1 | !> @synthetic_turbulence_generator_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: synthetic_turbulence_generator_mod.f90 4671 2020-09-09 20:27:58Z gronemeier $ |
---|
27 | ! Implementation of downward facing USM and LSM surfaces |
---|
28 | ! |
---|
29 | ! 4647 2020-08-24 16:36:18Z suehring |
---|
30 | ! Change default value of synthetic turbulence adjustment as well as compute_velocity_seeds_local |
---|
31 | ! By default, the random-seed computation is now distributed among several cores. Especially for |
---|
32 | ! large length scales this is significantly faster. |
---|
33 | ! |
---|
34 | ! 4640 2020-08-11 16:28:32Z suehring |
---|
35 | ! - to avoid that the correction term in r11/r22 computation becomes unrealistically high, limit |
---|
36 | ! Obukhov length (term is not valid for near neutral conditions) |
---|
37 | ! - to avoid unrealistically large perturbations, change computation of r21 so that this resembles |
---|
38 | ! the vertical transport of horizontal momentum |
---|
39 | ! |
---|
40 | ! 4629 2020-07-29 09:37:56Z raasch |
---|
41 | ! support for MPI Fortran77 interface (mpif.h) removed |
---|
42 | ! |
---|
43 | ! 4603 2020-07-14 16:08:30Z suehring |
---|
44 | ! Bugfix in initialization from ASCII file - x-length scales at the bottom boundary were not |
---|
45 | ! initialized properly |
---|
46 | ! |
---|
47 | ! 4566 2020-06-16 10:11:51Z suehring |
---|
48 | ! - revise parametrization for reynolds-stress components, turbulent length- and time scales |
---|
49 | ! - revise computation of velocity disturbances to be consistent to Xie and Castro (2008) |
---|
50 | ! - change default value of time interval to adjust turbulence parametrization |
---|
51 | ! - bugfix in computation of amplitude-tensor (vertical flux of horizontal momentum) |
---|
52 | ! |
---|
53 | ! 4562 2020-06-12 08:38:47Z raasch |
---|
54 | ! Parts of r4559 re-formatted |
---|
55 | ! |
---|
56 | ! 4559 2020-06-11 08:51:48Z raasch |
---|
57 | ! File re-formatted to follow the PALM coding standard |
---|
58 | ! |
---|
59 | ! 4535 2020-05-15 12:07:23Z raasch |
---|
60 | ! Bugfix for restart data format query |
---|
61 | ! |
---|
62 | ! 4495 2020-04-13 20:11:20Z raasch |
---|
63 | ! Restart data handling with MPI-IO added |
---|
64 | ! |
---|
65 | ! 4481 2020-03-31 18:55:54Z maronga |
---|
66 | ! Bugfix: cpp-directives for serial mode added, dummy statements to prevent compile errors added |
---|
67 | ! |
---|
68 | ! 4442 2020-03-04 19:21:13Z suehring |
---|
69 | ! Set back turbulent length scale to 8 x grid spacing in the parametrized mode |
---|
70 | ! (was accidantly changed). |
---|
71 | ! |
---|
72 | ! 4441 2020-03-04 19:20:35Z suehring |
---|
73 | ! Correct misplaced preprocessor directive |
---|
74 | ! |
---|
75 | ! 4438 2020-03-03 20:49:28Z suehring |
---|
76 | ! Performance optimizations in velocity-seed calculation: |
---|
77 | ! - Random number array is only defined and computed locally (except for normalization to zero mean |
---|
78 | ! and unit variance) |
---|
79 | ! - Parallel random number generator is applied independent on the 2D random numbers in other |
---|
80 | ! routines |
---|
81 | ! - Option to decide wheter velocity seeds are computed locally without any further communication |
---|
82 | ! or are computed by all processes along the communicator |
---|
83 | ! |
---|
84 | ! 4346 2019-12-18 11:55:56Z motisi |
---|
85 | ! Introduction of wall_flags_total_0, which currently sets bits based on static topography |
---|
86 | ! information used in wall_flags_static_0 |
---|
87 | ! |
---|
88 | ! 4335 2019-12-12 16:39:05Z suehring |
---|
89 | ! Commentation of last commit |
---|
90 | ! |
---|
91 | ! 4332 2019-12-10 19:44:12Z suehring |
---|
92 | ! Limit initial velocity seeds in restart runs, if not the seed calculation may become unstable. |
---|
93 | ! Further, minor bugfix in initial velocity seed calculation. |
---|
94 | ! |
---|
95 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
96 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
97 | ! |
---|
98 | ! 4309 2019-11-26 18:49:59Z suehring |
---|
99 | ! Computation of velocity seeds optimized. This implies that random numbers are computed now using |
---|
100 | ! the parallel random number generator. Random numbers are now only computed and normalized locally, |
---|
101 | ! while distributed over all mpi ranks afterwards, instead of computing random numbers on a global |
---|
102 | ! array. |
---|
103 | ! Further, the number of calls for the time-consuming velocity-seed generation is reduced - now the |
---|
104 | ! left and right, as well as the north and south boundary share the same velocity-seed matrices. |
---|
105 | ! |
---|
106 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
107 | ! Corrected "Former revisions" section |
---|
108 | ! |
---|
109 | ! 4148 2019-08-08 11:26:00Z suehring |
---|
110 | ! Remove unused variable |
---|
111 | ! |
---|
112 | ! 4144 2019-08-06 09:11:47Z raasch |
---|
113 | ! Relational operators .EQ., .NE., etc. replaced by ==, /=, etc. |
---|
114 | ! |
---|
115 | ! 4071 2019-07-03 20:02:00Z suehring |
---|
116 | ! Bugfix, initialize mean_inflow_profiles in case turbulence and inflow information is not read from |
---|
117 | ! file. |
---|
118 | ! |
---|
119 | ! 4022 2019-06-12 11:52:39Z suehring |
---|
120 | ! Several bugfixes and improvements |
---|
121 | ! - Revise bias correction of the imposed perturbations (correction via volume flow can create |
---|
122 | ! instabilities in case the mean volume flow is close to zero) |
---|
123 | ! - Introduce lower limits in calculation of coefficient matrix, else the calculation may become |
---|
124 | ! numerically unstable |
---|
125 | ! - Impose perturbations every timestep, even though no new set of perturbations is generated in |
---|
126 | ! case dt_stg_call /= dt_3d |
---|
127 | ! - Implement a gradual decrease of Reynolds stress and length scales above ABL height (within 1 |
---|
128 | ! length scale above ABL depth to 1/10) rather than a discontinuous decrease |
---|
129 | ! - Bugfix in non-nested case: use ABL height for parametrized turbulence |
---|
130 | ! |
---|
131 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
132 | ! Introduce alternative switch for debug output during timestepping |
---|
133 | ! |
---|
134 | ! 3938 2019-04-29 16:06:25Z suehring |
---|
135 | ! Remove unused variables |
---|
136 | ! |
---|
137 | ! 3937 2019-04-29 15:09:07Z suehring |
---|
138 | ! Minor bugfix in case of a very early restart where mc_factor is sill not present. |
---|
139 | ! Some modification and fixing of potential bugs in the calculation of scaling parameters used for |
---|
140 | ! synthetic turbulence parametrization. |
---|
141 | ! |
---|
142 | ! 3909 2019-04-17 09:13:25Z suehring |
---|
143 | ! Minor bugfix for last commit |
---|
144 | ! |
---|
145 | ! 3900 2019-04-16 15:17:43Z suehring |
---|
146 | ! Missing re-calculation of perturbation seeds in case of restarts |
---|
147 | ! |
---|
148 | ! 3891 2019-04-12 17:52:01Z suehring |
---|
149 | ! Bugfix in initialization in case of restart runs. |
---|
150 | ! |
---|
151 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
152 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
153 | ! messages |
---|
154 | ! |
---|
155 | ! |
---|
156 | ! Removed unused variables |
---|
157 | ! |
---|
158 | ! 3719 2019-02-06 13:10:18Z kanani |
---|
159 | ! Removed log_point measurement from stg_init, since this part is counted to log_point(2) |
---|
160 | ! 'initialization' already. Moved other log_points to calls of the subroutines in time_integration |
---|
161 | ! for better overview. |
---|
162 | ! |
---|
163 | ! 2259 2017-06-08 09:09:11Z gronemeier |
---|
164 | ! Initial revision |
---|
165 | ! |
---|
166 | ! Authors: |
---|
167 | ! -------- |
---|
168 | ! @author Tobias Gronemeier, Matthias Suehring, Atsushi Inagaki, Micha Gryschka, Christoph Knigge |
---|
169 | ! |
---|
170 | ! |
---|
171 | ! Description: |
---|
172 | ! ------------ |
---|
173 | !> The module generates turbulence at the inflow boundary based on a method by Xie and Castro (2008) |
---|
174 | !> utilizing a Lund rotation (Lund, 1998) and a mass-flux correction by Kim et al. (2013). |
---|
175 | !> The turbulence is correlated based on length scales in y- and z-direction and a time scale for |
---|
176 | !> each velocity component. The profiles of length and time scales, mean u, v, w, e and pt, and all |
---|
177 | !> components of the Reynolds stress tensor can be either read from file STG_PROFILES, or will be |
---|
178 | !> parametrized within the boundary layer. |
---|
179 | !> |
---|
180 | !> @todo Enable cyclic_fill |
---|
181 | !> Implement turbulence generation for e and pt |
---|
182 | !> @note <Enter notes on the module> |
---|
183 | !> @bug Height information from input file is not used. Profiles from input must match with current |
---|
184 | !> PALM grid. |
---|
185 | !> In case of restart, velocity seeds differ from precursor run if a11, a22, or a33 are zero. |
---|
186 | !--------------------------------------------------------------------------------------------------! |
---|
187 | MODULE synthetic_turbulence_generator_mod |
---|
188 | |
---|
189 | |
---|
190 | USE arrays_3d, & |
---|
191 | ONLY: dzw, & |
---|
192 | ddzw, & |
---|
193 | drho_air, & |
---|
194 | mean_inflow_profiles, & |
---|
195 | pt, & |
---|
196 | pt_init, & |
---|
197 | q, & |
---|
198 | q_init, & |
---|
199 | u, & |
---|
200 | u_init, & |
---|
201 | v, & |
---|
202 | v_init, & |
---|
203 | w, & |
---|
204 | zu, & |
---|
205 | zw |
---|
206 | |
---|
207 | USE basic_constants_and_equations_mod, & |
---|
208 | ONLY: g, & |
---|
209 | kappa, & |
---|
210 | pi |
---|
211 | |
---|
212 | USE control_parameters, & |
---|
213 | ONLY: bc_lr, & |
---|
214 | bc_ns, & |
---|
215 | child_domain, & |
---|
216 | coupling_char, & |
---|
217 | debug_output_timestep, & |
---|
218 | dt_3d, & |
---|
219 | e_init, & |
---|
220 | humidity, & |
---|
221 | initializing_actions, & |
---|
222 | intermediate_timestep_count, & |
---|
223 | intermediate_timestep_count_max, & |
---|
224 | length, & |
---|
225 | message_string, & |
---|
226 | nesting_offline, & |
---|
227 | neutral, & |
---|
228 | num_mean_inflow_profiles, & |
---|
229 | random_generator, & |
---|
230 | rans_mode, & |
---|
231 | restart_data_format_output, & |
---|
232 | restart_string, & |
---|
233 | syn_turb_gen, & |
---|
234 | time_since_reference_point, & |
---|
235 | turbulent_inflow |
---|
236 | |
---|
237 | USE cpulog, & |
---|
238 | ONLY: cpu_log, & |
---|
239 | log_point_s |
---|
240 | |
---|
241 | USE grid_variables, & |
---|
242 | ONLY: ddx, & |
---|
243 | ddy, & |
---|
244 | dx, & |
---|
245 | dy |
---|
246 | |
---|
247 | USE indices, & |
---|
248 | ONLY: nbgp, & |
---|
249 | nz, & |
---|
250 | nzb, & |
---|
251 | nzt, & |
---|
252 | nx, & |
---|
253 | nxl, & |
---|
254 | nxlu, & |
---|
255 | nxr, & |
---|
256 | ny, & |
---|
257 | nys, & |
---|
258 | nysv, & |
---|
259 | nyn, & |
---|
260 | wall_flags_total_0 |
---|
261 | |
---|
262 | USE kinds |
---|
263 | |
---|
264 | #if defined( __parallel ) |
---|
265 | USE MPI |
---|
266 | #endif |
---|
267 | |
---|
268 | USE nesting_offl_mod, & |
---|
269 | ONLY: nesting_offl_calc_zi, & |
---|
270 | zi_ribulk |
---|
271 | |
---|
272 | USE pegrid, & |
---|
273 | ONLY: comm1dx, & |
---|
274 | comm1dy, & |
---|
275 | comm2d, & |
---|
276 | ierr, & |
---|
277 | myidx, & |
---|
278 | myidy, & |
---|
279 | pdims |
---|
280 | |
---|
281 | USE pmc_interface, & |
---|
282 | ONLY : rans_mode_parent |
---|
283 | |
---|
284 | USE random_generator_parallel, & |
---|
285 | ONLY: init_parallel_random_generator, & |
---|
286 | random_dummy, & |
---|
287 | random_number_parallel, & |
---|
288 | random_seed_parallel |
---|
289 | |
---|
290 | USE restart_data_mpi_io_mod, & |
---|
291 | ONLY: rrd_mpi_io, & |
---|
292 | wrd_mpi_io |
---|
293 | |
---|
294 | USE transpose_indices, & |
---|
295 | ONLY: nzb_x, & |
---|
296 | nzt_x |
---|
297 | |
---|
298 | USE surface_mod, & |
---|
299 | ONLY: surf_def_h, & |
---|
300 | surf_lsm_h, & |
---|
301 | surf_usm_h |
---|
302 | |
---|
303 | IMPLICIT NONE |
---|
304 | |
---|
305 | INTEGER(iwp) :: id_stg_left !< left lateral boundary core id in case of turbulence generator |
---|
306 | INTEGER(iwp) :: id_stg_north !< north lateral boundary core id in case of turbulence generator |
---|
307 | INTEGER(iwp) :: id_stg_right !< right lateral boundary core id in case of turbulence generator |
---|
308 | INTEGER(iwp) :: id_stg_south !< south lateral boundary core id in case of turbulence generator |
---|
309 | INTEGER(iwp) :: k_zi !< vertical index of boundary-layer top |
---|
310 | INTEGER(iwp) :: mergp_limit = 1000 !< maximum length scale (in gp) |
---|
311 | INTEGER(iwp) :: mergp_x !< maximum length scale in x (in gp) |
---|
312 | INTEGER(iwp) :: mergp_xy !< maximum horizontal length scale (in gp) |
---|
313 | INTEGER(iwp) :: mergp_y !< maximum length scale in y (in gp) |
---|
314 | INTEGER(iwp) :: mergp_z !< maximum length scale in z (in gp) |
---|
315 | INTEGER(iwp) :: nzb_x_stg !< lower bound of z coordinate (required for transposing z on PEs along x) |
---|
316 | INTEGER(iwp) :: nzt_x_stg !< upper bound of z coordinate (required for transposing z on PEs along x) |
---|
317 | INTEGER(iwp) :: nzb_y_stg !< lower bound of z coordinate (required for transposing z on PEs along y) |
---|
318 | INTEGER(iwp) :: nzt_y_stg !< upper bound of z coordinate (required for transposing z on PEs along y) |
---|
319 | #if defined( __parallel ) |
---|
320 | INTEGER(iwp) :: stg_type_xz !< MPI type for full z range |
---|
321 | INTEGER(iwp) :: stg_type_xz_small !< MPI type for small z range |
---|
322 | INTEGER(iwp) :: stg_type_yz !< MPI type for full z range |
---|
323 | INTEGER(iwp) :: stg_type_yz_small !< MPI type for small z range |
---|
324 | #endif |
---|
325 | |
---|
326 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_xz = 0 !< number of non-topography grid points at xz cross-sections, |
---|
327 | !< required for bias correction of imposed perturbations |
---|
328 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_yz = 0 !< number of non-topography grid points at yz cross-sections, |
---|
329 | !< required for bias correction of imposed perturbations |
---|
330 | |
---|
331 | #if defined( __parallel ) |
---|
332 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displs_xz !< displacement for MPI_GATHERV |
---|
333 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: recv_count_xz !< receive count for MPI_GATHERV |
---|
334 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displs_yz !< displacement for MPI_GATHERV |
---|
335 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: recv_count_yz !< receive count for MPI_GATHERV |
---|
336 | #endif |
---|
337 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nux !< length scale of u in x direction (in gp) |
---|
338 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nuy !< length scale of u in y direction (in gp) |
---|
339 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nuz !< length scale of u in z direction (in gp) |
---|
340 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nvx !< length scale of v in x direction (in gp) |
---|
341 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nvy !< length scale of v in y direction (in gp) |
---|
342 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nvz !< length scale of v in z direction (in gp) |
---|
343 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nwx !< length scale of w in x direction (in gp) |
---|
344 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nwy !< length scale of w in y direction (in gp) |
---|
345 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nwz !< length scale of w in z direction (in gp) |
---|
346 | |
---|
347 | INTEGER(isp), DIMENSION(:), ALLOCATABLE :: id_rand_xz !< initial random IDs at xz inflow boundary |
---|
348 | INTEGER(isp), DIMENSION(:), ALLOCATABLE :: id_rand_yz !< initial random IDs at yz inflow boundary |
---|
349 | INTEGER(isp), DIMENSION(:,:), ALLOCATABLE :: seq_rand_xz !< initial random seeds at xz inflow boundary |
---|
350 | INTEGER(isp), DIMENSION(:,:), ALLOCATABLE :: seq_rand_yz !< initial random seeds at yz inflow boundary |
---|
351 | |
---|
352 | |
---|
353 | LOGICAL :: adjustment_step = .FALSE. !< control flag indicating that time and lenght scales have been updated and |
---|
354 | !< no time correlation to the timestep before should be considered |
---|
355 | LOGICAL :: compute_velocity_seeds_local = .FALSE. !< switch to decide whether velocity seeds are computed locally |
---|
356 | !< or if computation is distributed over several processes |
---|
357 | LOGICAL :: parametrize_inflow_turbulence = .FALSE. !< flag indicating that inflow turbulence is either read from file |
---|
358 | !< (.FALSE.) or if it parametrized |
---|
359 | LOGICAL :: use_syn_turb_gen = .FALSE. !< switch to use synthetic turbulence generator |
---|
360 | LOGICAL :: velocity_seed_initialized = .FALSE. !< true after first call of stg_main |
---|
361 | |
---|
362 | |
---|
363 | REAL(wp) :: blend !< value to create gradually and smooth blending of Reynolds stress and length |
---|
364 | !< scales above the boundary layer |
---|
365 | REAL(wp) :: blend_coeff = -9.3_wp !< coefficient used to ensure that blending functions decreases to 1/10 after |
---|
366 | !< one length scale above ABL top |
---|
367 | REAL(wp) :: d_l !< blend_coeff/length_scale |
---|
368 | REAL(wp) :: d_nxy !< inverse of the total number of xy-grid points |
---|
369 | REAL(wp) :: dt_stg_adjust = 1800.0_wp !< time interval for adjusting turbulence statistics |
---|
370 | REAL(wp) :: dt_stg_call = 0.0_wp !< time interval for calling synthetic turbulence generator |
---|
371 | REAL(wp) :: scale_l !< scaling parameter used for turbulence parametrization - Obukhov length |
---|
372 | REAL(wp) :: scale_us !< scaling parameter used for turbulence parametrization - friction velocity |
---|
373 | REAL(wp) :: scale_wm !< scaling parameter used for turbulence parametrization - momentum scale |
---|
374 | REAL(wp) :: time_stg_adjust = 0.0_wp !< time counter for adjusting turbulence information |
---|
375 | REAL(wp) :: time_stg_call = 0.0_wp !< time counter for calling generator |
---|
376 | |
---|
377 | REAL(wp), DIMENSION(3) :: mc_factor = 1.0_wp !< correction factor for the u,v,w-components to maintain original mass flux |
---|
378 | |
---|
379 | |
---|
380 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r11 !< Reynolds parameter |
---|
381 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r21 !< Reynolds parameter |
---|
382 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r22 !< Reynolds parameter |
---|
383 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r31 !< Reynolds parameter |
---|
384 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r32 !< Reynolds parameter |
---|
385 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r33 !< Reynolds parameter |
---|
386 | |
---|
387 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a11 !< coefficient for Lund rotation |
---|
388 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a21 !< coefficient for Lund rotation |
---|
389 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a22 !< coefficient for Lund rotation |
---|
390 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a31 !< coefficient for Lund rotation |
---|
391 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a32 !< coefficient for Lund rotation |
---|
392 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a33 !< coefficient for Lund rotation |
---|
393 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tu !< Lagrangian time scale of u |
---|
394 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tv !< Lagrangian time scale of v |
---|
395 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tw !< Lagrangian time scale of w |
---|
396 | |
---|
397 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bux !< filter function for u in x direction |
---|
398 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: buy !< filter function for u in y direction |
---|
399 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: buz !< filter function for u in z direction |
---|
400 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bvx !< filter function for v in x direction |
---|
401 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bvy !< filter function for v in y direction |
---|
402 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bvz !< filter function for v in z direction |
---|
403 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bwx !< filter function for w in y direction |
---|
404 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bwy !< filter function for w in y direction |
---|
405 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bwz !< filter function for w in z direction |
---|
406 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fu_xz !< velocity seed for u at xz plane |
---|
407 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fuo_xz !< velocity seed for u at xz plane with new random number |
---|
408 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fu_yz !< velocity seed for u at yz plane |
---|
409 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fuo_yz !< velocity seed for u at yz plane with new random number |
---|
410 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fv_xz !< velocity seed for v at xz plane |
---|
411 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fvo_xz !< velocity seed for v at xz plane with new random number |
---|
412 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fv_yz !< velocity seed for v at yz plane |
---|
413 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fvo_yz !< velocity seed for v at yz plane with new random number |
---|
414 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fw_xz !< velocity seed for w at xz plane |
---|
415 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fwo_xz !< velocity seed for w at xz plane with new random number |
---|
416 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fw_yz !< velocity seed for w at yz plane |
---|
417 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fwo_yz !< velocity seed for w at yz plane with new random number |
---|
418 | |
---|
419 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: dist_xz !< disturbances for parallel/crosswind/vertical component at north/south boundary |
---|
420 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: dist_yz !< disturbances for parallel/crosswind/vertical component at north/south boundary |
---|
421 | |
---|
422 | ! |
---|
423 | !-- PALM interfaces: |
---|
424 | !-- Adjust time and lenght scales, Reynolds stress, and filter functions |
---|
425 | INTERFACE stg_adjust |
---|
426 | MODULE PROCEDURE stg_adjust |
---|
427 | END INTERFACE stg_adjust |
---|
428 | ! |
---|
429 | !-- Input parameter checks to be done in check_parameters |
---|
430 | INTERFACE stg_check_parameters |
---|
431 | MODULE PROCEDURE stg_check_parameters |
---|
432 | END INTERFACE stg_check_parameters |
---|
433 | |
---|
434 | ! |
---|
435 | !-- Calculate filter functions |
---|
436 | INTERFACE stg_filter_func |
---|
437 | MODULE PROCEDURE stg_filter_func |
---|
438 | END INTERFACE stg_filter_func |
---|
439 | |
---|
440 | ! |
---|
441 | !-- Generate velocity seeds at south and north domain boundary |
---|
442 | INTERFACE stg_generate_seed_xz |
---|
443 | MODULE PROCEDURE stg_generate_seed_xz |
---|
444 | END INTERFACE stg_generate_seed_xz |
---|
445 | ! |
---|
446 | !-- Generate velocity seeds at left and/or right domain boundary |
---|
447 | INTERFACE stg_generate_seed_yz |
---|
448 | MODULE PROCEDURE stg_generate_seed_yz |
---|
449 | END INTERFACE stg_generate_seed_yz |
---|
450 | |
---|
451 | ! |
---|
452 | !-- Output of information to the header file |
---|
453 | INTERFACE stg_header |
---|
454 | MODULE PROCEDURE stg_header |
---|
455 | END INTERFACE stg_header |
---|
456 | |
---|
457 | ! |
---|
458 | !-- Initialization actions |
---|
459 | INTERFACE stg_init |
---|
460 | MODULE PROCEDURE stg_init |
---|
461 | END INTERFACE stg_init |
---|
462 | |
---|
463 | ! |
---|
464 | !-- Main procedure of synth. turb. gen. |
---|
465 | INTERFACE stg_main |
---|
466 | MODULE PROCEDURE stg_main |
---|
467 | END INTERFACE stg_main |
---|
468 | |
---|
469 | ! |
---|
470 | !-- Reading of NAMELIST parameters |
---|
471 | INTERFACE stg_parin |
---|
472 | MODULE PROCEDURE stg_parin |
---|
473 | END INTERFACE stg_parin |
---|
474 | |
---|
475 | ! |
---|
476 | !-- Reading of parameters for restart runs |
---|
477 | INTERFACE stg_rrd_global |
---|
478 | MODULE PROCEDURE stg_rrd_global_ftn |
---|
479 | MODULE PROCEDURE stg_rrd_global_mpi |
---|
480 | END INTERFACE stg_rrd_global |
---|
481 | |
---|
482 | ! |
---|
483 | !-- Writing of binary output for restart runs |
---|
484 | INTERFACE stg_wrd_global |
---|
485 | MODULE PROCEDURE stg_wrd_global |
---|
486 | END INTERFACE stg_wrd_global |
---|
487 | |
---|
488 | SAVE |
---|
489 | |
---|
490 | PRIVATE |
---|
491 | |
---|
492 | ! |
---|
493 | !-- Public interfaces |
---|
494 | PUBLIC stg_adjust, & |
---|
495 | stg_check_parameters, & |
---|
496 | stg_header, & |
---|
497 | stg_init, & |
---|
498 | stg_main, & |
---|
499 | stg_parin, & |
---|
500 | stg_rrd_global, & |
---|
501 | stg_wrd_global |
---|
502 | |
---|
503 | ! |
---|
504 | !-- Public variables |
---|
505 | PUBLIC dt_stg_call, & |
---|
506 | dt_stg_adjust, & |
---|
507 | id_stg_left, & |
---|
508 | id_stg_north, & |
---|
509 | id_stg_right, & |
---|
510 | id_stg_south, & |
---|
511 | parametrize_inflow_turbulence, & |
---|
512 | time_stg_adjust, & |
---|
513 | time_stg_call, & |
---|
514 | use_syn_turb_gen |
---|
515 | |
---|
516 | |
---|
517 | CONTAINS |
---|
518 | |
---|
519 | |
---|
520 | !--------------------------------------------------------------------------------------------------! |
---|
521 | ! Description: |
---|
522 | ! ------------ |
---|
523 | !> Check parameters routine for synthetic turbulence generator |
---|
524 | !--------------------------------------------------------------------------------------------------! |
---|
525 | SUBROUTINE stg_check_parameters |
---|
526 | |
---|
527 | IF ( .NOT. use_syn_turb_gen .AND. .NOT. rans_mode .AND. & |
---|
528 | nesting_offline ) THEN |
---|
529 | message_string = 'Synthetic turbulence generator is required ' // & |
---|
530 | 'if offline nesting is applied and PALM operates in LES mode.' |
---|
531 | CALL message( 'stg_check_parameters', 'PA0520', 0, 0, 0, 6, 0 ) |
---|
532 | ENDIF |
---|
533 | |
---|
534 | IF ( .NOT. use_syn_turb_gen .AND. child_domain & |
---|
535 | .AND. rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
536 | message_string = 'Synthetic turbulence generator is required when nesting is applied ' // & |
---|
537 | 'and parent operates in RANS-mode but current child in LES mode.' |
---|
538 | CALL message( 'stg_check_parameters', 'PA0524', 1, 2, 0, 6, 0 ) |
---|
539 | ENDIF |
---|
540 | |
---|
541 | IF ( use_syn_turb_gen ) THEN |
---|
542 | |
---|
543 | IF ( child_domain .AND. .NOT. rans_mode .AND. .NOT. rans_mode_parent ) THEN |
---|
544 | message_string = 'Using synthetic turbulence generator is not allowed in LES-LES nesting.' |
---|
545 | CALL message( 'stg_check_parameters', 'PA0620', 1, 2, 0, 6, 0 ) |
---|
546 | |
---|
547 | ENDIF |
---|
548 | |
---|
549 | IF ( child_domain .AND. rans_mode .AND. rans_mode_parent ) THEN |
---|
550 | message_string = 'Using synthetic turbulence generator is not allowed in RANS-RANS nesting.' |
---|
551 | CALL message( 'stg_check_parameters', 'PA0621', 1, 2, 0, 6, 0 ) |
---|
552 | |
---|
553 | ENDIF |
---|
554 | |
---|
555 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
556 | |
---|
557 | IF ( INDEX( initializing_actions, 'set_constant_profiles' ) == 0 & |
---|
558 | .AND. INDEX( initializing_actions, 'read_restart_data' ) == 0 ) THEN |
---|
559 | message_string = 'Using synthetic turbulence generator requires ' // & |
---|
560 | '%initializing_actions = "set_constant_profiles" or ' // & |
---|
561 | ' "read_restart_data", if not offline nesting is applied.' |
---|
562 | CALL message( 'stg_check_parameters', 'PA0015', 1, 2, 0, 6, 0 ) |
---|
563 | ENDIF |
---|
564 | |
---|
565 | IF ( bc_lr /= 'dirichlet/radiation' ) THEN |
---|
566 | message_string = 'Using synthetic turbulence generator requires &bc_lr = ' // & |
---|
567 | ' "dirichlet/radiation", if not offline nesting is applied.' |
---|
568 | CALL message( 'stg_check_parameters', 'PA0035', 1, 2, 0, 6, 0 ) |
---|
569 | ENDIF |
---|
570 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
571 | message_string = 'Using synthetic turbulence generator requires &bc_ns = ' // & |
---|
572 | ' "cyclic", if not offline nesting is applied.' |
---|
573 | CALL message( 'stg_check_parameters', 'PA0037', 1, 2, 0, 6, 0 ) |
---|
574 | ENDIF |
---|
575 | |
---|
576 | ENDIF |
---|
577 | |
---|
578 | IF ( turbulent_inflow ) THEN |
---|
579 | message_string = 'Using synthetic turbulence generator in combination ' // & |
---|
580 | '&with turbulent_inflow = .T. is not allowed' |
---|
581 | CALL message( 'stg_check_parameters', 'PA0039', 1, 2, 0, 6, 0 ) |
---|
582 | ENDIF |
---|
583 | ! |
---|
584 | !-- Synthetic turbulence generator requires the parallel random generator |
---|
585 | IF ( random_generator /= 'random-parallel' ) THEN |
---|
586 | message_string = 'Using synthetic turbulence generator requires random_generator = ' // & |
---|
587 | 'random-parallel.' |
---|
588 | CALL message( 'stg_check_parameters', 'PA0421', 1, 2, 0, 6, 0 ) |
---|
589 | ENDIF |
---|
590 | |
---|
591 | ENDIF |
---|
592 | |
---|
593 | END SUBROUTINE stg_check_parameters |
---|
594 | |
---|
595 | |
---|
596 | !--------------------------------------------------------------------------------------------------! |
---|
597 | ! Description: |
---|
598 | ! ------------ |
---|
599 | !> Header output for synthetic turbulence generator |
---|
600 | !--------------------------------------------------------------------------------------------------! |
---|
601 | SUBROUTINE stg_header ( io ) |
---|
602 | |
---|
603 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
604 | |
---|
605 | ! |
---|
606 | !-- Write synthetic turbulence generator Header |
---|
607 | WRITE( io, 1 ) |
---|
608 | IF ( use_syn_turb_gen ) THEN |
---|
609 | WRITE( io, 2 ) |
---|
610 | ELSE |
---|
611 | WRITE( io, 3 ) |
---|
612 | ENDIF |
---|
613 | |
---|
614 | IF ( parametrize_inflow_turbulence ) THEN |
---|
615 | WRITE( io, 4 ) dt_stg_adjust |
---|
616 | ELSE |
---|
617 | WRITE( io, 5 ) |
---|
618 | ENDIF |
---|
619 | |
---|
620 | 1 FORMAT (//' Synthetic turbulence generator information:'/ & |
---|
621 | ' ------------------------------------------'/) |
---|
622 | 2 FORMAT (' synthetic turbulence generator is switched on') |
---|
623 | 3 FORMAT (' synthetic turbulence generator is switched off') |
---|
624 | 4 FORMAT (' imposed turbulence statistics are parametrized and ajdusted to boundary-layer development each ', F8.2, ' s' ) |
---|
625 | 5 FORMAT (' imposed turbulence is read from file' ) |
---|
626 | |
---|
627 | END SUBROUTINE stg_header |
---|
628 | |
---|
629 | |
---|
630 | !--------------------------------------------------------------------------------------------------! |
---|
631 | ! Description: |
---|
632 | ! ------------ |
---|
633 | !> Initialization of the synthetic turbulence generator |
---|
634 | !--------------------------------------------------------------------------------------------------! |
---|
635 | SUBROUTINE stg_init |
---|
636 | |
---|
637 | #if defined( __parallel ) |
---|
638 | INTEGER(KIND=MPI_ADDRESS_KIND) :: extent !< extent of new MPI type |
---|
639 | INTEGER(KIND=MPI_ADDRESS_KIND) :: tob = 0 !< dummy variable |
---|
640 | #endif |
---|
641 | |
---|
642 | INTEGER(iwp) :: i !> grid index in x-direction |
---|
643 | INTEGER(iwp) :: j !> loop index |
---|
644 | INTEGER(iwp) :: k !< index |
---|
645 | #if defined( __parallel ) |
---|
646 | INTEGER(iwp) :: newtype !< dummy MPI type |
---|
647 | INTEGER(iwp) :: realsize !< size of REAL variables |
---|
648 | #endif |
---|
649 | |
---|
650 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_xz_l = 0 !< number of non-topography grid points at xz-cross-section on subdomain |
---|
651 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_yz_l = 0 !< number of non-topography grid points at yz-cross-section on subdomain |
---|
652 | |
---|
653 | |
---|
654 | LOGICAL :: file_stg_exist = .FALSE. !< flag indicating whether parameter file for Reynolds stress and length scales exist |
---|
655 | |
---|
656 | ! |
---|
657 | !-- Dummy variables used for reading profiles |
---|
658 | REAL(wp) :: d1 !< u profile |
---|
659 | REAL(wp) :: d2 !< v profile |
---|
660 | REAL(wp) :: d3 !< w profile |
---|
661 | REAL(wp) :: d5 !< e profile |
---|
662 | REAL(wp) :: luy !< length scale for u in y direction |
---|
663 | REAL(wp) :: luz !< length scale for u in z direction |
---|
664 | REAL(wp) :: lvy !< length scale for v in y direction |
---|
665 | REAL(wp) :: lvz !< length scale for v in z direction |
---|
666 | REAL(wp) :: lwy !< length scale for w in y direction |
---|
667 | REAL(wp) :: lwz !< length scale for w in z direction |
---|
668 | #if defined( __parallel ) |
---|
669 | REAL(wp) :: nnz !< increment used to determine processor decomposition of z-axis along x and y direction |
---|
670 | #endif |
---|
671 | REAL(wp) :: zz !< height |
---|
672 | |
---|
673 | |
---|
674 | #if defined( __parallel ) |
---|
675 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
676 | #endif |
---|
677 | ! |
---|
678 | !-- Create mpi-datatypes for exchange in case of non-local but distributed computation of the |
---|
679 | !-- velocity seeds. This option is useful in case large turbulent length scales are present, where |
---|
680 | !-- the computational effort becomes large and needs to be parallelized. For parameterized turbulence |
---|
681 | !-- the length scales are small and computing the velocity seeds locally is faster (no overhead by |
---|
682 | !-- communication). |
---|
683 | IF ( .NOT. compute_velocity_seeds_local ) THEN |
---|
684 | #if defined( __parallel ) |
---|
685 | ! |
---|
686 | !-- Determine processor decomposition of z-axis along x- and y-direction |
---|
687 | nnz = nz / pdims(1) |
---|
688 | nzb_x_stg = 1 + myidx * INT( nnz ) |
---|
689 | nzt_x_stg = ( myidx + 1 ) * INT( nnz ) |
---|
690 | |
---|
691 | IF ( MOD( nz , pdims(1) ) /= 0 .AND. myidx == id_stg_right ) & |
---|
692 | nzt_x_stg = nzt_x_stg + myidx * ( nnz - INT( nnz ) ) |
---|
693 | |
---|
694 | IF ( nesting_offline .OR. ( child_domain .AND. rans_mode_parent & |
---|
695 | .AND. .NOT. rans_mode ) ) THEN |
---|
696 | nnz = nz / pdims(2) |
---|
697 | nzb_y_stg = 1 + myidy * INT( nnz ) |
---|
698 | nzt_y_stg = ( myidy + 1 ) * INT( nnz ) |
---|
699 | |
---|
700 | IF ( MOD( nz , pdims(2) ) /= 0 .AND. myidy == id_stg_north ) & |
---|
701 | nzt_y_stg = nzt_y_stg + myidy * ( nnz - INT( nnz ) ) |
---|
702 | ENDIF |
---|
703 | |
---|
704 | ! |
---|
705 | !-- Define MPI type used in stg_generate_seed_yz to gather vertical splitted velocity seeds |
---|
706 | CALL MPI_TYPE_SIZE( MPI_REAL, realsize, ierr ) |
---|
707 | extent = 1 * realsize |
---|
708 | ! |
---|
709 | !-- Set-up MPI datatyp to involve all cores for turbulence generation at yz layer |
---|
710 | !-- stg_type_yz: yz-slice with vertical bounds nzb:nzt+1 |
---|
711 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt-nzb+2,nyn-nys+1], & |
---|
712 | [1,nyn-nys+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
713 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_yz, ierr ) |
---|
714 | CALL MPI_TYPE_COMMIT( stg_type_yz, ierr ) |
---|
715 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
716 | |
---|
717 | ! stg_type_yz_small: yz-slice with vertical bounds nzb_x_stg:nzt_x_stg+1 |
---|
718 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt_x_stg-nzb_x_stg+2,nyn-nys+1], & |
---|
719 | [1,nyn-nys+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
720 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_yz_small, ierr ) |
---|
721 | CALL MPI_TYPE_COMMIT( stg_type_yz_small, ierr ) |
---|
722 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
723 | |
---|
724 | ! Receive count and displacement for MPI_GATHERV in stg_generate_seed_yz |
---|
725 | ALLOCATE( recv_count_yz(pdims(1)), displs_yz(pdims(1)) ) |
---|
726 | |
---|
727 | recv_count_yz = nzt_x_stg-nzb_x_stg + 1 |
---|
728 | recv_count_yz(pdims(1)) = recv_count_yz(pdims(1)) + 1 |
---|
729 | |
---|
730 | DO j = 1, pdims(1) |
---|
731 | displs_yz(j) = 0 + (nzt_x_stg-nzb_x_stg+1) * (j-1) |
---|
732 | ENDDO |
---|
733 | ! |
---|
734 | !-- Set-up MPI datatyp to involve all cores for turbulence generation at xz layer |
---|
735 | !-- stg_type_xz: xz-slice with vertical bounds nzb:nzt+1 |
---|
736 | IF ( nesting_offline .OR. ( child_domain .AND. rans_mode_parent & |
---|
737 | .AND. .NOT. rans_mode ) ) THEN |
---|
738 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt-nzb+2,nxr-nxl+1], & |
---|
739 | [1,nxr-nxl+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
740 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_xz, ierr ) |
---|
741 | CALL MPI_TYPE_COMMIT( stg_type_xz, ierr ) |
---|
742 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
743 | |
---|
744 | ! stg_type_yz_small: xz-slice with vertical bounds nzb_x_stg:nzt_x_stg+1 |
---|
745 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt_y_stg-nzb_y_stg+2,nxr-nxl+1], & |
---|
746 | [1,nxr-nxl+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
747 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_xz_small, ierr ) |
---|
748 | CALL MPI_TYPE_COMMIT( stg_type_xz_small, ierr ) |
---|
749 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
750 | |
---|
751 | ! Receive count and displacement for MPI_GATHERV in stg_generate_seed_yz |
---|
752 | ALLOCATE( recv_count_xz(pdims(2)), displs_xz(pdims(2)) ) |
---|
753 | |
---|
754 | recv_count_xz = nzt_y_stg-nzb_y_stg + 1 |
---|
755 | recv_count_xz(pdims(2)) = recv_count_xz(pdims(2)) + 1 |
---|
756 | |
---|
757 | DO j = 1, pdims(2) |
---|
758 | displs_xz(j) = 0 + (nzt_y_stg-nzb_y_stg+1) * (j-1) |
---|
759 | ENDDO |
---|
760 | |
---|
761 | ENDIF |
---|
762 | #endif |
---|
763 | ENDIF |
---|
764 | ! |
---|
765 | !-- Allocate required arrays. |
---|
766 | !-- In case no offline nesting or self nesting is used, the arrary mean_inflow profiles is required. |
---|
767 | !-- Check if it is already allocated, else allocate and initialize it appropriately. Note, in case |
---|
768 | !-- turbulence and inflow information is read from file, mean_inflow_profiles is already allocated |
---|
769 | !-- and initialized appropriately. |
---|
770 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
771 | IF ( .NOT. ALLOCATED( mean_inflow_profiles ) ) THEN |
---|
772 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) |
---|
773 | mean_inflow_profiles = 0.0_wp |
---|
774 | mean_inflow_profiles(:,1) = u_init |
---|
775 | mean_inflow_profiles(:,2) = v_init |
---|
776 | ! |
---|
777 | !-- Even though potential temperature and humidity are not perturbed, they need to be |
---|
778 | !-- initialized appropriately. |
---|
779 | IF ( .NOT. neutral ) & |
---|
780 | mean_inflow_profiles(:,4) = pt_init |
---|
781 | IF ( humidity ) & |
---|
782 | mean_inflow_profiles(:,6) = q_init |
---|
783 | ENDIF |
---|
784 | ENDIF |
---|
785 | ! |
---|
786 | !-- Assign initial profiles. Note, this is only required if turbulent inflow from the left is |
---|
787 | !-- desired, not in case of any of the nesting (offline or self nesting) approaches. |
---|
788 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
789 | u_init = mean_inflow_profiles(:,1) |
---|
790 | v_init = mean_inflow_profiles(:,2) |
---|
791 | e_init = MAXVAL( mean_inflow_profiles(:,5) ) |
---|
792 | ENDIF |
---|
793 | |
---|
794 | ALLOCATE ( a11(nzb:nzt+1), a21(nzb:nzt+1), a22(nzb:nzt+1), & |
---|
795 | a31(nzb:nzt+1), a32(nzb:nzt+1), a33(nzb:nzt+1), & |
---|
796 | nux(nzb:nzt+1), nuy(nzb:nzt+1), nuz(nzb:nzt+1), & |
---|
797 | nvx(nzb:nzt+1), nvy(nzb:nzt+1), nvz(nzb:nzt+1), & |
---|
798 | nwx(nzb:nzt+1), nwy(nzb:nzt+1), nwz(nzb:nzt+1), & |
---|
799 | r11(nzb:nzt+1), r21(nzb:nzt+1), r22(nzb:nzt+1), & |
---|
800 | r31(nzb:nzt+1), r32(nzb:nzt+1), r33(nzb:nzt+1), & |
---|
801 | tu(nzb:nzt+1), tv(nzb:nzt+1), tw(nzb:nzt+1) ) |
---|
802 | |
---|
803 | r11 = 0.0_wp |
---|
804 | r21 = 0.0_wp |
---|
805 | r22 = 0.0_wp |
---|
806 | r31 = 0.0_wp |
---|
807 | r32 = 0.0_wp |
---|
808 | r33 = 0.0_wp |
---|
809 | tu = 0.0_wp |
---|
810 | tv = 0.0_wp |
---|
811 | tw = 0.0_wp |
---|
812 | |
---|
813 | ALLOCATE ( dist_xz(nzb:nzt+1,nxl:nxr,3) ) |
---|
814 | ALLOCATE ( dist_yz(nzb:nzt+1,nys:nyn,3) ) |
---|
815 | dist_xz = 0.0_wp |
---|
816 | dist_yz = 0.0_wp |
---|
817 | ! |
---|
818 | !-- Read inflow profile |
---|
819 | !-- Height levels of profiles in input profile is as follows: |
---|
820 | !-- zu: luy, luz, tu, lvy, lvz, tv, r11, r21, r22, d1, d2, d5 zw: lwy, lwz, tw, r31, r32, r33, d3 |
---|
821 | !-- WARNING: zz is not used at the moment |
---|
822 | INQUIRE( FILE = 'STG_PROFILES' // TRIM( coupling_char ), EXIST = file_stg_exist ) |
---|
823 | |
---|
824 | IF ( file_stg_exist ) THEN |
---|
825 | |
---|
826 | OPEN( 90, FILE = 'STG_PROFILES' // TRIM( coupling_char ), STATUS = 'OLD', FORM = 'FORMATTED' ) |
---|
827 | ! |
---|
828 | !-- Skip header |
---|
829 | READ( 90, * ) |
---|
830 | |
---|
831 | DO k = nzb, nzt |
---|
832 | READ( 90, * ) zz, luy, luz, tu(k), lvy, lvz, tv(k), lwy, lwz, tw(k), r11(k), r21(k), & |
---|
833 | r22(k), r31(k), r32(k), r33(k), d1, d2, d3, d5 |
---|
834 | |
---|
835 | ! |
---|
836 | !-- Convert length scales from meter to number of grid points. |
---|
837 | IF ( k /= nzb ) THEN |
---|
838 | nuz(k) = INT( luz * ddzw(k) ) |
---|
839 | nvz(k) = INT( lvz * ddzw(k) ) |
---|
840 | nwz(k) = INT( lwz * ddzw(k) ) |
---|
841 | ELSE |
---|
842 | nuz(k) = INT( luz * ddzw(k+1) ) |
---|
843 | nvz(k) = INT( lvz * ddzw(k+1) ) |
---|
844 | nwz(k) = INT( lwz * ddzw(k+1) ) |
---|
845 | ENDIF |
---|
846 | |
---|
847 | nuy(k) = INT( luy * ddy ) |
---|
848 | nvy(k) = INT( lvy * ddy ) |
---|
849 | nwy(k) = INT( lwy * ddy ) |
---|
850 | ! |
---|
851 | !-- Set length scales in x-direction. As a workaround assume isotropic turbulence in x- and |
---|
852 | !-- y-direction. |
---|
853 | nwx(k) = nwy(k) |
---|
854 | nvx(k) = nvy(k) |
---|
855 | nux(k) = nuy(k) |
---|
856 | ! |
---|
857 | !-- Save Mean inflow profiles |
---|
858 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
859 | mean_inflow_profiles(k,1) = d1 |
---|
860 | mean_inflow_profiles(k,2) = d2 |
---|
861 | ! mean_inflow_profiles(k,4) = d4 |
---|
862 | mean_inflow_profiles(k,5) = d5 |
---|
863 | ENDIF |
---|
864 | ENDDO |
---|
865 | ! |
---|
866 | !-- Set length scales at the surface and top boundary. At the surface the lengths scales are |
---|
867 | !-- simply overwritten. |
---|
868 | nwx(nzb) = nwy(nzb+1) |
---|
869 | nvx(nzb) = nvy(nzb+1) |
---|
870 | nux(nzb) = nuy(nzb+1) |
---|
871 | nuy(nzb) = nuy(nzb+1) |
---|
872 | nuz(nzb) = nuz(nzb+1) |
---|
873 | nvy(nzb) = nvy(nzb+1) |
---|
874 | nvz(nzb) = nvz(nzb+1) |
---|
875 | nwy(nzb) = nwy(nzb+1) |
---|
876 | nwz(nzb) = nwz(nzb+1) |
---|
877 | |
---|
878 | nwx(nzt+1) = nwy(nzt) |
---|
879 | nvx(nzt+1) = nvy(nzt) |
---|
880 | nux(nzt+1) = nuy(nzt) |
---|
881 | nuy(nzt+1) = nuy(nzt) |
---|
882 | nuz(nzt+1) = nuz(nzt) |
---|
883 | nvy(nzt+1) = nvy(nzt) |
---|
884 | nvz(nzt+1) = nvz(nzt) |
---|
885 | nwy(nzt+1) = nwy(nzt) |
---|
886 | nwz(nzt+1) = nwz(nzt) |
---|
887 | |
---|
888 | CLOSE( 90 ) |
---|
889 | ! |
---|
890 | !-- Calculate coefficient matrix from Reynolds stress tensor (Lund rotation) |
---|
891 | CALL calc_coeff_matrix |
---|
892 | ! |
---|
893 | !-- No information about turbulence and its length scales are available. Instead, parametrize |
---|
894 | !-- turbulence which is imposed at the boundaries. Set flag which indicates that turbulence is |
---|
895 | !-- parametrized, which is done later when energy-balance models are already initialized. This is |
---|
896 | !-- because the STG needs information about surface properties such as roughness to build |
---|
897 | !-- 'realistic' turbulence profiles. |
---|
898 | ELSE |
---|
899 | ! |
---|
900 | !-- Precalulate the inversion number of xy-grid points - later used for mass conservation |
---|
901 | d_nxy = 1.0_wp / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
902 | ! |
---|
903 | !-- Set flag indicating that turbulence is parametrized |
---|
904 | parametrize_inflow_turbulence = .TRUE. |
---|
905 | ! |
---|
906 | !-- In case of dirichlet inflow boundary conditions only at one lateral boundary, i.e. in the |
---|
907 | !-- case no offline or self nesting is applied but synthetic turbulence shall be parametrized |
---|
908 | !-- nevertheless, the boundary-layer depth needs to be determined first. |
---|
909 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) & |
---|
910 | CALL nesting_offl_calc_zi |
---|
911 | ! |
---|
912 | !-- Determine boundary-layer depth, which is used to initialize lenght scales |
---|
913 | CALL calc_scaling_variables |
---|
914 | ! |
---|
915 | !-- Parametrize Reynolds-stress tensor, diagonal elements as well as r21 (v'u'), r31 (w'u'), |
---|
916 | !-- r32 (w'v'). Parametrization follows Rotach et al. (1996) and is based on boundary-layer depth, |
---|
917 | !-- friction velocity and velocity scale. |
---|
918 | CALL parametrize_turbulence |
---|
919 | ! |
---|
920 | !-- Calculate coefficient matrix from Reynolds stress tensor (Lund rotation) |
---|
921 | CALL calc_coeff_matrix |
---|
922 | |
---|
923 | ENDIF |
---|
924 | ! |
---|
925 | !-- Initial filter functions |
---|
926 | CALL stg_setup_filter_function |
---|
927 | ! |
---|
928 | !-- Allocate velocity seeds for turbulence at xz-layer |
---|
929 | ALLOCATE ( fu_xz(nzb:nzt+1,nxl:nxr), fuo_xz(nzb:nzt+1,nxl:nxr), & |
---|
930 | fv_xz(nzb:nzt+1,nxl:nxr), fvo_xz(nzb:nzt+1,nxl:nxr), & |
---|
931 | fw_xz(nzb:nzt+1,nxl:nxr), fwo_xz(nzb:nzt+1,nxl:nxr) ) |
---|
932 | |
---|
933 | ! |
---|
934 | !-- Allocate velocity seeds for turbulence at yz-layer |
---|
935 | ALLOCATE ( fu_yz(nzb:nzt+1,nys:nyn), fuo_yz(nzb:nzt+1,nys:nyn), & |
---|
936 | fv_yz(nzb:nzt+1,nys:nyn), fvo_yz(nzb:nzt+1,nys:nyn), & |
---|
937 | fw_yz(nzb:nzt+1,nys:nyn), fwo_yz(nzb:nzt+1,nys:nyn) ) |
---|
938 | |
---|
939 | fu_xz = 0.0_wp |
---|
940 | fuo_xz = 0.0_wp |
---|
941 | fv_xz = 0.0_wp |
---|
942 | fvo_xz = 0.0_wp |
---|
943 | fw_xz = 0.0_wp |
---|
944 | fwo_xz = 0.0_wp |
---|
945 | |
---|
946 | fu_yz = 0.0_wp |
---|
947 | fuo_yz = 0.0_wp |
---|
948 | fv_yz = 0.0_wp |
---|
949 | fvo_yz = 0.0_wp |
---|
950 | fw_yz = 0.0_wp |
---|
951 | fwo_yz = 0.0_wp |
---|
952 | |
---|
953 | #if defined( __parallel ) |
---|
954 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
955 | #endif |
---|
956 | |
---|
957 | ! |
---|
958 | !-- In case of restart, calculate velocity seeds fu, fv, fw from former time step. |
---|
959 | ! Bug: fu, fv, fw are different in those heights where a11, a22, a33 are 0 compared to the prerun. |
---|
960 | !-- This is mostly for k=nzt+1. |
---|
961 | IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN |
---|
962 | IF ( myidx == id_stg_left .OR. myidx == id_stg_right ) THEN |
---|
963 | |
---|
964 | IF ( myidx == id_stg_left ) i = -1 |
---|
965 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
966 | |
---|
967 | DO j = nys, nyn |
---|
968 | DO k = nzb, nzt+1 |
---|
969 | IF ( a11(k) > 10E-8_wp ) THEN |
---|
970 | fu_yz(k,j) = ( u(k,j,i) - u_init(k) ) / a11(k) |
---|
971 | ELSE |
---|
972 | fu_yz(k,j) = 10E-8_wp |
---|
973 | ENDIF |
---|
974 | |
---|
975 | IF ( a22(k) > 10E-8_wp ) THEN |
---|
976 | fv_yz(k,j) = ( v(k,j,i) - a21(k) * fu_yz(k,j) - v_init(k) ) / a22(k) |
---|
977 | ELSE |
---|
978 | fv_yz(k,j) = 10E-8_wp |
---|
979 | ENDIF |
---|
980 | |
---|
981 | IF ( a33(k) > 10E-8_wp ) THEN |
---|
982 | fw_yz(k,j) = ( w(k,j,i) - a31(k) * fu_yz(k,j) - a32(k) * fv_yz(k,j) ) / a33(k) |
---|
983 | ELSE |
---|
984 | fw_yz(k,j) = 10E-8_wp |
---|
985 | ENDIF |
---|
986 | ENDDO |
---|
987 | ENDDO |
---|
988 | ENDIF |
---|
989 | |
---|
990 | IF ( myidy == id_stg_south .OR. myidy == id_stg_north ) THEN |
---|
991 | |
---|
992 | IF ( myidy == id_stg_south ) j = -1 |
---|
993 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
994 | |
---|
995 | DO i = nxl, nxr |
---|
996 | DO k = nzb, nzt+1 |
---|
997 | ! |
---|
998 | !-- In case the correlation coefficients are very small, the velocity seeds may become |
---|
999 | !-- very large finally creating numerical instabilities in the synthetic turbulence |
---|
1000 | !-- generator. Empirically, a value of 10E-8 seems to be sufficient. |
---|
1001 | IF ( a11(k) > 10E-8_wp ) THEN |
---|
1002 | fu_xz(k,i) = ( u(k,j,i) - u_init(k) ) / a11(k) |
---|
1003 | ELSE |
---|
1004 | fu_xz(k,i) = 10E-8_wp |
---|
1005 | ENDIF |
---|
1006 | |
---|
1007 | IF ( a22(k) > 10E-8_wp ) THEN |
---|
1008 | fv_xz(k,i) = ( v(k,j,i) - a21(k) * fu_xz(k,i) - v_init(k) ) / a22(k) |
---|
1009 | ELSE |
---|
1010 | fv_xz(k,i) = 10E-8_wp |
---|
1011 | ENDIF |
---|
1012 | |
---|
1013 | IF ( a33(k) > 10E-8_wp ) THEN |
---|
1014 | fw_xz(k,i) = ( w(k,j,i) - a31(k) * fu_xz(k,i) - a32(k) * fv_xz(k,i) ) / a33(k) |
---|
1015 | ELSE |
---|
1016 | fw_xz(k,i) = 10E-8_wp |
---|
1017 | ENDIF |
---|
1018 | |
---|
1019 | ENDDO |
---|
1020 | ENDDO |
---|
1021 | ENDIF |
---|
1022 | ENDIF |
---|
1023 | ! |
---|
1024 | !-- Count the number of non-topography grid points at the boundaries where perturbations are imposed. |
---|
1025 | !-- This number is later used for bias corrections of the perturbations, i.e. to force their mean to |
---|
1026 | !-- be zero. Please note, due to the asymetry of u and v along x and y direction, respectively, |
---|
1027 | !-- different cases must be distinguished. |
---|
1028 | IF ( myidx == id_stg_left .OR. myidx == id_stg_right ) THEN |
---|
1029 | ! |
---|
1030 | !-- Number of grid points where perturbations are imposed on u |
---|
1031 | IF ( myidx == id_stg_left ) i = nxl |
---|
1032 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1033 | |
---|
1034 | nr_non_topo_yz_l(1) = SUM( MERGE( 1, 0, BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 1 ) ) ) |
---|
1035 | ! |
---|
1036 | !-- Number of grid points where perturbations are imposed on v and w |
---|
1037 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1038 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1039 | |
---|
1040 | nr_non_topo_yz_l(2) = SUM( MERGE( 1, 0, BTEST( wall_flags_total_0(nzb:nzt,nysv:nyn,i), 2 ) ) ) |
---|
1041 | nr_non_topo_yz_l(3) = SUM( MERGE( 1, 0, BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 3 ) ) ) |
---|
1042 | |
---|
1043 | #if defined( __parallel ) |
---|
1044 | CALL MPI_ALLREDUCE( nr_non_topo_yz_l, nr_non_topo_yz, 3, MPI_INTEGER, MPI_SUM, comm1dy, ierr ) |
---|
1045 | #else |
---|
1046 | nr_non_topo_yz = nr_non_topo_yz_l |
---|
1047 | #endif |
---|
1048 | ENDIF |
---|
1049 | |
---|
1050 | IF ( myidy == id_stg_south .OR. myidy == id_stg_north ) THEN |
---|
1051 | ! |
---|
1052 | !-- Number of grid points where perturbations are imposed on v |
---|
1053 | IF ( myidy == id_stg_south ) j = nys |
---|
1054 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1055 | |
---|
1056 | nr_non_topo_xz_l(2) = SUM( MERGE( 1, 0, BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 2 ) ) ) |
---|
1057 | ! |
---|
1058 | !-- Number of grid points where perturbations are imposed on u and w |
---|
1059 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1060 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1061 | |
---|
1062 | nr_non_topo_xz_l(1) = SUM( MERGE( 1, 0, BTEST( wall_flags_total_0(nzb:nzt,j,nxlu:nxr), 1 ) ) ) |
---|
1063 | nr_non_topo_xz_l(3) = SUM( MERGE( 1, 0, BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 3 ) ) ) |
---|
1064 | |
---|
1065 | #if defined( __parallel ) |
---|
1066 | CALL MPI_ALLREDUCE( nr_non_topo_xz_l, nr_non_topo_xz, 3, MPI_INTEGER, MPI_SUM, comm1dx, ierr ) |
---|
1067 | #else |
---|
1068 | nr_non_topo_xz = nr_non_topo_xz_l |
---|
1069 | #endif |
---|
1070 | ENDIF |
---|
1071 | ! |
---|
1072 | !-- Initialize random number generator at xz- and yz-layers. Random numbers are initialized at each |
---|
1073 | !-- core. In case there is only inflow from the left, it is sufficient to generate only random |
---|
1074 | !-- numbers for the yz-layer, else random numbers for the xz-layer are also required. |
---|
1075 | ALLOCATE ( id_rand_yz(-mergp_limit+nys:nyn+mergp_limit) ) |
---|
1076 | ALLOCATE ( seq_rand_yz(5,-mergp_limit+nys:nyn+mergp_limit) ) |
---|
1077 | id_rand_yz = 0 |
---|
1078 | seq_rand_yz = 0 |
---|
1079 | |
---|
1080 | CALL init_parallel_random_generator( ny, -mergp_limit+nys, nyn+mergp_limit, id_rand_yz, seq_rand_yz ) |
---|
1081 | |
---|
1082 | IF ( nesting_offline .OR. ( child_domain .AND. rans_mode_parent & |
---|
1083 | .AND. .NOT. rans_mode ) ) THEN |
---|
1084 | ALLOCATE ( id_rand_xz(-mergp_limit+nxl:nxr+mergp_limit) ) |
---|
1085 | ALLOCATE ( seq_rand_xz(5,-mergp_limit+nxl:nxr+mergp_limit) ) |
---|
1086 | id_rand_xz = 0 |
---|
1087 | seq_rand_xz = 0 |
---|
1088 | |
---|
1089 | CALL init_parallel_random_generator( nx, -mergp_limit+nxl, nxr+mergp_limit, id_rand_xz, seq_rand_xz ) |
---|
1090 | ENDIF |
---|
1091 | |
---|
1092 | END SUBROUTINE stg_init |
---|
1093 | |
---|
1094 | |
---|
1095 | !--------------------------------------------------------------------------------------------------! |
---|
1096 | ! Description: |
---|
1097 | ! ------------ |
---|
1098 | !> Calculate filter function bxx from length scale nxx following Eg.9 and 10 (Xie and Castro, 2008) |
---|
1099 | !--------------------------------------------------------------------------------------------------! |
---|
1100 | SUBROUTINE stg_filter_func( nxx, bxx, mergp ) |
---|
1101 | |
---|
1102 | INTEGER(iwp) :: k !< loop index |
---|
1103 | INTEGER(iwp) :: mergp !< passed length scale in grid points |
---|
1104 | INTEGER(iwp) :: n_k !< length scale nXX in height k |
---|
1105 | INTEGER(iwp) :: nf !< index for length scales |
---|
1106 | |
---|
1107 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: nxx !< length scale (in gp) |
---|
1108 | |
---|
1109 | REAL(wp) :: bdenom !< denominator for filter functions bXX |
---|
1110 | REAL(wp) :: qsi = 1.0_wp !< minimization factor |
---|
1111 | |
---|
1112 | REAL(wp), DIMENSION(-mergp:mergp,nzb:nzt+1) :: bxx !< filter function |
---|
1113 | |
---|
1114 | |
---|
1115 | bxx = 0.0_wp |
---|
1116 | |
---|
1117 | DO k = nzb, nzt+1 |
---|
1118 | bdenom = 0.0_wp |
---|
1119 | n_k = nxx(k) |
---|
1120 | IF ( n_k /= 0 ) THEN |
---|
1121 | |
---|
1122 | ! |
---|
1123 | !-- ( Eq.10 )^2 |
---|
1124 | DO nf = -n_k, n_k |
---|
1125 | bdenom = bdenom + EXP( -qsi * pi * ABS( nf ) / n_k )**2 |
---|
1126 | ENDDO |
---|
1127 | |
---|
1128 | ! |
---|
1129 | !-- ( Eq.9 ) |
---|
1130 | bdenom = SQRT( bdenom ) |
---|
1131 | DO nf = -n_k, n_k |
---|
1132 | bxx(nf,k) = EXP( -qsi * pi * ABS( nf ) / n_k ) / bdenom |
---|
1133 | ENDDO |
---|
1134 | ENDIF |
---|
1135 | ENDDO |
---|
1136 | |
---|
1137 | END SUBROUTINE stg_filter_func |
---|
1138 | |
---|
1139 | |
---|
1140 | !------------------------------------------------------------------------------! |
---|
1141 | ! Description: |
---|
1142 | ! ------------ |
---|
1143 | !> Calculate filter function bxx from length scale nxx following Eg.9 and 10 |
---|
1144 | !> (Xie and Castro, 2008) |
---|
1145 | !------------------------------------------------------------------------------! |
---|
1146 | SUBROUTINE stg_setup_filter_function |
---|
1147 | |
---|
1148 | INTEGER(iwp) :: j !< dummy value to calculate maximum length scale index |
---|
1149 | INTEGER(iwp) :: k !< loop index along vertical direction |
---|
1150 | ! |
---|
1151 | !-- Define the size of the filter functions and allocate them. |
---|
1152 | mergp_x = 0 |
---|
1153 | mergp_y = 0 |
---|
1154 | mergp_z = 0 |
---|
1155 | |
---|
1156 | DO k = nzb, nzt+1 |
---|
1157 | j = MAX( ABS(nux(k)), ABS(nvx(k)), ABS(nwx(k)) ) |
---|
1158 | IF ( j > mergp_x ) mergp_x = j |
---|
1159 | ENDDO |
---|
1160 | DO k = nzb, nzt+1 |
---|
1161 | j = MAX( ABS(nuy(k)), ABS(nvy(k)), ABS(nwy(k)) ) |
---|
1162 | IF ( j > mergp_y ) mergp_y = j |
---|
1163 | ENDDO |
---|
1164 | DO k = nzb, nzt+1 |
---|
1165 | j = MAX( ABS(nuz(k)), ABS(nvz(k)), ABS(nwz(k)) ) |
---|
1166 | IF ( j > mergp_z ) mergp_z = j |
---|
1167 | ENDDO |
---|
1168 | |
---|
1169 | mergp_xy = MAX( mergp_x, mergp_y ) |
---|
1170 | |
---|
1171 | IF ( ALLOCATED( bux ) ) DEALLOCATE( bux ) |
---|
1172 | IF ( ALLOCATED( bvx ) ) DEALLOCATE( bvx ) |
---|
1173 | IF ( ALLOCATED( bwx ) ) DEALLOCATE( bwx ) |
---|
1174 | IF ( ALLOCATED( buy ) ) DEALLOCATE( buy ) |
---|
1175 | IF ( ALLOCATED( bvy ) ) DEALLOCATE( bvy ) |
---|
1176 | IF ( ALLOCATED( bwy ) ) DEALLOCATE( bwy ) |
---|
1177 | IF ( ALLOCATED( buz ) ) DEALLOCATE( buz ) |
---|
1178 | IF ( ALLOCATED( bvz ) ) DEALLOCATE( bvz ) |
---|
1179 | IF ( ALLOCATED( bwz ) ) DEALLOCATE( bwz ) |
---|
1180 | |
---|
1181 | ALLOCATE ( bux(-mergp_x:mergp_x,nzb:nzt+1), & |
---|
1182 | buy(-mergp_y:mergp_y,nzb:nzt+1), & |
---|
1183 | buz(-mergp_z:mergp_z,nzb:nzt+1), & |
---|
1184 | bvx(-mergp_x:mergp_x,nzb:nzt+1), & |
---|
1185 | bvy(-mergp_y:mergp_y,nzb:nzt+1), & |
---|
1186 | bvz(-mergp_z:mergp_z,nzb:nzt+1), & |
---|
1187 | bwx(-mergp_x:mergp_x,nzb:nzt+1), & |
---|
1188 | bwy(-mergp_y:mergp_y,nzb:nzt+1), & |
---|
1189 | bwz(-mergp_z:mergp_z,nzb:nzt+1) ) |
---|
1190 | ! |
---|
1191 | !-- Create filter functions |
---|
1192 | CALL stg_filter_func( nux, bux, mergp_x ) !filter ux |
---|
1193 | CALL stg_filter_func( nuy, buy, mergp_y ) !filter uy |
---|
1194 | CALL stg_filter_func( nuz, buz, mergp_z ) !filter uz |
---|
1195 | CALL stg_filter_func( nvx, bvx, mergp_x ) !filter vx |
---|
1196 | CALL stg_filter_func( nvy, bvy, mergp_y ) !filter vy |
---|
1197 | CALL stg_filter_func( nvz, bvz, mergp_z ) !filter vz |
---|
1198 | CALL stg_filter_func( nwx, bwx, mergp_x ) !filter wx |
---|
1199 | CALL stg_filter_func( nwy, bwy, mergp_y ) !filter wy |
---|
1200 | CALL stg_filter_func( nwz, bwz, mergp_z ) !filter wz |
---|
1201 | |
---|
1202 | END SUBROUTINE stg_setup_filter_function |
---|
1203 | |
---|
1204 | !--------------------------------------------------------------------------------------------------! |
---|
1205 | ! Description: |
---|
1206 | ! ------------ |
---|
1207 | !> Parin for &stg_par for synthetic turbulence generator |
---|
1208 | !--------------------------------------------------------------------------------------------------! |
---|
1209 | SUBROUTINE stg_parin |
---|
1210 | |
---|
1211 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
1212 | |
---|
1213 | |
---|
1214 | NAMELIST /stg_par/ dt_stg_adjust, & |
---|
1215 | dt_stg_call, & |
---|
1216 | use_syn_turb_gen, & |
---|
1217 | compute_velocity_seeds_local |
---|
1218 | |
---|
1219 | line = ' ' |
---|
1220 | ! |
---|
1221 | !-- Try to find stg package |
---|
1222 | REWIND ( 11 ) |
---|
1223 | line = ' ' |
---|
1224 | DO WHILE ( INDEX( line, '&stg_par' ) == 0 ) |
---|
1225 | READ ( 11, '(A)', END = 20 ) line |
---|
1226 | ENDDO |
---|
1227 | BACKSPACE ( 11 ) |
---|
1228 | |
---|
1229 | ! |
---|
1230 | !-- Read namelist |
---|
1231 | READ ( 11, stg_par, ERR = 10, END = 20 ) |
---|
1232 | |
---|
1233 | ! |
---|
1234 | !-- Set flag that indicates that the synthetic turbulence generator is switched on |
---|
1235 | syn_turb_gen = .TRUE. |
---|
1236 | GOTO 20 |
---|
1237 | |
---|
1238 | 10 BACKSPACE( 11 ) |
---|
1239 | READ( 11 , '(A)') line |
---|
1240 | CALL parin_fail_message( 'stg_par', line ) |
---|
1241 | |
---|
1242 | 20 CONTINUE |
---|
1243 | |
---|
1244 | END SUBROUTINE stg_parin |
---|
1245 | |
---|
1246 | |
---|
1247 | !--------------------------------------------------------------------------------------------------! |
---|
1248 | ! Description: |
---|
1249 | ! ------------ |
---|
1250 | !> Read module-specific global restart data (Fortran binary format). |
---|
1251 | !--------------------------------------------------------------------------------------------------! |
---|
1252 | SUBROUTINE stg_rrd_global_ftn( found ) |
---|
1253 | |
---|
1254 | LOGICAL, INTENT(OUT) :: found !< flag indicating if variable was found |
---|
1255 | |
---|
1256 | found = .TRUE. |
---|
1257 | |
---|
1258 | |
---|
1259 | SELECT CASE ( restart_string(1:length) ) |
---|
1260 | |
---|
1261 | CASE ( 'time_stg_adjust' ) |
---|
1262 | READ ( 13 ) time_stg_adjust |
---|
1263 | |
---|
1264 | CASE ( 'time_stg_call' ) |
---|
1265 | READ ( 13 ) time_stg_call |
---|
1266 | |
---|
1267 | CASE ( 'use_syn_turb_gen' ) |
---|
1268 | READ ( 13 ) use_syn_turb_gen |
---|
1269 | |
---|
1270 | CASE DEFAULT |
---|
1271 | |
---|
1272 | found = .FALSE. |
---|
1273 | |
---|
1274 | END SELECT |
---|
1275 | |
---|
1276 | |
---|
1277 | END SUBROUTINE stg_rrd_global_ftn |
---|
1278 | |
---|
1279 | |
---|
1280 | !--------------------------------------------------------------------------------------------------! |
---|
1281 | ! Description: |
---|
1282 | ! ------------ |
---|
1283 | !> Read module-specific global restart data (MPI-IO). |
---|
1284 | !--------------------------------------------------------------------------------------------------! |
---|
1285 | SUBROUTINE stg_rrd_global_mpi |
---|
1286 | |
---|
1287 | CALL rrd_mpi_io( 'time_stg_adjust', time_stg_adjust ) |
---|
1288 | CALL rrd_mpi_io( 'time_stg_call', time_stg_call ) |
---|
1289 | CALL rrd_mpi_io( 'use_syn_turb_gen', use_syn_turb_gen ) |
---|
1290 | |
---|
1291 | END SUBROUTINE stg_rrd_global_mpi |
---|
1292 | |
---|
1293 | |
---|
1294 | !--------------------------------------------------------------------------------------------------! |
---|
1295 | ! Description: |
---|
1296 | ! ------------ |
---|
1297 | !> This routine writes the respective restart data. |
---|
1298 | !--------------------------------------------------------------------------------------------------! |
---|
1299 | SUBROUTINE stg_wrd_global |
---|
1300 | |
---|
1301 | IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN |
---|
1302 | |
---|
1303 | CALL wrd_write_string( 'time_stg_adjust' ) |
---|
1304 | WRITE ( 14 ) time_stg_adjust |
---|
1305 | |
---|
1306 | CALL wrd_write_string( 'time_stg_call' ) |
---|
1307 | WRITE ( 14 ) time_stg_call |
---|
1308 | |
---|
1309 | CALL wrd_write_string( 'use_syn_turb_gen' ) |
---|
1310 | WRITE ( 14 ) use_syn_turb_gen |
---|
1311 | |
---|
1312 | ELSEIF ( restart_data_format_output(1:3) == 'mpi' ) THEN |
---|
1313 | |
---|
1314 | CALL wrd_mpi_io( 'time_stg_adjust', time_stg_adjust ) |
---|
1315 | CALL wrd_mpi_io( 'time_stg_call', time_stg_call ) |
---|
1316 | CALL wrd_mpi_io( 'use_syn_turb_gen', use_syn_turb_gen ) |
---|
1317 | |
---|
1318 | ENDIF |
---|
1319 | |
---|
1320 | END SUBROUTINE stg_wrd_global |
---|
1321 | |
---|
1322 | |
---|
1323 | !--------------------------------------------------------------------------------------------------! |
---|
1324 | ! Description: |
---|
1325 | ! ------------ |
---|
1326 | !> Create turbulent inflow fields for u, v, w with prescribed length scales and Reynolds stress |
---|
1327 | !> tensor after a method of Xie and Castro (2008), modified following suggestions of Kim et al. |
---|
1328 | !> (2013), and using a Lund rotation (Lund, 1998). |
---|
1329 | !--------------------------------------------------------------------------------------------------! |
---|
1330 | SUBROUTINE stg_main |
---|
1331 | |
---|
1332 | USE exchange_horiz_mod, & |
---|
1333 | ONLY: exchange_horiz |
---|
1334 | |
---|
1335 | INTEGER(iwp) :: i !< grid index in x-direction |
---|
1336 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
1337 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1338 | |
---|
1339 | LOGICAL :: stg_call = .FALSE. !< control flag indicating whether turbulence was updated or only restored from last call |
---|
1340 | |
---|
1341 | REAL(wp) :: dt_stg !< time interval the STG is called |
---|
1342 | |
---|
1343 | REAL(wp), DIMENSION(3) :: mc_factor_l !< local mass flux correction factor |
---|
1344 | |
---|
1345 | IF ( debug_output_timestep ) CALL debug_message( 'stg_main', 'start' ) |
---|
1346 | ! |
---|
1347 | !-- Calculate time step which is needed for filter functions |
---|
1348 | dt_stg = MAX( dt_3d, dt_stg_call ) |
---|
1349 | ! |
---|
1350 | !-- Check if synthetic turbulence generator needs to be called and new perturbations need to be |
---|
1351 | !-- created or if old disturbances can be imposed again. |
---|
1352 | IF ( time_stg_call >= dt_stg_call .AND. & |
---|
1353 | intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
1354 | stg_call = .TRUE. |
---|
1355 | ELSE |
---|
1356 | stg_call = .FALSE. |
---|
1357 | ENDIF |
---|
1358 | ! |
---|
1359 | !-- Initial value of fu, fv, fw |
---|
1360 | IF ( time_since_reference_point == 0.0_wp .AND. .NOT. velocity_seed_initialized ) THEN |
---|
1361 | ! |
---|
1362 | !-- Generate turbulence at the left and right boundary. Random numbers for the yz-planes at the |
---|
1363 | !-- left/right boundary are generated by the left-sided mpi ranks only. After random numbers are |
---|
1364 | !-- calculated, they are distributed to all other mpi ranks in the model, so that the velocity |
---|
1365 | !-- seed matrices are available on all mpi ranks (i.e. also on the right-sided boundary mpi ranks). |
---|
1366 | !-- In case of offline nesting, this implies, that the left- and the right-sided lateral boundary |
---|
1367 | !-- have the same initial seeds. |
---|
1368 | !-- Note, in case of inflow from the right only, only turbulence at the left boundary is required. |
---|
1369 | IF ( .NOT. ( nesting_offline .OR. ( child_domain .AND. rans_mode_parent & |
---|
1370 | .AND. .NOT. rans_mode ) ) ) THEN |
---|
1371 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fu_yz, id_stg_left ) |
---|
1372 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fv_yz, id_stg_left ) |
---|
1373 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fw_yz, id_stg_left ) |
---|
1374 | ELSE |
---|
1375 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fu_yz, id_stg_left, id_stg_right ) |
---|
1376 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fv_yz, id_stg_left, id_stg_right ) |
---|
1377 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fw_yz, id_stg_left, id_stg_right ) |
---|
1378 | ! |
---|
1379 | !-- Generate turbulence at the south and north boundary. Random numbers for the xz-planes at |
---|
1380 | !-- the south/north boundary are generated by the south-sided mpi ranks only. Please see also |
---|
1381 | !-- comment above. |
---|
1382 | CALL stg_generate_seed_xz( nux, nuz, bux, buz, fu_xz, id_stg_south, id_stg_north ) |
---|
1383 | CALL stg_generate_seed_xz( nvx, nvz, bvx, bvz, fv_xz, id_stg_south, id_stg_north ) |
---|
1384 | CALL stg_generate_seed_xz( nwx, nwz, bwx, bwz, fw_xz, id_stg_south, id_stg_north ) |
---|
1385 | ENDIF |
---|
1386 | velocity_seed_initialized = .TRUE. |
---|
1387 | ENDIF |
---|
1388 | ! |
---|
1389 | !-- New set of fu, fv, fw. Note, for inflow from the left side only, velocity seeds are only |
---|
1390 | !-- required at the left boundary, while in case of offline nesting or RANS-LES nesting velocity |
---|
1391 | !-- seeds are required also at the right, south and north boundaries. |
---|
1392 | IF ( stg_call ) THEN |
---|
1393 | IF ( .NOT. ( nesting_offline .OR. & |
---|
1394 | ( child_domain .AND. rans_mode_parent & |
---|
1395 | .AND. .NOT. rans_mode ) ) ) THEN |
---|
1396 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fuo_yz, id_stg_left ) |
---|
1397 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fvo_yz, id_stg_left ) |
---|
1398 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fwo_yz, id_stg_left ) |
---|
1399 | |
---|
1400 | ELSE |
---|
1401 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fuo_yz, id_stg_left, id_stg_right ) |
---|
1402 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fvo_yz, id_stg_left, id_stg_right ) |
---|
1403 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fwo_yz, id_stg_left, id_stg_right ) |
---|
1404 | |
---|
1405 | CALL stg_generate_seed_xz( nux, nuz, bux, buz, fuo_xz, id_stg_south, id_stg_north ) |
---|
1406 | CALL stg_generate_seed_xz( nvx, nvz, bvx, bvz, fvo_xz, id_stg_south, id_stg_north ) |
---|
1407 | CALL stg_generate_seed_xz( nwx, nwz, bwx, bwz, fwo_xz, id_stg_south, id_stg_north ) |
---|
1408 | ENDIF |
---|
1409 | ENDIF |
---|
1410 | |
---|
1411 | ! |
---|
1412 | !-- Turbulence generation at left and/or right boundary |
---|
1413 | IF ( myidx == id_stg_left .OR. myidx == id_stg_right ) THEN |
---|
1414 | ! |
---|
1415 | !-- Calculate new set of perturbations. Do this only at last RK3-substep and when dt_stg_call is |
---|
1416 | !-- exceeded. Else the old set of perturbations is imposed |
---|
1417 | IF ( stg_call ) THEN |
---|
1418 | |
---|
1419 | DO j = nys, nyn |
---|
1420 | DO k = nzb, nzt + 1 |
---|
1421 | ! |
---|
1422 | !-- Update fu, fv, fw following Eq. 14 of Xie and Castro (2008) |
---|
1423 | IF ( tu(k) == 0.0_wp .OR. adjustment_step ) THEN |
---|
1424 | fu_yz(k,j) = fuo_yz(k,j) |
---|
1425 | ELSE |
---|
1426 | fu_yz(k,j) = fu_yz(k,j) * EXP( -pi * dt_stg * 0.5_wp / tu(k) ) + & |
---|
1427 | fuo_yz(k,j) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tu(k) ) ) |
---|
1428 | ENDIF |
---|
1429 | |
---|
1430 | IF ( tv(k) == 0.0_wp .OR. adjustment_step ) THEN |
---|
1431 | fv_yz(k,j) = fvo_yz(k,j) |
---|
1432 | ELSE |
---|
1433 | fv_yz(k,j) = fv_yz(k,j) * EXP( -pi * dt_stg * 0.5_wp / tv(k) ) + & |
---|
1434 | fvo_yz(k,j) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tv(k) ) ) |
---|
1435 | ENDIF |
---|
1436 | |
---|
1437 | IF ( tw(k) == 0.0_wp .OR. adjustment_step ) THEN |
---|
1438 | fw_yz(k,j) = fwo_yz(k,j) |
---|
1439 | ELSE |
---|
1440 | fw_yz(k,j) = fw_yz(k,j) * EXP( -pi * dt_stg * 0.5_wp / tw(k) ) + & |
---|
1441 | fwo_yz(k,j) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tw(k) ) ) |
---|
1442 | ENDIF |
---|
1443 | ENDDO |
---|
1444 | ENDDO |
---|
1445 | |
---|
1446 | dist_yz(nzb,:,1) = 0.0_wp |
---|
1447 | dist_yz(nzb,:,2) = 0.0_wp |
---|
1448 | dist_yz(nzb,:,3) = 0.0_wp |
---|
1449 | |
---|
1450 | IF ( myidx == id_stg_left ) i = nxl |
---|
1451 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1452 | DO j = nys, nyn |
---|
1453 | DO k = nzb+1, nzt + 1 |
---|
1454 | ! |
---|
1455 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1456 | dist_yz(k,j,1) = a11(k) * fu_yz(k,j) * & |
---|
1457 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 1 ) ) |
---|
1458 | |
---|
1459 | ENDDO |
---|
1460 | ENDDO |
---|
1461 | |
---|
1462 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1463 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1464 | DO j = nys, nyn |
---|
1465 | DO k = nzb+1, nzt + 1 |
---|
1466 | ! |
---|
1467 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1468 | !-- Additional factors are added to improve the variance of v and w experimental test |
---|
1469 | !-- of 1.2 |
---|
1470 | dist_yz(k,j,2) = ( a21(k) * fu_yz(k,j) + a22(k) * fv_yz(k,j) ) * & |
---|
1471 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 2 ) ) |
---|
1472 | dist_yz(k,j,3) = ( a31(k) * fu_yz(k,j) + a32(k) * fv_yz(k,j) + & |
---|
1473 | a33(k) * fw_yz(k,j) ) * & |
---|
1474 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 3 ) ) |
---|
1475 | |
---|
1476 | ENDDO |
---|
1477 | ENDDO |
---|
1478 | ENDIF |
---|
1479 | ! |
---|
1480 | !-- Mass flux correction following Kim et al. (2013) |
---|
1481 | !-- This correction factor ensures that the mass flux is preserved at the inflow boundary. First, |
---|
1482 | !-- calculate mean value of the imposed perturbations at yz boundary. Note, this needs to be done |
---|
1483 | !-- only after the last RK3-substep, else the boundary values won't be accessed. |
---|
1484 | IF ( intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
1485 | mc_factor_l = 0.0_wp |
---|
1486 | mc_factor = 0.0_wp |
---|
1487 | ! |
---|
1488 | !-- Sum up the original volume flows (with and without perturbations). |
---|
1489 | !-- Note, for non-normal components (here v and w) it is actually no volume flow. |
---|
1490 | IF ( myidx == id_stg_left ) i = nxl |
---|
1491 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1492 | |
---|
1493 | mc_factor_l(1) = SUM( dist_yz(nzb:nzt,nys:nyn,1) * & |
---|
1494 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 1 ) ) ) |
---|
1495 | |
---|
1496 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1497 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1498 | |
---|
1499 | mc_factor_l(2) = SUM( dist_yz(nzb:nzt,nysv:nyn,2) * & |
---|
1500 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(nzb:nzt,nysv:nyn,i), 2 ) ) ) |
---|
1501 | mc_factor_l(3) = SUM( dist_yz(nzb:nzt,nys:nyn,3) * & |
---|
1502 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 3 ) ) ) |
---|
1503 | |
---|
1504 | #if defined( __parallel ) |
---|
1505 | CALL MPI_ALLREDUCE( mc_factor_l, mc_factor, 3, MPI_REAL, MPI_SUM, comm1dy, ierr ) |
---|
1506 | #else |
---|
1507 | mc_factor = mc_factor_l |
---|
1508 | #endif |
---|
1509 | ! |
---|
1510 | !-- Calculate correction factor and force zero mean perturbations. |
---|
1511 | mc_factor = mc_factor / REAL( nr_non_topo_yz, KIND = wp ) |
---|
1512 | |
---|
1513 | IF ( myidx == id_stg_left ) i = nxl |
---|
1514 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1515 | |
---|
1516 | dist_yz(:,nys:nyn,1) = ( dist_yz(:,nys:nyn,1) - mc_factor(1) ) * & |
---|
1517 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(:,nys:nyn,i), 1 ) ) |
---|
1518 | |
---|
1519 | |
---|
1520 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1521 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1522 | |
---|
1523 | dist_yz(:,nys:nyn,2) = ( dist_yz(:,nys:nyn,2) - mc_factor(2) ) * & |
---|
1524 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(:,nys:nyn,i), 2 ) ) |
---|
1525 | |
---|
1526 | dist_yz(:,nys:nyn,3) = ( dist_yz(:,nys:nyn,3) - mc_factor(3) ) * & |
---|
1527 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(:,nys:nyn,i), 3 ) ) |
---|
1528 | ! |
---|
1529 | !-- Add disturbances |
---|
1530 | IF ( myidx == id_stg_left ) THEN |
---|
1531 | ! |
---|
1532 | !-- For the left boundary distinguish between mesoscale offline / self nesting and |
---|
1533 | !-- turbulent inflow at the left boundary only. In the latter case turbulence is imposed on |
---|
1534 | !-- the mean inflow profiles. |
---|
1535 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
1536 | ! |
---|
1537 | !-- Add disturbance at the inflow |
---|
1538 | DO j = nys, nyn |
---|
1539 | DO k = nzb, nzt+1 |
---|
1540 | u(k,j,-nbgp+1:0) = ( mean_inflow_profiles(k,1) + dist_yz(k,j,1) ) * & |
---|
1541 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,0), 1 ) ) |
---|
1542 | v(k,j,-nbgp:-1) = ( mean_inflow_profiles(k,2) + dist_yz(k,j,2) ) * & |
---|
1543 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,-1), 2 ) ) |
---|
1544 | w(k,j,-nbgp:-1) = dist_yz(k,j,3) * & |
---|
1545 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,-1), 3 ) ) |
---|
1546 | ENDDO |
---|
1547 | ENDDO |
---|
1548 | ELSE |
---|
1549 | |
---|
1550 | DO j = nys, nyn |
---|
1551 | DO k = nzb+1, nzt |
---|
1552 | u(k,j,0) = ( u(k,j,0) + dist_yz(k,j,1) ) * & |
---|
1553 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,0), 1 ) ) |
---|
1554 | u(k,j,-1) = u(k,j,0) |
---|
1555 | v(k,j,-1) = ( v(k,j,-1) + dist_yz(k,j,2) ) * & |
---|
1556 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,-1), 2 ) ) |
---|
1557 | w(k,j,-1) = ( w(k,j,-1) + dist_yz(k,j,3) ) * & |
---|
1558 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,-1), 3 ) ) |
---|
1559 | ENDDO |
---|
1560 | ENDDO |
---|
1561 | ENDIF |
---|
1562 | ENDIF |
---|
1563 | IF ( myidx == id_stg_right ) THEN |
---|
1564 | DO j = nys, nyn |
---|
1565 | DO k = nzb+1, nzt |
---|
1566 | u(k,j,nxr+1) = ( u(k,j,nxr+1) + dist_yz(k,j,1) ) * & |
---|
1567 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,nxr+1), 1 ) ) |
---|
1568 | v(k,j,nxr+1) = ( v(k,j,nxr+1) + dist_yz(k,j,2) ) * & |
---|
1569 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,nxr+1), 2 ) ) |
---|
1570 | w(k,j,nxr+1) = ( w(k,j,nxr+1) + dist_yz(k,j,3) ) * & |
---|
1571 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,nxr+1), 3 ) ) |
---|
1572 | ENDDO |
---|
1573 | ENDDO |
---|
1574 | ENDIF |
---|
1575 | ENDIF |
---|
1576 | ENDIF |
---|
1577 | ! |
---|
1578 | !-- Turbulence generation at north and south boundary |
---|
1579 | IF ( myidy == id_stg_north .OR. myidy == id_stg_south ) THEN |
---|
1580 | ! |
---|
1581 | !-- Calculate new set of perturbations. Do this only at last RK3-substep and when dt_stg_call is |
---|
1582 | !-- exceeded. Else the old set of perturbations is imposed |
---|
1583 | IF ( stg_call ) THEN |
---|
1584 | DO i = nxl, nxr |
---|
1585 | DO k = nzb, nzt + 1 |
---|
1586 | ! |
---|
1587 | !-- Update fu, fv, fw following Eq. 14 of Xie and Castro (2008) |
---|
1588 | IF ( tu(k) == 0.0_wp .OR. adjustment_step ) THEN |
---|
1589 | fu_xz(k,i) = fuo_xz(k,i) |
---|
1590 | ELSE |
---|
1591 | fu_xz(k,i) = fu_xz(k,i) * EXP( -pi * dt_stg * 0.5_wp / tu(k) ) + & |
---|
1592 | fuo_xz(k,i) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tu(k) ) ) |
---|
1593 | ENDIF |
---|
1594 | |
---|
1595 | IF ( tv(k) == 0.0_wp .OR. adjustment_step ) THEN |
---|
1596 | fv_xz(k,i) = fvo_xz(k,i) |
---|
1597 | ELSE |
---|
1598 | fv_xz(k,i) = fv_xz(k,i) * EXP( -pi * dt_stg * 0.5_wp / tv(k) ) + & |
---|
1599 | fvo_xz(k,i) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tv(k) ) ) |
---|
1600 | ENDIF |
---|
1601 | |
---|
1602 | IF ( tw(k) == 0.0_wp .OR. adjustment_step ) THEN |
---|
1603 | fw_xz(k,i) = fwo_xz(k,i) |
---|
1604 | ELSE |
---|
1605 | fw_xz(k,i) = fw_xz(k,i) * EXP( -pi * dt_stg * 0.5_wp / tw(k) ) + & |
---|
1606 | fwo_xz(k,i) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tw(k) ) ) |
---|
1607 | ENDIF |
---|
1608 | ENDDO |
---|
1609 | ENDDO |
---|
1610 | |
---|
1611 | |
---|
1612 | dist_xz(nzb,:,1) = 0.0_wp |
---|
1613 | dist_xz(nzb,:,2) = 0.0_wp |
---|
1614 | dist_xz(nzb,:,3) = 0.0_wp |
---|
1615 | |
---|
1616 | IF ( myidy == id_stg_south ) j = nys |
---|
1617 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1618 | DO i = nxl, nxr |
---|
1619 | DO k = nzb+1, nzt + 1 |
---|
1620 | ! |
---|
1621 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1622 | !-- Additional factors are added to improve the variance of v and w |
---|
1623 | !experimental test of 1.2 |
---|
1624 | dist_xz(k,i,2) = ( a21(k) * fu_xz(k,i) + a22(k) * fv_xz(k,i) ) * & |
---|
1625 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 2 ) ) |
---|
1626 | ENDDO |
---|
1627 | ENDDO |
---|
1628 | |
---|
1629 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1630 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1631 | DO i = nxl, nxr |
---|
1632 | DO k = nzb+1, nzt + 1 |
---|
1633 | ! |
---|
1634 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1635 | !-- Additional factors are added to improve the variance of v and w |
---|
1636 | dist_xz(k,i,1) = a11(k) * fu_xz(k,i) * & |
---|
1637 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 1 ) ) |
---|
1638 | |
---|
1639 | dist_xz(k,i,3) = ( a31(k) * fu_xz(k,i) + a32(k) * fv_xz(k,i) + & |
---|
1640 | a33(k) * fw_xz(k,i) ) * & |
---|
1641 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 3 ) ) |
---|
1642 | ENDDO |
---|
1643 | ENDDO |
---|
1644 | ENDIF |
---|
1645 | |
---|
1646 | ! |
---|
1647 | !-- Mass flux correction following Kim et al. (2013). This correction factor ensures that the |
---|
1648 | !-- mass flux is preserved at the inflow boundary. First, calculate mean value of the imposed |
---|
1649 | !-- perturbations at yz boundary. Note, this needs to be done only after the last RK3-substep, |
---|
1650 | !-- else the boundary values won't be accessed. |
---|
1651 | IF ( intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
1652 | mc_factor_l = 0.0_wp |
---|
1653 | mc_factor = 0.0_wp |
---|
1654 | |
---|
1655 | IF ( myidy == id_stg_south ) j = nys |
---|
1656 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1657 | |
---|
1658 | mc_factor_l(2) = SUM( dist_xz(nzb:nzt,nxl:nxr,2) * & |
---|
1659 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 2 ) ) ) |
---|
1660 | |
---|
1661 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1662 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1663 | |
---|
1664 | mc_factor_l(1) = SUM( dist_xz(nzb:nzt,nxlu:nxr,1) * & |
---|
1665 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(nzb:nzt,j,nxlu:nxr), 1 ) ) ) |
---|
1666 | mc_factor_l(3) = SUM( dist_xz(nzb:nzt,nxl:nxr,3) * & |
---|
1667 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 3 ) ) ) |
---|
1668 | |
---|
1669 | #if defined( __parallel ) |
---|
1670 | CALL MPI_ALLREDUCE( mc_factor_l, mc_factor, 3, MPI_REAL, MPI_SUM, comm1dx, ierr ) |
---|
1671 | #else |
---|
1672 | mc_factor = mc_factor_l |
---|
1673 | #endif |
---|
1674 | |
---|
1675 | mc_factor = mc_factor / REAL( nr_non_topo_xz, KIND = wp ) |
---|
1676 | |
---|
1677 | IF ( myidy == id_stg_south ) j = nys |
---|
1678 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1679 | |
---|
1680 | dist_xz(:,nxl:nxr,2) = ( dist_xz(:,nxl:nxr,2) - mc_factor(2) ) * & |
---|
1681 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(:,j,nxl:nxr), 2 ) ) |
---|
1682 | |
---|
1683 | |
---|
1684 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1685 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1686 | |
---|
1687 | dist_xz(:,nxl:nxr,1) = ( dist_xz(:,nxl:nxr,1) - mc_factor(1) ) * & |
---|
1688 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(:,j,nxl:nxr), 1 ) ) |
---|
1689 | |
---|
1690 | dist_xz(:,nxl:nxr,3) = ( dist_xz(:,nxl:nxr,3) - mc_factor(3) ) * & |
---|
1691 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(:,j,nxl:nxr), 3 ) ) |
---|
1692 | ! |
---|
1693 | !-- Add disturbances |
---|
1694 | IF ( myidy == id_stg_south ) THEN |
---|
1695 | DO i = nxl, nxr |
---|
1696 | DO k = nzb+1, nzt |
---|
1697 | u(k,-1,i) = ( u(k,-1,i) + dist_xz(k,i,1) ) & |
---|
1698 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,-1,i), 1 ) ) |
---|
1699 | v(k,0,i) = ( v(k,0,i) + dist_xz(k,i,2) ) & |
---|
1700 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,0,i), 2 ) ) |
---|
1701 | v(k,-1,i) = v(k,0,i) |
---|
1702 | w(k,-1,i) = ( w(k,-1,i) + dist_xz(k,i,3) ) & |
---|
1703 | * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,-1,i), 3 ) ) |
---|
1704 | ENDDO |
---|
1705 | ENDDO |
---|
1706 | ENDIF |
---|
1707 | IF ( myidy == id_stg_north ) THEN |
---|
1708 | |
---|
1709 | DO i = nxl, nxr |
---|
1710 | DO k = nzb+1, nzt |
---|
1711 | u(k,nyn+1,i) = ( u(k,nyn+1,i) + dist_xz(k,i,1) ) * & |
---|
1712 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,nyn+1,i), 1 ) ) |
---|
1713 | v(k,nyn+1,i) = ( v(k,nyn+1,i) + dist_xz(k,i,2) ) * & |
---|
1714 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,nyn+1,i), 2 ) ) |
---|
1715 | w(k,nyn+1,i) = ( w(k,nyn+1,i) + dist_xz(k,i,3) ) * & |
---|
1716 | MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,nyn+1,i), 3 ) ) |
---|
1717 | ENDDO |
---|
1718 | ENDDO |
---|
1719 | ENDIF |
---|
1720 | ENDIF |
---|
1721 | ENDIF |
---|
1722 | ! |
---|
1723 | !-- Exchange ghost points. |
---|
1724 | CALL exchange_horiz( u, nbgp ) |
---|
1725 | CALL exchange_horiz( v, nbgp ) |
---|
1726 | CALL exchange_horiz( w, nbgp ) |
---|
1727 | ! |
---|
1728 | !-- Finally, set time counter for calling STG to zero |
---|
1729 | IF ( stg_call ) time_stg_call = 0.0_wp |
---|
1730 | ! |
---|
1731 | !-- Set adjustment step to False to indicate that time correlation can be |
---|
1732 | !-- switched-on again. |
---|
1733 | adjustment_step = .FALSE. |
---|
1734 | |
---|
1735 | IF ( debug_output_timestep ) CALL debug_message( 'stg_main', 'end' ) |
---|
1736 | |
---|
1737 | END SUBROUTINE stg_main |
---|
1738 | |
---|
1739 | !--------------------------------------------------------------------------------------------------! |
---|
1740 | ! Description: |
---|
1741 | ! ------------ |
---|
1742 | !> Generate a set of random number rand_it wich is equal on each PE and calculate the velocity seed |
---|
1743 | !> f_n. f_n is splitted in vertical direction by the number of PEs in x-direction and each PE |
---|
1744 | !> calculates a vertical subsection of f_n. At the the end, all parts are collected to form the full |
---|
1745 | !> array. |
---|
1746 | !--------------------------------------------------------------------------------------------------! |
---|
1747 | SUBROUTINE stg_generate_seed_yz( n_y, n_z, b_y, b_z, f_n, id_left, id_right ) |
---|
1748 | |
---|
1749 | INTEGER(iwp) :: id_left !< core ids at respective boundaries |
---|
1750 | INTEGER(iwp), OPTIONAL :: id_right !< core ids at respective boundaries |
---|
1751 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
1752 | INTEGER(iwp) :: jj !< loop index in y-direction |
---|
1753 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1754 | INTEGER(iwp) :: kk !< loop index in z-direction |
---|
1755 | INTEGER(iwp) :: send_count !< send count for MPI_GATHERV |
---|
1756 | |
---|
1757 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_y !< length scale in y-direction |
---|
1758 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_z !< length scale in z-direction |
---|
1759 | |
---|
1760 | REAL(wp) :: nyz_inv !< inverse of number of grid points in yz-slice |
---|
1761 | REAL(wp) :: rand_av !< average of random number |
---|
1762 | REAL(wp) :: rand_sigma_inv !< inverse of stdev of random number |
---|
1763 | |
---|
1764 | REAL(wp), DIMENSION(-mergp_y:mergp_y,nzb:nzt+1) :: b_y !< filter function in y-direction |
---|
1765 | REAL(wp), DIMENSION(-mergp_z:mergp_z,nzb:nzt+1) :: b_z !< filter function in z-direction |
---|
1766 | |
---|
1767 | REAL(wp), DIMENSION(nzb_x_stg:nzt_x_stg+1,nys:nyn) :: f_n_l !< local velocity seed |
---|
1768 | REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn) :: f_n !< velocity seed |
---|
1769 | |
---|
1770 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rand_it !< global array of random numbers |
---|
1771 | ! |
---|
1772 | !-- Generate random numbers using the parallel random generator. The set of random numbers are |
---|
1773 | !-- modified to have an average of 0 and unit variance. Note, at the end the random number array |
---|
1774 | !-- must be defined globally in order to compute the correlation matrices. However, the calculation |
---|
1775 | !-- and normalization of random numbers is done locally, while the result is later distributed to |
---|
1776 | !-- all processes. Further, please note, a set of random numbers is only calculated for the west |
---|
1777 | !-- boundary, while the east boundary uses the same random numbers and thus also computes the same |
---|
1778 | !-- correlation matrix. |
---|
1779 | ALLOCATE( rand_it(nzb-mergp_z:nzt+1+mergp_z,-mergp_y+nys:nyn+mergp_y) ) |
---|
1780 | rand_it = 0.0_wp |
---|
1781 | |
---|
1782 | rand_av = 0.0_wp |
---|
1783 | rand_sigma_inv = 0.0_wp |
---|
1784 | nyz_inv = 1.0_wp / REAL( ( nzt + 1 + mergp_z - ( nzb - mergp_z ) + 1 ) & |
---|
1785 | * ( ny + mergp_y - ( 0 - mergp_y ) + 1 ), KIND = wp ) |
---|
1786 | ! |
---|
1787 | !-- Compute and normalize random numbers. |
---|
1788 | DO j = nys - mergp_y, nyn + mergp_y |
---|
1789 | ! |
---|
1790 | !-- Put the random seeds at grid point j |
---|
1791 | CALL random_seed_parallel( put=seq_rand_yz(:,j) ) |
---|
1792 | DO k = nzb - mergp_z, nzt + 1 + mergp_z |
---|
1793 | CALL random_number_parallel( random_dummy ) |
---|
1794 | rand_it(k,j) = random_dummy |
---|
1795 | ENDDO |
---|
1796 | ! |
---|
1797 | !-- Get the new random seeds from last call at grid point j |
---|
1798 | CALL random_seed_parallel( get=seq_rand_yz(:,j) ) |
---|
1799 | ENDDO |
---|
1800 | ! |
---|
1801 | !-- For normalization to zero mean, sum-up the global random numers. To normalize the global set of |
---|
1802 | !-- random numbers, the inner ghost layers mergp must not be summed-up, else the random numbers on |
---|
1803 | !-- the ghost layers will be stronger weighted as they also occur on the inner subdomains. |
---|
1804 | DO j = MERGE( nys, nys - mergp_y, nys /= 0 ), MERGE( nyn, nyn + mergp_y, nyn /= ny ) |
---|
1805 | DO k = nzb - mergp_z, nzt + 1 + mergp_z |
---|
1806 | rand_av = rand_av + rand_it(k,j) |
---|
1807 | ENDDO |
---|
1808 | ENDDO |
---|
1809 | |
---|
1810 | #if defined( __parallel ) |
---|
1811 | ! |
---|
1812 | !-- Sum-up the local averages of the random numbers |
---|
1813 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_av, 1, MPI_REAL, MPI_SUM, comm1dy, ierr ) |
---|
1814 | #endif |
---|
1815 | rand_av = rand_av * nyz_inv |
---|
1816 | ! |
---|
1817 | !-- Obtain zero mean |
---|
1818 | rand_it= rand_it - rand_av |
---|
1819 | ! |
---|
1820 | !-- Now, compute the variance |
---|
1821 | DO j = MERGE( nys, nys - mergp_y, nys /= 0 ), MERGE( nyn, nyn + mergp_y, nyn /= ny ) |
---|
1822 | DO k = nzb - mergp_z, nzt + 1 + mergp_z |
---|
1823 | rand_sigma_inv = rand_sigma_inv + rand_it(k,j)**2 |
---|
1824 | ENDDO |
---|
1825 | ENDDO |
---|
1826 | |
---|
1827 | #if defined( __parallel ) |
---|
1828 | ! |
---|
1829 | !-- Sum-up the local quadratic averages of the random numbers |
---|
1830 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_sigma_inv, 1, MPI_REAL, MPI_SUM, comm1dy, ierr ) |
---|
1831 | #endif |
---|
1832 | ! |
---|
1833 | !-- Compute standard deviation |
---|
1834 | IF ( rand_sigma_inv /= 0.0_wp ) THEN |
---|
1835 | rand_sigma_inv = 1.0_wp / SQRT( rand_sigma_inv * nyz_inv ) |
---|
1836 | ELSE |
---|
1837 | rand_sigma_inv = 1.0_wp |
---|
1838 | ENDIF |
---|
1839 | ! |
---|
1840 | !-- Normalize with standard deviation to obtain unit variance |
---|
1841 | rand_it = rand_it * rand_sigma_inv |
---|
1842 | |
---|
1843 | CALL cpu_log( log_point_s(31), 'STG f_n factors', 'start' ) |
---|
1844 | ! |
---|
1845 | !-- Generate velocity seed following Eq.6 of Xie and Castro (2008). There are two options. In the |
---|
1846 | !-- first one, the computation of the seeds is distributed to all processes along the communicator |
---|
1847 | !-- comm1dy and gathered on the leftmost and, if necessary, on the rightmost process. For huge |
---|
1848 | !-- length scales the computational effort can become quite huge (it scales with the turbulent |
---|
1849 | !-- length scales), so that gain by parallelization exceeds the costs by the subsequent |
---|
1850 | !-- communication. In the second option, which performs better when the turbulent length scales |
---|
1851 | !-- are parametrized and thus the loops are smaller, the seeds are computed locally and no |
---|
1852 | !-- communication is necessary. |
---|
1853 | IF ( compute_velocity_seeds_local ) THEN |
---|
1854 | |
---|
1855 | f_n = 0.0_wp |
---|
1856 | DO j = nys, nyn |
---|
1857 | DO k = nzb, nzt+1 |
---|
1858 | DO jj = -n_y(k), n_y(k) |
---|
1859 | DO kk = -n_z(k), n_z(k) |
---|
1860 | f_n(k,j) = f_n(k,j) + b_y(jj,k) * b_z(kk,k) * rand_it(k+kk,j+jj) |
---|
1861 | ENDDO |
---|
1862 | ENDDO |
---|
1863 | ENDDO |
---|
1864 | ENDDO |
---|
1865 | |
---|
1866 | ELSE |
---|
1867 | |
---|
1868 | f_n_l = 0.0_wp |
---|
1869 | DO j = nys, nyn |
---|
1870 | DO k = nzb_x_stg, nzt_x_stg+1 |
---|
1871 | DO jj = -n_y(k), n_y(k) |
---|
1872 | DO kk = -n_z(k), n_z(k) |
---|
1873 | f_n_l(k,j) = f_n_l(k,j) + b_y(jj,k) * b_z(kk,k) * rand_it(k+kk,j+jj) |
---|
1874 | ENDDO |
---|
1875 | ENDDO |
---|
1876 | ENDDO |
---|
1877 | ENDDO |
---|
1878 | ! |
---|
1879 | !-- Gather velocity seeds of full subdomain |
---|
1880 | send_count = nzt_x_stg - nzb_x_stg + 1 |
---|
1881 | IF ( nzt_x_stg == nzt ) send_count = send_count + 1 |
---|
1882 | |
---|
1883 | #if defined( __parallel ) |
---|
1884 | ! |
---|
1885 | !-- Gather the velocity seed matrix on left boundary mpi ranks. |
---|
1886 | CALL MPI_GATHERV( f_n_l(nzb_x_stg,nys), send_count, stg_type_yz_small, f_n(nzb+1,nys), & |
---|
1887 | recv_count_yz, displs_yz, stg_type_yz, id_left, comm1dx, ierr ) |
---|
1888 | ! |
---|
1889 | !-- If required, gather the same velocity seed matrix on right boundary mpi ranks (in offline |
---|
1890 | !-- nesting for example). |
---|
1891 | IF ( PRESENT( id_right ) ) THEN |
---|
1892 | CALL MPI_GATHERV( f_n_l(nzb_x_stg,nys), send_count, stg_type_yz_small, f_n(nzb+1,nys), & |
---|
1893 | recv_count_yz, displs_yz, stg_type_yz, id_right, comm1dx, ierr ) |
---|
1894 | ENDIF |
---|
1895 | #else |
---|
1896 | f_n(nzb+1:nzt+1,nys:nyn) = f_n_l(nzb_x_stg:nzt_x_stg+1,nys:nyn) |
---|
1897 | ! |
---|
1898 | !-- Next line required to avoid compile errors because of unused dummy arguments |
---|
1899 | IF ( id_left == 0 ) id_right = 0 |
---|
1900 | #endif |
---|
1901 | |
---|
1902 | ENDIF |
---|
1903 | |
---|
1904 | DEALLOCATE( rand_it ) |
---|
1905 | |
---|
1906 | CALL cpu_log( log_point_s(31), 'STG f_n factors', 'stop' ) |
---|
1907 | |
---|
1908 | END SUBROUTINE stg_generate_seed_yz |
---|
1909 | |
---|
1910 | |
---|
1911 | !--------------------------------------------------------------------------------------------------! |
---|
1912 | ! Description: |
---|
1913 | ! ------------ |
---|
1914 | !> Generate a set of random number rand_it wich is equal on each PE and calculate the velocity seed |
---|
1915 | !> f_n. |
---|
1916 | !> f_n is splitted in vertical direction by the number of PEs in y-direction and and each PE |
---|
1917 | !> calculates a vertical subsection of f_n. At the the end, all parts are collected to form the |
---|
1918 | !> full array. |
---|
1919 | !--------------------------------------------------------------------------------------------------! |
---|
1920 | SUBROUTINE stg_generate_seed_xz( n_x, n_z, b_x, b_z, f_n, id_south, id_north ) |
---|
1921 | |
---|
1922 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
1923 | INTEGER(iwp) :: id_north !< core ids at respective boundaries |
---|
1924 | INTEGER(iwp) :: id_south !< core ids at respective boundaries |
---|
1925 | INTEGER(iwp) :: ii !< loop index in x-direction |
---|
1926 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1927 | INTEGER(iwp) :: kk !< loop index in z-direction |
---|
1928 | INTEGER(iwp) :: send_count !< send count for MPI_GATHERV |
---|
1929 | |
---|
1930 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_x !< length scale in x-direction |
---|
1931 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_z !< length scale in z-direction |
---|
1932 | |
---|
1933 | REAL(wp) :: nxz_inv !< inverse of number of grid points in xz-slice |
---|
1934 | REAL(wp) :: rand_av !< average of random number |
---|
1935 | REAL(wp) :: rand_sigma_inv !< inverse of stdev of random number |
---|
1936 | |
---|
1937 | REAL(wp), DIMENSION(-mergp_x:mergp_x,nzb:nzt+1) :: b_x !< filter function in x-direction |
---|
1938 | REAL(wp), DIMENSION(-mergp_z:mergp_z,nzb:nzt+1) :: b_z !< filter function in z-direction |
---|
1939 | |
---|
1940 | REAL(wp), DIMENSION(nzb_y_stg:nzt_y_stg+1,nxl:nxr) :: f_n_l !< local velocity seed |
---|
1941 | REAL(wp), DIMENSION(nzb:nzt+1,nxl:nxr) :: f_n !< velocity seed |
---|
1942 | |
---|
1943 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rand_it !< global array of random numbers |
---|
1944 | |
---|
1945 | ! |
---|
1946 | !-- Generate random numbers using the parallel random generator. The set of random numbers are |
---|
1947 | !-- modified to have an average of 0 and unit variance. Note, at the end the random number array |
---|
1948 | !-- must be defined globally in order to compute the correlation matrices. However, the calculation |
---|
1949 | !-- and normalization of random numbers is done locally, while the result is later distributed to |
---|
1950 | !-- all processes. Further, please note, a set of random numbers is only calculated for the south |
---|
1951 | !-- boundary, while the north boundary uses the same random numbers and thus also computes the same |
---|
1952 | !-- correlation matrix. |
---|
1953 | ALLOCATE( rand_it(nzb-mergp_z:nzt+1+mergp_z,-mergp_x+nxl:nxr+mergp_x) ) |
---|
1954 | rand_it = 0.0_wp |
---|
1955 | |
---|
1956 | rand_av = 0.0_wp |
---|
1957 | rand_sigma_inv = 0.0_wp |
---|
1958 | nxz_inv = 1.0_wp / REAL( ( nzt + 1 + mergp_z - ( nzb - mergp_z ) + 1 ) & |
---|
1959 | * ( nx + mergp_x - ( 0 - mergp_x ) +1 ), KIND = wp ) |
---|
1960 | ! |
---|
1961 | !-- Compute and normalize random numbers. |
---|
1962 | DO i = nxl - mergp_x, nxr + mergp_x |
---|
1963 | ! |
---|
1964 | !-- Put the random seeds at grid point ii |
---|
1965 | CALL random_seed_parallel( put=seq_rand_xz(:,i) ) |
---|
1966 | DO k = nzb - mergp_z, nzt + 1 + mergp_z |
---|
1967 | CALL random_number_parallel( random_dummy ) |
---|
1968 | rand_it(k,i) = random_dummy |
---|
1969 | ENDDO |
---|
1970 | ! |
---|
1971 | !-- Get the new random seeds from last call at grid point ii |
---|
1972 | CALL random_seed_parallel( get=seq_rand_xz(:,i) ) |
---|
1973 | ENDDO |
---|
1974 | ! |
---|
1975 | !-- For normalization to zero mean, sum-up the global random numers. |
---|
1976 | !-- To normalize the global set of random numbers, the inner ghost layers mergp must not be |
---|
1977 | !-- summed-up, else the random numbers on the ghost layers will be stronger weighted as they |
---|
1978 | !-- also occur on the inner subdomains. |
---|
1979 | DO i = MERGE( nxl, nxl - mergp_x, nxl /= 0 ), MERGE( nxr, nxr + mergp_x, nxr /= nx ) |
---|
1980 | DO k = nzb - mergp_z, nzt + 1 + mergp_z |
---|
1981 | rand_av = rand_av + rand_it(k,i) |
---|
1982 | ENDDO |
---|
1983 | ENDDO |
---|
1984 | |
---|
1985 | #if defined( __parallel ) |
---|
1986 | ! |
---|
1987 | !-- Sum-up the local averages of the random numbers |
---|
1988 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_av, 1, MPI_REAL, MPI_SUM, comm1dx, ierr ) |
---|
1989 | #endif |
---|
1990 | rand_av = rand_av * nxz_inv |
---|
1991 | ! |
---|
1992 | !-- Obtain zero mean |
---|
1993 | rand_it= rand_it - rand_av |
---|
1994 | ! |
---|
1995 | !-- Now, compute the variance |
---|
1996 | DO i = MERGE( nxl, nxl - mergp_x, nxl /= 0 ), MERGE( nxr, nxr + mergp_x, nxr /= nx ) |
---|
1997 | DO k = nzb - mergp_z, nzt + 1 + mergp_z |
---|
1998 | rand_sigma_inv = rand_sigma_inv + rand_it(k,i)**2 |
---|
1999 | ENDDO |
---|
2000 | ENDDO |
---|
2001 | |
---|
2002 | #if defined( __parallel ) |
---|
2003 | ! |
---|
2004 | !-- Sum-up the local quadratic averages of the random numbers |
---|
2005 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_sigma_inv, 1, MPI_REAL, MPI_SUM, comm1dx, ierr ) |
---|
2006 | #endif |
---|
2007 | ! |
---|
2008 | !-- Compute standard deviation |
---|
2009 | IF ( rand_sigma_inv /= 0.0_wp ) THEN |
---|
2010 | rand_sigma_inv = 1.0_wp / SQRT( rand_sigma_inv * nxz_inv ) |
---|
2011 | ELSE |
---|
2012 | rand_sigma_inv = 1.0_wp |
---|
2013 | ENDIF |
---|
2014 | ! |
---|
2015 | !-- Normalize with standard deviation to obtain unit variance |
---|
2016 | rand_it = rand_it * rand_sigma_inv |
---|
2017 | |
---|
2018 | CALL cpu_log( log_point_s(31), 'STG f_n factors', 'start' ) |
---|
2019 | ! |
---|
2020 | !-- Generate velocity seed following Eq.6 of Xie and Castro (2008). There are two options. In the |
---|
2021 | !-- first one, the computation of the seeds is distributed to all processes along the communicator |
---|
2022 | !-- comm1dx and gathered on the southmost and, if necessary, on the northmost process. For huge |
---|
2023 | !-- length scales the computational effort can become quite huge (it scales with the turbulent |
---|
2024 | !-- length scales), so that gain by parallelization exceeds the costs by the subsequent communication. |
---|
2025 | !-- In the second option, which performs better when the turbulent length scales are parametrized |
---|
2026 | !-- and thus the loops are smaller, the seeds are computed locally and no communication is necessary. |
---|
2027 | IF ( compute_velocity_seeds_local ) THEN |
---|
2028 | |
---|
2029 | f_n = 0.0_wp |
---|
2030 | DO i = nxl, nxr |
---|
2031 | DO k = nzb, nzt+1 |
---|
2032 | DO ii = -n_x(k), n_x(k) |
---|
2033 | DO kk = -n_z(k), n_z(k) |
---|
2034 | f_n(k,i) = f_n(k,i) + b_x(ii,k) * b_z(kk,k) * rand_it(k+kk,i+ii) |
---|
2035 | ENDDO |
---|
2036 | ENDDO |
---|
2037 | ENDDO |
---|
2038 | ENDDO |
---|
2039 | |
---|
2040 | ELSE |
---|
2041 | |
---|
2042 | f_n_l = 0.0_wp |
---|
2043 | DO i = nxl, nxr |
---|
2044 | DO k = nzb_y_stg, nzt_y_stg+1 |
---|
2045 | DO ii = -n_x(k), n_x(k) |
---|
2046 | DO kk = -n_z(k), n_z(k) |
---|
2047 | f_n_l(k,i) = f_n_l(k,i) + b_x(ii,k) * b_z(kk,k) * rand_it(k+kk,i+ii) |
---|
2048 | ENDDO |
---|
2049 | ENDDO |
---|
2050 | ENDDO |
---|
2051 | ENDDO |
---|
2052 | ! |
---|
2053 | !-- Gather velocity seeds of full subdomain |
---|
2054 | send_count = nzt_y_stg - nzb_y_stg + 1 |
---|
2055 | IF ( nzt_y_stg == nzt ) send_count = send_count + 1 |
---|
2056 | |
---|
2057 | #if defined( __parallel ) |
---|
2058 | ! |
---|
2059 | !-- Gather the processed velocity seed on south boundary mpi ranks. |
---|
2060 | CALL MPI_GATHERV( f_n_l(nzb_y_stg,nxl), send_count, stg_type_xz_small, f_n(nzb+1,nxl), & |
---|
2061 | recv_count_xz, displs_xz, stg_type_xz, id_south, comm1dy, ierr ) |
---|
2062 | ! |
---|
2063 | !-- Gather the processed velocity seed on north boundary mpi ranks. |
---|
2064 | CALL MPI_GATHERV( f_n_l(nzb_y_stg,nxl), send_count, stg_type_xz_small, f_n(nzb+1,nxl), & |
---|
2065 | recv_count_xz, displs_xz, stg_type_xz, id_north, comm1dy, ierr ) |
---|
2066 | #else |
---|
2067 | f_n(nzb+1:nzt+1,nxl:nxr) = f_n_l(nzb_y_stg:nzt_y_stg+1,nxl:nxr) |
---|
2068 | ! |
---|
2069 | !-- Next line required to avoid compile errors because of unused dummy arguments |
---|
2070 | IF ( id_north == 0 ) id_south = 0 |
---|
2071 | #endif |
---|
2072 | |
---|
2073 | ENDIF |
---|
2074 | |
---|
2075 | DEALLOCATE( rand_it ) |
---|
2076 | |
---|
2077 | CALL cpu_log( log_point_s(31), 'STG f_n factors', 'stop' ) |
---|
2078 | |
---|
2079 | END SUBROUTINE stg_generate_seed_xz |
---|
2080 | |
---|
2081 | !--------------------------------------------------------------------------------------------------! |
---|
2082 | ! Description: |
---|
2083 | ! ------------ |
---|
2084 | !> Parametrization of the Reynolds-stress componentes, turbulent length- and time scales. The |
---|
2085 | !> parametrization follows Brost et al. (1982) with modifications described in Rotach et al. (1996), |
---|
2086 | !> which is applied in state-of-the-art dispserion modelling. |
---|
2087 | !--------------------------------------------------------------------------------------------------! |
---|
2088 | SUBROUTINE parametrize_turbulence |
---|
2089 | |
---|
2090 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2091 | |
---|
2092 | REAL(wp) :: corr_term_uh !< correction term in parametrization of horizontal variances for unstable stratification |
---|
2093 | REAL(wp) :: d_zi !< inverse boundary-layer depth |
---|
2094 | REAL(wp) :: length_scale_lon !< length scale in flow direction |
---|
2095 | REAL(wp) :: length_scale_lon_zi !< length scale in flow direction at boundary-layer top |
---|
2096 | REAL(wp) :: length_scale_lat !< length scale in crosswind direction |
---|
2097 | REAL(wp) :: length_scale_lat_zi !< length scale in crosswind direction at boundary-layer top |
---|
2098 | REAL(wp) :: length_scale_vert !< length scale in vertical direction |
---|
2099 | REAL(wp) :: length_scale_vert_zi !< length scale in vertical direction at boundary-layer top |
---|
2100 | REAL(wp) :: time_scale_zi !< time scale at boundary-layer top |
---|
2101 | REAL(wp) :: r11_zi !< longitudinal variance at boundary-layer top |
---|
2102 | REAL(wp) :: r22_zi !< crosswind variance at boundary-layer top |
---|
2103 | REAL(wp) :: r33_zi !< vertical variance at boundary-layer top |
---|
2104 | REAL(wp) :: r31_zi !< r31 at boundary-layer top |
---|
2105 | REAL(wp) :: r32_zi !< r32 at boundary-layer top |
---|
2106 | REAL(wp) :: rlat1 !< first dummy argument for crosswind compoment of reynolds stress |
---|
2107 | REAL(wp) :: rlat2 !< second dummy argument for crosswind compoment of reynolds stress |
---|
2108 | REAL(wp) :: rlon1 !< first dummy argument for longitudinal compoment of reynolds stress |
---|
2109 | REAL(wp) :: rlon2 !< second dummy argument for longitudinal compoment of reynolds stress |
---|
2110 | REAL(wp) :: zzi !< ratio of z/zi |
---|
2111 | |
---|
2112 | REAL(wp), DIMENSION(nzb+1:nzt+1) :: cos_phi !< cosine of angle between mean flow direction and x-axis |
---|
2113 | REAL(wp), DIMENSION(nzb+1:nzt+1) :: phi !< angle between mean flow direction and x-axis |
---|
2114 | REAL(wp), DIMENSION(nzb+1:nzt+1) :: sin_phi !< sine of angle between mean flow direction and x-axis |
---|
2115 | |
---|
2116 | ! |
---|
2117 | !-- Calculate the boundary-layer top index. Boundary-layer top is calculated by Richardson-bulk |
---|
2118 | !-- criterion according to Heinze et al. (2017). |
---|
2119 | k_zi = MAX( 1, MINLOC( ABS( zu - zi_ribulk ), DIM = 1 ) ) |
---|
2120 | IF ( zu(k_zi) > zi_ribulk ) k_zi = k_zi - 1 |
---|
2121 | k_zi = MIN( k_zi, nzt ) |
---|
2122 | ! |
---|
2123 | !-- Calculate angle between flow direction and x-axis. |
---|
2124 | DO k = nzb+1, nzt + 1 |
---|
2125 | IF ( u_init(k) /= 0.0_wp ) THEN |
---|
2126 | phi(k) = ATAN( v_init(k) / u_init(k) ) |
---|
2127 | ELSE |
---|
2128 | phi(k) = 0.5 * pi |
---|
2129 | ENDIF |
---|
2130 | ! |
---|
2131 | !-- Pre-calculate sine and cosine. |
---|
2132 | cos_phi(k) = COS( phi(k) ) |
---|
2133 | sin_phi(k) = SIN( phi(k) ) |
---|
2134 | ENDDO |
---|
2135 | ! |
---|
2136 | !-- Parametrize Reynolds-stress components. Please note, parametrization is formulated for the |
---|
2137 | !-- stream- and spanwise components, while stream- and spanwise direction do not necessarily |
---|
2138 | !-- coincide with the grid axis. Hence, components are rotated after computation. |
---|
2139 | d_zi = 1.0_wp / zi_ribulk |
---|
2140 | DO k = nzb+1, k_zi |
---|
2141 | |
---|
2142 | corr_term_uh = MERGE( 0.35_wp * ABS( & |
---|
2143 | - zi_ribulk / ( kappa * scale_l - 10E-4_wp ) & |
---|
2144 | )**( 2.0_wp / 3.0_wp ), & |
---|
2145 | 0.0_wp, & |
---|
2146 | scale_l < -5.0_wp ) |
---|
2147 | ! |
---|
2148 | !-- Determine normalized height coordinate |
---|
2149 | zzi = zu(k) * d_zi |
---|
2150 | ! |
---|
2151 | !-- Compute longitudinal and crosswind component of reynolds stress. Rotate these components by |
---|
2152 | !-- the wind direction to map onto the u- and v-component. Note, since reynolds stress for |
---|
2153 | !-- variances cannot become negative, take the absolute values. |
---|
2154 | rlon1 = scale_us**2 * ( corr_term_uh + 5.0_wp - 4.0_wp * zzi ) |
---|
2155 | rlat1 = scale_us**2 * ( corr_term_uh + 2.0_wp - zzi ) |
---|
2156 | |
---|
2157 | r11(k) = ABS( cos_phi(k) * rlon1 + sin_phi(k) * rlat1 ) |
---|
2158 | r22(k) = ABS( - sin_phi(k) * rlon1 + cos_phi(k) * rlat1 ) |
---|
2159 | ! |
---|
2160 | !-- w'w' |
---|
2161 | r33(k) = scale_wm**2 * ( & |
---|
2162 | 1.5_wp * zzi**( 2.0_wp / 3.0_wp ) * EXP( -2.0_wp * zzi ) & |
---|
2163 | + ( 1.7_wp - zzi ) * ( scale_us / scale_wm )**2 & |
---|
2164 | ) |
---|
2165 | ! |
---|
2166 | !-- u'w' and v'w'. After calculation of the longitudinal and crosswind component |
---|
2167 | !-- these are projected along the x- and y-direction. Note, it is assumed that |
---|
2168 | !-- the flux within the boundary points opposite to the vertical gradient. |
---|
2169 | rlon2 = scale_us**2 * ( zzi - 1.0_wp ) |
---|
2170 | rlat2 = scale_us**2 * ( 0.4 * zzi * ( 1.0_wp - zzi ) ) |
---|
2171 | |
---|
2172 | r31(k) = SIGN( ABS( cos_phi(k) * rlon2 + sin_phi(k) * rlat2 ), & |
---|
2173 | - ( u_init(k+1) - u_init(k-1) ) ) |
---|
2174 | r32(k) = SIGN( ABS( - sin_phi(k) * rlon2 + cos_phi(k) * rlat2 ), & |
---|
2175 | - ( v_init(k+1) - v_init(k-1) ) ) |
---|
2176 | ! |
---|
2177 | !-- For u'v' no parametrization exist so far. For simplicity assume a similar profile as |
---|
2178 | !-- for the vertical transport. |
---|
2179 | r21(k) = 0.5_wp * ( r31(k) + r32(k) ) |
---|
2180 | ! |
---|
2181 | !-- Compute turbulent time scales according to Brost et al. (1982). Note, time scales are |
---|
2182 | !-- limited to the adjustment time scales. |
---|
2183 | tu(k) = MIN( dt_stg_adjust, & |
---|
2184 | 3.33_wp * zzi * ( 1.0 - 0.67_wp * zzi ) / scale_wm * zi_ribulk ) |
---|
2185 | |
---|
2186 | tv(k) = tu(k) |
---|
2187 | tw(k) = tu(k) |
---|
2188 | |
---|
2189 | length_scale_lon = MIN( SQRT( r11(k) ) * tu(k), zi_ribulk ) |
---|
2190 | length_scale_lat = MIN( SQRT( r22(k) ) * tv(k), zi_ribulk ) |
---|
2191 | length_scale_vert = MIN( SQRT( r33(k) ) * tw(k), zi_ribulk ) |
---|
2192 | ! |
---|
2193 | !-- Assume isotropic turbulence length scales |
---|
2194 | nux(k) = MAX( INT( length_scale_lon * ddx ), 1 ) |
---|
2195 | nuy(k) = MAX( INT( length_scale_lat * ddy ), 1 ) |
---|
2196 | nvx(k) = MAX( INT( length_scale_lon * ddx ), 1 ) |
---|
2197 | nvy(k) = MAX( INT( length_scale_lat * ddy ), 1 ) |
---|
2198 | nwx(k) = MAX( INT( length_scale_lon * ddx ), 1 ) |
---|
2199 | nwy(k) = MAX( INT( length_scale_lat * ddy ), 1 ) |
---|
2200 | nuz(k) = MAX( INT( length_scale_vert * ddzw(k) ), 1 ) |
---|
2201 | nvz(k) = MAX( INT( length_scale_vert * ddzw(k) ), 1 ) |
---|
2202 | nwz(k) = MAX( INT( length_scale_vert * ddzw(k) ), 1 ) |
---|
2203 | |
---|
2204 | ENDDO |
---|
2205 | ! |
---|
2206 | !-- Above boundary-layer top length- and timescales as well as reynolds-stress components are |
---|
2207 | !-- reduced to zero by a blending function. |
---|
2208 | length_scale_lon_zi = SQRT( r11(k_zi) ) * tu(k_zi) |
---|
2209 | length_scale_lat_zi = SQRT( r22(k_zi) ) * tv(k_zi) |
---|
2210 | length_scale_vert_zi = SQRT( r33(k_zi) ) * tu(k_zi) |
---|
2211 | |
---|
2212 | time_scale_zi = tu(k_zi) |
---|
2213 | r11_zi = r11(k_zi) |
---|
2214 | r22_zi = r22(k_zi) |
---|
2215 | r33_zi = r33(k_zi) |
---|
2216 | r31_zi = r31(k_zi) |
---|
2217 | r32_zi = r32(k_zi) |
---|
2218 | |
---|
2219 | d_l = blend_coeff / MAX( length_scale_vert_zi, dx, dy, MINVAL( dzw ) ) |
---|
2220 | |
---|
2221 | DO k = k_zi+1, nzt+1 |
---|
2222 | ! |
---|
2223 | !-- Calculate function to gradually decrease Reynolds stress above ABL top. |
---|
2224 | blend = MIN( 1.0_wp, EXP( d_l * zu(k) - d_l * zi_ribulk ) ) |
---|
2225 | ! |
---|
2226 | !-- u'u' and v'v'. Assume isotropy. Note, add a small negative number to the denominator, else |
---|
2227 | !-- the mergpe-function can crash if scale_l is zero. |
---|
2228 | r11(k) = r11_zi * blend |
---|
2229 | r22(k) = r22_zi * blend |
---|
2230 | r33(k) = r33_zi * blend |
---|
2231 | r31(k) = r31_zi * blend |
---|
2232 | r32(k) = r32_zi * blend |
---|
2233 | r21(k) = 0.5_wp * ( r31(k) + r32(k) ) |
---|
2234 | |
---|
2235 | ! |
---|
2236 | !-- Compute turbulent time scales according to Brost et al. (1982). |
---|
2237 | !-- Note, time scales are limited to the adjustment time scales. |
---|
2238 | tu(k) = time_scale_zi * blend |
---|
2239 | tv(k) = time_scale_zi * blend |
---|
2240 | tw(k) = time_scale_zi * blend |
---|
2241 | |
---|
2242 | length_scale_lon = length_scale_lon_zi * blend |
---|
2243 | length_scale_lat = length_scale_lat_zi * blend |
---|
2244 | length_scale_vert = length_scale_vert_zi * blend |
---|
2245 | ! |
---|
2246 | !-- Assume isotropic turbulence length scales |
---|
2247 | nux(k) = MAX( INT( length_scale_lon * ddx ), 1 ) |
---|
2248 | nuy(k) = MAX( INT( length_scale_lat * ddy ), 1 ) |
---|
2249 | nvx(k) = MAX( INT( length_scale_lon * ddx ), 1 ) |
---|
2250 | nvy(k) = MAX( INT( length_scale_lat * ddy ), 1 ) |
---|
2251 | nwx(k) = MAX( INT( length_scale_lon * ddx ), 1 ) |
---|
2252 | nwy(k) = MAX( INT( length_scale_lat * ddy ), 1 ) |
---|
2253 | nuz(k) = MAX( INT( length_scale_vert * ddzw(k) ), 1 ) |
---|
2254 | nvz(k) = MAX( INT( length_scale_vert * ddzw(k) ), 1 ) |
---|
2255 | nwz(k) = MAX( INT( length_scale_vert * ddzw(k) ), 1 ) |
---|
2256 | ENDDO |
---|
2257 | ! |
---|
2258 | !-- Set bottom boundary condition for reynolds stresses |
---|
2259 | r11(nzb) = r11(nzb+1) |
---|
2260 | r22(nzb) = r22(nzb+1) |
---|
2261 | r33(nzb) = r33(nzb+1) |
---|
2262 | |
---|
2263 | r21(nzb) = r11(nzb+1) |
---|
2264 | r31(nzb) = r31(nzb+1) |
---|
2265 | r32(nzb) = r32(nzb+1) |
---|
2266 | |
---|
2267 | ! |
---|
2268 | !-- Set bottom boundary condition for the length and time scales |
---|
2269 | nux(nzb) = nux(nzb+1) |
---|
2270 | nuy(nzb) = nuy(nzb+1) |
---|
2271 | nuz(nzb) = nuz(nzb+1) |
---|
2272 | nvx(nzb) = nvx(nzb+1) |
---|
2273 | nvy(nzb) = nvy(nzb+1) |
---|
2274 | nvz(nzb) = nvz(nzb+1) |
---|
2275 | nwx(nzb) = nwx(nzb+1) |
---|
2276 | nwy(nzb) = nwy(nzb+1) |
---|
2277 | nwz(nzb) = nwz(nzb+1) |
---|
2278 | |
---|
2279 | tu(nzb) = tu(nzb+1) |
---|
2280 | tv(nzb) = tv(nzb+1) |
---|
2281 | tw(nzb) = tw(nzb+1) |
---|
2282 | |
---|
2283 | adjustment_step = .TRUE. |
---|
2284 | |
---|
2285 | END SUBROUTINE parametrize_turbulence |
---|
2286 | |
---|
2287 | !--------------------------------------------------------------------------------------------------! |
---|
2288 | ! Description: |
---|
2289 | ! ------------ |
---|
2290 | !> Calculate the coefficient matrix from the Lund rotation. |
---|
2291 | !--------------------------------------------------------------------------------------------------! |
---|
2292 | SUBROUTINE calc_coeff_matrix |
---|
2293 | |
---|
2294 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2295 | |
---|
2296 | ! |
---|
2297 | !-- Calculate coefficient matrix. Split loops to allow for loop vectorization. |
---|
2298 | DO k = nzb+1, nzt+1 |
---|
2299 | IF ( r11(k) > 10E-6_wp ) THEN |
---|
2300 | a11(k) = SQRT( r11(k) ) |
---|
2301 | a21(k) = r21(k) / a11(k) |
---|
2302 | a31(k) = r31(k) / a11(k) |
---|
2303 | ELSE |
---|
2304 | a11(k) = 10E-8_wp |
---|
2305 | a21(k) = 10E-8_wp |
---|
2306 | a31(k) = 10E-8_wp |
---|
2307 | ENDIF |
---|
2308 | ENDDO |
---|
2309 | DO k = nzb+1, nzt+1 |
---|
2310 | a22(k) = r22(k) - a21(k)**2 |
---|
2311 | IF ( a22(k) > 10E-6_wp ) THEN |
---|
2312 | a22(k) = SQRT( a22(k) ) |
---|
2313 | a32(k) = ( r32(k) - a21(k) * a31(k) ) / a22(k) |
---|
2314 | ELSE |
---|
2315 | a22(k) = 10E-8_wp |
---|
2316 | a32(k) = 10E-8_wp |
---|
2317 | ENDIF |
---|
2318 | ENDDO |
---|
2319 | DO k = nzb+1, nzt+1 |
---|
2320 | a33(k) = r33(k) - a31(k)**2 - a32(k)**2 |
---|
2321 | IF ( a33(k) > 10E-6_wp ) THEN |
---|
2322 | a33(k) = SQRT( a33(k) ) |
---|
2323 | ELSE |
---|
2324 | a33(k) = 10E-8_wp |
---|
2325 | ENDIF |
---|
2326 | ENDDO |
---|
2327 | ! |
---|
2328 | !-- Set bottom boundary condition |
---|
2329 | a11(nzb) = a11(nzb+1) |
---|
2330 | a22(nzb) = a22(nzb+1) |
---|
2331 | a21(nzb) = a21(nzb+1) |
---|
2332 | a33(nzb) = a33(nzb+1) |
---|
2333 | a31(nzb) = a31(nzb+1) |
---|
2334 | a32(nzb) = a32(nzb+1) |
---|
2335 | |
---|
2336 | END SUBROUTINE calc_coeff_matrix |
---|
2337 | |
---|
2338 | !--------------------------------------------------------------------------------------------------! |
---|
2339 | ! Description: |
---|
2340 | ! ------------ |
---|
2341 | !> This routine controls the re-adjustment of the turbulence statistics used for generating |
---|
2342 | !> turbulence at the lateral boundaries. |
---|
2343 | !--------------------------------------------------------------------------------------------------! |
---|
2344 | SUBROUTINE stg_adjust |
---|
2345 | |
---|
2346 | IF ( debug_output_timestep ) CALL debug_message( 'stg_adjust', 'start' ) |
---|
2347 | ! |
---|
2348 | !-- In case of dirichlet inflow boundary conditions only at one lateral boundary, i.e. in the case |
---|
2349 | !-- no offline or self nesting is applied but synthetic turbulence shall be parametrized |
---|
2350 | !-- nevertheless, the boundary-layer depth need to determined first. |
---|
2351 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) & |
---|
2352 | CALL nesting_offl_calc_zi |
---|
2353 | ! |
---|
2354 | !-- Compute scaling parameters (domain-averaged), such as friction velocity are calculated. |
---|
2355 | CALL calc_scaling_variables |
---|
2356 | ! |
---|
2357 | !-- Parametrize Reynolds-stress tensor. Parametrization follows Brost et al. (1982) with |
---|
2358 | !-- modifications described in Rotach et al. (1996) and is based on boundary-layer depth, friction |
---|
2359 | !-- velocity and velocity scale. |
---|
2360 | CALL parametrize_turbulence |
---|
2361 | ! |
---|
2362 | !-- Calculate coefficient matrix from Reynolds stress tensor |
---|
2363 | !-- (Lund rotation) |
---|
2364 | CALL calc_coeff_matrix |
---|
2365 | ! |
---|
2366 | !-- Setup filter functions according to updated length scales. |
---|
2367 | CALL stg_setup_filter_function |
---|
2368 | ! |
---|
2369 | !-- Reset time counter for controlling next adjustment to zero |
---|
2370 | time_stg_adjust = 0.0_wp |
---|
2371 | |
---|
2372 | IF ( debug_output_timestep ) CALL debug_message( 'stg_adjust', 'end' ) |
---|
2373 | |
---|
2374 | END SUBROUTINE stg_adjust |
---|
2375 | |
---|
2376 | |
---|
2377 | !--------------------------------------------------------------------------------------------------! |
---|
2378 | ! Description: |
---|
2379 | ! ------------ |
---|
2380 | !> Calculate scaling variables which are used for turbulence parametrization according to Rotach |
---|
2381 | !> et al. (1996). Scaling variables are: friction velocity, boundary-layer depth, momentum velocity |
---|
2382 | !> scale, and Obukhov length. |
---|
2383 | !--------------------------------------------------------------------------------------------------! |
---|
2384 | SUBROUTINE calc_scaling_variables |
---|
2385 | |
---|
2386 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
2387 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
2388 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2389 | INTEGER(iwp) :: m !< surface element index |
---|
2390 | |
---|
2391 | REAL(wp) :: friction_vel_l !< mean friction veloctiy on subdomain |
---|
2392 | REAL(wp) :: pt_surf_mean !< mean near surface temperature (at 1st grid point) |
---|
2393 | REAL(wp) :: pt_surf_mean_l !< mean near surface temperature (at 1st grid point) on subdomain |
---|
2394 | REAL(wp) :: scale_l_l !< mean Obukhov lenght on subdomain |
---|
2395 | REAL(wp) :: shf_mean !< mean surface sensible heat flux |
---|
2396 | REAL(wp) :: shf_mean_l !< mean surface sensible heat flux on subdomain |
---|
2397 | REAL(wp) :: w_convective !< convective velocity scale |
---|
2398 | |
---|
2399 | ! |
---|
2400 | !-- Calculate mean friction velocity, velocity scale, heat flux and near-surface temperature in the |
---|
2401 | !-- model domain. |
---|
2402 | pt_surf_mean_l = 0.0_wp |
---|
2403 | shf_mean_l = 0.0_wp |
---|
2404 | scale_l_l = 0.0_wp |
---|
2405 | friction_vel_l = 0.0_wp |
---|
2406 | DO m = 1, surf_def_h(0)%ns |
---|
2407 | i = surf_def_h(0)%i(m) |
---|
2408 | j = surf_def_h(0)%j(m) |
---|
2409 | k = surf_def_h(0)%k(m) |
---|
2410 | friction_vel_l = friction_vel_l + surf_def_h(0)%us(m) |
---|
2411 | shf_mean_l = shf_mean_l + surf_def_h(0)%shf(m) * drho_air(k) |
---|
2412 | scale_l_l = scale_l_l + surf_def_h(0)%ol(m) |
---|
2413 | pt_surf_mean_l = pt_surf_mean_l + pt(k,j,i) |
---|
2414 | ENDDO |
---|
2415 | DO m = 1, surf_lsm_h(0)%ns |
---|
2416 | i = surf_lsm_h(0)%i(m) |
---|
2417 | j = surf_lsm_h(0)%j(m) |
---|
2418 | k = surf_lsm_h(0)%k(m) |
---|
2419 | friction_vel_l = friction_vel_l + surf_lsm_h(0)%us(m) |
---|
2420 | shf_mean_l = shf_mean_l + surf_lsm_h(0)%shf(m) * drho_air(k) |
---|
2421 | scale_l_l = scale_l_l + surf_lsm_h(0)%ol(m) |
---|
2422 | pt_surf_mean_l = pt_surf_mean_l + pt(k,j,i) |
---|
2423 | ENDDO |
---|
2424 | DO m = 1, surf_usm_h(0)%ns |
---|
2425 | i = surf_usm_h(0)%i(m) |
---|
2426 | j = surf_usm_h(0)%j(m) |
---|
2427 | k = surf_usm_h(0)%k(m) |
---|
2428 | friction_vel_l = friction_vel_l + surf_usm_h(0)%us(m) |
---|
2429 | shf_mean_l = shf_mean_l + surf_usm_h(0)%shf(m) * drho_air(k) |
---|
2430 | scale_l_l = scale_l_l + surf_usm_h(0)%ol(m) |
---|
2431 | pt_surf_mean_l = pt_surf_mean_l + pt(k,j,i) |
---|
2432 | ENDDO |
---|
2433 | |
---|
2434 | #if defined( __parallel ) |
---|
2435 | CALL MPI_ALLREDUCE( friction_vel_l, scale_us, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2436 | CALL MPI_ALLREDUCE( shf_mean_l, shf_mean, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2437 | CALL MPI_ALLREDUCE( scale_l_l, scale_l, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2438 | CALL MPI_ALLREDUCE( pt_surf_mean_l, pt_surf_mean, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
2439 | #else |
---|
2440 | scale_us = friction_vel_l |
---|
2441 | shf_mean = shf_mean_l |
---|
2442 | scale_l = scale_l_l |
---|
2443 | pt_surf_mean = pt_surf_mean_l |
---|
2444 | #endif |
---|
2445 | |
---|
2446 | scale_us = scale_us * d_nxy |
---|
2447 | shf_mean = shf_mean * d_nxy |
---|
2448 | scale_l = scale_l * d_nxy |
---|
2449 | pt_surf_mean = pt_surf_mean * d_nxy |
---|
2450 | ! |
---|
2451 | !-- Compute mean convective velocity scale. Note, in case the mean heat flux is negative, set |
---|
2452 | !-- convective velocity scale to zero. |
---|
2453 | IF ( shf_mean > 0.0_wp ) THEN |
---|
2454 | w_convective = ( g * shf_mean * zi_ribulk / pt_surf_mean )**( 1.0_wp / 3.0_wp ) |
---|
2455 | ELSE |
---|
2456 | w_convective = 0.0_wp |
---|
2457 | ENDIF |
---|
2458 | ! |
---|
2459 | !-- At the initial run the friction velocity is initialized close to zero, leading to almost zero |
---|
2460 | !-- disturbances at the boundaries. In order to obtain disturbances nevertheless, set a minium |
---|
2461 | !-- value of friction velocity for the reynolds-stress parametrization. |
---|
2462 | IF ( time_since_reference_point <= 0.0_wp ) scale_us = MAX( scale_us, 0.05_wp ) |
---|
2463 | ! |
---|
2464 | !-- Finally, in order to consider also neutral or stable stratification, compute momentum velocity |
---|
2465 | !-- scale from u* and convective velocity scale, according to Rotach et al. (1996). |
---|
2466 | scale_wm = ( scale_us**3 + 0.6_wp * w_convective**3 )**( 1.0_wp / 3.0_wp ) |
---|
2467 | |
---|
2468 | END SUBROUTINE calc_scaling_variables |
---|
2469 | |
---|
2470 | END MODULE synthetic_turbulence_generator_mod |
---|