1 | !> @synthetic_turbulence_generator_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2017-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: synthetic_turbulence_generator_mod.f90 4346 2019-12-18 11:55:56Z Giersch $ |
---|
27 | ! Introduction of wall_flags_total_0, which currently sets bits based on static |
---|
28 | ! topography information used in wall_flags_static_0 |
---|
29 | ! |
---|
30 | ! 4335 2019-12-12 16:39:05Z suehring |
---|
31 | ! Commentation of last commit |
---|
32 | ! |
---|
33 | ! 4332 2019-12-10 19:44:12Z suehring |
---|
34 | ! Limit initial velocity seeds in restart runs, if not the seed calculation |
---|
35 | ! may become unstable. Further, minor bugfix in initial velocity seed |
---|
36 | ! calculation. |
---|
37 | ! |
---|
38 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
39 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
40 | ! |
---|
41 | ! 4309 2019-11-26 18:49:59Z suehring |
---|
42 | ! Computation of velocity seeds optimized. This implies that random numbers |
---|
43 | ! are computed now using the parallel random number generator. Random numbers |
---|
44 | ! are now only computed and normalized locally, while distributed over all |
---|
45 | ! mpi ranks afterwards, instead of computing random numbers on a global array. |
---|
46 | ! Further, the number of calls for the time-consuming velocity-seed generation |
---|
47 | ! is reduced - now the left and right, as well as the north and south boundary |
---|
48 | ! share the same velocity-seed matrices. |
---|
49 | ! |
---|
50 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
51 | ! Corrected "Former revisions" section |
---|
52 | ! |
---|
53 | ! 4148 2019-08-08 11:26:00Z suehring |
---|
54 | ! Remove unused variable |
---|
55 | ! |
---|
56 | ! 4144 2019-08-06 09:11:47Z raasch |
---|
57 | ! relational operators .EQ., .NE., etc. replaced by ==, /=, etc. |
---|
58 | ! |
---|
59 | ! 4071 2019-07-03 20:02:00Z suehring |
---|
60 | ! Bugfix, initialize mean_inflow_profiles in case turbulence and inflow |
---|
61 | ! information is not read from file. |
---|
62 | ! |
---|
63 | ! 4022 2019-06-12 11:52:39Z suehring |
---|
64 | ! Several bugfixes and improvements |
---|
65 | ! - revise bias correction of the imposed perturbations (correction via volume |
---|
66 | ! flow can create instabilities in case the mean volume flow is close to zero) |
---|
67 | ! - introduce lower limits in calculation of coefficient matrix, else the |
---|
68 | ! calculation may become numerically unstable |
---|
69 | ! - impose perturbations every timestep, even though no new set of perturbations |
---|
70 | ! is generated in case dt_stg_call /= dt_3d |
---|
71 | ! - Implement a gradual decrease of Reynolds stress and length scales above |
---|
72 | ! ABL height (within 1 length scale above ABL depth to 1/10) rather than a |
---|
73 | ! discontinuous decrease |
---|
74 | ! - Bugfix in non-nested case: use ABL height for parametrized turbulence |
---|
75 | ! |
---|
76 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
77 | ! Introduce alternative switch for debug output during timestepping |
---|
78 | ! |
---|
79 | ! 3938 2019-04-29 16:06:25Z suehring |
---|
80 | ! Remove unused variables |
---|
81 | ! |
---|
82 | ! 3937 2019-04-29 15:09:07Z suehring |
---|
83 | ! Minor bugfix in case of a very early restart where mc_factor is sill not |
---|
84 | ! present. |
---|
85 | ! Some modification and fixing of potential bugs in the calculation of scaling |
---|
86 | ! parameters used for synthetic turbulence parametrization. |
---|
87 | ! |
---|
88 | ! 3909 2019-04-17 09:13:25Z suehring |
---|
89 | ! Minor bugfix for last commit |
---|
90 | ! |
---|
91 | ! 3900 2019-04-16 15:17:43Z suehring |
---|
92 | ! Missing re-calculation of perturbation seeds in case of restarts |
---|
93 | ! |
---|
94 | ! 3891 2019-04-12 17:52:01Z suehring |
---|
95 | ! Bugfix in initialization in case of restart runs. |
---|
96 | ! |
---|
97 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
98 | ! Changes related to global restructuring of location messages and introduction |
---|
99 | ! of additional debug messages |
---|
100 | ! |
---|
101 | ! |
---|
102 | ! removed unused variables |
---|
103 | ! |
---|
104 | ! 3719 2019-02-06 13:10:18Z kanani |
---|
105 | ! Removed log_point measurement from stg_init, since this part is counted to |
---|
106 | ! log_point(2) 'initialisation' already. Moved other log_points to calls of |
---|
107 | ! the subroutines in time_integration for better overview. |
---|
108 | ! |
---|
109 | ! 2259 2017-06-08 09:09:11Z gronemeier |
---|
110 | ! Initial revision |
---|
111 | ! |
---|
112 | ! Authors: |
---|
113 | ! -------- |
---|
114 | ! @author Tobias Gronemeier, Matthias Suehring, Atsushi Inagaki, Micha Gryschka, Christoph Knigge |
---|
115 | ! |
---|
116 | ! |
---|
117 | ! Description: |
---|
118 | ! ------------ |
---|
119 | !> The module generates turbulence at the inflow boundary based on a method by |
---|
120 | !> Xie and Castro (2008) utilizing a Lund rotation (Lund, 1998) and a mass-flux |
---|
121 | !> correction by Kim et al. (2013). |
---|
122 | !> The turbulence is correlated based on length scales in y- and z-direction and |
---|
123 | !> a time scale for each velocity component. The profiles of length and time |
---|
124 | !> scales, mean u, v, w, e and pt, and all components of the Reynolds stress |
---|
125 | !> tensor can be either read from file STG_PROFILES, or will be parametrized |
---|
126 | !> within the boundary layer. |
---|
127 | !> |
---|
128 | !> @todo test restart |
---|
129 | !> enable cyclic_fill |
---|
130 | !> implement turbulence generation for e and pt |
---|
131 | !> @todo Input of height-constant length scales via namelist |
---|
132 | !> @note <Enter notes on the module> |
---|
133 | !> @bug Height information from input file is not used. Profiles from input |
---|
134 | !> must match with current PALM grid. |
---|
135 | !> In case of restart, velocity seeds differ from precursor run if a11, |
---|
136 | !> a22, or a33 are zero. |
---|
137 | !------------------------------------------------------------------------------! |
---|
138 | MODULE synthetic_turbulence_generator_mod |
---|
139 | |
---|
140 | |
---|
141 | USE arrays_3d, & |
---|
142 | ONLY: dzw, & |
---|
143 | ddzw, & |
---|
144 | drho_air, & |
---|
145 | mean_inflow_profiles, & |
---|
146 | q, & |
---|
147 | q_init, & |
---|
148 | pt, & |
---|
149 | pt_init, & |
---|
150 | u, & |
---|
151 | u_init, & |
---|
152 | v, & |
---|
153 | v_init, & |
---|
154 | w, & |
---|
155 | zu, & |
---|
156 | zw |
---|
157 | |
---|
158 | USE basic_constants_and_equations_mod, & |
---|
159 | ONLY: g, & |
---|
160 | kappa, & |
---|
161 | pi |
---|
162 | |
---|
163 | USE control_parameters, & |
---|
164 | ONLY: bc_lr, & |
---|
165 | bc_ns, & |
---|
166 | child_domain, & |
---|
167 | coupling_char, & |
---|
168 | debug_output_timestep, & |
---|
169 | dt_3d, & |
---|
170 | e_init, & |
---|
171 | humidity, & |
---|
172 | initializing_actions, & |
---|
173 | intermediate_timestep_count, & |
---|
174 | intermediate_timestep_count_max, & |
---|
175 | length, & |
---|
176 | message_string, & |
---|
177 | nesting_offline, & |
---|
178 | neutral, & |
---|
179 | num_mean_inflow_profiles, & |
---|
180 | random_generator, & |
---|
181 | rans_mode, & |
---|
182 | restart_string, & |
---|
183 | syn_turb_gen, & |
---|
184 | time_since_reference_point, & |
---|
185 | turbulent_inflow |
---|
186 | |
---|
187 | USE grid_variables, & |
---|
188 | ONLY: ddx, & |
---|
189 | ddy, & |
---|
190 | dx, & |
---|
191 | dy |
---|
192 | |
---|
193 | USE indices, & |
---|
194 | ONLY: nbgp, & |
---|
195 | nz, & |
---|
196 | nzb, & |
---|
197 | nzt, & |
---|
198 | nx, & |
---|
199 | nxl, & |
---|
200 | nxlu, & |
---|
201 | nxlg, & |
---|
202 | nxr, & |
---|
203 | nxrg, & |
---|
204 | ny, & |
---|
205 | nys, & |
---|
206 | nysv, & |
---|
207 | nyn, & |
---|
208 | nyng, & |
---|
209 | nysg, & |
---|
210 | wall_flags_total_0 |
---|
211 | |
---|
212 | USE kinds |
---|
213 | |
---|
214 | #if defined( __parallel ) && !defined( __mpifh ) |
---|
215 | USE MPI |
---|
216 | #endif |
---|
217 | |
---|
218 | USE nesting_offl_mod, & |
---|
219 | ONLY: nesting_offl_calc_zi, & |
---|
220 | zi_ribulk |
---|
221 | |
---|
222 | USE pegrid, & |
---|
223 | ONLY: comm1dx, & |
---|
224 | comm1dy, & |
---|
225 | comm2d, & |
---|
226 | ierr, & |
---|
227 | myidx, & |
---|
228 | myidy, & |
---|
229 | pdims |
---|
230 | |
---|
231 | USE pmc_interface, & |
---|
232 | ONLY : rans_mode_parent |
---|
233 | |
---|
234 | USE random_generator_parallel, & |
---|
235 | ONLY: random_dummy, & |
---|
236 | random_number_parallel, & |
---|
237 | random_seed_parallel, & |
---|
238 | seq_random_array |
---|
239 | |
---|
240 | USE transpose_indices, & |
---|
241 | ONLY: nzb_x, & |
---|
242 | nzt_x |
---|
243 | |
---|
244 | |
---|
245 | IMPLICIT NONE |
---|
246 | |
---|
247 | #if defined( __parallel ) && defined( __mpifh ) |
---|
248 | INCLUDE "mpif.h" |
---|
249 | #endif |
---|
250 | |
---|
251 | |
---|
252 | LOGICAL :: velocity_seed_initialized = .FALSE. !< true after first call of stg_main |
---|
253 | LOGICAL :: parametrize_inflow_turbulence = .FALSE. !< flag indicating that inflow turbulence is either read from file (.FALSE.) or if it parametrized |
---|
254 | LOGICAL :: use_syn_turb_gen = .FALSE. !< switch to use synthetic turbulence generator |
---|
255 | |
---|
256 | INTEGER(iwp) :: id_stg_left !< left lateral boundary core id in case of turbulence generator |
---|
257 | INTEGER(iwp) :: id_stg_north !< north lateral boundary core id in case of turbulence generator |
---|
258 | INTEGER(iwp) :: id_stg_right !< right lateral boundary core id in case of turbulence generator |
---|
259 | INTEGER(iwp) :: id_stg_south !< south lateral boundary core id in case of turbulence generator |
---|
260 | INTEGER(iwp) :: merg !< maximum length scale (in gp) |
---|
261 | INTEGER(iwp) :: mergp !< merg + nbgp |
---|
262 | INTEGER(iwp) :: nzb_x_stg !< lower bound of z coordinate (required for transposing z on PEs along x) |
---|
263 | INTEGER(iwp) :: nzt_x_stg !< upper bound of z coordinate (required for transposing z on PEs along x) |
---|
264 | INTEGER(iwp) :: nzb_y_stg !< lower bound of z coordinate (required for transposing z on PEs along y) |
---|
265 | INTEGER(iwp) :: nzt_y_stg !< upper bound of z coordinate (required for transposing z on PEs along y) |
---|
266 | INTEGER(iwp) :: stg_type_xz !< MPI type for full z range |
---|
267 | INTEGER(iwp) :: stg_type_xz_small !< MPI type for small z range |
---|
268 | INTEGER(iwp) :: stg_type_yz !< MPI type for full z range |
---|
269 | INTEGER(iwp) :: stg_type_yz_small !< MPI type for small z range |
---|
270 | |
---|
271 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_xz = 0 !< number of non-topography grid points at xz cross-sections, |
---|
272 | !< required for bias correction of imposed perturbations |
---|
273 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_yz = 0 !< number of non-topography grid points at yz cross-sections, |
---|
274 | !< required for bias correction of imposed perturbations |
---|
275 | |
---|
276 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displs_xz !< displacement for MPI_GATHERV |
---|
277 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: recv_count_xz !< receive count for MPI_GATHERV |
---|
278 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: displs_yz !< displacement for MPI_GATHERV |
---|
279 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: recv_count_yz !< receive count for MPI_GATHERV |
---|
280 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nux !< length scale of u in x direction (in gp) |
---|
281 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nuy !< length scale of u in y direction (in gp) |
---|
282 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nuz !< length scale of u in z direction (in gp) |
---|
283 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nvx !< length scale of v in x direction (in gp) |
---|
284 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nvy !< length scale of v in y direction (in gp) |
---|
285 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nvz !< length scale of v in z direction (in gp) |
---|
286 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nwx !< length scale of w in x direction (in gp) |
---|
287 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nwy !< length scale of w in y direction (in gp) |
---|
288 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nwz !< length scale of w in z direction (in gp) |
---|
289 | |
---|
290 | REAL(wp) :: blend !< value to create gradually and smooth blending of Reynolds stress and length |
---|
291 | !< scales above the boundary layer |
---|
292 | REAL(wp) :: blend_coeff = -2.3_wp !< coefficient used to ensure that blending functions decreases to 1/10 after |
---|
293 | !< one length scale above ABL top |
---|
294 | REAL(wp) :: d_l !< blend_coeff/length_scale |
---|
295 | REAL(wp) :: length_scale !< length scale, default is 8 x minimum grid spacing |
---|
296 | REAL(wp) :: dt_stg_adjust = 300.0_wp !< time interval for adjusting turbulence statistics |
---|
297 | REAL(wp) :: dt_stg_call = 5.0_wp !< time interval for calling synthetic turbulence generator |
---|
298 | REAL(wp) :: scale_l !< scaling parameter used for turbulence parametrization - Obukhov length |
---|
299 | REAL(wp) :: scale_us !< scaling parameter used for turbulence parametrization - friction velocity |
---|
300 | REAL(wp) :: scale_wm !< scaling parameter used for turbulence parametrization - momentum scale |
---|
301 | REAL(wp) :: time_stg_adjust = 0.0_wp !< time counter for adjusting turbulence information |
---|
302 | REAL(wp) :: time_stg_call = 0.0_wp !< time counter for calling generator |
---|
303 | |
---|
304 | REAL(wp), DIMENSION(3) :: mc_factor = 1.0_wp !< correction factor for the u,v,w-components to maintain original mass flux |
---|
305 | |
---|
306 | |
---|
307 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r11 !< Reynolds parameter |
---|
308 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r21 !< Reynolds parameter |
---|
309 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r22 !< Reynolds parameter |
---|
310 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r31 !< Reynolds parameter |
---|
311 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r32 !< Reynolds parameter |
---|
312 | REAL(wp),DIMENSION(:), ALLOCATABLE :: r33 !< Reynolds parameter |
---|
313 | |
---|
314 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a11 !< coefficient for Lund rotation |
---|
315 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a21 !< coefficient for Lund rotation |
---|
316 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a22 !< coefficient for Lund rotation |
---|
317 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a31 !< coefficient for Lund rotation |
---|
318 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a32 !< coefficient for Lund rotation |
---|
319 | REAL(wp), DIMENSION(:), ALLOCATABLE :: a33 !< coefficient for Lund rotation |
---|
320 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tu !< Lagrangian time scale of u |
---|
321 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tv !< Lagrangian time scale of v |
---|
322 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tw !< Lagrangian time scale of w |
---|
323 | |
---|
324 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bux !< filter function for u in x direction |
---|
325 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: buy !< filter function for u in y direction |
---|
326 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: buz !< filter function for u in z direction |
---|
327 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bvx !< filter function for v in x direction |
---|
328 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bvy !< filter function for v in y direction |
---|
329 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bvz !< filter function for v in z direction |
---|
330 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bwx !< filter function for w in y direction |
---|
331 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bwy !< filter function for w in y direction |
---|
332 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: bwz !< filter function for w in z direction |
---|
333 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fu_xz !< velocity seed for u at xz plane |
---|
334 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fuo_xz !< velocity seed for u at xz plane with new random number |
---|
335 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fu_yz !< velocity seed for u at yz plane |
---|
336 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fuo_yz !< velocity seed for u at yz plane with new random number |
---|
337 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fv_xz !< velocity seed for v at xz plane |
---|
338 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fvo_xz !< velocity seed for v at xz plane with new random number |
---|
339 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fv_yz !< velocity seed for v at yz plane |
---|
340 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fvo_yz !< velocity seed for v at yz plane with new random number |
---|
341 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fw_xz !< velocity seed for w at xz plane |
---|
342 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fwo_xz !< velocity seed for w at xz plane with new random number |
---|
343 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fw_yz !< velocity seed for w at yz plane |
---|
344 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: fwo_yz !< velocity seed for w at yz plane with new random number |
---|
345 | |
---|
346 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: dist_xz !< imposed disturbances at north/south boundary |
---|
347 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: dist_yz !< imposed disturbances at north/south boundary |
---|
348 | |
---|
349 | ! |
---|
350 | !-- PALM interfaces: |
---|
351 | !-- Adjust time and lenght scales, Reynolds stress, and filter functions |
---|
352 | INTERFACE stg_adjust |
---|
353 | MODULE PROCEDURE stg_adjust |
---|
354 | END INTERFACE stg_adjust |
---|
355 | ! |
---|
356 | !-- Input parameter checks to be done in check_parameters |
---|
357 | INTERFACE stg_check_parameters |
---|
358 | MODULE PROCEDURE stg_check_parameters |
---|
359 | END INTERFACE stg_check_parameters |
---|
360 | |
---|
361 | ! |
---|
362 | !-- Calculate filter functions |
---|
363 | INTERFACE stg_filter_func |
---|
364 | MODULE PROCEDURE stg_filter_func |
---|
365 | END INTERFACE stg_filter_func |
---|
366 | |
---|
367 | ! |
---|
368 | !-- Generate velocity seeds at south and north domain boundary |
---|
369 | INTERFACE stg_generate_seed_xz |
---|
370 | MODULE PROCEDURE stg_generate_seed_xz |
---|
371 | END INTERFACE stg_generate_seed_xz |
---|
372 | ! |
---|
373 | !-- Generate velocity seeds at left and/or right domain boundary |
---|
374 | INTERFACE stg_generate_seed_yz |
---|
375 | MODULE PROCEDURE stg_generate_seed_yz |
---|
376 | END INTERFACE stg_generate_seed_yz |
---|
377 | |
---|
378 | ! |
---|
379 | !-- Output of information to the header file |
---|
380 | INTERFACE stg_header |
---|
381 | MODULE PROCEDURE stg_header |
---|
382 | END INTERFACE stg_header |
---|
383 | |
---|
384 | ! |
---|
385 | !-- Initialization actions |
---|
386 | INTERFACE stg_init |
---|
387 | MODULE PROCEDURE stg_init |
---|
388 | END INTERFACE stg_init |
---|
389 | |
---|
390 | ! |
---|
391 | !-- Main procedure of synth. turb. gen. |
---|
392 | INTERFACE stg_main |
---|
393 | MODULE PROCEDURE stg_main |
---|
394 | END INTERFACE stg_main |
---|
395 | |
---|
396 | ! |
---|
397 | !-- Reading of NAMELIST parameters |
---|
398 | INTERFACE stg_parin |
---|
399 | MODULE PROCEDURE stg_parin |
---|
400 | END INTERFACE stg_parin |
---|
401 | |
---|
402 | ! |
---|
403 | !-- Reading of parameters for restart runs |
---|
404 | INTERFACE stg_rrd_global |
---|
405 | MODULE PROCEDURE stg_rrd_global |
---|
406 | END INTERFACE stg_rrd_global |
---|
407 | |
---|
408 | ! |
---|
409 | !-- Writing of binary output for restart runs |
---|
410 | INTERFACE stg_wrd_global |
---|
411 | MODULE PROCEDURE stg_wrd_global |
---|
412 | END INTERFACE stg_wrd_global |
---|
413 | |
---|
414 | SAVE |
---|
415 | |
---|
416 | PRIVATE |
---|
417 | |
---|
418 | ! |
---|
419 | !-- Public interfaces |
---|
420 | PUBLIC stg_adjust, stg_check_parameters, stg_header, stg_init, stg_main, & |
---|
421 | stg_parin, stg_rrd_global, stg_wrd_global |
---|
422 | |
---|
423 | ! |
---|
424 | !-- Public variables |
---|
425 | PUBLIC dt_stg_call, dt_stg_adjust, id_stg_left, id_stg_north, & |
---|
426 | id_stg_right, id_stg_south, parametrize_inflow_turbulence, & |
---|
427 | time_stg_adjust, time_stg_call, use_syn_turb_gen |
---|
428 | |
---|
429 | |
---|
430 | CONTAINS |
---|
431 | |
---|
432 | |
---|
433 | !------------------------------------------------------------------------------! |
---|
434 | ! Description: |
---|
435 | ! ------------ |
---|
436 | !> Check parameters routine for synthetic turbulence generator |
---|
437 | !------------------------------------------------------------------------------! |
---|
438 | SUBROUTINE stg_check_parameters |
---|
439 | |
---|
440 | IMPLICIT NONE |
---|
441 | |
---|
442 | IF ( .NOT. use_syn_turb_gen .AND. .NOT. rans_mode .AND. & |
---|
443 | nesting_offline ) THEN |
---|
444 | message_string = 'Synthetic turbulence generator is required ' // & |
---|
445 | 'if offline nesting is applied and PALM operates ' // & |
---|
446 | 'in LES mode.' |
---|
447 | CALL message( 'stg_check_parameters', 'PA0520', 0, 0, 0, 6, 0 ) |
---|
448 | ENDIF |
---|
449 | |
---|
450 | IF ( .NOT. use_syn_turb_gen .AND. child_domain & |
---|
451 | .AND. rans_mode_parent .AND. .NOT. rans_mode ) THEN |
---|
452 | message_string = 'Synthetic turbulence generator is required ' // & |
---|
453 | 'when nesting is applied and parent operates in ' // & |
---|
454 | 'RANS-mode but current child in LES mode.' |
---|
455 | CALL message( 'stg_check_parameters', 'PA0524', 1, 2, 0, 6, 0 ) |
---|
456 | ENDIF |
---|
457 | |
---|
458 | IF ( use_syn_turb_gen ) THEN |
---|
459 | |
---|
460 | IF ( child_domain .AND. .NOT. rans_mode .AND. & |
---|
461 | .NOT. rans_mode_parent ) THEN |
---|
462 | message_string = 'Using synthetic turbulence generator ' // & |
---|
463 | 'is not allowed in LES-LES nesting.' |
---|
464 | CALL message( 'stg_check_parameters', 'PA0620', 1, 2, 0, 6, 0 ) |
---|
465 | |
---|
466 | ENDIF |
---|
467 | |
---|
468 | IF ( child_domain .AND. rans_mode .AND. & |
---|
469 | rans_mode_parent ) THEN |
---|
470 | message_string = 'Using synthetic turbulence generator ' // & |
---|
471 | 'is not allowed in RANS-RANS nesting.' |
---|
472 | CALL message( 'stg_check_parameters', 'PA0621', 1, 2, 0, 6, 0 ) |
---|
473 | |
---|
474 | ENDIF |
---|
475 | |
---|
476 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
477 | |
---|
478 | IF ( INDEX( initializing_actions, 'set_constant_profiles' ) == 0 & |
---|
479 | .AND. INDEX( initializing_actions, 'read_restart_data' ) == 0 ) THEN |
---|
480 | message_string = 'Using synthetic turbulence generator ' // & |
---|
481 | 'requires %initializing_actions = ' // & |
---|
482 | '"set_constant_profiles" or "read_restart_data"' //& |
---|
483 | ', if not offline nesting is applied.' |
---|
484 | CALL message( 'stg_check_parameters', 'PA0015', 1, 2, 0, 6, 0 ) |
---|
485 | ENDIF |
---|
486 | |
---|
487 | IF ( bc_lr /= 'dirichlet/radiation' ) THEN |
---|
488 | message_string = 'Using synthetic turbulence generator ' // & |
---|
489 | 'requires &bc_lr = "dirichlet/radiation", ' // & |
---|
490 | 'if not offline nesting is applied.' |
---|
491 | CALL message( 'stg_check_parameters', 'PA0035', 1, 2, 0, 6, 0 ) |
---|
492 | ENDIF |
---|
493 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
494 | message_string = 'Using synthetic turbulence generator ' // & |
---|
495 | 'requires &bc_ns = "cyclic", ' // & |
---|
496 | 'if not offline nesting is applied.' |
---|
497 | CALL message( 'stg_check_parameters', 'PA0037', 1, 2, 0, 6, 0 ) |
---|
498 | ENDIF |
---|
499 | |
---|
500 | ENDIF |
---|
501 | |
---|
502 | IF ( turbulent_inflow ) THEN |
---|
503 | message_string = 'Using synthetic turbulence generator ' // & |
---|
504 | 'in combination &with turbulent_inflow = .T. '// & |
---|
505 | 'is not allowed' |
---|
506 | CALL message( 'stg_check_parameters', 'PA0039', 1, 2, 0, 6, 0 ) |
---|
507 | ENDIF |
---|
508 | ! |
---|
509 | !-- Synthetic turbulence generator requires the parallel random generator |
---|
510 | IF ( random_generator /= 'random-parallel' ) THEN |
---|
511 | message_string = 'Using synthetic turbulence generator ' // & |
---|
512 | 'requires random_generator = random-parallel.' |
---|
513 | CALL message( 'stg_check_parameters', 'PA0421', 1, 2, 0, 6, 0 ) |
---|
514 | ENDIF |
---|
515 | |
---|
516 | ENDIF |
---|
517 | |
---|
518 | END SUBROUTINE stg_check_parameters |
---|
519 | |
---|
520 | |
---|
521 | !------------------------------------------------------------------------------! |
---|
522 | ! Description: |
---|
523 | ! ------------ |
---|
524 | !> Header output for synthetic turbulence generator |
---|
525 | !------------------------------------------------------------------------------! |
---|
526 | SUBROUTINE stg_header ( io ) |
---|
527 | |
---|
528 | |
---|
529 | IMPLICIT NONE |
---|
530 | |
---|
531 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
532 | |
---|
533 | ! |
---|
534 | !-- Write synthetic turbulence generator Header |
---|
535 | WRITE( io, 1 ) |
---|
536 | IF ( use_syn_turb_gen ) THEN |
---|
537 | WRITE( io, 2 ) |
---|
538 | ELSE |
---|
539 | WRITE( io, 3 ) |
---|
540 | ENDIF |
---|
541 | |
---|
542 | IF ( parametrize_inflow_turbulence ) THEN |
---|
543 | WRITE( io, 4 ) dt_stg_adjust |
---|
544 | ELSE |
---|
545 | WRITE( io, 5 ) |
---|
546 | ENDIF |
---|
547 | |
---|
548 | 1 FORMAT (//' Synthetic turbulence generator information:'/ & |
---|
549 | ' ------------------------------------------'/) |
---|
550 | 2 FORMAT (' synthetic turbulence generator is switched on') |
---|
551 | 3 FORMAT (' synthetic turbulence generator is switched off') |
---|
552 | 4 FORMAT (' imposed turbulence statistics are parametrized and ajdusted to boundary-layer development each ', F8.2, ' s' ) |
---|
553 | 5 FORMAT (' imposed turbulence is read from file' ) |
---|
554 | |
---|
555 | END SUBROUTINE stg_header |
---|
556 | |
---|
557 | |
---|
558 | !------------------------------------------------------------------------------! |
---|
559 | ! Description: |
---|
560 | ! ------------ |
---|
561 | !> Initialization of the synthetic turbulence generator |
---|
562 | !------------------------------------------------------------------------------! |
---|
563 | SUBROUTINE stg_init |
---|
564 | |
---|
565 | IMPLICIT NONE |
---|
566 | |
---|
567 | LOGICAL :: file_stg_exist = .FALSE. !< flag indicating whether parameter file for Reynolds stress and length scales exist |
---|
568 | |
---|
569 | #if defined( __parallel ) |
---|
570 | INTEGER(KIND=MPI_ADDRESS_KIND) :: extent !< extent of new MPI type |
---|
571 | INTEGER(KIND=MPI_ADDRESS_KIND) :: tob=0 !< dummy variable |
---|
572 | #endif |
---|
573 | |
---|
574 | INTEGER(iwp) :: i !> grid index in x-direction |
---|
575 | INTEGER(iwp) :: j !> loop index |
---|
576 | INTEGER(iwp) :: k !< index |
---|
577 | INTEGER(iwp) :: newtype !< dummy MPI type |
---|
578 | INTEGER(iwp) :: realsize !< size of REAL variables |
---|
579 | |
---|
580 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_xz_l = 0 !< number of non-topography grid points at xz-cross-section on subdomain |
---|
581 | INTEGER(iwp), DIMENSION(3) :: nr_non_topo_yz_l = 0 !< number of non-topography grid points at yz-cross-section on subdomain |
---|
582 | ! |
---|
583 | !-- Dummy variables used for reading profiles |
---|
584 | REAL(wp) :: d1 !< u profile |
---|
585 | REAL(wp) :: d2 !< v profile |
---|
586 | REAL(wp) :: d3 !< w profile |
---|
587 | REAL(wp) :: d5 !< e profile |
---|
588 | REAL(wp) :: luy !< length scale for u in y direction |
---|
589 | REAL(wp) :: luz !< length scale for u in z direction |
---|
590 | REAL(wp) :: lvy !< length scale for v in y direction |
---|
591 | REAL(wp) :: lvz !< length scale for v in z direction |
---|
592 | REAL(wp) :: lwy !< length scale for w in y direction |
---|
593 | REAL(wp) :: lwz !< length scale for w in z direction |
---|
594 | REAL(wp) :: nnz !< increment used to determine processor decomposition of z-axis along x and y direction |
---|
595 | REAL(wp) :: zz !< height |
---|
596 | |
---|
597 | |
---|
598 | #if defined( __parallel ) |
---|
599 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
600 | #endif |
---|
601 | |
---|
602 | #if defined( __parallel ) |
---|
603 | ! |
---|
604 | !-- Determine processor decomposition of z-axis along x- and y-direction |
---|
605 | nnz = nz / pdims(1) |
---|
606 | nzb_x_stg = 1 + myidx * INT( nnz ) |
---|
607 | nzt_x_stg = ( myidx + 1 ) * INT( nnz ) |
---|
608 | |
---|
609 | IF ( MOD( nz , pdims(1) ) /= 0 .AND. myidx == id_stg_right ) & |
---|
610 | nzt_x_stg = nzt_x_stg + myidx * ( nnz - INT( nnz ) ) |
---|
611 | |
---|
612 | IF ( nesting_offline .OR. ( child_domain .AND. rans_mode_parent & |
---|
613 | .AND. .NOT. rans_mode ) ) THEN |
---|
614 | nnz = nz / pdims(2) |
---|
615 | nzb_y_stg = 1 + myidy * INT( nnz ) |
---|
616 | nzt_y_stg = ( myidy + 1 ) * INT( nnz ) |
---|
617 | |
---|
618 | IF ( MOD( nz , pdims(2) ) /= 0 .AND. myidy == id_stg_north ) & |
---|
619 | nzt_y_stg = nzt_y_stg + myidy * ( nnz - INT( nnz ) ) |
---|
620 | ENDIF |
---|
621 | |
---|
622 | ! |
---|
623 | !-- Define MPI type used in stg_generate_seed_yz to gather vertical splitted |
---|
624 | !-- velocity seeds |
---|
625 | CALL MPI_TYPE_SIZE( MPI_REAL, realsize, ierr ) |
---|
626 | extent = 1 * realsize |
---|
627 | ! |
---|
628 | !-- Set-up MPI datatyp to involve all cores for turbulence generation at yz |
---|
629 | !-- layer |
---|
630 | !-- stg_type_yz: yz-slice with vertical bounds nzb:nzt+1 |
---|
631 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt-nzb+2,nyng-nysg+1], & |
---|
632 | [1,nyng-nysg+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
633 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_yz, ierr ) |
---|
634 | CALL MPI_TYPE_COMMIT( stg_type_yz, ierr ) |
---|
635 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
636 | |
---|
637 | ! stg_type_yz_small: yz-slice with vertical bounds nzb_x_stg:nzt_x_stg+1 |
---|
638 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt_x_stg-nzb_x_stg+2,nyng-nysg+1], & |
---|
639 | [1,nyng-nysg+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
640 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_yz_small, ierr ) |
---|
641 | CALL MPI_TYPE_COMMIT( stg_type_yz_small, ierr ) |
---|
642 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
643 | |
---|
644 | ! receive count and displacement for MPI_GATHERV in stg_generate_seed_yz |
---|
645 | ALLOCATE( recv_count_yz(pdims(1)), displs_yz(pdims(1)) ) |
---|
646 | |
---|
647 | recv_count_yz = nzt_x_stg-nzb_x_stg + 1 |
---|
648 | recv_count_yz(pdims(1)) = recv_count_yz(pdims(1)) + 1 |
---|
649 | |
---|
650 | DO j = 1, pdims(1) |
---|
651 | displs_yz(j) = 0 + (nzt_x_stg-nzb_x_stg+1) * (j-1) |
---|
652 | ENDDO |
---|
653 | ! |
---|
654 | !-- Set-up MPI datatyp to involve all cores for turbulence generation at xz |
---|
655 | !-- layer |
---|
656 | !-- stg_type_xz: xz-slice with vertical bounds nzb:nzt+1 |
---|
657 | IF ( nesting_offline .OR. ( child_domain .AND. rans_mode_parent & |
---|
658 | .AND. .NOT. rans_mode ) ) THEN |
---|
659 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt-nzb+2,nxrg-nxlg+1], & |
---|
660 | [1,nxrg-nxlg+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
661 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_xz, ierr ) |
---|
662 | CALL MPI_TYPE_COMMIT( stg_type_xz, ierr ) |
---|
663 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
664 | |
---|
665 | ! stg_type_yz_small: xz-slice with vertical bounds nzb_x_stg:nzt_x_stg+1 |
---|
666 | CALL MPI_TYPE_CREATE_SUBARRAY( 2, [nzt_y_stg-nzb_y_stg+2,nxrg-nxlg+1], & |
---|
667 | [1,nxrg-nxlg+1], [0,0], MPI_ORDER_FORTRAN, MPI_REAL, newtype, ierr ) |
---|
668 | CALL MPI_TYPE_CREATE_RESIZED( newtype, tob, extent, stg_type_xz_small, ierr ) |
---|
669 | CALL MPI_TYPE_COMMIT( stg_type_xz_small, ierr ) |
---|
670 | CALL MPI_TYPE_FREE( newtype, ierr ) |
---|
671 | |
---|
672 | ! receive count and displacement for MPI_GATHERV in stg_generate_seed_yz |
---|
673 | ALLOCATE( recv_count_xz(pdims(2)), displs_xz(pdims(2)) ) |
---|
674 | |
---|
675 | recv_count_xz = nzt_y_stg-nzb_y_stg + 1 |
---|
676 | recv_count_xz(pdims(2)) = recv_count_xz(pdims(2)) + 1 |
---|
677 | |
---|
678 | DO j = 1, pdims(2) |
---|
679 | displs_xz(j) = 0 + (nzt_y_stg-nzb_y_stg+1) * (j-1) |
---|
680 | ENDDO |
---|
681 | |
---|
682 | ENDIF |
---|
683 | |
---|
684 | #endif |
---|
685 | ! |
---|
686 | !-- Allocate required arrays. |
---|
687 | !-- In case no offline nesting or self nesting is used, the arrary |
---|
688 | !-- mean_inflow profiles is required. Check if it is already allocated, else |
---|
689 | !-- allocate and initialize it appropriately. Note, in case turbulence and |
---|
690 | !-- inflow information is read from file, mean_inflow_profiles is already |
---|
691 | !-- allocated and initialized appropriately. |
---|
692 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
693 | IF ( .NOT. ALLOCATED( mean_inflow_profiles ) ) THEN |
---|
694 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) |
---|
695 | mean_inflow_profiles = 0.0_wp |
---|
696 | mean_inflow_profiles(:,1) = u_init |
---|
697 | mean_inflow_profiles(:,2) = v_init |
---|
698 | ! |
---|
699 | !-- Even though potential temperature and humidity are not perturbed, |
---|
700 | !-- they need to be initialized appropriately. |
---|
701 | IF ( .NOT. neutral ) & |
---|
702 | mean_inflow_profiles(:,4) = pt_init |
---|
703 | IF ( humidity ) & |
---|
704 | mean_inflow_profiles(:,6) = q_init |
---|
705 | ENDIF |
---|
706 | ENDIF |
---|
707 | |
---|
708 | ALLOCATE ( a11(nzb:nzt+1), a21(nzb:nzt+1), a22(nzb:nzt+1), & |
---|
709 | a31(nzb:nzt+1), a32(nzb:nzt+1), a33(nzb:nzt+1), & |
---|
710 | nux(nzb:nzt+1), nuy(nzb:nzt+1), nuz(nzb:nzt+1), & |
---|
711 | nvx(nzb:nzt+1), nvy(nzb:nzt+1), nvz(nzb:nzt+1), & |
---|
712 | nwx(nzb:nzt+1), nwy(nzb:nzt+1), nwz(nzb:nzt+1), & |
---|
713 | r11(nzb:nzt+1), r21(nzb:nzt+1), r22(nzb:nzt+1), & |
---|
714 | r31(nzb:nzt+1), r32(nzb:nzt+1), r33(nzb:nzt+1), & |
---|
715 | tu(nzb:nzt+1), tv(nzb:nzt+1), tw(nzb:nzt+1) ) |
---|
716 | |
---|
717 | ALLOCATE ( dist_xz(nzb:nzt+1,nxlg:nxrg,3) ) |
---|
718 | ALLOCATE ( dist_yz(nzb:nzt+1,nysg:nyng,3) ) |
---|
719 | dist_xz = 0.0_wp |
---|
720 | dist_yz = 0.0_wp |
---|
721 | ! |
---|
722 | !-- Read inflow profile |
---|
723 | !-- Height levels of profiles in input profile is as follows: |
---|
724 | !-- zu: luy, luz, tu, lvy, lvz, tv, r11, r21, r22, d1, d2, d5 |
---|
725 | !-- zw: lwy, lwz, tw, r31, r32, r33, d3 |
---|
726 | !-- WARNING: zz is not used at the moment |
---|
727 | INQUIRE( FILE = 'STG_PROFILES' // TRIM( coupling_char ), & |
---|
728 | EXIST = file_stg_exist ) |
---|
729 | |
---|
730 | IF ( file_stg_exist ) THEN |
---|
731 | |
---|
732 | OPEN( 90, FILE='STG_PROFILES'//TRIM( coupling_char ), STATUS='OLD', & |
---|
733 | FORM='FORMATTED') |
---|
734 | ! |
---|
735 | !-- Skip header |
---|
736 | READ( 90, * ) |
---|
737 | |
---|
738 | DO k = nzb+1, nzt+1 |
---|
739 | READ( 90, * ) zz, luy, luz, tu(k), lvy, lvz, tv(k), lwy, lwz, tw(k), & |
---|
740 | r11(k), r21(k), r22(k), r31(k), r32(k), r33(k), & |
---|
741 | d1, d2, d3, d5 |
---|
742 | |
---|
743 | ! |
---|
744 | !-- Convert length scales from meter to number of grid points. |
---|
745 | nuy(k) = INT( luy * ddy ) |
---|
746 | nuz(k) = INT( luz * ddzw(k) ) |
---|
747 | nvy(k) = INT( lvy * ddy ) |
---|
748 | nvz(k) = INT( lvz * ddzw(k) ) |
---|
749 | nwy(k) = INT( lwy * ddy ) |
---|
750 | nwz(k) = INT( lwz * ddzw(k) ) |
---|
751 | ! |
---|
752 | !-- Workaround, assume isotropic turbulence |
---|
753 | nwx(k) = nwy(k) |
---|
754 | nvx(k) = nvy(k) |
---|
755 | nux(k) = nuy(k) |
---|
756 | ! |
---|
757 | !-- Save Mean inflow profiles |
---|
758 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
759 | mean_inflow_profiles(k,1) = d1 |
---|
760 | mean_inflow_profiles(k,2) = d2 |
---|
761 | ! mean_inflow_profiles(k,4) = d4 |
---|
762 | mean_inflow_profiles(k,5) = d5 |
---|
763 | ENDIF |
---|
764 | ENDDO |
---|
765 | ! |
---|
766 | !-- Set lenght scales at surface grid point |
---|
767 | nuy(nzb) = nuy(nzb+1) |
---|
768 | nuz(nzb) = nuz(nzb+1) |
---|
769 | nvy(nzb) = nvy(nzb+1) |
---|
770 | nvz(nzb) = nvz(nzb+1) |
---|
771 | nwy(nzb) = nwy(nzb+1) |
---|
772 | nwz(nzb) = nwz(nzb+1) |
---|
773 | |
---|
774 | CLOSE( 90 ) |
---|
775 | ! |
---|
776 | !-- Calculate coefficient matrix from Reynolds stress tensor |
---|
777 | !-- (Lund rotation) |
---|
778 | CALL calc_coeff_matrix |
---|
779 | ! |
---|
780 | !-- No information about turbulence and its length scales are available. |
---|
781 | !-- Instead, parametrize turbulence which is imposed at the boundaries. |
---|
782 | !-- Set flag which indicates that turbulence is parametrized, which is done |
---|
783 | !-- later when energy-balance models are already initialized. This is |
---|
784 | !-- because the STG needs information about surface properties such as |
---|
785 | !-- roughness to build 'realistic' turbulence profiles. |
---|
786 | ELSE |
---|
787 | ! |
---|
788 | !-- Define length scale for the imposed turbulence, which is defined as |
---|
789 | !-- 8 times the minimum grid spacing |
---|
790 | length_scale = 8.0_wp * MIN( dx, dy, MINVAL( dzw ) ) |
---|
791 | ! |
---|
792 | !-- Define constant to gradually decrease length scales and Reynolds stress |
---|
793 | !-- above ABL top. Assure that no zero length scales are used. |
---|
794 | d_l = blend_coeff / MAX( length_scale, dx, dy, MINVAL( dzw ) ) |
---|
795 | ! |
---|
796 | !-- Set flag indicating that turbulence is parametrized |
---|
797 | parametrize_inflow_turbulence = .TRUE. |
---|
798 | ! |
---|
799 | !-- In case of dirichlet inflow boundary conditions only at one lateral |
---|
800 | !-- boundary, i.e. in the case no offline or self nesting is applied but |
---|
801 | !-- synthetic turbulence shall be parametrized nevertheless, the |
---|
802 | !-- boundary-layer depth need to determined first. |
---|
803 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) & |
---|
804 | CALL nesting_offl_calc_zi |
---|
805 | ! |
---|
806 | !-- Determine boundary-layer depth, which is used to initialize lenght |
---|
807 | !-- scales |
---|
808 | CALL calc_scaling_variables |
---|
809 | ! |
---|
810 | !-- Initialize lenght and time scales, which in turn are used |
---|
811 | !-- to initialize the filter functions. |
---|
812 | CALL calc_length_and_time_scale |
---|
813 | ! |
---|
814 | !-- Parametrize Reynolds-stress tensor, diagonal elements as well |
---|
815 | !-- as r21 (v'u'), r31 (w'u'), r32 (w'v'). Parametrization follows |
---|
816 | !-- Rotach et al. (1996) and is based on boundary-layer depth, |
---|
817 | !-- friction velocity and velocity scale. |
---|
818 | CALL parametrize_reynolds_stress |
---|
819 | ! |
---|
820 | !-- Calculate coefficient matrix from Reynolds stress tensor |
---|
821 | !-- (Lund rotation) |
---|
822 | CALL calc_coeff_matrix |
---|
823 | |
---|
824 | ENDIF |
---|
825 | |
---|
826 | ! |
---|
827 | !-- Assign initial profiles. Note, this is only required if turbulent |
---|
828 | !-- inflow from the left is desired, not in case of any of the |
---|
829 | !-- nesting (offline or self nesting) approaches. |
---|
830 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
831 | u_init = mean_inflow_profiles(:,1) |
---|
832 | v_init = mean_inflow_profiles(:,2) |
---|
833 | !pt_init = mean_inflow_profiles(:,4) |
---|
834 | e_init = MAXVAL( mean_inflow_profiles(:,5) ) |
---|
835 | ENDIF |
---|
836 | |
---|
837 | ! |
---|
838 | !-- Define the size of the filter functions and allocate them. |
---|
839 | merg = 0 |
---|
840 | |
---|
841 | ! arrays must be large enough to cover the largest length scale |
---|
842 | DO k = nzb, nzt+1 |
---|
843 | j = MAX( ABS(nux(k)), ABS(nuy(k)), ABS(nuz(k)), & |
---|
844 | ABS(nvx(k)), ABS(nvy(k)), ABS(nvz(k)), & |
---|
845 | ABS(nwx(k)), ABS(nwy(k)), ABS(nwz(k)) ) |
---|
846 | IF ( j > merg ) merg = j |
---|
847 | ENDDO |
---|
848 | |
---|
849 | merg = 2 * merg |
---|
850 | mergp = merg + nbgp |
---|
851 | |
---|
852 | ALLOCATE ( bux(-merg:merg,nzb:nzt+1), & |
---|
853 | buy(-merg:merg,nzb:nzt+1), & |
---|
854 | buz(-merg:merg,nzb:nzt+1), & |
---|
855 | bvx(-merg:merg,nzb:nzt+1), & |
---|
856 | bvy(-merg:merg,nzb:nzt+1), & |
---|
857 | bvz(-merg:merg,nzb:nzt+1), & |
---|
858 | bwx(-merg:merg,nzb:nzt+1), & |
---|
859 | bwy(-merg:merg,nzb:nzt+1), & |
---|
860 | bwz(-merg:merg,nzb:nzt+1) ) |
---|
861 | |
---|
862 | ! |
---|
863 | !-- Allocate velocity seeds for turbulence at xz-layer |
---|
864 | ALLOCATE ( fu_xz( nzb:nzt+1,nxlg:nxrg), fuo_xz(nzb:nzt+1,nxlg:nxrg), & |
---|
865 | fv_xz( nzb:nzt+1,nxlg:nxrg), fvo_xz(nzb:nzt+1,nxlg:nxrg), & |
---|
866 | fw_xz( nzb:nzt+1,nxlg:nxrg), fwo_xz(nzb:nzt+1,nxlg:nxrg) ) |
---|
867 | |
---|
868 | ! |
---|
869 | !-- Allocate velocity seeds for turbulence at yz-layer |
---|
870 | ALLOCATE ( fu_yz( nzb:nzt+1,nysg:nyng), fuo_yz(nzb:nzt+1,nysg:nyng), & |
---|
871 | fv_yz( nzb:nzt+1,nysg:nyng), fvo_yz(nzb:nzt+1,nysg:nyng), & |
---|
872 | fw_yz( nzb:nzt+1,nysg:nyng), fwo_yz(nzb:nzt+1,nysg:nyng) ) |
---|
873 | |
---|
874 | fu_xz = 0.0_wp |
---|
875 | fuo_xz = 0.0_wp |
---|
876 | fv_xz = 0.0_wp |
---|
877 | fvo_xz = 0.0_wp |
---|
878 | fw_xz = 0.0_wp |
---|
879 | fwo_xz = 0.0_wp |
---|
880 | |
---|
881 | fu_yz = 0.0_wp |
---|
882 | fuo_yz = 0.0_wp |
---|
883 | fv_yz = 0.0_wp |
---|
884 | fvo_yz = 0.0_wp |
---|
885 | fw_yz = 0.0_wp |
---|
886 | fwo_yz = 0.0_wp |
---|
887 | |
---|
888 | ! |
---|
889 | !-- Create filter functions |
---|
890 | CALL stg_filter_func( nux, bux ) !filter ux |
---|
891 | CALL stg_filter_func( nuy, buy ) !filter uy |
---|
892 | CALL stg_filter_func( nuz, buz ) !filter uz |
---|
893 | CALL stg_filter_func( nvx, bvx ) !filter vx |
---|
894 | CALL stg_filter_func( nvy, bvy ) !filter vy |
---|
895 | CALL stg_filter_func( nvz, bvz ) !filter vz |
---|
896 | CALL stg_filter_func( nwx, bwx ) !filter wx |
---|
897 | CALL stg_filter_func( nwy, bwy ) !filter wy |
---|
898 | CALL stg_filter_func( nwz, bwz ) !filter wz |
---|
899 | |
---|
900 | #if defined( __parallel ) |
---|
901 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
902 | #endif |
---|
903 | |
---|
904 | ! |
---|
905 | !-- In case of restart, calculate velocity seeds fu, fv, fw from former |
---|
906 | ! time step. |
---|
907 | ! Bug: fu, fv, fw are different in those heights where a11, a22, a33 |
---|
908 | ! are 0 compared to the prerun. This is mostly for k=nzt+1. |
---|
909 | IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN |
---|
910 | IF ( myidx == id_stg_left .OR. myidx == id_stg_right ) THEN |
---|
911 | |
---|
912 | IF ( myidx == id_stg_left ) i = -1 |
---|
913 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
914 | |
---|
915 | DO j = nysg, nyng |
---|
916 | DO k = nzb, nzt+1 |
---|
917 | IF ( a11(k) > 10E-8_wp ) THEN |
---|
918 | fu_yz(k,j) = ( u(k,j,i) - u_init(k) ) / a11(k) |
---|
919 | ELSE |
---|
920 | fu_yz(k,j) = 10E-8_wp |
---|
921 | ENDIF |
---|
922 | |
---|
923 | IF ( a22(k) > 10E-8_wp ) THEN |
---|
924 | fv_yz(k,j) = ( v(k,j,i) - & |
---|
925 | a21(k) * fu_yz(k,j) - v_init(k) ) / a22(k) |
---|
926 | ELSE |
---|
927 | fv_yz(k,j) = 10E-8_wp |
---|
928 | ENDIF |
---|
929 | |
---|
930 | IF ( a33(k) > 10E-8_wp ) THEN |
---|
931 | fw_yz(k,j) = ( w(k,j,i) - & |
---|
932 | a31(k) * fu_yz(k,j) - a32(k) * & |
---|
933 | fv_yz(k,j) ) / a33(k) |
---|
934 | ELSE |
---|
935 | fw_yz(k,j) = 10E-8_wp |
---|
936 | ENDIF |
---|
937 | ENDDO |
---|
938 | ENDDO |
---|
939 | ENDIF |
---|
940 | |
---|
941 | IF ( myidy == id_stg_south .OR. myidy == id_stg_north ) THEN |
---|
942 | |
---|
943 | IF ( myidy == id_stg_south ) j = -1 |
---|
944 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
945 | |
---|
946 | DO i = nxlg, nxrg |
---|
947 | DO k = nzb, nzt+1 |
---|
948 | ! |
---|
949 | !-- In case the correlation coefficients are very small, the |
---|
950 | !-- velocity seeds may become very large finally creating |
---|
951 | !-- numerical instabilities in the synthetic turbulence generator. |
---|
952 | !-- Empirically, a value of 10E-8 seems to be sufficient. |
---|
953 | IF ( a11(k) > 10E-8_wp ) THEN |
---|
954 | fu_xz(k,i) = ( u(k,j,i) - u_init(k) ) / a11(k) |
---|
955 | ELSE |
---|
956 | fu_xz(k,i) = 10E-8_wp |
---|
957 | ENDIF |
---|
958 | |
---|
959 | IF ( a22(k) > 10E-8_wp ) THEN |
---|
960 | fv_xz(k,i) = ( v(k,j,i) - & |
---|
961 | a21(k) * fu_xz(k,i) - v_init(k) ) / a22(k) |
---|
962 | ELSE |
---|
963 | fv_xz(k,i) = 10E-8_wp |
---|
964 | ENDIF |
---|
965 | |
---|
966 | IF ( a33(k) > 10E-8_wp ) THEN |
---|
967 | fw_xz(k,i) = ( w(k,j,i) - & |
---|
968 | a31(k) * fu_xz(k,i) - & |
---|
969 | a32(k) * fv_xz(k,i) ) / a33(k) |
---|
970 | ELSE |
---|
971 | fw_xz(k,i) = 10E-8_wp |
---|
972 | ENDIF |
---|
973 | |
---|
974 | ENDDO |
---|
975 | ENDDO |
---|
976 | ENDIF |
---|
977 | ENDIF |
---|
978 | ! |
---|
979 | !-- Count the number of non-topography grid points at the boundaries where |
---|
980 | !-- perturbations are imposed. This number is later used for bias corrections |
---|
981 | !-- of the perturbations, i.e. to force that their mean is zero. Please note, |
---|
982 | !-- due to the asymetry of u and v along x and y direction, respectively, |
---|
983 | !-- different cases must be distinguished. |
---|
984 | IF ( myidx == id_stg_left .OR. myidx == id_stg_right ) THEN |
---|
985 | ! |
---|
986 | !-- Number of grid points where perturbations are imposed on u |
---|
987 | IF ( myidx == id_stg_left ) i = nxl |
---|
988 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
989 | |
---|
990 | nr_non_topo_yz_l(1) = SUM( & |
---|
991 | MERGE( 1, 0, & |
---|
992 | BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 1 ) ) ) |
---|
993 | ! |
---|
994 | !-- Number of grid points where perturbations are imposed on v and w |
---|
995 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
996 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
997 | |
---|
998 | nr_non_topo_yz_l(2) = SUM( & |
---|
999 | MERGE( 1, 0, & |
---|
1000 | BTEST( wall_flags_total_0(nzb:nzt,nysv:nyn,i), 2 ) ) ) |
---|
1001 | nr_non_topo_yz_l(3) = SUM( & |
---|
1002 | MERGE( 1, 0, & |
---|
1003 | BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 3 ) ) ) |
---|
1004 | |
---|
1005 | #if defined( __parallel ) |
---|
1006 | CALL MPI_ALLREDUCE( nr_non_topo_yz_l, nr_non_topo_yz, 3, MPI_INTEGER, & |
---|
1007 | MPI_SUM, comm1dy, ierr ) |
---|
1008 | #else |
---|
1009 | nr_non_topo_yz = nr_non_topo_yz_l |
---|
1010 | #endif |
---|
1011 | ENDIF |
---|
1012 | |
---|
1013 | IF ( myidy == id_stg_south .OR. myidy == id_stg_north ) THEN |
---|
1014 | ! |
---|
1015 | !-- Number of grid points where perturbations are imposed on v |
---|
1016 | IF ( myidy == id_stg_south ) j = nys |
---|
1017 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1018 | |
---|
1019 | nr_non_topo_xz_l(2) = SUM( & |
---|
1020 | MERGE( 1, 0, & |
---|
1021 | BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 2 ) ) ) |
---|
1022 | ! |
---|
1023 | !-- Number of grid points where perturbations are imposed on u and w |
---|
1024 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1025 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1026 | |
---|
1027 | nr_non_topo_xz_l(1) = SUM( & |
---|
1028 | MERGE( 1, 0, & |
---|
1029 | BTEST( wall_flags_total_0(nzb:nzt,j,nxlu:nxr), 1 ) ) ) |
---|
1030 | nr_non_topo_xz_l(3) = SUM( & |
---|
1031 | MERGE( 1, 0, & |
---|
1032 | BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 3 ) ) ) |
---|
1033 | |
---|
1034 | #if defined( __parallel ) |
---|
1035 | CALL MPI_ALLREDUCE( nr_non_topo_xz_l, nr_non_topo_xz, 3, MPI_INTEGER, & |
---|
1036 | MPI_SUM, comm1dx, ierr ) |
---|
1037 | #else |
---|
1038 | nr_non_topo_xz = nr_non_topo_xz_l |
---|
1039 | #endif |
---|
1040 | ENDIF |
---|
1041 | |
---|
1042 | |
---|
1043 | END SUBROUTINE stg_init |
---|
1044 | |
---|
1045 | |
---|
1046 | !------------------------------------------------------------------------------! |
---|
1047 | ! Description: |
---|
1048 | ! ------------ |
---|
1049 | !> Calculate filter function bxx from length scale nxx following Eg.9 and 10 |
---|
1050 | !> (Xie and Castro, 2008) |
---|
1051 | !------------------------------------------------------------------------------! |
---|
1052 | SUBROUTINE stg_filter_func( nxx, bxx ) |
---|
1053 | |
---|
1054 | |
---|
1055 | IMPLICIT NONE |
---|
1056 | |
---|
1057 | INTEGER(iwp) :: k !< loop index |
---|
1058 | INTEGER(iwp) :: n_k !< length scale nXX in height k |
---|
1059 | INTEGER(iwp) :: n_k2 !< n_k * 2 |
---|
1060 | INTEGER(iwp) :: nf !< index for length scales |
---|
1061 | |
---|
1062 | REAL(wp) :: bdenom !< denominator for filter functions bXX |
---|
1063 | REAL(wp) :: qsi = 1.0_wp !< minimization factor |
---|
1064 | |
---|
1065 | INTEGER(iwp), DIMENSION(:) :: nxx(nzb:nzt+1) !< length scale (in gp) |
---|
1066 | |
---|
1067 | REAL(wp), DIMENSION(:,:) :: bxx(-merg:merg,nzb:nzt+1) !< filter function |
---|
1068 | |
---|
1069 | |
---|
1070 | bxx = 0.0_wp |
---|
1071 | |
---|
1072 | DO k = nzb, nzt+1 |
---|
1073 | bdenom = 0.0_wp |
---|
1074 | n_k = nxx(k) |
---|
1075 | IF ( n_k /= 0 ) THEN |
---|
1076 | n_k2 = n_k * 2 |
---|
1077 | |
---|
1078 | ! |
---|
1079 | !-- ( Eq.10 )^2 |
---|
1080 | DO nf = -n_k2, n_k2 |
---|
1081 | bdenom = bdenom + EXP( -qsi * pi * ABS(nf) / n_k )**2 |
---|
1082 | ENDDO |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- ( Eq.9 ) |
---|
1086 | bdenom = SQRT( bdenom ) |
---|
1087 | DO nf = -n_k2, n_k2 |
---|
1088 | bxx(nf,k) = EXP( -qsi * pi * ABS(nf) / n_k ) / bdenom |
---|
1089 | ENDDO |
---|
1090 | ENDIF |
---|
1091 | ENDDO |
---|
1092 | |
---|
1093 | END SUBROUTINE stg_filter_func |
---|
1094 | |
---|
1095 | |
---|
1096 | !------------------------------------------------------------------------------! |
---|
1097 | ! Description: |
---|
1098 | ! ------------ |
---|
1099 | !> Parin for &stg_par for synthetic turbulence generator |
---|
1100 | !------------------------------------------------------------------------------! |
---|
1101 | SUBROUTINE stg_parin |
---|
1102 | |
---|
1103 | |
---|
1104 | IMPLICIT NONE |
---|
1105 | |
---|
1106 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
1107 | |
---|
1108 | |
---|
1109 | NAMELIST /stg_par/ dt_stg_adjust, dt_stg_call, use_syn_turb_gen |
---|
1110 | |
---|
1111 | line = ' ' |
---|
1112 | |
---|
1113 | ! |
---|
1114 | !-- Try to find stg package |
---|
1115 | REWIND ( 11 ) |
---|
1116 | line = ' ' |
---|
1117 | DO WHILE ( INDEX( line, '&stg_par' ) == 0 ) |
---|
1118 | READ ( 11, '(A)', END=20 ) line |
---|
1119 | ENDDO |
---|
1120 | BACKSPACE ( 11 ) |
---|
1121 | |
---|
1122 | ! |
---|
1123 | !-- Read namelist |
---|
1124 | READ ( 11, stg_par, ERR = 10, END = 20 ) |
---|
1125 | |
---|
1126 | ! |
---|
1127 | !-- Set flag that indicates that the synthetic turbulence generator is switched |
---|
1128 | !-- on |
---|
1129 | syn_turb_gen = .TRUE. |
---|
1130 | GOTO 20 |
---|
1131 | |
---|
1132 | 10 BACKSPACE( 11 ) |
---|
1133 | READ( 11 , '(A)') line |
---|
1134 | CALL parin_fail_message( 'stg_par', line ) |
---|
1135 | |
---|
1136 | 20 CONTINUE |
---|
1137 | |
---|
1138 | END SUBROUTINE stg_parin |
---|
1139 | |
---|
1140 | |
---|
1141 | !------------------------------------------------------------------------------! |
---|
1142 | ! Description: |
---|
1143 | ! ------------ |
---|
1144 | !> This routine reads the respective restart data. |
---|
1145 | !------------------------------------------------------------------------------! |
---|
1146 | SUBROUTINE stg_rrd_global( found ) |
---|
1147 | |
---|
1148 | |
---|
1149 | IMPLICIT NONE |
---|
1150 | |
---|
1151 | LOGICAL, INTENT(OUT) :: found !< flag indicating if variable was found |
---|
1152 | |
---|
1153 | |
---|
1154 | found = .TRUE. |
---|
1155 | |
---|
1156 | |
---|
1157 | SELECT CASE ( restart_string(1:length) ) |
---|
1158 | |
---|
1159 | CASE ( 'time_stg_adjust' ) |
---|
1160 | READ ( 13 ) time_stg_adjust |
---|
1161 | |
---|
1162 | CASE ( 'time_stg_call' ) |
---|
1163 | READ ( 13 ) time_stg_call |
---|
1164 | |
---|
1165 | CASE ( 'use_syn_turb_gen' ) |
---|
1166 | READ ( 13 ) use_syn_turb_gen |
---|
1167 | |
---|
1168 | CASE DEFAULT |
---|
1169 | |
---|
1170 | found = .FALSE. |
---|
1171 | |
---|
1172 | END SELECT |
---|
1173 | |
---|
1174 | |
---|
1175 | END SUBROUTINE stg_rrd_global |
---|
1176 | |
---|
1177 | |
---|
1178 | !------------------------------------------------------------------------------! |
---|
1179 | ! Description: |
---|
1180 | ! ------------ |
---|
1181 | !> This routine writes the respective restart data. |
---|
1182 | !------------------------------------------------------------------------------! |
---|
1183 | SUBROUTINE stg_wrd_global |
---|
1184 | |
---|
1185 | |
---|
1186 | IMPLICIT NONE |
---|
1187 | |
---|
1188 | CALL wrd_write_string( 'time_stg_adjust' ) |
---|
1189 | WRITE ( 14 ) time_stg_adjust |
---|
1190 | |
---|
1191 | CALL wrd_write_string( 'time_stg_call' ) |
---|
1192 | WRITE ( 14 ) time_stg_call |
---|
1193 | |
---|
1194 | CALL wrd_write_string( 'use_syn_turb_gen' ) |
---|
1195 | WRITE ( 14 ) use_syn_turb_gen |
---|
1196 | |
---|
1197 | |
---|
1198 | END SUBROUTINE stg_wrd_global |
---|
1199 | |
---|
1200 | |
---|
1201 | !------------------------------------------------------------------------------! |
---|
1202 | ! Description: |
---|
1203 | ! ------------ |
---|
1204 | !> Create turbulent inflow fields for u, v, w with prescribed length scales and |
---|
1205 | !> Reynolds stress tensor after a method of Xie and Castro (2008), modified |
---|
1206 | !> following suggestions of Kim et al. (2013), and using a Lund rotation |
---|
1207 | !> (Lund, 1998). |
---|
1208 | !------------------------------------------------------------------------------! |
---|
1209 | SUBROUTINE stg_main |
---|
1210 | |
---|
1211 | IMPLICIT NONE |
---|
1212 | |
---|
1213 | INTEGER(iwp) :: i !< grid index in x-direction |
---|
1214 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
1215 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1216 | |
---|
1217 | LOGICAL :: stg_call = .FALSE. !< control flag indicating whether turbulence was updated or only restored from last call |
---|
1218 | |
---|
1219 | REAL(wp) :: dt_stg !< wheighted subtimestep |
---|
1220 | |
---|
1221 | REAL(wp), DIMENSION(3) :: mc_factor_l !< local mass flux correction factor |
---|
1222 | |
---|
1223 | IF ( debug_output_timestep ) CALL debug_message( 'stg_main', 'start' ) |
---|
1224 | ! |
---|
1225 | !-- Calculate time step which is needed for filter functions |
---|
1226 | dt_stg = MAX( dt_3d, dt_stg_call ) |
---|
1227 | ! |
---|
1228 | !-- Check if synthetic turbulence generator needs to be called and new |
---|
1229 | !-- perturbations need to be created or if old disturbances can be imposed |
---|
1230 | !-- again. |
---|
1231 | IF ( time_stg_call >= dt_stg_call .AND. & |
---|
1232 | intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
1233 | stg_call = .TRUE. |
---|
1234 | ELSE |
---|
1235 | stg_call = .FALSE. |
---|
1236 | ENDIF |
---|
1237 | ! |
---|
1238 | !-- Initial value of fu, fv, fw |
---|
1239 | IF ( time_since_reference_point == 0.0_wp .AND. .NOT. velocity_seed_initialized ) THEN |
---|
1240 | ! |
---|
1241 | !-- Generate turbulence at the left and right boundary. Random numbers |
---|
1242 | !-- for the yz-planes at the left/right boundary are generated by the |
---|
1243 | !-- left-sided mpi ranks only. After random numbers are calculated, they |
---|
1244 | !-- are distributed to all other mpi ranks in the model, so that the |
---|
1245 | !-- velocity seed matrices are available on all mpi ranks (i.e. also on the |
---|
1246 | !-- right-sided boundary mpi ranks). In case of offline nesting, this implies, |
---|
1247 | !-- that the left- and the right-sided lateral boundary have the same initial |
---|
1248 | !-- seeds. |
---|
1249 | !-- Note, in case of inflow from the right only, only turbulence at the left |
---|
1250 | !-- boundary is required. |
---|
1251 | IF ( .NOT. ( nesting_offline .OR. & |
---|
1252 | ( child_domain .AND. rans_mode_parent & |
---|
1253 | .AND. .NOT. rans_mode ) ) ) THEN |
---|
1254 | |
---|
1255 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fu_yz, id_stg_left ) |
---|
1256 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fv_yz, id_stg_left ) |
---|
1257 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fw_yz, id_stg_left ) |
---|
1258 | ELSE |
---|
1259 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fu_yz, & |
---|
1260 | id_stg_left, id_stg_right ) |
---|
1261 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fv_yz, & |
---|
1262 | id_stg_left, id_stg_right ) |
---|
1263 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fw_yz, & |
---|
1264 | id_stg_left, id_stg_right ) |
---|
1265 | ! |
---|
1266 | !-- Generate turbulence at the south and north boundary. Random numbers |
---|
1267 | !-- for the xz-planes at the south/north boundary are generated by the |
---|
1268 | !-- south-sided mpi ranks only. Please see also comment above. |
---|
1269 | CALL stg_generate_seed_xz( nux, nuz, bux, buz, fu_xz, & |
---|
1270 | id_stg_south, id_stg_north ) |
---|
1271 | CALL stg_generate_seed_xz( nvx, nvz, bvx, bvz, fv_xz, & |
---|
1272 | id_stg_south, id_stg_north ) |
---|
1273 | CALL stg_generate_seed_xz( nwx, nwz, bwx, bwz, fw_xz, & |
---|
1274 | id_stg_south, id_stg_north ) |
---|
1275 | ENDIF |
---|
1276 | velocity_seed_initialized = .TRUE. |
---|
1277 | ENDIF |
---|
1278 | ! |
---|
1279 | !-- New set of fu, fv, fw. Note, for inflow from the left side only, velocity |
---|
1280 | !-- seeds are only required at the left boundary, while in case of offline |
---|
1281 | !-- nesting or RANS-LES nesting velocity seeds are required also at the |
---|
1282 | !-- right, south and north boundaries. |
---|
1283 | IF ( stg_call ) THEN |
---|
1284 | IF ( .NOT. ( nesting_offline .OR. & |
---|
1285 | ( child_domain .AND. rans_mode_parent & |
---|
1286 | .AND. .NOT. rans_mode ) ) ) THEN |
---|
1287 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fuo_yz, id_stg_left ) |
---|
1288 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fvo_yz, id_stg_left ) |
---|
1289 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fwo_yz, id_stg_left ) |
---|
1290 | |
---|
1291 | ELSE |
---|
1292 | CALL stg_generate_seed_yz( nuy, nuz, buy, buz, fuo_yz, & |
---|
1293 | id_stg_left, id_stg_right ) |
---|
1294 | CALL stg_generate_seed_yz( nvy, nvz, bvy, bvz, fvo_yz, & |
---|
1295 | id_stg_left, id_stg_right ) |
---|
1296 | CALL stg_generate_seed_yz( nwy, nwz, bwy, bwz, fwo_yz, & |
---|
1297 | id_stg_left, id_stg_right ) |
---|
1298 | |
---|
1299 | CALL stg_generate_seed_xz( nux, nuz, bux, buz, fuo_xz, & |
---|
1300 | id_stg_south, id_stg_north ) |
---|
1301 | CALL stg_generate_seed_xz( nvx, nvz, bvx, bvz, fvo_xz, & |
---|
1302 | id_stg_south, id_stg_north ) |
---|
1303 | CALL stg_generate_seed_xz( nwx, nwz, bwx, bwz, fwo_xz, & |
---|
1304 | id_stg_south, id_stg_north ) |
---|
1305 | ENDIF |
---|
1306 | ENDIF |
---|
1307 | |
---|
1308 | ! |
---|
1309 | !-- Turbulence generation at left and/or right boundary |
---|
1310 | IF ( myidx == id_stg_left .OR. myidx == id_stg_right ) THEN |
---|
1311 | ! |
---|
1312 | !-- Calculate new set of perturbations. Do this only at last RK3-substep and |
---|
1313 | !-- when dt_stg_call is exceeded. Else the old set of perturbations is |
---|
1314 | !-- imposed |
---|
1315 | IF ( stg_call ) THEN |
---|
1316 | |
---|
1317 | DO j = nysg, nyng |
---|
1318 | DO k = nzb, nzt + 1 |
---|
1319 | ! |
---|
1320 | !-- Update fu, fv, fw following Eq. 14 of Xie and Castro (2008) |
---|
1321 | IF ( tu(k) == 0.0_wp ) THEN |
---|
1322 | fu_yz(k,j) = fuo_yz(k,j) |
---|
1323 | ELSE |
---|
1324 | fu_yz(k,j) = fu_yz(k,j) * EXP( -pi * dt_stg * 0.5_wp / tu(k) ) + & |
---|
1325 | fuo_yz(k,j) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tu(k) ) ) |
---|
1326 | ENDIF |
---|
1327 | |
---|
1328 | IF ( tv(k) == 0.0_wp ) THEN |
---|
1329 | fv_yz(k,j) = fvo_yz(k,j) |
---|
1330 | ELSE |
---|
1331 | fv_yz(k,j) = fv_yz(k,j) * EXP( -pi * dt_stg * 0.5_wp / tv(k) ) + & |
---|
1332 | fvo_yz(k,j) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tv(k) ) ) |
---|
1333 | ENDIF |
---|
1334 | |
---|
1335 | IF ( tw(k) == 0.0_wp ) THEN |
---|
1336 | fw_yz(k,j) = fwo_yz(k,j) |
---|
1337 | ELSE |
---|
1338 | fw_yz(k,j) = fw_yz(k,j) * EXP( -pi * dt_stg * 0.5_wp / tw(k) ) + & |
---|
1339 | fwo_yz(k,j) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tw(k) ) ) |
---|
1340 | ENDIF |
---|
1341 | ENDDO |
---|
1342 | ENDDO |
---|
1343 | |
---|
1344 | dist_yz(nzb,:,1) = 0.0_wp |
---|
1345 | dist_yz(nzb,:,2) = 0.0_wp |
---|
1346 | dist_yz(nzb,:,3) = 0.0_wp |
---|
1347 | |
---|
1348 | IF ( myidx == id_stg_left ) i = nxl |
---|
1349 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1350 | DO j = nysg, nyng |
---|
1351 | DO k = nzb+1, nzt + 1 |
---|
1352 | ! |
---|
1353 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1354 | !-- Additional factors are added to improve the variance of v and w |
---|
1355 | dist_yz(k,j,1) = MIN( a11(k) * fu_yz(k,j), 3.0_wp ) * & |
---|
1356 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1357 | BTEST( wall_flags_total_0(k,j,i), 1 ) ) |
---|
1358 | ENDDO |
---|
1359 | ENDDO |
---|
1360 | |
---|
1361 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1362 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1363 | DO j = nysg, nyng |
---|
1364 | DO k = nzb+1, nzt + 1 |
---|
1365 | ! |
---|
1366 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1367 | !-- Additional factors are added to improve the variance of v and w |
---|
1368 | !-- experimental test of 1.2 |
---|
1369 | dist_yz(k,j,2) = MIN( ( SQRT( a22(k) / MAXVAL(a22) ) & |
---|
1370 | * 1.2_wp ) & |
---|
1371 | * ( a21(k) * fu_yz(k,j) & |
---|
1372 | + a22(k) * fv_yz(k,j) ), 3.0_wp ) * & |
---|
1373 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1374 | BTEST( wall_flags_total_0(k,j,i), 2 ) ) |
---|
1375 | dist_yz(k,j,3) = MIN( ( SQRT(a33(k) / MAXVAL(a33) ) & |
---|
1376 | * 1.3_wp ) & |
---|
1377 | * ( a31(k) * fu_yz(k,j) & |
---|
1378 | + a32(k) * fv_yz(k,j) & |
---|
1379 | + a33(k) * fw_yz(k,j) ), 3.0_wp ) * & |
---|
1380 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1381 | BTEST( wall_flags_total_0(k,j,i), 3 ) ) |
---|
1382 | ENDDO |
---|
1383 | ENDDO |
---|
1384 | ENDIF |
---|
1385 | ! |
---|
1386 | !-- Mass flux correction following Kim et al. (2013) |
---|
1387 | !-- This correction factor insures that the mass flux is preserved at the |
---|
1388 | !-- inflow boundary. First, calculate mean value of the imposed |
---|
1389 | !-- perturbations at yz boundary. |
---|
1390 | !-- Note, this needs to be done only after the last RK3-substep, else |
---|
1391 | !-- the boundary values won't be accessed. |
---|
1392 | IF ( intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
1393 | mc_factor_l = 0.0_wp |
---|
1394 | mc_factor = 0.0_wp |
---|
1395 | ! |
---|
1396 | !-- Sum up the original volume flows (with and without perturbations). |
---|
1397 | !-- Note, for non-normal components (here v and w) it is actually no |
---|
1398 | !-- volume flow. |
---|
1399 | IF ( myidx == id_stg_left ) i = nxl |
---|
1400 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1401 | |
---|
1402 | mc_factor_l(1) = SUM( dist_yz(nzb:nzt,nys:nyn,1) & |
---|
1403 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1404 | BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 1 ) ) ) |
---|
1405 | |
---|
1406 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1407 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1408 | |
---|
1409 | mc_factor_l(2) = SUM( dist_yz(nzb:nzt,nysv:nyn,2) & |
---|
1410 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1411 | BTEST( wall_flags_total_0(nzb:nzt,nysv:nyn,i), 2 ) ) ) |
---|
1412 | mc_factor_l(3) = SUM( dist_yz(nzb:nzt,nys:nyn,3) & |
---|
1413 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1414 | BTEST( wall_flags_total_0(nzb:nzt,nys:nyn,i), 3 ) ) ) |
---|
1415 | |
---|
1416 | #if defined( __parallel ) |
---|
1417 | CALL MPI_ALLREDUCE( mc_factor_l, mc_factor, & |
---|
1418 | 3, MPI_REAL, MPI_SUM, comm1dy, ierr ) |
---|
1419 | #else |
---|
1420 | mc_factor = mc_factor_l |
---|
1421 | #endif |
---|
1422 | ! |
---|
1423 | !-- Calculate correction factor and force zero mean perturbations. |
---|
1424 | mc_factor = mc_factor / REAL( nr_non_topo_yz, KIND = wp ) |
---|
1425 | |
---|
1426 | IF ( myidx == id_stg_left ) i = nxl |
---|
1427 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1428 | |
---|
1429 | dist_yz(:,:,1) = ( dist_yz(:,:,1) - mc_factor(1) ) & |
---|
1430 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1431 | BTEST( wall_flags_total_0(:,:,i), 1 ) ) |
---|
1432 | |
---|
1433 | |
---|
1434 | IF ( myidx == id_stg_left ) i = nxl-1 |
---|
1435 | IF ( myidx == id_stg_right ) i = nxr+1 |
---|
1436 | |
---|
1437 | dist_yz(:,:,2) = ( dist_yz(:,:,2) - mc_factor(2) ) & |
---|
1438 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1439 | BTEST( wall_flags_total_0(:,:,i), 2 ) ) |
---|
1440 | |
---|
1441 | dist_yz(:,:,3) = ( dist_yz(:,:,3) - mc_factor(3) ) & |
---|
1442 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1443 | BTEST( wall_flags_total_0(:,:,i), 3 ) ) |
---|
1444 | ! |
---|
1445 | !-- Add disturbances |
---|
1446 | IF ( myidx == id_stg_left ) THEN |
---|
1447 | ! |
---|
1448 | !-- For the left boundary distinguish between mesoscale offline / self |
---|
1449 | !-- nesting and turbulent inflow at the left boundary only. In the latter |
---|
1450 | !-- case turbulence is imposed on the mean inflow profiles. |
---|
1451 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) THEN |
---|
1452 | ! |
---|
1453 | !-- Add disturbance at the inflow |
---|
1454 | DO j = nysg, nyng |
---|
1455 | DO k = nzb, nzt+1 |
---|
1456 | u(k,j,-nbgp+1:0) = ( mean_inflow_profiles(k,1) + & |
---|
1457 | dist_yz(k,j,1) ) & |
---|
1458 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1459 | BTEST( wall_flags_total_0(k,j,0), 1 ) ) |
---|
1460 | v(k,j,-nbgp:-1) = ( mean_inflow_profiles(k,2) + & |
---|
1461 | dist_yz(k,j,2) ) & |
---|
1462 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1463 | BTEST( wall_flags_total_0(k,j,-1), 2 ) ) |
---|
1464 | w(k,j,-nbgp:-1) = dist_yz(k,j,3) & |
---|
1465 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1466 | BTEST( wall_flags_total_0(k,j,-1), 3 ) ) |
---|
1467 | ENDDO |
---|
1468 | ENDDO |
---|
1469 | ELSE |
---|
1470 | |
---|
1471 | DO j = nys, nyn |
---|
1472 | DO k = nzb+1, nzt |
---|
1473 | u(k,j,0) = ( u(k,j,0) + dist_yz(k,j,1) ) & |
---|
1474 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1475 | BTEST( wall_flags_total_0(k,j,0), 1 ) ) |
---|
1476 | u(k,j,-1) = u(k,j,0) |
---|
1477 | v(k,j,-1) = ( v(k,j,-1) + dist_yz(k,j,2) ) & |
---|
1478 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1479 | BTEST( wall_flags_total_0(k,j,-1), 2 ) ) |
---|
1480 | w(k,j,-1) = ( w(k,j,-1) + dist_yz(k,j,3) ) & |
---|
1481 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1482 | BTEST( wall_flags_total_0(k,j,-1), 3 ) ) |
---|
1483 | ENDDO |
---|
1484 | ENDDO |
---|
1485 | ENDIF |
---|
1486 | ENDIF |
---|
1487 | IF ( myidx == id_stg_right ) THEN |
---|
1488 | DO j = nys, nyn |
---|
1489 | DO k = nzb+1, nzt |
---|
1490 | u(k,j,nxr+1) = ( u(k,j,nxr+1) + dist_yz(k,j,1) ) & |
---|
1491 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1492 | BTEST( wall_flags_total_0(k,j,nxr+1), 1 ) ) |
---|
1493 | v(k,j,nxr+1) = ( v(k,j,nxr+1) + dist_yz(k,j,2) ) & |
---|
1494 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1495 | BTEST( wall_flags_total_0(k,j,nxr+1), 2 ) ) |
---|
1496 | w(k,j,nxr+1) = ( w(k,j,nxr+1) + dist_yz(k,j,3) ) & |
---|
1497 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1498 | BTEST( wall_flags_total_0(k,j,nxr+1), 3 ) ) |
---|
1499 | ENDDO |
---|
1500 | ENDDO |
---|
1501 | ENDIF |
---|
1502 | ENDIF |
---|
1503 | ENDIF |
---|
1504 | ! |
---|
1505 | !-- Turbulence generation at north and south boundary |
---|
1506 | IF ( myidy == id_stg_north .OR. myidy == id_stg_south ) THEN |
---|
1507 | ! |
---|
1508 | !-- Calculate new set of perturbations. Do this only at last RK3-substep and |
---|
1509 | !-- when dt_stg_call is exceeded. Else the old set of perturbations is |
---|
1510 | !-- imposed |
---|
1511 | IF ( stg_call ) THEN |
---|
1512 | DO i = nxlg, nxrg |
---|
1513 | DO k = nzb, nzt + 1 |
---|
1514 | ! |
---|
1515 | !-- Update fu, fv, fw following Eq. 14 of Xie and Castro (2008) |
---|
1516 | IF ( tu(k) == 0.0_wp ) THEN |
---|
1517 | fu_xz(k,i) = fuo_xz(k,i) |
---|
1518 | ELSE |
---|
1519 | fu_xz(k,i) = fu_xz(k,i) * EXP( -pi * dt_stg * 0.5_wp / tu(k) ) + & |
---|
1520 | fuo_xz(k,i) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tu(k) ) ) |
---|
1521 | ENDIF |
---|
1522 | |
---|
1523 | IF ( tv(k) == 0.0_wp ) THEN |
---|
1524 | fv_xz(k,i) = fvo_xz(k,i) |
---|
1525 | ELSE |
---|
1526 | fv_xz(k,i) = fv_xz(k,i) * EXP( -pi * dt_stg * 0.5_wp / tv(k) ) + & |
---|
1527 | fvo_xz(k,i) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tv(k) ) ) |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | IF ( tw(k) == 0.0_wp ) THEN |
---|
1531 | fw_xz(k,i) = fwo_xz(k,i) |
---|
1532 | ELSE |
---|
1533 | fw_xz(k,i) = fw_xz(k,i) * EXP( -pi * dt_stg * 0.5_wp / tw(k) ) + & |
---|
1534 | fwo_xz(k,i) * SQRT( 1.0_wp - EXP( -pi * dt_stg / tw(k) ) ) |
---|
1535 | ENDIF |
---|
1536 | ENDDO |
---|
1537 | ENDDO |
---|
1538 | |
---|
1539 | |
---|
1540 | dist_xz(nzb,:,1) = 0.0_wp |
---|
1541 | dist_xz(nzb,:,2) = 0.0_wp |
---|
1542 | dist_xz(nzb,:,3) = 0.0_wp |
---|
1543 | |
---|
1544 | IF ( myidy == id_stg_south ) j = nys |
---|
1545 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1546 | DO i = nxlg, nxrg |
---|
1547 | DO k = nzb+1, nzt + 1 |
---|
1548 | ! |
---|
1549 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1550 | !-- Additional factors are added to improve the variance of v and w |
---|
1551 | !experimental test of 1.2 |
---|
1552 | dist_xz(k,i,2) = MIN( ( SQRT( a22(k) / MAXVAL(a22) ) & |
---|
1553 | * 1.2_wp ) & |
---|
1554 | * ( a21(k) * fu_xz(k,i) & |
---|
1555 | + a22(k) * fv_xz(k,i) ), 3.0_wp ) * & |
---|
1556 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1557 | BTEST( wall_flags_total_0(k,j,i), 2 ) ) |
---|
1558 | ENDDO |
---|
1559 | ENDDO |
---|
1560 | |
---|
1561 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1562 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1563 | DO i = nxlg, nxrg |
---|
1564 | DO k = nzb+1, nzt + 1 |
---|
1565 | ! |
---|
1566 | !-- Lund rotation following Eq. 17 in Xie and Castro (2008). |
---|
1567 | !-- Additional factors are added to improve the variance of v and w |
---|
1568 | dist_xz(k,i,1) = MIN( a11(k) * fu_xz(k,i), 3.0_wp ) * & |
---|
1569 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1570 | BTEST( wall_flags_total_0(k,j,i), 1 ) ) |
---|
1571 | |
---|
1572 | dist_xz(k,i,3) = MIN( ( SQRT(a33(k) / MAXVAL(a33) ) & |
---|
1573 | * 1.3_wp ) & |
---|
1574 | * ( a31(k) * fu_xz(k,i) & |
---|
1575 | + a32(k) * fv_xz(k,i) & |
---|
1576 | + a33(k) * fw_xz(k,i) ), 3.0_wp ) * & |
---|
1577 | MERGE( 1.0_wp, 0.0_wp, & |
---|
1578 | BTEST( wall_flags_total_0(k,j,i), 3 ) ) |
---|
1579 | ENDDO |
---|
1580 | ENDDO |
---|
1581 | ENDIF |
---|
1582 | |
---|
1583 | ! |
---|
1584 | !-- Mass flux correction following Kim et al. (2013) |
---|
1585 | !-- This correction factor insures that the mass flux is preserved at the |
---|
1586 | !-- inflow boundary. First, calculate mean value of the imposed |
---|
1587 | !-- perturbations at yz boundary. |
---|
1588 | !-- Note, this needs to be done only after the last RK3-substep, else |
---|
1589 | !-- the boundary values won't be accessed. |
---|
1590 | IF ( intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
1591 | mc_factor_l = 0.0_wp |
---|
1592 | mc_factor = 0.0_wp |
---|
1593 | |
---|
1594 | IF ( myidy == id_stg_south ) j = nys |
---|
1595 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1596 | |
---|
1597 | mc_factor_l(2) = SUM( dist_xz(nzb:nzt,nxl:nxr,2) & |
---|
1598 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1599 | BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 2 ) ) ) |
---|
1600 | |
---|
1601 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1602 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1603 | |
---|
1604 | mc_factor_l(1) = SUM( dist_xz(nzb:nzt,nxlu:nxr,1) & |
---|
1605 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1606 | BTEST( wall_flags_total_0(nzb:nzt,j,nxlu:nxr), 1 ) ) ) |
---|
1607 | mc_factor_l(3) = SUM( dist_xz(nzb:nzt,nxl:nxr,3) & |
---|
1608 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1609 | BTEST( wall_flags_total_0(nzb:nzt,j,nxl:nxr), 3 ) ) ) |
---|
1610 | |
---|
1611 | #if defined( __parallel ) |
---|
1612 | CALL MPI_ALLREDUCE( mc_factor_l, mc_factor, & |
---|
1613 | 3, MPI_REAL, MPI_SUM, comm1dx, ierr ) |
---|
1614 | #else |
---|
1615 | mc_factor = mc_factor_l |
---|
1616 | #endif |
---|
1617 | |
---|
1618 | mc_factor = mc_factor / REAL( nr_non_topo_xz, KIND = wp ) |
---|
1619 | |
---|
1620 | IF ( myidy == id_stg_south ) j = nys |
---|
1621 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1622 | |
---|
1623 | dist_xz(:,:,2) = ( dist_xz(:,:,2) - mc_factor(2) ) & |
---|
1624 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1625 | BTEST( wall_flags_total_0(:,j,:), 2 ) ) |
---|
1626 | |
---|
1627 | |
---|
1628 | IF ( myidy == id_stg_south ) j = nys-1 |
---|
1629 | IF ( myidy == id_stg_north ) j = nyn+1 |
---|
1630 | |
---|
1631 | dist_xz(:,:,1) = ( dist_xz(:,:,1) - mc_factor(1) ) & |
---|
1632 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1633 | BTEST( wall_flags_total_0(:,j,:), 1 ) ) |
---|
1634 | |
---|
1635 | dist_xz(:,:,3) = ( dist_xz(:,:,3) - mc_factor(3) ) & |
---|
1636 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1637 | BTEST( wall_flags_total_0(:,j,:), 3 ) ) |
---|
1638 | ! |
---|
1639 | !-- Add disturbances |
---|
1640 | IF ( myidy == id_stg_south ) THEN |
---|
1641 | DO i = nxl, nxr |
---|
1642 | DO k = nzb+1, nzt |
---|
1643 | u(k,-1,i) = ( u(k,-1,i) + dist_xz(k,i,1) ) & |
---|
1644 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1645 | BTEST( wall_flags_total_0(k,-1,i), 1 ) ) |
---|
1646 | v(k,0,i) = ( v(k,0,i) + dist_xz(k,i,2) ) & |
---|
1647 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1648 | BTEST( wall_flags_total_0(k,0,i), 2 ) ) |
---|
1649 | v(k,-1,i) = v(k,0,i) |
---|
1650 | w(k,-1,i) = ( w(k,-1,i) + dist_xz(k,i,3) ) & |
---|
1651 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1652 | BTEST( wall_flags_total_0(k,-1,i), 3 ) ) |
---|
1653 | ENDDO |
---|
1654 | ENDDO |
---|
1655 | ENDIF |
---|
1656 | IF ( myidy == id_stg_north ) THEN |
---|
1657 | |
---|
1658 | DO i = nxl, nxr |
---|
1659 | DO k = nzb+1, nzt |
---|
1660 | u(k,nyn+1,i) = ( u(k,nyn+1,i) + dist_xz(k,i,1) ) & |
---|
1661 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1662 | BTEST( wall_flags_total_0(k,nyn+1,i), 1 ) ) |
---|
1663 | v(k,nyn+1,i) = ( v(k,nyn+1,i) + dist_xz(k,i,2) ) & |
---|
1664 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1665 | BTEST( wall_flags_total_0(k,nyn+1,i), 2 ) ) |
---|
1666 | w(k,nyn+1,i) = ( w(k,nyn+1,i) + dist_xz(k,i,3) ) & |
---|
1667 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
1668 | BTEST( wall_flags_total_0(k,nyn+1,i), 3 ) ) |
---|
1669 | ENDDO |
---|
1670 | ENDDO |
---|
1671 | ENDIF |
---|
1672 | ENDIF |
---|
1673 | ENDIF |
---|
1674 | ! |
---|
1675 | !-- Finally, set time counter for calling STG to zero |
---|
1676 | IF ( stg_call ) time_stg_call = 0.0_wp |
---|
1677 | |
---|
1678 | IF ( debug_output_timestep ) CALL debug_message( 'stg_main', 'end' ) |
---|
1679 | |
---|
1680 | END SUBROUTINE stg_main |
---|
1681 | |
---|
1682 | !------------------------------------------------------------------------------! |
---|
1683 | ! Description: |
---|
1684 | ! ------------ |
---|
1685 | !> Generate a set of random number rand_it wich is equal on each PE |
---|
1686 | !> and calculate the velocity seed f_n. |
---|
1687 | !> f_n is splitted in vertical direction by the number of PEs in x-direction and |
---|
1688 | !> and each PE calculates a vertical subsection of f_n. At the the end, all |
---|
1689 | !> parts are collected to form the full array. |
---|
1690 | !------------------------------------------------------------------------------! |
---|
1691 | SUBROUTINE stg_generate_seed_yz( n_y, n_z, b_y, b_z, f_n, id_left, id_right ) |
---|
1692 | |
---|
1693 | USE pegrid |
---|
1694 | |
---|
1695 | IMPLICIT NONE |
---|
1696 | |
---|
1697 | INTEGER(iwp) :: i !< grid index x-direction |
---|
1698 | INTEGER(iwp) :: id_left !< core ids at respective boundaries |
---|
1699 | INTEGER(iwp), OPTIONAL :: id_right !< core ids at respective boundaries |
---|
1700 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
1701 | INTEGER(iwp) :: jj !< loop index in y-direction |
---|
1702 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1703 | INTEGER(iwp) :: kk !< loop index in z-direction |
---|
1704 | INTEGER(iwp) :: send_count !< send count for MPI_GATHERV |
---|
1705 | |
---|
1706 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_y !< length scale in y-direction |
---|
1707 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_z !< length scale in z-direction |
---|
1708 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_y2 !< n_y*2 |
---|
1709 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_z2 !< n_z*2 |
---|
1710 | |
---|
1711 | REAL(wp) :: nyz_inv !< inverse of number of grid points in yz-slice |
---|
1712 | REAL(wp) :: rand_av !< average of random number |
---|
1713 | REAL(wp) :: rand_sigma_inv !< inverse of stdev of random number |
---|
1714 | |
---|
1715 | REAL(wp), DIMENSION(-merg:merg,nzb:nzt+1) :: b_y !< filter function in y-direction |
---|
1716 | REAL(wp), DIMENSION(-merg:merg,nzb:nzt+1) :: b_z !< filter function in z-direction |
---|
1717 | |
---|
1718 | REAL(wp), DIMENSION(nzb_x_stg:nzt_x_stg+1,nysg:nyng) :: f_n_l !< local velocity seed |
---|
1719 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng) :: f_n !< velocity seed |
---|
1720 | |
---|
1721 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rand_it !< global array of random numbers |
---|
1722 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rand_it_l !< local array of random numbers |
---|
1723 | |
---|
1724 | ! |
---|
1725 | !-- Generate random numbers using the parallel random generator. |
---|
1726 | !-- The set of random numbers are modified to have an average of 0 and |
---|
1727 | !-- unit variance. Note, at the end the random number array must be defined |
---|
1728 | !-- globally in order to compute the correlation matrices. However, |
---|
1729 | !-- the calculation and normalization of random numbers is done locally, |
---|
1730 | !-- while the result is later distributed to all processes. Further, |
---|
1731 | !-- please note, a set of random numbers is only calculated for the |
---|
1732 | !-- left boundary, while the right boundary uses the same random numbers |
---|
1733 | !-- and thus also computes the same correlation matrix. |
---|
1734 | ALLOCATE( rand_it(nzb-mergp:nzt+1+mergp,-mergp:ny+mergp) ) |
---|
1735 | rand_it = 0.0_wp |
---|
1736 | |
---|
1737 | rand_av = 0.0_wp |
---|
1738 | rand_sigma_inv = 0.0_wp |
---|
1739 | nyz_inv = 1.0_wp / REAL( ( nzt+1 - nzb+1 ) * ( ny+1 ), KIND=wp ) |
---|
1740 | ! |
---|
1741 | !-- Compute and normalize random numbers only on left-boundary ranks. |
---|
1742 | IF ( myidx == id_stg_left ) THEN |
---|
1743 | ! |
---|
1744 | !-- Allocate array for local set of random numbers |
---|
1745 | ALLOCATE( rand_it_l(nzb:nzt+1,nys:nyn) ) |
---|
1746 | rand_it_l = 0.0_wp |
---|
1747 | |
---|
1748 | i = nxl |
---|
1749 | DO j = nys, nyn |
---|
1750 | ! |
---|
1751 | !-- Put the random seeds at grid point j,i |
---|
1752 | CALL random_seed_parallel( put=seq_random_array(:, j, i) ) |
---|
1753 | DO k = nzb, nzt+1 |
---|
1754 | CALL random_number_parallel( random_dummy ) |
---|
1755 | rand_it_l(k,j) = random_dummy |
---|
1756 | rand_av = rand_av + rand_it_l(k,j) |
---|
1757 | ENDDO |
---|
1758 | ! |
---|
1759 | !-- Get the new random seeds from last call at grid point j,i |
---|
1760 | CALL random_seed_parallel( get=seq_random_array(:, j, i) ) |
---|
1761 | ENDDO |
---|
1762 | #if defined( __parallel ) |
---|
1763 | ! |
---|
1764 | !-- Sum-up the local averages of the random numbers |
---|
1765 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_av, 1, MPI_REAL, & |
---|
1766 | MPI_SUM, comm1dy, ierr ) |
---|
1767 | #endif |
---|
1768 | rand_av = rand_av * nyz_inv |
---|
1769 | ! |
---|
1770 | !-- Obtain zero mean |
---|
1771 | rand_it_l = rand_it_l - rand_av |
---|
1772 | ! |
---|
1773 | !-- Now, compute the variance |
---|
1774 | DO j = nys, nyn |
---|
1775 | DO k = nzb, nzt+1 |
---|
1776 | rand_sigma_inv = rand_sigma_inv + rand_it_l(k,j)**2 |
---|
1777 | ENDDO |
---|
1778 | ENDDO |
---|
1779 | |
---|
1780 | #if defined( __parallel ) |
---|
1781 | ! |
---|
1782 | !-- Sum-up the local quadratic averages of the random numbers |
---|
1783 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_sigma_inv, 1, MPI_REAL, & |
---|
1784 | MPI_SUM, comm1dy, ierr ) |
---|
1785 | #endif |
---|
1786 | ! |
---|
1787 | !-- Compute standard deviation |
---|
1788 | IF ( rand_sigma_inv /= 0.0_wp ) THEN |
---|
1789 | rand_sigma_inv = 1.0_wp / SQRT( rand_sigma_inv * nyz_inv ) |
---|
1790 | ELSE |
---|
1791 | rand_sigma_inv = 1.0_wp |
---|
1792 | ENDIF |
---|
1793 | ! |
---|
1794 | !-- Normalize with standard deviation to obtain unit variance |
---|
1795 | rand_it_l = rand_it_l * rand_sigma_inv |
---|
1796 | ! |
---|
1797 | !-- Copy local random numbers on the global array |
---|
1798 | rand_it(nzb:nzt+1,nys:nyn) = rand_it_l(nzb:nzt+1,nys:nyn) |
---|
1799 | ! |
---|
1800 | !-- Deallocate local array |
---|
1801 | DEALLOCATE( rand_it_l ) |
---|
1802 | ! |
---|
1803 | !-- Now, distribute the final set of random numbers to all mpi ranks located |
---|
1804 | !-- on the left boundary. Here, an allreduce with sum reduction is sufficient, |
---|
1805 | !-- or, in the non-parallel case, nothing need to be done at all. |
---|
1806 | #if defined( __parallel ) |
---|
1807 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_it, SIZE( rand_it ), MPI_REAL, & |
---|
1808 | MPI_SUM, comm1dy, ierr ) |
---|
1809 | #endif |
---|
1810 | ENDIF |
---|
1811 | ! |
---|
1812 | !-- Finally, distribute the set of random numbers (defined on the leftmost- |
---|
1813 | !-- located mpi ranks) to all other mpi ranks. Here, a allreduce with sum |
---|
1814 | !-- option is sufficient, because rand_it is zero on all other mpi_ranks. |
---|
1815 | !-- Note, the reduce operation is only performed with communicator comm1dx, |
---|
1816 | !-- where only 1 rank within the communicator has non-zero random numbers. |
---|
1817 | #if defined( __parallel ) |
---|
1818 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_it, SIZE( rand_it ), MPI_REAL, & |
---|
1819 | MPI_SUM, comm1dx, ierr ) |
---|
1820 | #endif |
---|
1821 | ! |
---|
1822 | !-- Periodic fill of random numbers in space |
---|
1823 | DO j = 0, ny |
---|
1824 | DO k = 1, mergp |
---|
1825 | rand_it(nzb -k,j) = rand_it(nzt+2-k,j) ! bottom margin |
---|
1826 | rand_it(nzt+1+k,j) = rand_it(nzb+k-1,j) ! top margin |
---|
1827 | ENDDO |
---|
1828 | ENDDO |
---|
1829 | DO j = 1, mergp |
---|
1830 | DO k = nzb-mergp, nzt+1+mergp |
---|
1831 | rand_it(k, -j) = rand_it(k,ny-j+1) ! south margin |
---|
1832 | rand_it(k,ny+j) = rand_it(k, j-1) ! north margin |
---|
1833 | ENDDO |
---|
1834 | ENDDO |
---|
1835 | |
---|
1836 | ! |
---|
1837 | !-- Generate velocity seed following Eq.6 of Xie and Castro (2008) |
---|
1838 | n_y2 = n_y * 2 |
---|
1839 | n_z2 = n_z * 2 |
---|
1840 | f_n_l = 0.0_wp |
---|
1841 | |
---|
1842 | DO j = nysg, nyng |
---|
1843 | DO k = nzb_x_stg, nzt_x_stg+1 |
---|
1844 | DO jj = -n_y2(k), n_y2(k) |
---|
1845 | DO kk = -n_z2(k), n_z2(k) |
---|
1846 | f_n_l(k,j) = f_n_l(k,j) & |
---|
1847 | + b_y(jj,k) * b_z(kk,k) * rand_it(k+kk,j+jj) |
---|
1848 | ENDDO |
---|
1849 | ENDDO |
---|
1850 | ENDDO |
---|
1851 | ENDDO |
---|
1852 | |
---|
1853 | DEALLOCATE( rand_it ) |
---|
1854 | ! |
---|
1855 | !-- Gather velocity seeds of full subdomain |
---|
1856 | send_count = nzt_x_stg - nzb_x_stg + 1 |
---|
1857 | IF ( nzt_x_stg == nzt ) send_count = send_count + 1 |
---|
1858 | |
---|
1859 | #if defined( __parallel ) |
---|
1860 | ! |
---|
1861 | !-- Gather the velocity seed matrix on left boundary mpi ranks. |
---|
1862 | CALL MPI_GATHERV( f_n_l(nzb_x_stg,nysg), send_count, stg_type_yz_small, & |
---|
1863 | f_n(nzb+1,nysg), recv_count_yz, displs_yz, stg_type_yz, & |
---|
1864 | id_left, comm1dx, ierr ) |
---|
1865 | ! |
---|
1866 | !-- If required, gather the same velocity seed matrix on right boundary |
---|
1867 | !-- mpi ranks (in offline nesting for example). |
---|
1868 | IF ( PRESENT( id_right ) ) THEN |
---|
1869 | CALL MPI_GATHERV( f_n_l(nzb_x_stg,nysg), send_count, stg_type_yz_small, & |
---|
1870 | f_n(nzb+1,nysg), recv_count_yz, displs_yz, stg_type_yz,& |
---|
1871 | id_right, comm1dx, ierr ) |
---|
1872 | ENDIF |
---|
1873 | #else |
---|
1874 | f_n(nzb+1:nzt+1,nysg:nyng) = f_n_l(nzb_x_stg:nzt_x_stg+1,nysg:nyng) |
---|
1875 | #endif |
---|
1876 | |
---|
1877 | |
---|
1878 | END SUBROUTINE stg_generate_seed_yz |
---|
1879 | |
---|
1880 | |
---|
1881 | !------------------------------------------------------------------------------! |
---|
1882 | ! Description: |
---|
1883 | ! ------------ |
---|
1884 | !> Generate a set of random number rand_it wich is equal on each PE |
---|
1885 | !> and calculate the velocity seed f_n. |
---|
1886 | !> f_n is splitted in vertical direction by the number of PEs in y-direction and |
---|
1887 | !> and each PE calculates a vertical subsection of f_n. At the the end, all |
---|
1888 | !> parts are collected to form the full array. |
---|
1889 | !------------------------------------------------------------------------------! |
---|
1890 | SUBROUTINE stg_generate_seed_xz( n_x, n_z, b_x, b_z, f_n, id_south, id_north ) |
---|
1891 | |
---|
1892 | IMPLICIT NONE |
---|
1893 | |
---|
1894 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
1895 | INTEGER(iwp) :: id_north !< core ids at respective boundaries |
---|
1896 | INTEGER(iwp) :: id_south !< core ids at respective boundaries |
---|
1897 | INTEGER(iwp) :: ii !< loop index in x-direction |
---|
1898 | INTEGER(iwp) :: j !< grid index y-direction |
---|
1899 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
1900 | INTEGER(iwp) :: kk !< loop index in z-direction |
---|
1901 | INTEGER(iwp) :: send_count !< send count for MPI_GATHERV |
---|
1902 | |
---|
1903 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_x !< length scale in x-direction |
---|
1904 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_z !< length scale in z-direction |
---|
1905 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_x2 !< n_x*2 |
---|
1906 | INTEGER(iwp), DIMENSION(nzb:nzt+1) :: n_z2 !< n_z*2 |
---|
1907 | |
---|
1908 | REAL(wp) :: nxz_inv !< inverse of number of grid points in xz-slice |
---|
1909 | REAL(wp) :: rand_av !< average of random number |
---|
1910 | REAL(wp) :: rand_sigma_inv !< inverse of stdev of random number |
---|
1911 | |
---|
1912 | REAL(wp), DIMENSION(-merg:merg,nzb:nzt+1) :: b_x !< filter function in x-direction |
---|
1913 | REAL(wp), DIMENSION(-merg:merg,nzb:nzt+1) :: b_z !< filter function in z-direction |
---|
1914 | |
---|
1915 | REAL(wp), DIMENSION(nzb_y_stg:nzt_y_stg+1,nxlg:nxrg) :: f_n_l !< local velocity seed |
---|
1916 | REAL(wp), DIMENSION(nzb:nzt+1,nxlg:nxrg) :: f_n !< velocity seed |
---|
1917 | |
---|
1918 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rand_it !< global array of random numbers |
---|
1919 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rand_it_l !< local array of random numbers |
---|
1920 | |
---|
1921 | ! |
---|
1922 | !-- Generate random numbers using the parallel random generator. |
---|
1923 | !-- The set of random numbers are modified to have an average of 0 and |
---|
1924 | !-- unit variance. Note, at the end the random number array must be defined |
---|
1925 | !-- globally in order to compute the correlation matrices. However, |
---|
1926 | !-- the calculation and normalization of random numbers is done locally, |
---|
1927 | !-- while the result is later distributed to all processes. Further, |
---|
1928 | !-- please note, a set of random numbers is only calculated for the |
---|
1929 | !-- left boundary, while the right boundary uses the same random numbers |
---|
1930 | !-- and thus also computes the same correlation matrix. |
---|
1931 | ALLOCATE( rand_it(nzb-mergp:nzt+1+mergp,-mergp:nx+mergp) ) |
---|
1932 | rand_it = 0.0_wp |
---|
1933 | |
---|
1934 | rand_av = 0.0_wp |
---|
1935 | rand_sigma_inv = 0.0_wp |
---|
1936 | nxz_inv = 1.0_wp / REAL( ( nzt+1 - nzb+1 ) * ( nx+1 ), KIND=wp ) |
---|
1937 | ! |
---|
1938 | !-- Compute and normalize random numbers only on south-boundary ranks. |
---|
1939 | IF ( myidy == id_stg_south ) THEN |
---|
1940 | ! |
---|
1941 | !-- Allocate array for local set of random numbers |
---|
1942 | ALLOCATE( rand_it_l(nzb:nzt+1,nxl:nxr) ) |
---|
1943 | rand_it_l = 0.0_wp |
---|
1944 | |
---|
1945 | j = nys |
---|
1946 | DO i = nxl, nxr |
---|
1947 | ! |
---|
1948 | !-- Put the random seeds at grid point j,i |
---|
1949 | CALL random_seed_parallel( put=seq_random_array(:, j, i) ) |
---|
1950 | DO k = nzb, nzt+1 |
---|
1951 | CALL random_number_parallel( random_dummy ) |
---|
1952 | rand_it_l(k,i) = random_dummy |
---|
1953 | rand_av = rand_av + rand_it_l(k,i) |
---|
1954 | ENDDO |
---|
1955 | ! |
---|
1956 | !-- Get the new random seeds from last call at grid point j,i |
---|
1957 | CALL random_seed_parallel( get=seq_random_array(:, j, i) ) |
---|
1958 | ENDDO |
---|
1959 | #if defined( __parallel ) |
---|
1960 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_av, 1, MPI_REAL, & |
---|
1961 | MPI_SUM, comm1dx, ierr ) |
---|
1962 | #endif |
---|
1963 | rand_av = rand_av * nxz_inv |
---|
1964 | ! |
---|
1965 | !-- Obtain zero mean |
---|
1966 | rand_it_l = rand_it_l - rand_av |
---|
1967 | ! |
---|
1968 | !-- Now, compute the variance |
---|
1969 | DO i = nxl, nxr |
---|
1970 | DO k = nzb, nzt+1 |
---|
1971 | rand_sigma_inv = rand_sigma_inv + rand_it_l(k,i)**2 |
---|
1972 | ENDDO |
---|
1973 | ENDDO |
---|
1974 | |
---|
1975 | #if defined( __parallel ) |
---|
1976 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_sigma_inv, 1, MPI_REAL, & |
---|
1977 | MPI_SUM, comm1dx, ierr ) |
---|
1978 | #endif |
---|
1979 | ! |
---|
1980 | !-- Compute standard deviation |
---|
1981 | IF ( rand_sigma_inv /= 0.0_wp ) THEN |
---|
1982 | rand_sigma_inv = 1.0_wp / SQRT( rand_sigma_inv * nxz_inv ) |
---|
1983 | ELSE |
---|
1984 | rand_sigma_inv = 1.0_wp |
---|
1985 | ENDIF |
---|
1986 | ! |
---|
1987 | !-- Normalize with standard deviation to obtain unit variance |
---|
1988 | rand_it_l = rand_it_l * rand_sigma_inv |
---|
1989 | ! |
---|
1990 | !-- Copy local random numbers on the global array |
---|
1991 | rand_it(nzb:nzt+1,nxl:nxr) = rand_it_l(nzb:nzt+1,nxl:nxr) |
---|
1992 | ! |
---|
1993 | !-- Deallocate local array |
---|
1994 | DEALLOCATE( rand_it_l ) |
---|
1995 | ! |
---|
1996 | !-- Now, distribute the final set of random numbers to all mpi ranks located |
---|
1997 | !-- on the south boundary. Here, an allreduce with sum reduction is sufficient. |
---|
1998 | #if defined( __parallel ) |
---|
1999 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_it, SIZE( rand_it ), MPI_REAL, & |
---|
2000 | MPI_SUM, comm1dx, ierr ) |
---|
2001 | #endif |
---|
2002 | ENDIF |
---|
2003 | ! |
---|
2004 | !-- Finally, distribute the set of random numbers (defined on the |
---|
2005 | !-- southmost-located mpi ranks) to all other mpi ranks. Here, a allreduce |
---|
2006 | !-- with sum option is sufficient, because rand_it is zero on all other |
---|
2007 | !-- mpi_ranks. Note, the reduce operation is only performed with communicator |
---|
2008 | !-- comm1dy, where only 1 rank within the communicator has non zero random numbers. |
---|
2009 | #if defined( __parallel ) |
---|
2010 | CALL MPI_ALLREDUCE( MPI_IN_PLACE, rand_it, SIZE( rand_it ), MPI_REAL, & |
---|
2011 | MPI_SUM, comm1dy, ierr ) |
---|
2012 | #endif |
---|
2013 | ! |
---|
2014 | !-- Periodic fill of random number in space |
---|
2015 | DO i = 0, nx |
---|
2016 | DO k = 1, mergp |
---|
2017 | rand_it(nzb-k,i) = rand_it(nzt+2-k,i) ! bottom margin |
---|
2018 | rand_it(nzt+1+k,i) = rand_it(nzb+k-1,i) ! top margin |
---|
2019 | ENDDO |
---|
2020 | ENDDO |
---|
2021 | DO i = 1, mergp |
---|
2022 | DO k = nzb-mergp, nzt+1+mergp |
---|
2023 | rand_it(k,-i) = rand_it(k,nx-i+1) ! left margin |
---|
2024 | rand_it(k,nx+i) = rand_it(k,i-1) ! right margin |
---|
2025 | ENDDO |
---|
2026 | ENDDO |
---|
2027 | ! |
---|
2028 | !-- Generate velocity seed following Eq.6 of Xie and Castro (2008) |
---|
2029 | n_x2 = n_x * 2 |
---|
2030 | n_z2 = n_z * 2 |
---|
2031 | f_n_l = 0.0_wp |
---|
2032 | |
---|
2033 | DO i = nxlg, nxrg |
---|
2034 | DO k = nzb_y_stg, nzt_y_stg+1 |
---|
2035 | DO ii = -n_x2(k), n_x2(k) |
---|
2036 | DO kk = -n_z2(k), n_z2(k) |
---|
2037 | f_n_l(k,i) = f_n_l(k,i) & |
---|
2038 | + b_x(ii,k) * b_z(kk,k) * rand_it(k+kk,i+ii) |
---|
2039 | ENDDO |
---|
2040 | ENDDO |
---|
2041 | ENDDO |
---|
2042 | ENDDO |
---|
2043 | |
---|
2044 | DEALLOCATE( rand_it ) |
---|
2045 | |
---|
2046 | ! |
---|
2047 | !-- Gather velocity seeds of full subdomain |
---|
2048 | send_count = nzt_y_stg - nzb_y_stg + 1 |
---|
2049 | IF ( nzt_y_stg == nzt ) send_count = send_count + 1 |
---|
2050 | |
---|
2051 | #if defined( __parallel ) |
---|
2052 | ! |
---|
2053 | !-- Gather the processed velocity seed on south boundary mpi ranks. |
---|
2054 | CALL MPI_GATHERV( f_n_l(nzb_y_stg,nxlg), send_count, stg_type_xz_small, & |
---|
2055 | f_n(nzb+1,nxlg), recv_count_xz, displs_xz, stg_type_xz, & |
---|
2056 | id_south, comm1dy, ierr ) |
---|
2057 | ! |
---|
2058 | !-- Gather the processed velocity seed on north boundary mpi ranks. |
---|
2059 | CALL MPI_GATHERV( f_n_l(nzb_y_stg,nxlg), send_count, stg_type_xz_small, & |
---|
2060 | f_n(nzb+1,nxlg), recv_count_xz, displs_xz, stg_type_xz, & |
---|
2061 | id_north, comm1dy, ierr ) |
---|
2062 | #else |
---|
2063 | f_n(nzb+1:nzt+1,nxlg:nxrg) = f_n_l(nzb_y_stg:nzt_y_stg+1,nxlg:nxrg) |
---|
2064 | #endif |
---|
2065 | |
---|
2066 | END SUBROUTINE stg_generate_seed_xz |
---|
2067 | |
---|
2068 | !------------------------------------------------------------------------------! |
---|
2069 | ! Description: |
---|
2070 | ! ------------ |
---|
2071 | !> Parametrization of the Reynolds stress tensor, following the parametrization |
---|
2072 | !> described in Rotach et al. (1996), which is applied in state-of-the-art |
---|
2073 | !> dispserion modelling. Please note, the parametrization does not distinguish |
---|
2074 | !> between along-wind and cross-wind turbulence. |
---|
2075 | !------------------------------------------------------------------------------! |
---|
2076 | SUBROUTINE parametrize_reynolds_stress |
---|
2077 | |
---|
2078 | IMPLICIT NONE |
---|
2079 | |
---|
2080 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2081 | |
---|
2082 | REAL(wp) :: zzi !< ratio of z/zi |
---|
2083 | |
---|
2084 | DO k = nzb+1, nzt+1 |
---|
2085 | ! |
---|
2086 | !-- Calculate function to gradually decrease Reynolds stress above ABL top. |
---|
2087 | !-- The function decreases to 1/10 after one length scale above the |
---|
2088 | !-- ABL top. |
---|
2089 | blend = MIN( 1.0_wp, EXP( d_l * zu(k) - d_l * zi_ribulk ) ) |
---|
2090 | ! |
---|
2091 | !-- Determine normalized height coordinate |
---|
2092 | zzi = zu(k) / zi_ribulk |
---|
2093 | ! |
---|
2094 | !-- u'u' and v'v'. Assume isotropy. Note, add a small negative number |
---|
2095 | !-- to the denominator, else the merge-function can crash if scale_l is |
---|
2096 | !-- zero. |
---|
2097 | r11(k) = scale_us**2 * ( & |
---|
2098 | MERGE( 0.35_wp * ABS( & |
---|
2099 | - zi_ribulk / ( kappa * scale_l - 10E-4_wp ) & |
---|
2100 | )**( 2.0_wp / 3.0_wp ), & |
---|
2101 | 0.0_wp, & |
---|
2102 | scale_l < 0.0_wp ) & |
---|
2103 | + 5.0_wp - 4.0_wp * zzi & |
---|
2104 | ) * blend |
---|
2105 | |
---|
2106 | r22(k) = r11(k) |
---|
2107 | ! |
---|
2108 | !-- w'w' |
---|
2109 | r33(k) = scale_wm**2 * ( & |
---|
2110 | 1.5_wp * zzi**( 2.0_wp / 3.0_wp ) * EXP( -2.0_wp * zzi ) & |
---|
2111 | + ( 1.7_wp - zzi ) * ( scale_us / scale_wm )**2 & |
---|
2112 | ) * blend |
---|
2113 | ! |
---|
2114 | !-- u'w' and v'w'. Assume isotropy. |
---|
2115 | r31(k) = - scale_us**2 * ( 1.01_wp - MIN( zzi, 1.0_wp ) ) * blend |
---|
2116 | r32(k) = r31(k) |
---|
2117 | ! |
---|
2118 | !-- For u'v' no parametrization exist so far - ?. For simplicity assume |
---|
2119 | !-- a similar profile as for u'w'. |
---|
2120 | r21(k) = r31(k) |
---|
2121 | ENDDO |
---|
2122 | |
---|
2123 | ! |
---|
2124 | !-- Set bottom boundary condition |
---|
2125 | r11(nzb) = r11(nzb+1) |
---|
2126 | r22(nzb) = r22(nzb+1) |
---|
2127 | r33(nzb) = r33(nzb+1) |
---|
2128 | |
---|
2129 | r21(nzb) = r11(nzb+1) |
---|
2130 | r31(nzb) = r31(nzb+1) |
---|
2131 | r32(nzb) = r32(nzb+1) |
---|
2132 | |
---|
2133 | |
---|
2134 | END SUBROUTINE parametrize_reynolds_stress |
---|
2135 | |
---|
2136 | !------------------------------------------------------------------------------! |
---|
2137 | ! Description: |
---|
2138 | ! ------------ |
---|
2139 | !> Calculate the coefficient matrix from the Lund rotation. |
---|
2140 | !------------------------------------------------------------------------------! |
---|
2141 | SUBROUTINE calc_coeff_matrix |
---|
2142 | |
---|
2143 | IMPLICIT NONE |
---|
2144 | |
---|
2145 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2146 | |
---|
2147 | ! |
---|
2148 | !-- Calculate coefficient matrix. Split loops to allow for loop vectorization. |
---|
2149 | DO k = nzb+1, nzt+1 |
---|
2150 | IF ( r11(k) > 10E-6_wp ) THEN |
---|
2151 | a11(k) = SQRT( r11(k) ) |
---|
2152 | a21(k) = r21(k) / a11(k) |
---|
2153 | a31(k) = r31(k) / a11(k) |
---|
2154 | ELSE |
---|
2155 | a11(k) = 10E-8_wp |
---|
2156 | a21(k) = 10E-8_wp |
---|
2157 | a31(k) = 10E-8_wp |
---|
2158 | ENDIF |
---|
2159 | ENDDO |
---|
2160 | DO k = nzb+1, nzt+1 |
---|
2161 | a22(k) = r22(k) - a21(k)**2 |
---|
2162 | IF ( a22(k) > 10E-6_wp ) THEN |
---|
2163 | a22(k) = SQRT( a22(k) ) |
---|
2164 | a32(k) = r32(k) - a21(k) * a31(k) / a22(k) |
---|
2165 | ELSE |
---|
2166 | a22(k) = 10E-8_wp |
---|
2167 | a32(k) = 10E-8_wp |
---|
2168 | ENDIF |
---|
2169 | ENDDO |
---|
2170 | DO k = nzb+1, nzt+1 |
---|
2171 | a33(k) = r33(k) - a31(k)**2 - a32(k)**2 |
---|
2172 | IF ( a33(k) > 10E-6_wp ) THEN |
---|
2173 | a33(k) = SQRT( a33(k) ) |
---|
2174 | ELSE |
---|
2175 | a33(k) = 10E-8_wp |
---|
2176 | ENDIF |
---|
2177 | ENDDO |
---|
2178 | ! |
---|
2179 | !-- Set bottom boundary condition |
---|
2180 | a11(nzb) = a11(nzb+1) |
---|
2181 | a22(nzb) = a22(nzb+1) |
---|
2182 | a21(nzb) = a21(nzb+1) |
---|
2183 | a33(nzb) = a33(nzb+1) |
---|
2184 | a31(nzb) = a31(nzb+1) |
---|
2185 | a32(nzb) = a32(nzb+1) |
---|
2186 | |
---|
2187 | END SUBROUTINE calc_coeff_matrix |
---|
2188 | |
---|
2189 | !------------------------------------------------------------------------------! |
---|
2190 | ! Description: |
---|
2191 | ! ------------ |
---|
2192 | !> This routine controls the re-adjustment of the turbulence statistics used |
---|
2193 | !> for generating turbulence at the lateral boundaries. |
---|
2194 | !------------------------------------------------------------------------------! |
---|
2195 | SUBROUTINE stg_adjust |
---|
2196 | |
---|
2197 | IMPLICIT NONE |
---|
2198 | |
---|
2199 | |
---|
2200 | IF ( debug_output_timestep ) CALL debug_message( 'stg_adjust', 'start' ) |
---|
2201 | ! |
---|
2202 | !-- In case of dirichlet inflow boundary conditions only at one lateral |
---|
2203 | !-- boundary, i.e. in the case no offline or self nesting is applied but |
---|
2204 | !-- synthetic turbulence shall be parametrized nevertheless, the |
---|
2205 | !-- boundary-layer depth need to determined first. |
---|
2206 | IF ( .NOT. nesting_offline .AND. .NOT. child_domain ) & |
---|
2207 | CALL nesting_offl_calc_zi |
---|
2208 | ! |
---|
2209 | !-- Compute scaling parameters (domain-averaged), such as friction velocity |
---|
2210 | !-- are calculated. |
---|
2211 | CALL calc_scaling_variables |
---|
2212 | ! |
---|
2213 | !-- Set length and time scales depending on boundary-layer height |
---|
2214 | CALL calc_length_and_time_scale |
---|
2215 | ! |
---|
2216 | !-- Parametrize Reynolds-stress tensor, diagonal elements as well |
---|
2217 | !-- as r21 (v'u'), r31 (w'u'), r32 (w'v'). Parametrization follows |
---|
2218 | !-- Rotach et al. (1996) and is based on boundary-layer depth, |
---|
2219 | !-- friction velocity and velocity scale. |
---|
2220 | CALL parametrize_reynolds_stress |
---|
2221 | ! |
---|
2222 | !-- Calculate coefficient matrix from Reynolds stress tensor |
---|
2223 | !-- (Lund rotation) |
---|
2224 | CALL calc_coeff_matrix |
---|
2225 | ! |
---|
2226 | !-- Determine filter functions on basis of updated length scales |
---|
2227 | CALL stg_filter_func( nux, bux ) !filter ux |
---|
2228 | CALL stg_filter_func( nuy, buy ) !filter uy |
---|
2229 | CALL stg_filter_func( nuz, buz ) !filter uz |
---|
2230 | CALL stg_filter_func( nvx, bvx ) !filter vx |
---|
2231 | CALL stg_filter_func( nvy, bvy ) !filter vy |
---|
2232 | CALL stg_filter_func( nvz, bvz ) !filter vz |
---|
2233 | CALL stg_filter_func( nwx, bwx ) !filter wx |
---|
2234 | CALL stg_filter_func( nwy, bwy ) !filter wy |
---|
2235 | CALL stg_filter_func( nwz, bwz ) !filter wz |
---|
2236 | ! |
---|
2237 | !-- Reset time counter for controlling next adjustment to zero |
---|
2238 | time_stg_adjust = 0.0_wp |
---|
2239 | |
---|
2240 | IF ( debug_output_timestep ) CALL debug_message( 'stg_adjust', 'end' ) |
---|
2241 | |
---|
2242 | END SUBROUTINE stg_adjust |
---|
2243 | |
---|
2244 | |
---|
2245 | !------------------------------------------------------------------------------! |
---|
2246 | ! Description: |
---|
2247 | ! ------------ |
---|
2248 | !> Calculates turbuluent length and time scales if these are not available |
---|
2249 | !> from measurements. |
---|
2250 | !------------------------------------------------------------------------------! |
---|
2251 | SUBROUTINE calc_length_and_time_scale |
---|
2252 | |
---|
2253 | IMPLICIT NONE |
---|
2254 | |
---|
2255 | |
---|
2256 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2257 | |
---|
2258 | REAL(wp) :: length_scale_dum !< effectively used length scale |
---|
2259 | |
---|
2260 | ! |
---|
2261 | !-- In initial call the boundary-layer depth can be zero. This case, set |
---|
2262 | !-- minimum value for boundary-layer depth, to setup length scales correctly. |
---|
2263 | zi_ribulk = MAX( zi_ribulk, zw(nzb+2) ) |
---|
2264 | ! |
---|
2265 | !-- Set-up default turbulent length scales. From the numerical point of |
---|
2266 | !-- view the imposed perturbations should not be immediately dissipated |
---|
2267 | !-- by the numerics. The numerical dissipation, however, acts on scales |
---|
2268 | !-- up to 8 x the grid spacing. For this reason, set the turbulence |
---|
2269 | !-- length scale to 8 time the grid spacing. Further, above the boundary |
---|
2270 | !-- layer height, set turbulence lenght scales to zero (equivalent to not |
---|
2271 | !-- imposing any perturbations) in order to save computational costs. |
---|
2272 | !-- Typical time scales are derived by assuming Taylors's hypothesis, |
---|
2273 | !-- using the length scales and the mean profiles of u- and v-component. |
---|
2274 | DO k = nzb+1, nzt+1 |
---|
2275 | ! |
---|
2276 | !-- Determine blending parameter. Within the boundary layer length scales |
---|
2277 | !-- are constant, while above lengths scales approach gradully zero, |
---|
2278 | !-- i.e. imposed turbulence is not correlated in space and time, |
---|
2279 | !-- just white noise, which saves computations power as the loops for the |
---|
2280 | !-- computation of the filter functions depend on the length scales. |
---|
2281 | !-- The value decreases to 1/10 after one length scale above the |
---|
2282 | !-- ABL top. |
---|
2283 | blend = MIN( 1.0_wp, EXP( d_l * zu(k) - d_l * zi_ribulk ) ) |
---|
2284 | ! |
---|
2285 | !-- Assume isotropic turbulence length scales |
---|
2286 | nux(k) = MAX( INT( length_scale * ddx ), 1 ) * blend |
---|
2287 | nuy(k) = MAX( INT( length_scale * ddy ), 1 ) * blend |
---|
2288 | nvx(k) = MAX( INT( length_scale * ddx ), 1 ) * blend |
---|
2289 | nvy(k) = MAX( INT( length_scale * ddy ), 1 ) * blend |
---|
2290 | nwx(k) = MAX( INT( length_scale * ddx ), 1 ) * blend |
---|
2291 | nwy(k) = MAX( INT( length_scale * ddy ), 1 ) * blend |
---|
2292 | ! |
---|
2293 | !-- Along the vertical direction limit the length scale further by the |
---|
2294 | !-- boundary-layer depth to assure that no length scales larger than |
---|
2295 | !-- the boundary-layer depth are used |
---|
2296 | length_scale_dum = MIN( length_scale, zi_ribulk ) |
---|
2297 | |
---|
2298 | nuz(k) = MAX( INT( length_scale_dum * ddzw(k) ), 1 ) * blend |
---|
2299 | nvz(k) = MAX( INT( length_scale_dum * ddzw(k) ), 1 ) * blend |
---|
2300 | nwz(k) = MAX( INT( length_scale_dum * ddzw(k) ), 1 ) * blend |
---|
2301 | ! |
---|
2302 | !-- Limit time scales, else they become very larger for low wind speed, |
---|
2303 | !-- imposing long-living inflow perturbations which in turn propagate |
---|
2304 | !-- further into the model domain. Use u_init and v_init to calculate |
---|
2305 | !-- the time scales, which will be equal to the inflow profiles, both, |
---|
2306 | !-- in offline nesting mode or in dirichlet/radiation mode. |
---|
2307 | tu(k) = MIN( dt_stg_adjust, length_scale / & |
---|
2308 | ( ABS( u_init(k) ) + 0.1_wp ) ) * blend |
---|
2309 | tv(k) = MIN( dt_stg_adjust, length_scale / & |
---|
2310 | ( ABS( v_init(k) ) + 0.1_wp ) ) * blend |
---|
2311 | ! |
---|
2312 | !-- Time scale of w-component is a mixture from u- and v-component. |
---|
2313 | tw(k) = SQRT( tu(k)**2 + tv(k)**2 ) * blend |
---|
2314 | |
---|
2315 | ENDDO |
---|
2316 | ! |
---|
2317 | !-- Set bottom boundary condition for the length and time scales |
---|
2318 | nux(nzb) = nux(nzb+1) |
---|
2319 | nuy(nzb) = nuy(nzb+1) |
---|
2320 | nuz(nzb) = nuz(nzb+1) |
---|
2321 | nvx(nzb) = nvx(nzb+1) |
---|
2322 | nvy(nzb) = nvy(nzb+1) |
---|
2323 | nvz(nzb) = nvz(nzb+1) |
---|
2324 | nwx(nzb) = nwx(nzb+1) |
---|
2325 | nwy(nzb) = nwy(nzb+1) |
---|
2326 | nwz(nzb) = nwz(nzb+1) |
---|
2327 | |
---|
2328 | tu(nzb) = tu(nzb+1) |
---|
2329 | tv(nzb) = tv(nzb+1) |
---|
2330 | tw(nzb) = tw(nzb+1) |
---|
2331 | |
---|
2332 | |
---|
2333 | END SUBROUTINE calc_length_and_time_scale |
---|
2334 | |
---|
2335 | !------------------------------------------------------------------------------! |
---|
2336 | ! Description: |
---|
2337 | ! ------------ |
---|
2338 | !> Calculate scaling variables which are used for turbulence parametrization |
---|
2339 | !> according to Rotach et al. (1996). Scaling variables are: friction velocity, |
---|
2340 | !> boundary-layer depth, momentum velocity scale, and Obukhov length. |
---|
2341 | !------------------------------------------------------------------------------! |
---|
2342 | SUBROUTINE calc_scaling_variables |
---|
2343 | |
---|
2344 | USE surface_mod, & |
---|
2345 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
2346 | |
---|
2347 | IMPLICIT NONE |
---|
2348 | |
---|
2349 | INTEGER(iwp) :: i !< loop index in x-direction |
---|
2350 | INTEGER(iwp) :: j !< loop index in y-direction |
---|
2351 | INTEGER(iwp) :: k !< loop index in z-direction |
---|
2352 | INTEGER(iwp) :: m !< surface element index |
---|
2353 | |
---|
2354 | REAL(wp) :: friction_vel_l !< mean friction veloctiy on subdomain |
---|
2355 | REAL(wp) :: pt_surf_mean !< mean near surface temperature (at 1st grid point) |
---|
2356 | REAL(wp) :: pt_surf_mean_l !< mean near surface temperature (at 1st grid point) on subdomain |
---|
2357 | REAL(wp) :: scale_l_l !< mean Obukhov lenght on subdomain |
---|
2358 | REAL(wp) :: shf_mean !< mean surface sensible heat flux |
---|
2359 | REAL(wp) :: shf_mean_l !< mean surface sensible heat flux on subdomain |
---|
2360 | REAL(wp) :: w_convective !< convective velocity scale |
---|
2361 | |
---|
2362 | ! |
---|
2363 | !-- Calculate mean friction velocity, velocity scale, heat flux and |
---|
2364 | !-- near-surface temperature in the model domain. |
---|
2365 | pt_surf_mean_l = 0.0_wp |
---|
2366 | shf_mean_l = 0.0_wp |
---|
2367 | scale_l_l = 0.0_wp |
---|
2368 | friction_vel_l = 0.0_wp |
---|
2369 | DO m = 1, surf_def_h(0)%ns |
---|
2370 | i = surf_def_h(0)%i(m) |
---|
2371 | j = surf_def_h(0)%j(m) |
---|
2372 | k = surf_def_h(0)%k(m) |
---|
2373 | friction_vel_l = friction_vel_l + surf_def_h(0)%us(m) |
---|
2374 | shf_mean_l = shf_mean_l + surf_def_h(0)%shf(m) * drho_air(k) |
---|
2375 | scale_l_l = scale_l_l + surf_def_h(0)%ol(m) |
---|
2376 | pt_surf_mean_l = pt_surf_mean_l + pt(k,j,i) |
---|
2377 | ENDDO |
---|
2378 | DO m = 1, surf_lsm_h%ns |
---|
2379 | i = surf_lsm_h%i(m) |
---|
2380 | j = surf_lsm_h%j(m) |
---|
2381 | k = surf_lsm_h%k(m) |
---|
2382 | friction_vel_l = friction_vel_l + surf_lsm_h%us(m) |
---|
2383 | shf_mean_l = shf_mean_l + surf_lsm_h%shf(m) * drho_air(k) |
---|
2384 | scale_l_l = scale_l_l + surf_lsm_h%ol(m) |
---|
2385 | pt_surf_mean_l = pt_surf_mean_l + pt(k,j,i) |
---|
2386 | ENDDO |
---|
2387 | DO m = 1, surf_usm_h%ns |
---|
2388 | i = surf_usm_h%i(m) |
---|
2389 | j = surf_usm_h%j(m) |
---|
2390 | k = surf_usm_h%k(m) |
---|
2391 | friction_vel_l = friction_vel_l + surf_usm_h%us(m) |
---|
2392 | shf_mean_l = shf_mean_l + surf_usm_h%shf(m) * drho_air(k) |
---|
2393 | scale_l_l = scale_l_l + surf_usm_h%ol(m) |
---|
2394 | pt_surf_mean_l = pt_surf_mean_l + pt(k,j,i) |
---|
2395 | ENDDO |
---|
2396 | |
---|
2397 | #if defined( __parallel ) |
---|
2398 | CALL MPI_ALLREDUCE( friction_vel_l, scale_us, 1, MPI_REAL, MPI_SUM, & |
---|
2399 | comm2d, ierr ) |
---|
2400 | CALL MPI_ALLREDUCE( shf_mean_l, shf_mean, 1, MPI_REAL, MPI_SUM, & |
---|
2401 | comm2d, ierr ) |
---|
2402 | CALL MPI_ALLREDUCE( scale_l_l, scale_l, 1, MPI_REAL, MPI_SUM, & |
---|
2403 | comm2d, ierr ) |
---|
2404 | CALL MPI_ALLREDUCE( pt_surf_mean_l, pt_surf_mean, 1, MPI_REAL, MPI_SUM, & |
---|
2405 | comm2d, ierr ) |
---|
2406 | #else |
---|
2407 | scale_us = friction_vel_l |
---|
2408 | shf_mean = shf_mean_l |
---|
2409 | scale_l = scale_l_l |
---|
2410 | pt_surf_mean = pt_surf_mean_l |
---|
2411 | #endif |
---|
2412 | |
---|
2413 | scale_us = scale_us / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
2414 | shf_mean = shf_mean / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
2415 | scale_l = scale_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
2416 | pt_surf_mean = pt_surf_mean / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
2417 | ! |
---|
2418 | !-- Compute mean convective velocity scale. Note, in case the mean heat flux |
---|
2419 | !-- is negative, set convective velocity scale to zero. |
---|
2420 | IF ( shf_mean > 0.0_wp ) THEN |
---|
2421 | w_convective = ( g * shf_mean * zi_ribulk / pt_surf_mean )**( 1.0_wp / 3.0_wp ) |
---|
2422 | ELSE |
---|
2423 | w_convective = 0.0_wp |
---|
2424 | ENDIF |
---|
2425 | ! |
---|
2426 | !-- Finally, in order to consider also neutral or stable stratification, |
---|
2427 | !-- compute momentum velocity scale from u* and convective velocity scale, |
---|
2428 | !-- according to Rotach et al. (1996). |
---|
2429 | scale_wm = ( scale_us**3 + 0.6_wp * w_convective**3 )**( 1.0_wp / 3.0_wp ) |
---|
2430 | |
---|
2431 | END SUBROUTINE calc_scaling_variables |
---|
2432 | |
---|
2433 | END MODULE synthetic_turbulence_generator_mod |
---|