
[1]291               intermediate_timestep_count == intermediate_timestep_count_max )&
[106]292          .OR. ( .NOT. call_psolver_at_all_substeps  .AND.                     &
293               intermediate_timestep_count == 1 ) )                            &
[1]294          THEN
295             time_disturb = time_disturb + dt_3d
296             IF ( time_disturb >= dt_disturb )  THEN
[87]297                IF ( hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
[75]298                   CALL disturb_field( nzb_u_inner, tend, u )
299                   CALL disturb_field( nzb_v_inner, tend, v )
[707]300                ELSEIF ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )  THEN
[1]301!
302!--                Runs with a non-cyclic lateral wall need perturbations
303!--                near the inflow throughout the whole simulation
304                   dist_range = 1
[75]305                   CALL disturb_field( nzb_u_inner, tend, u )
306                   CALL disturb_field( nzb_v_inner, tend, v )
[1]307                   dist_range = 0
308                ENDIF
309                time_disturb = time_disturb - dt_disturb
310             ENDIF
311          ENDIF
312
313!
314!--       Reduce the velocity divergence via the equation for perturbation
315!--       pressure.
[106]316          IF ( intermediate_timestep_count == 1  .OR. &
317                call_psolver_at_all_substeps )  THEN
[1]318             CALL pres
319          ENDIF
[1015]320!
321!--       Update device memory for calculating diffusion quantities and for next
322!--       timestep
323          !$acc update device( e, pt, u, v, w )
324          !$acc update device( q )  if ( allocated( q ) )
[1]325
326!
327!--       If required, compute virtuell potential temperature
[1015]328          IF ( humidity )  THEN
329             CALL compute_vpt
330             !$acc update device( vpt )
331          ENDIF
[1]332
333!
334!--       If required, compute liquid water content
[1015]335          IF ( cloud_physics )  THEN
336             CALL calc_liquid_water_content
337             !$acc update device( ql )
338          ENDIF
[1]339
340!
341!--       Compute the diffusion quantities
342          IF ( .NOT. constant_diffusion )  THEN
343
344!
345!--          First the vertical fluxes in the Prandtl layer are being computed
346             IF ( prandtl_layer )  THEN
347                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'start' )
348                CALL prandtl_fluxes
349                CALL cpu_log( log_point(19), 'prandtl_fluxes', 'stop' )
[1015]350!
351!++             Statistics still require updates on host
352                !$acc update host( qs, qsws, rif, shf, ts )
[1]353             ENDIF
354
355!
356!--          Compute the diffusion coefficients
357             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
[75]358             IF ( .NOT. humidity ) THEN
[97]359                IF ( ocean )  THEN
[388]360                   CALL diffusivities( prho, prho_reference )
[97]361                ELSE
362                   CALL diffusivities( pt, pt_reference )
363                ENDIF
[1]364             ELSE
[97]365                CALL diffusivities( vpt, pt_reference )
[1]366             ENDIF
367             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
[1015]368!
369!++          Statistics still require update of diffusivities on host
370             !$acc update host( kh, km )
[1]371
372          ENDIF
373
374       ENDDO   ! Intermediate step loop
375
376!
377!--    Increase simulation time and output times
[291]378       current_timestep_number    = current_timestep_number + 1
379       simulated_time             = simulated_time   + dt_3d
380       simulated_time_chr         = time_to_string( simulated_time )
381       time_since_reference_point = simulated_time - coupling_start_time
382
[1]383       IF ( simulated_time >= skip_time_data_output_av )  THEN
384          time_do_av         = time_do_av       + dt_3d
385       ENDIF
386       IF ( simulated_time >= skip_time_do2d_xy )  THEN
387          time_do2d_xy       = time_do2d_xy     + dt_3d
388       ENDIF
389       IF ( simulated_time >= skip_time_do2d_xz )  THEN
390          time_do2d_xz       = time_do2d_xz     + dt_3d
391       ENDIF
392       IF ( simulated_time >= skip_time_do2d_yz )  THEN
393          time_do2d_yz       = time_do2d_yz     + dt_3d
394       ENDIF
395       IF ( simulated_time >= skip_time_do3d    )  THEN
396          time_do3d          = time_do3d        + dt_3d
397       ENDIF
[410]398       DO  mid = 1, masks
399          IF ( simulated_time >= skip_time_domask(mid) )  THEN
400             time_domask(mid)= time_domask(mid) + dt_3d
401          ENDIF
402       ENDDO
[1]403       time_dvrp          = time_dvrp        + dt_3d
404       IF ( simulated_time >= skip_time_dosp )  THEN
405          time_dosp       = time_dosp        + dt_3d
406       ENDIF
407       time_dots          = time_dots        + dt_3d
[849]408       IF ( .NOT. first_call_lpm )  THEN
[1]409          time_dopts      = time_dopts       + dt_3d
410       ENDIF
411       IF ( simulated_time >= skip_time_dopr )  THEN
412          time_dopr       = time_dopr        + dt_3d
413       ENDIF
414       time_dopr_listing          = time_dopr_listing        + dt_3d
415       time_run_control   = time_run_control + dt_3d
416
417!
[102]418!--    Data exchange between coupled models
[291]419       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled )  THEN
[102]420          time_coupling = time_coupling + dt_3d
[343]421
[108]422!
423!--       In case of model termination initiated by the local model
424!--       (terminate_coupled > 0), the coupler must be skipped because it would
425!--       cause an MPI intercomminucation hang.
426!--       If necessary, the coupler will be called at the beginning of the
427!--       next restart run.
428          DO WHILE ( time_coupling >= dt_coupling .AND. terminate_coupled == 0 )
[102]429             CALL surface_coupler
430             time_coupling = time_coupling - dt_coupling
431          ENDDO
432       ENDIF
433
434!
[46]435!--    Execute user-defined actions
436       CALL user_actions( 'after_integration' )
437
438!
[1]439!--    If Galilei transformation is used, determine the distance that the
440!--    model has moved so far
441       IF ( galilei_transformation )  THEN
442          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
443          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
444       ENDIF
445
446!
447!--    Check, if restart is necessary (because cpu-time is expiring or
448!--    because it is forced by user) and set stop flag
[108]449!--    This call is skipped if the remote model has already initiated a restart.
450       IF ( .NOT. terminate_run )  CALL check_for_restart
[1]451
452!
453!--    Carry out statistical analysis and output at the requested output times.
454!--    The MOD function is used for calculating the output time counters (like
455!--    time_dopr) in order to regard a possible decrease of the output time
456!--    interval in case of restart runs
457
458!
459!--    Set a flag indicating that so far no statistics have been created
460!--    for this time step
461       flow_statistics_called = .FALSE.
462
463!
464!--    If required, call flow_statistics for averaging in time
465       IF ( averaging_interval_pr /= 0.0  .AND.  &
466            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.  &
467            simulated_time >= skip_time_dopr )  THEN
468          time_dopr_av = time_dopr_av + dt_3d
469          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
470             do_sum = .TRUE.
471             time_dopr_av = MOD( time_dopr_av, &
472                                    MAX( dt_averaging_input_pr, dt_3d ) )
473          ENDIF
474       ENDIF
475       IF ( do_sum )  CALL flow_statistics
476
477!
[410]478!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
[1]479       IF ( averaging_interval /= 0.0  .AND.                                &
480            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND. &
481            simulated_time >= skip_time_data_output_av )                    &
482       THEN
483          time_do_sla = time_do_sla + dt_3d
484          IF ( time_do_sla >= dt_averaging_input )  THEN
485             CALL sum_up_3d_data
486             average_count_3d = average_count_3d + 1
487             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
488          ENDIF
489       ENDIF
490
491!
492!--    Calculate spectra for time averaging
493       IF ( averaging_interval_sp /= 0.0  .AND.  &
494            ( dt_dosp - time_dosp ) <= averaging_interval_sp  .AND.  &
495            simulated_time >= skip_time_dosp )  THEN
496          time_dosp_av = time_dosp_av + dt_3d
497          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
498             CALL calc_spectra
499             time_dosp_av = MOD( time_dosp_av, &
500                                 MAX( dt_averaging_input_pr, dt_3d ) )
501          ENDIF
502       ENDIF
503
504!
505!--    Computation and output of run control parameters.
[1001]506!--    This is also done whenever perturbations have been imposed
[1]507       IF ( time_run_control >= dt_run_control  .OR.                     &
[1001]508            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created ) &
[1]509       THEN
510          CALL run_control
511          IF ( time_run_control >= dt_run_control )  THEN
512             time_run_control = MOD( time_run_control, &
513                                     MAX( dt_run_control, dt_3d ) )
514          ENDIF
515       ENDIF
516
517!
518!--    Profile output (ASCII) on file
519       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
520          CALL print_1d
521          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, &
522                                                           dt_3d ) )
523       ENDIF
524
525!
526!--    Graphic output for PROFIL
527       IF ( time_dopr >= dt_dopr )  THEN
528          IF ( dopr_n /= 0 )  CALL data_output_profiles
529          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
530          time_dopr_av = 0.0    ! due to averaging (see above)
531       ENDIF
532
533!
534!--    Graphic output for time series
535       IF ( time_dots >= dt_dots )  THEN
[48]536          CALL data_output_tseries
[1]537          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
538       ENDIF
539
540!
541!--    Output of spectra (formatted for use with PROFIL), in case of no
542!--    time averaging, spectra has to be calculated before
543       IF ( time_dosp >= dt_dosp )  THEN
544          IF ( average_count_sp == 0 )  CALL calc_spectra
545          CALL data_output_spectra
546          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
547       ENDIF
548
549!
550!--    2d-data output (cross-sections)
551       IF ( time_do2d_xy >= dt_do2d_xy )  THEN
552          CALL data_output_2d( 'xy', 0 )
553          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
554       ENDIF
555       IF ( time_do2d_xz >= dt_do2d_xz )  THEN
556          CALL data_output_2d( 'xz', 0 )
557          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
558       ENDIF
559       IF ( time_do2d_yz >= dt_do2d_yz )  THEN
560          CALL data_output_2d( 'yz', 0 )
561          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
562       ENDIF
563
564!
565!--    3d-data output (volume data)
566       IF ( time_do3d >= dt_do3d )  THEN
567          CALL data_output_3d( 0 )
568          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
569       ENDIF
570
571!
[410]572!--    masked data output
573       DO  mid = 1, masks
574          IF ( time_domask(mid) >= dt_domask(mid) )  THEN
575             CALL data_output_mask( 0 )
576             time_domask(mid) = MOD( time_domask(mid),  &
577                                     MAX( dt_domask(mid), dt_3d ) )
578          ENDIF
579       ENDDO
580
581!
582!--    Output of time-averaged 2d/3d/masked data
[1]583       IF ( time_do_av >= dt_data_output_av )  THEN
584          CALL average_3d_data
585          CALL data_output_2d( 'xy', 1 )
586          CALL data_output_2d( 'xz', 1 )
587          CALL data_output_2d( 'yz', 1 )
588          CALL data_output_3d( 1 )
[410]589          DO  mid = 1, masks
590             CALL data_output_mask( 1 )
591          ENDDO
[1]592          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
593       ENDIF
594
595!
596!--    Output of particle time series
[253]597       IF ( particle_advection )  THEN
598          IF ( time_dopts >= dt_dopts  .OR. &
599               ( simulated_time >= particle_advection_start  .AND. &
[849]600                 first_call_lpm ) )  THEN
[253]601             CALL data_output_ptseries
602             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
603          ENDIF
[1]604       ENDIF
605
606!
607!--    Output of dvrp-graphics (isosurface, particles, slicer)
608#if defined( __dvrp_graphics )
609       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
610#endif
611       IF ( time_dvrp >= dt_dvrp )  THEN
612          CALL data_output_dvrp
613          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
614       ENDIF
615#if defined( __dvrp_graphics )
616       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
617#endif
618
619!
620!--    If required, set the heat flux for the next time step at a random value
621       IF ( constant_heatflux  .AND.  random_heatflux )  CALL disturb_heatflux
622
623!
624!--    Execute user-defined actions
625       CALL user_actions( 'after_timestep' )
626
627       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
628
[667]629
[1]630    ENDDO   ! time loop
631
632#if defined( __dvrp_graphics )
633    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
634#endif
635
636 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.