1 | !> @file surface_layer_fluxes_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
18 | ! |
---|
19 | !------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ------------------ |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: surface_layer_fluxes_mod.f90 4519 2020-05-05 17:33:30Z schwenkel $ |
---|
28 | ! Add missing computation of passive scalar scaling parameter |
---|
29 | ! |
---|
30 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
31 | ! bugfix: openacc porting for vector version of OL calculation added |
---|
32 | ! |
---|
33 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
34 | ! vector version for calculation of Obukhov length via Newton iteration added |
---|
35 | ! |
---|
36 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
37 | ! Calculation of diagnostic-only 2-m potential temperature moved to |
---|
38 | ! diagnostic_output_quantities. |
---|
39 | ! |
---|
40 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
41 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above |
---|
42 | ! the first grid point. |
---|
43 | ! |
---|
44 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
45 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
46 | ! |
---|
47 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
48 | ! Added missing OpenMP directives |
---|
49 | ! |
---|
50 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
51 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
52 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic |
---|
53 | ! peaks in the heat fluxes during nighttime |
---|
54 | ! - Unused variable removed |
---|
55 | ! |
---|
56 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
57 | ! Corrected "Former revisions" section |
---|
58 | ! |
---|
59 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
60 | ! Introduce alternative switch for debug output during timestepping |
---|
61 | ! |
---|
62 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
63 | ! Changes related to global restructuring of location messages and introduction |
---|
64 | ! of additional debug messages |
---|
65 | ! |
---|
66 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
67 | ! Assure that Obukhov length does not become zero |
---|
68 | ! |
---|
69 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
70 | ! added USE chem_gasphase_mod |
---|
71 | ! |
---|
72 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
73 | ! unused variables removed |
---|
74 | ! |
---|
75 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
76 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, |
---|
77 | ! required for indoor model |
---|
78 | ! |
---|
79 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
80 | ! Some interface calls moved to module_interface + cleanup |
---|
81 | ! |
---|
82 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
83 | ! Removed methods "circular" and "lookup" |
---|
84 | ! |
---|
85 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
86 | ! OpenACC port for SPEC |
---|
87 | ! |
---|
88 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
89 | ! Initial revision |
---|
90 | ! |
---|
91 | ! |
---|
92 | ! Description: |
---|
93 | ! ------------ |
---|
94 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
95 | !> values of the variables at grid point k=1 based on Newton iteration |
---|
96 | !> |
---|
97 | !> @todo (re)move large_scale_forcing actions |
---|
98 | !> @todo check/optimize OpenMP directives |
---|
99 | !> @todo simplify if conditions (which flux need to be computed in which case) |
---|
100 | !------------------------------------------------------------------------------! |
---|
101 | MODULE surface_layer_fluxes_mod |
---|
102 | |
---|
103 | USE arrays_3d, & |
---|
104 | ONLY: e, kh, nc, nr, pt, q, ql, qc, qr, s, u, v, vpt, w, zu, zw, & |
---|
105 | drho_air_zw, rho_air_zw, d_exner |
---|
106 | |
---|
107 | USE basic_constants_and_equations_mod, & |
---|
108 | ONLY: g, kappa, lv_d_cp, pi, rd_d_rv |
---|
109 | |
---|
110 | USE chem_gasphase_mod, & |
---|
111 | ONLY: nvar |
---|
112 | |
---|
113 | USE chem_modules, & |
---|
114 | ONLY: constant_csflux |
---|
115 | |
---|
116 | USE cpulog |
---|
117 | |
---|
118 | USE control_parameters, & |
---|
119 | ONLY: air_chemistry, cloud_droplets, & |
---|
120 | constant_heatflux, constant_scalarflux, & |
---|
121 | constant_waterflux, coupling_mode, & |
---|
122 | debug_output_timestep, & |
---|
123 | humidity, loop_optimization, & |
---|
124 | ibc_e_b, ibc_pt_b, indoor_model, & |
---|
125 | land_surface, large_scale_forcing, lsf_surf, message_string, & |
---|
126 | neutral, passive_scalar, pt_surface, q_surface, & |
---|
127 | run_coupled, surface_pressure, simulated_time, & |
---|
128 | time_since_reference_point, urban_surface, & |
---|
129 | use_free_convection_scaling, zeta_max, zeta_min |
---|
130 | |
---|
131 | USE grid_variables, & |
---|
132 | ONLY: dx, dy |
---|
133 | |
---|
134 | USE indices, & |
---|
135 | ONLY: nzt |
---|
136 | |
---|
137 | USE kinds |
---|
138 | |
---|
139 | USE bulk_cloud_model_mod, & |
---|
140 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
141 | |
---|
142 | USE pegrid |
---|
143 | |
---|
144 | USE land_surface_model_mod, & |
---|
145 | ONLY: aero_resist_kray, skip_time_do_lsm |
---|
146 | |
---|
147 | USE surface_mod, & |
---|
148 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_type, & |
---|
149 | surf_usm_h, surf_usm_v |
---|
150 | |
---|
151 | |
---|
152 | IMPLICIT NONE |
---|
153 | |
---|
154 | INTEGER(iwp) :: i !< loop index x direction |
---|
155 | INTEGER(iwp) :: j !< loop index y direction |
---|
156 | INTEGER(iwp) :: k !< loop index z direction |
---|
157 | INTEGER(iwp) :: l !< loop index for surf type |
---|
158 | |
---|
159 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
160 | LOGICAL :: downward = .FALSE.!< Flag indicating downward-facing horizontal surface |
---|
161 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
162 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
163 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
164 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
165 | |
---|
166 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
167 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
168 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
169 | |
---|
170 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
171 | |
---|
172 | |
---|
173 | SAVE |
---|
174 | |
---|
175 | PRIVATE |
---|
176 | |
---|
177 | PUBLIC init_surface_layer_fluxes, & |
---|
178 | phi_m, & |
---|
179 | psi_h, & |
---|
180 | psi_m, & |
---|
181 | surface_layer_fluxes |
---|
182 | |
---|
183 | INTERFACE init_surface_layer_fluxes |
---|
184 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
185 | END INTERFACE init_surface_layer_fluxes |
---|
186 | |
---|
187 | INTERFACE phi_m |
---|
188 | MODULE PROCEDURE phi_m |
---|
189 | END INTERFACE phi_m |
---|
190 | |
---|
191 | INTERFACE psi_h |
---|
192 | MODULE PROCEDURE psi_h |
---|
193 | END INTERFACE psi_h |
---|
194 | |
---|
195 | INTERFACE psi_m |
---|
196 | MODULE PROCEDURE psi_m |
---|
197 | END INTERFACE psi_m |
---|
198 | |
---|
199 | INTERFACE surface_layer_fluxes |
---|
200 | MODULE PROCEDURE surface_layer_fluxes |
---|
201 | END INTERFACE surface_layer_fluxes |
---|
202 | |
---|
203 | |
---|
204 | CONTAINS |
---|
205 | |
---|
206 | |
---|
207 | !------------------------------------------------------------------------------! |
---|
208 | ! Description: |
---|
209 | ! ------------ |
---|
210 | !> Main routine to compute the surface fluxes |
---|
211 | !------------------------------------------------------------------------------! |
---|
212 | SUBROUTINE surface_layer_fluxes |
---|
213 | |
---|
214 | IMPLICIT NONE |
---|
215 | |
---|
216 | |
---|
217 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
218 | |
---|
219 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
220 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
221 | ! |
---|
222 | !-- Derive potential temperature and specific humidity at first grid level |
---|
223 | !-- from the fields pt and q |
---|
224 | ! |
---|
225 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, |
---|
226 | !-- l=1 - downward facing) |
---|
227 | DO l = 0, 1 |
---|
228 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
229 | surf => surf_def_h(l) |
---|
230 | CALL calc_pt_q |
---|
231 | IF ( .NOT. neutral ) THEN |
---|
232 | CALL calc_pt_surface |
---|
233 | IF ( humidity ) THEN |
---|
234 | CALL calc_q_surface |
---|
235 | CALL calc_vpt_surface |
---|
236 | ENDIF |
---|
237 | ENDIF |
---|
238 | ENDIF |
---|
239 | ENDDO |
---|
240 | ! |
---|
241 | !-- Call for natural-type horizontal surfaces |
---|
242 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
243 | surf => surf_lsm_h |
---|
244 | CALL calc_pt_q |
---|
245 | ENDIF |
---|
246 | |
---|
247 | ! |
---|
248 | !-- Call for urban-type horizontal surfaces |
---|
249 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
250 | surf => surf_usm_h |
---|
251 | CALL calc_pt_q |
---|
252 | ENDIF |
---|
253 | |
---|
254 | ! |
---|
255 | !-- Call for natural-type vertical surfaces |
---|
256 | DO l = 0, 3 |
---|
257 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
258 | surf => surf_lsm_v(l) |
---|
259 | CALL calc_pt_q |
---|
260 | ENDIF |
---|
261 | |
---|
262 | !-- Call for urban-type vertical surfaces |
---|
263 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
264 | surf => surf_usm_v(l) |
---|
265 | CALL calc_pt_q |
---|
266 | ENDIF |
---|
267 | ENDDO |
---|
268 | |
---|
269 | ! |
---|
270 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
271 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
272 | !-- surface fluxes if required. Note, each routine is called for different surface types. |
---|
273 | !-- First call for default-type horizontal surfaces, for natural- and |
---|
274 | !-- urban-type surfaces. Note, at this place only upward-facing horizontal |
---|
275 | !-- surfaces are treated. |
---|
276 | |
---|
277 | ! |
---|
278 | !-- Default-type upward-facing horizontal surfaces |
---|
279 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
280 | surf => surf_def_h(0) |
---|
281 | CALL calc_uvw_abs |
---|
282 | IF ( .NOT. neutral ) CALL calc_ol |
---|
283 | CALL calc_us |
---|
284 | CALL calc_scaling_parameters |
---|
285 | CALL calc_surface_fluxes |
---|
286 | ENDIF |
---|
287 | ! |
---|
288 | !-- Natural-type horizontal surfaces |
---|
289 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
290 | surf => surf_lsm_h |
---|
291 | CALL calc_uvw_abs |
---|
292 | IF ( .NOT. neutral ) CALL calc_ol |
---|
293 | CALL calc_us |
---|
294 | CALL calc_scaling_parameters |
---|
295 | CALL calc_surface_fluxes |
---|
296 | ENDIF |
---|
297 | ! |
---|
298 | !-- Urban-type horizontal surfaces |
---|
299 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
300 | surf => surf_usm_h |
---|
301 | CALL calc_uvw_abs |
---|
302 | IF ( .NOT. neutral ) CALL calc_ol |
---|
303 | CALL calc_us |
---|
304 | CALL calc_scaling_parameters |
---|
305 | CALL calc_surface_fluxes |
---|
306 | ! |
---|
307 | !-- Calculate 10cm temperature, required in indoor model |
---|
308 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
309 | ENDIF |
---|
310 | |
---|
311 | ! |
---|
312 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are |
---|
313 | !-- always default type. Stratification is not considered |
---|
314 | !-- in this case, hence, no further distinction between different |
---|
315 | !-- most_method is required. |
---|
316 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
317 | downward = .TRUE. |
---|
318 | surf => surf_def_h(1) |
---|
319 | CALL calc_uvw_abs |
---|
320 | CALL calc_us |
---|
321 | CALL calc_surface_fluxes |
---|
322 | downward = .FALSE. |
---|
323 | ENDIF |
---|
324 | ! |
---|
325 | !-- Calculate surfaces fluxes at vertical surfaces for momentum |
---|
326 | !-- and subgrid-scale TKE. |
---|
327 | !-- No stability is considered. Therefore, scaling parameters and Obukhov- |
---|
328 | !-- length do not need to be calculated and no distinction in 'circular', |
---|
329 | !-- 'Newton' or 'lookup' is necessary so far. |
---|
330 | !-- Note, this will change if stability is once considered. |
---|
331 | surf_vertical = .TRUE. |
---|
332 | ! |
---|
333 | !-- Calculate horizontal momentum fluxes at north- and south-facing |
---|
334 | !-- surfaces(usvs). |
---|
335 | !-- For default-type surfaces |
---|
336 | mom_uv = .TRUE. |
---|
337 | DO l = 0, 1 |
---|
338 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
339 | surf => surf_def_v(l) |
---|
340 | ! |
---|
341 | !-- Compute surface-parallel velocity |
---|
342 | CALL calc_uvw_abs_v_ugrid |
---|
343 | ! |
---|
344 | !-- Compute respective friction velocity on staggered grid |
---|
345 | CALL calc_us |
---|
346 | ! |
---|
347 | !-- Compute respective surface fluxes for momentum and TKE |
---|
348 | CALL calc_surface_fluxes |
---|
349 | ENDIF |
---|
350 | ENDDO |
---|
351 | ! |
---|
352 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
353 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
354 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
355 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
356 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
357 | IF ( .NOT. aero_resist_kray ) THEN |
---|
358 | DO l = 0, 1 |
---|
359 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
360 | surf => surf_lsm_v(l) |
---|
361 | ! |
---|
362 | !-- Compute surface-parallel velocity |
---|
363 | CALL calc_uvw_abs_v_ugrid |
---|
364 | ! |
---|
365 | !-- Compute Obukhov length |
---|
366 | IF ( .NOT. neutral ) CALL calc_ol |
---|
367 | ! |
---|
368 | !-- Compute respective friction velocity on staggered grid |
---|
369 | CALL calc_us |
---|
370 | ! |
---|
371 | !-- Compute scaling parameters |
---|
372 | CALL calc_scaling_parameters |
---|
373 | ! |
---|
374 | !-- Compute respective surface fluxes for momentum and TKE |
---|
375 | CALL calc_surface_fluxes |
---|
376 | ENDIF |
---|
377 | ENDDO |
---|
378 | ! |
---|
379 | !-- No ts is required, so scaling parameters and Obukhov length do not need |
---|
380 | !-- to be computed. |
---|
381 | ELSE |
---|
382 | DO l = 0, 1 |
---|
383 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
384 | surf => surf_lsm_v(l) |
---|
385 | ! |
---|
386 | !-- Compute surface-parallel velocity |
---|
387 | CALL calc_uvw_abs_v_ugrid |
---|
388 | ! |
---|
389 | !-- Compute respective friction velocity on staggered grid |
---|
390 | CALL calc_us |
---|
391 | ! |
---|
392 | !-- Compute respective surface fluxes for momentum and TKE |
---|
393 | CALL calc_surface_fluxes |
---|
394 | ENDIF |
---|
395 | ENDDO |
---|
396 | ENDIF |
---|
397 | ! |
---|
398 | !-- For urban-type surfaces |
---|
399 | DO l = 0, 1 |
---|
400 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
401 | surf => surf_usm_v(l) |
---|
402 | ! |
---|
403 | !-- Compute surface-parallel velocity |
---|
404 | CALL calc_uvw_abs_v_ugrid |
---|
405 | ! |
---|
406 | !-- Compute respective friction velocity on staggered grid |
---|
407 | CALL calc_us |
---|
408 | ! |
---|
409 | !-- Compute respective surface fluxes for momentum and TKE |
---|
410 | CALL calc_surface_fluxes |
---|
411 | ! |
---|
412 | !-- Calculate 10cm temperature, required in indoor model |
---|
413 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
414 | ENDIF |
---|
415 | ENDDO |
---|
416 | ! |
---|
417 | !-- Calculate horizontal momentum fluxes at east- and west-facing |
---|
418 | !-- surfaces (vsus). |
---|
419 | !-- For default-type surfaces |
---|
420 | DO l = 2, 3 |
---|
421 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
422 | surf => surf_def_v(l) |
---|
423 | ! |
---|
424 | !-- Compute surface-parallel velocity |
---|
425 | CALL calc_uvw_abs_v_vgrid |
---|
426 | ! |
---|
427 | !-- Compute respective friction velocity on staggered grid |
---|
428 | CALL calc_us |
---|
429 | ! |
---|
430 | !-- Compute respective surface fluxes for momentum and TKE |
---|
431 | CALL calc_surface_fluxes |
---|
432 | |
---|
433 | ENDIF |
---|
434 | ENDDO |
---|
435 | ! |
---|
436 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
437 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
438 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
439 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
440 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
441 | IF ( .NOT. aero_resist_kray ) THEN |
---|
442 | DO l = 2, 3 |
---|
443 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
444 | surf => surf_lsm_v(l) |
---|
445 | ! |
---|
446 | !-- Compute surface-parallel velocity |
---|
447 | CALL calc_uvw_abs_v_vgrid |
---|
448 | ! |
---|
449 | !-- Compute Obukhov length |
---|
450 | IF ( .NOT. neutral ) CALL calc_ol |
---|
451 | ! |
---|
452 | !-- Compute respective friction velocity on staggered grid |
---|
453 | CALL calc_us |
---|
454 | ! |
---|
455 | !-- Compute scaling parameters |
---|
456 | CALL calc_scaling_parameters |
---|
457 | ! |
---|
458 | !-- Compute respective surface fluxes for momentum and TKE |
---|
459 | CALL calc_surface_fluxes |
---|
460 | ENDIF |
---|
461 | ENDDO |
---|
462 | ELSE |
---|
463 | DO l = 2, 3 |
---|
464 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
465 | surf => surf_lsm_v(l) |
---|
466 | ! |
---|
467 | !-- Compute surface-parallel velocity |
---|
468 | CALL calc_uvw_abs_v_vgrid |
---|
469 | ! |
---|
470 | !-- Compute respective friction velocity on staggered grid |
---|
471 | CALL calc_us |
---|
472 | ! |
---|
473 | !-- Compute respective surface fluxes for momentum and TKE |
---|
474 | CALL calc_surface_fluxes |
---|
475 | ENDIF |
---|
476 | ENDDO |
---|
477 | ENDIF |
---|
478 | ! |
---|
479 | !-- For urban-type surfaces |
---|
480 | DO l = 2, 3 |
---|
481 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
482 | surf => surf_usm_v(l) |
---|
483 | ! |
---|
484 | !-- Compute surface-parallel velocity |
---|
485 | CALL calc_uvw_abs_v_vgrid |
---|
486 | ! |
---|
487 | !-- Compute respective friction velocity on staggered grid |
---|
488 | CALL calc_us |
---|
489 | ! |
---|
490 | !-- Compute respective surface fluxes for momentum and TKE |
---|
491 | CALL calc_surface_fluxes |
---|
492 | ! |
---|
493 | !-- Calculate 10cm temperature, required in indoor model |
---|
494 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
495 | ENDIF |
---|
496 | ENDDO |
---|
497 | mom_uv = .FALSE. |
---|
498 | ! |
---|
499 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial |
---|
500 | !-- surfaces. |
---|
501 | mom_w = .TRUE. |
---|
502 | ! |
---|
503 | !-- Default-type surfaces |
---|
504 | DO l = 0, 3 |
---|
505 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
506 | surf => surf_def_v(l) |
---|
507 | CALL calc_uvw_abs_v_wgrid |
---|
508 | CALL calc_us |
---|
509 | CALL calc_surface_fluxes |
---|
510 | ENDIF |
---|
511 | ENDDO |
---|
512 | ! |
---|
513 | !-- Natural-type surfaces |
---|
514 | DO l = 0, 3 |
---|
515 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
516 | surf => surf_lsm_v(l) |
---|
517 | CALL calc_uvw_abs_v_wgrid |
---|
518 | CALL calc_us |
---|
519 | CALL calc_surface_fluxes |
---|
520 | ENDIF |
---|
521 | ENDDO |
---|
522 | ! |
---|
523 | !-- Urban-type surfaces |
---|
524 | DO l = 0, 3 |
---|
525 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
526 | surf => surf_usm_v(l) |
---|
527 | CALL calc_uvw_abs_v_wgrid |
---|
528 | CALL calc_us |
---|
529 | CALL calc_surface_fluxes |
---|
530 | ENDIF |
---|
531 | ENDDO |
---|
532 | mom_w = .FALSE. |
---|
533 | ! |
---|
534 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical |
---|
535 | !-- surfaces for TKE production. Note, here, momentum fluxes are defined |
---|
536 | !-- at grid center and are not staggered as before. |
---|
537 | mom_tke = .TRUE. |
---|
538 | ! |
---|
539 | !-- Default-type surfaces |
---|
540 | DO l = 0, 3 |
---|
541 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
542 | surf => surf_def_v(l) |
---|
543 | CALL calc_uvw_abs_v_sgrid |
---|
544 | CALL calc_us |
---|
545 | CALL calc_surface_fluxes |
---|
546 | ENDIF |
---|
547 | ENDDO |
---|
548 | ! |
---|
549 | !-- Natural-type surfaces |
---|
550 | DO l = 0, 3 |
---|
551 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
552 | surf => surf_lsm_v(l) |
---|
553 | CALL calc_uvw_abs_v_sgrid |
---|
554 | CALL calc_us |
---|
555 | CALL calc_surface_fluxes |
---|
556 | ENDIF |
---|
557 | ENDDO |
---|
558 | ! |
---|
559 | !-- Urban-type surfaces |
---|
560 | DO l = 0, 3 |
---|
561 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
562 | surf => surf_usm_v(l) |
---|
563 | CALL calc_uvw_abs_v_sgrid |
---|
564 | CALL calc_us |
---|
565 | CALL calc_surface_fluxes |
---|
566 | ENDIF |
---|
567 | ENDDO |
---|
568 | mom_tke = .FALSE. |
---|
569 | |
---|
570 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
571 | |
---|
572 | END SUBROUTINE surface_layer_fluxes |
---|
573 | |
---|
574 | |
---|
575 | !------------------------------------------------------------------------------! |
---|
576 | ! Description: |
---|
577 | ! ------------ |
---|
578 | !> Initializing actions for the surface layer routine. |
---|
579 | !------------------------------------------------------------------------------! |
---|
580 | SUBROUTINE init_surface_layer_fluxes |
---|
581 | |
---|
582 | IMPLICIT NONE |
---|
583 | |
---|
584 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
585 | |
---|
586 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
587 | |
---|
588 | ! |
---|
589 | !-- In case of runs with neutral statification, set Obukhov length to a |
---|
590 | !-- large value |
---|
591 | IF ( neutral ) THEN |
---|
592 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
593 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
594 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
595 | |
---|
596 | DO l = 0, 3 |
---|
597 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
598 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
599 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
600 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
601 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
602 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
603 | ENDDO |
---|
604 | |
---|
605 | ENDIF |
---|
606 | |
---|
607 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
608 | |
---|
609 | END SUBROUTINE init_surface_layer_fluxes |
---|
610 | |
---|
611 | |
---|
612 | !------------------------------------------------------------------------------! |
---|
613 | ! Description: |
---|
614 | ! ------------ |
---|
615 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
616 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
617 | !------------------------------------------------------------------------------! |
---|
618 | SUBROUTINE calc_uvw_abs |
---|
619 | |
---|
620 | IMPLICIT NONE |
---|
621 | |
---|
622 | INTEGER(iwp) :: i !< running index x direction |
---|
623 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
624 | INTEGER(iwp) :: j !< running index y direction |
---|
625 | INTEGER(iwp) :: k !< running index z direction |
---|
626 | INTEGER(iwp) :: m !< running index surface elements |
---|
627 | |
---|
628 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
629 | ! |
---|
630 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
631 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
632 | |
---|
633 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
634 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
635 | !$ACC PRESENT(surf, u, v) |
---|
636 | DO m = 1, surf%ns |
---|
637 | |
---|
638 | i = surf%i(m) |
---|
639 | j = surf%j(m) |
---|
640 | k = surf%k(m) |
---|
641 | |
---|
642 | ! |
---|
643 | !-- Calculate free convection velocity scale w_lfc is |
---|
644 | !-- use_free_convection_scaling = .T.. This will maintain a horizontal |
---|
645 | !-- velocity even for very weak wind convective conditions. SIGN is used |
---|
646 | !-- to set w_lfc to zero under stable conditions. |
---|
647 | IF ( use_free_convection_scaling ) THEN |
---|
648 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
649 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
650 | ELSE |
---|
651 | w_lfc = 0.0_wp |
---|
652 | ENDIF |
---|
653 | |
---|
654 | ! |
---|
655 | !-- Compute the absolute value of the horizontal velocity. |
---|
656 | !-- (relative to the surface in case the lower surface is the ocean). |
---|
657 | !-- Please note, in new surface modelling concept the index values changed, |
---|
658 | !-- i.e. the reference grid point is not the surface-grid point itself but |
---|
659 | !-- the first grid point outside of the topography. |
---|
660 | !-- Note, in case of coupled ocean-atmosphere simulations relative velocity |
---|
661 | !-- with respect to the ocean surface is used, hence, (k-1,j,i) values |
---|
662 | !-- are used to calculate the absolute velocity. |
---|
663 | !-- However, this do not apply for downward-facing walls. To mask this, |
---|
664 | !-- use ibit, which checks for upward/downward-facing surfaces. |
---|
665 | surf%uvw_abs(m) = SQRT( & |
---|
666 | ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) & |
---|
667 | - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
668 | ) * ibit & |
---|
669 | ) & |
---|
670 | )**2 + & |
---|
671 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) & |
---|
672 | - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
673 | ) * ibit & |
---|
674 | ) & |
---|
675 | )**2 + w_lfc**2 & |
---|
676 | ) |
---|
677 | |
---|
678 | |
---|
679 | |
---|
680 | ENDDO |
---|
681 | |
---|
682 | END SUBROUTINE calc_uvw_abs |
---|
683 | |
---|
684 | |
---|
685 | !------------------------------------------------------------------------------! |
---|
686 | ! Description: |
---|
687 | ! ------------ |
---|
688 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
689 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
690 | !------------------------------------------------------------------------------! |
---|
691 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
692 | |
---|
693 | IMPLICIT NONE |
---|
694 | |
---|
695 | INTEGER(iwp) :: i !< running index x direction |
---|
696 | INTEGER(iwp) :: j !< running index y direction |
---|
697 | INTEGER(iwp) :: k !< running index z direction |
---|
698 | INTEGER(iwp) :: m !< running index surface elements |
---|
699 | |
---|
700 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
701 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
702 | |
---|
703 | |
---|
704 | DO m = 1, surf%ns |
---|
705 | i = surf%i(m) |
---|
706 | j = surf%j(m) |
---|
707 | k = surf%k(m) |
---|
708 | ! |
---|
709 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
710 | u_i = u(k,j,i) |
---|
711 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + & |
---|
712 | w(k,j,i-1) + w(k,j,i) ) |
---|
713 | |
---|
714 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
715 | |
---|
716 | ENDDO |
---|
717 | |
---|
718 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
719 | |
---|
720 | !------------------------------------------------------------------------------! |
---|
721 | ! Description: |
---|
722 | ! ------------ |
---|
723 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
724 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
725 | !------------------------------------------------------------------------------! |
---|
726 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
727 | |
---|
728 | IMPLICIT NONE |
---|
729 | |
---|
730 | INTEGER(iwp) :: i !< running index x direction |
---|
731 | INTEGER(iwp) :: j !< running index y direction |
---|
732 | INTEGER(iwp) :: k !< running index z direction |
---|
733 | INTEGER(iwp) :: m !< running index surface elements |
---|
734 | |
---|
735 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
736 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
737 | |
---|
738 | |
---|
739 | DO m = 1, surf%ns |
---|
740 | i = surf%i(m) |
---|
741 | j = surf%j(m) |
---|
742 | k = surf%k(m) |
---|
743 | |
---|
744 | v_i = u(k,j,i) |
---|
745 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + & |
---|
746 | w(k,j-1,i) + w(k,j,i) ) |
---|
747 | |
---|
748 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
749 | |
---|
750 | ENDDO |
---|
751 | |
---|
752 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
753 | |
---|
754 | !------------------------------------------------------------------------------! |
---|
755 | ! Description: |
---|
756 | ! ------------ |
---|
757 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
758 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
759 | !------------------------------------------------------------------------------! |
---|
760 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
761 | |
---|
762 | IMPLICIT NONE |
---|
763 | |
---|
764 | INTEGER(iwp) :: i !< running index x direction |
---|
765 | INTEGER(iwp) :: j !< running index y direction |
---|
766 | INTEGER(iwp) :: k !< running index z direction |
---|
767 | INTEGER(iwp) :: m !< running index surface elements |
---|
768 | |
---|
769 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
770 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
771 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
772 | ! |
---|
773 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
774 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
775 | DO m = 1, surf%ns |
---|
776 | i = surf%i(m) |
---|
777 | j = surf%j(m) |
---|
778 | k = surf%k(m) |
---|
779 | |
---|
780 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + & |
---|
781 | u(k,j,i+1) + u(k,j,i) ) |
---|
782 | v_i = 0.0_wp |
---|
783 | w_i = w(k,j,i) |
---|
784 | |
---|
785 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
786 | ENDDO |
---|
787 | ! |
---|
788 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
789 | ELSE |
---|
790 | DO m = 1, surf%ns |
---|
791 | i = surf%i(m) |
---|
792 | j = surf%j(m) |
---|
793 | k = surf%k(m) |
---|
794 | |
---|
795 | u_i = 0.0_wp |
---|
796 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + & |
---|
797 | v(k,j+1,i) + v(k,j,i) ) |
---|
798 | w_i = w(k,j,i) |
---|
799 | |
---|
800 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
801 | ENDDO |
---|
802 | ENDIF |
---|
803 | |
---|
804 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
805 | |
---|
806 | !------------------------------------------------------------------------------! |
---|
807 | ! Description: |
---|
808 | ! ------------ |
---|
809 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
810 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
811 | !------------------------------------------------------------------------------! |
---|
812 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
813 | |
---|
814 | IMPLICIT NONE |
---|
815 | |
---|
816 | INTEGER(iwp) :: i !< running index x direction |
---|
817 | INTEGER(iwp) :: j !< running index y direction |
---|
818 | INTEGER(iwp) :: k !< running index z direction |
---|
819 | INTEGER(iwp) :: m !< running index surface elements |
---|
820 | |
---|
821 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
822 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
823 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
824 | |
---|
825 | ! |
---|
826 | !-- North- (l=0) and south-facing (l=1) walls |
---|
827 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
828 | DO m = 1, surf%ns |
---|
829 | i = surf%i(m) |
---|
830 | j = surf%j(m) |
---|
831 | k = surf%k(m) |
---|
832 | |
---|
833 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
834 | v_i = 0.0_wp |
---|
835 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
836 | |
---|
837 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
838 | ENDDO |
---|
839 | ! |
---|
840 | !-- East- (l=2) and west-facing (l=3) walls |
---|
841 | ELSE |
---|
842 | DO m = 1, surf%ns |
---|
843 | i = surf%i(m) |
---|
844 | j = surf%j(m) |
---|
845 | k = surf%k(m) |
---|
846 | |
---|
847 | u_i = 0.0_wp |
---|
848 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
849 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
850 | |
---|
851 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
852 | ENDDO |
---|
853 | ENDIF |
---|
854 | |
---|
855 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
856 | |
---|
857 | |
---|
858 | !------------------------------------------------------------------------------! |
---|
859 | ! Description: |
---|
860 | ! ------------ |
---|
861 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
862 | !------------------------------------------------------------------------------! |
---|
863 | SUBROUTINE calc_ol |
---|
864 | |
---|
865 | IMPLICIT NONE |
---|
866 | |
---|
867 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
868 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
869 | |
---|
870 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
871 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
872 | |
---|
873 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
874 | f_d_ol, & !< Derivative of f |
---|
875 | ol_l, & !< Lower bound of L for Newton iteration |
---|
876 | ol_m, & !< Previous value of L for Newton iteration |
---|
877 | ol_old, & !< Previous time step value of L |
---|
878 | ol_u !< Upper bound of L for Newton iteration |
---|
879 | |
---|
880 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
881 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
882 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
883 | |
---|
884 | ! |
---|
885 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
886 | !-- definition based on setting of boundary conditions |
---|
887 | IF ( ibc_pt_b /= 1 ) THEN |
---|
888 | IF ( humidity ) THEN |
---|
889 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
890 | DO m = 1, surf%ns |
---|
891 | |
---|
892 | z_mo = surf%z_mo(m) |
---|
893 | |
---|
894 | surf%rib(m) = g * z_mo & |
---|
895 | * ( surf%vpt1(m) - surf%vpt_surface(m) ) & |
---|
896 | / ( surf%uvw_abs(m)**2 * surf%vpt1(m) & |
---|
897 | + 1.0E-20_wp ) |
---|
898 | ENDDO |
---|
899 | ELSE |
---|
900 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
901 | DO m = 1, surf%ns |
---|
902 | |
---|
903 | z_mo = surf%z_mo(m) |
---|
904 | |
---|
905 | surf%rib(m) = g * z_mo & |
---|
906 | * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
907 | / ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
908 | ENDDO |
---|
909 | ENDIF |
---|
910 | ELSE |
---|
911 | IF ( humidity ) THEN |
---|
912 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
913 | DO m = 1, surf%ns |
---|
914 | |
---|
915 | k = surf%k(m) |
---|
916 | |
---|
917 | z_mo = surf%z_mo(m) |
---|
918 | |
---|
919 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
920 | * surf%qv1(m) ) * surf%shf(m) + 0.61_wp & |
---|
921 | * surf%pt1(m) * surf%qsws(m) ) * & |
---|
922 | drho_air_zw(k-1) / & |
---|
923 | ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
924 | + 1.0E-20_wp ) |
---|
925 | ENDDO |
---|
926 | ELSE |
---|
927 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
928 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
929 | !$ACC PRESENT(surf, drho_air_zw) |
---|
930 | DO m = 1, surf%ns |
---|
931 | |
---|
932 | k = surf%k(m) |
---|
933 | |
---|
934 | z_mo = surf%z_mo(m) |
---|
935 | |
---|
936 | surf%rib(m) = - g * z_mo * surf%shf(m) * & |
---|
937 | drho_air_zw(k-1) / & |
---|
938 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 & |
---|
939 | + 1.0E-20_wp ) |
---|
940 | ENDDO |
---|
941 | ENDIF |
---|
942 | ENDIF |
---|
943 | |
---|
944 | IF ( loop_optimization == 'cache' ) THEN |
---|
945 | ! |
---|
946 | !-- Calculate the Obukhov length using Newton iteration |
---|
947 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
948 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
949 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
950 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
951 | !$ACC PRESENT(surf) |
---|
952 | DO m = 1, surf%ns |
---|
953 | |
---|
954 | i = surf%i(m) |
---|
955 | j = surf%j(m) |
---|
956 | |
---|
957 | z_mo = surf%z_mo(m) |
---|
958 | |
---|
959 | ! |
---|
960 | !-- Store current value in case the Newton iteration fails |
---|
961 | ol_old = surf%ol(m) |
---|
962 | |
---|
963 | ! |
---|
964 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
965 | !-- length have the same sign |
---|
966 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
967 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
968 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
969 | ENDIF |
---|
970 | ! |
---|
971 | !-- Iteration to find Obukhov length |
---|
972 | iter = 0 |
---|
973 | DO |
---|
974 | iter = iter + 1 |
---|
975 | ! |
---|
976 | !-- In case of divergence, use the value of the previous time step |
---|
977 | IF ( iter > 1000 ) THEN |
---|
978 | surf%ol(m) = ol_old |
---|
979 | EXIT |
---|
980 | ENDIF |
---|
981 | |
---|
982 | ol_m = surf%ol(m) |
---|
983 | ol_l = ol_m - 0.001_wp * ol_m |
---|
984 | ol_u = ol_m + 0.001_wp * ol_m |
---|
985 | |
---|
986 | |
---|
987 | IF ( ibc_pt_b /= 1 ) THEN |
---|
988 | ! |
---|
989 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
990 | f = surf%rib(m) - ( z_mo / ol_m ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
991 | - psi_h( z_mo / ol_m ) & |
---|
992 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
993 | ) / & |
---|
994 | ( LOG( z_mo / surf%z0(m) ) & |
---|
995 | - psi_m( z_mo / ol_m ) & |
---|
996 | + psi_m( surf%z0(m) / ol_m ) & |
---|
997 | )**2 |
---|
998 | |
---|
999 | ! |
---|
1000 | !-- Calculate df/dL |
---|
1001 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
1002 | - psi_h( z_mo / ol_u ) & |
---|
1003 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
1004 | ) / & |
---|
1005 | ( LOG( z_mo / surf%z0(m) ) & |
---|
1006 | - psi_m( z_mo / ol_u ) & |
---|
1007 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1008 | )**2 & |
---|
1009 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
1010 | - psi_h( z_mo / ol_l ) & |
---|
1011 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
1012 | ) / & |
---|
1013 | ( LOG( z_mo / surf%z0(m) ) & |
---|
1014 | - psi_m( z_mo / ol_l ) & |
---|
1015 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1016 | )**2 & |
---|
1017 | ) / ( ol_u - ol_l ) |
---|
1018 | ELSE |
---|
1019 | ! |
---|
1020 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
1021 | f = surf%rib(m) - ( z_mo / ol_m ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
1022 | - psi_m( z_mo / ol_m ) & |
---|
1023 | + psi_m( surf%z0(m) / ol_m ) & |
---|
1024 | )**3 |
---|
1025 | |
---|
1026 | ! |
---|
1027 | !-- Calculate df/dL |
---|
1028 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
1029 | - psi_m( z_mo / ol_u ) & |
---|
1030 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1031 | )**3 & |
---|
1032 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
1033 | - psi_m( z_mo / ol_l ) & |
---|
1034 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1035 | )**3 & |
---|
1036 | ) / ( ol_u - ol_l ) |
---|
1037 | ENDIF |
---|
1038 | ! |
---|
1039 | !-- Calculate new L |
---|
1040 | surf%ol(m) = ol_m - f / f_d_ol |
---|
1041 | |
---|
1042 | ! |
---|
1043 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
1044 | !-- length have the same sign and ensure convergence. |
---|
1045 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
1046 | ! |
---|
1047 | !-- If unrealistic value occurs, set L to the maximum |
---|
1048 | !-- value that is allowed |
---|
1049 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
1050 | surf%ol(m) = ol_max |
---|
1051 | EXIT |
---|
1052 | ENDIF |
---|
1053 | ! |
---|
1054 | !-- Assure that Obukhov length does not become zero. If the limit is |
---|
1055 | !-- reached, exit the loop. |
---|
1056 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
1057 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
1058 | EXIT |
---|
1059 | ENDIF |
---|
1060 | ! |
---|
1061 | !-- Check for convergence |
---|
1062 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
1063 | |
---|
1064 | ENDDO |
---|
1065 | ENDDO |
---|
1066 | |
---|
1067 | ! |
---|
1068 | !-- Vector Version |
---|
1069 | ELSE |
---|
1070 | ! |
---|
1071 | !-- Calculate the Obukhov length using Newton iteration |
---|
1072 | !-- First set arrays required for vectorization |
---|
1073 | !$ACC PARALLEL LOOP & |
---|
1074 | !$ACC PRESENT(surf) |
---|
1075 | DO m = 1, surf%ns |
---|
1076 | |
---|
1077 | z_mo_vec(m) = surf%z_mo(m) |
---|
1078 | |
---|
1079 | ! |
---|
1080 | !-- Store current value in case the Newton iteration fails |
---|
1081 | ol_old_vec(m) = surf%ol(m) |
---|
1082 | |
---|
1083 | ! |
---|
1084 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
1085 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
1086 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
1087 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
1088 | ENDIF |
---|
1089 | ! |
---|
1090 | !-- Initialize convergence flag |
---|
1091 | convergence_reached(m) = .FALSE. |
---|
1092 | |
---|
1093 | ENDDO |
---|
1094 | |
---|
1095 | ! |
---|
1096 | !-- Iteration to find Obukhov length |
---|
1097 | iter = 0 |
---|
1098 | DO |
---|
1099 | |
---|
1100 | iter = iter + 1 |
---|
1101 | ! |
---|
1102 | !-- In case of divergence, use the value(s) of the previous time step |
---|
1103 | IF ( iter > 1000 ) THEN |
---|
1104 | !$ACC PARALLEL LOOP & |
---|
1105 | !$ACC PRESENT(surf) |
---|
1106 | DO m = 1, surf%ns |
---|
1107 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
1108 | ENDDO |
---|
1109 | EXIT |
---|
1110 | ENDIF |
---|
1111 | |
---|
1112 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
1113 | !$ACC PRESENT(surf) |
---|
1114 | DO m = 1, surf%ns |
---|
1115 | |
---|
1116 | IF ( convergence_reached(m) ) CYCLE |
---|
1117 | |
---|
1118 | ol_m = surf%ol(m) |
---|
1119 | ol_l = ol_m - 0.001_wp * ol_m |
---|
1120 | ol_u = ol_m + 0.001_wp * ol_m |
---|
1121 | |
---|
1122 | |
---|
1123 | IF ( ibc_pt_b /= 1 ) THEN |
---|
1124 | ! |
---|
1125 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
1126 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
1127 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
1128 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
1129 | ) / & |
---|
1130 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
1131 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
1132 | + psi_m( surf%z0(m) / ol_m ) & |
---|
1133 | )**2 |
---|
1134 | |
---|
1135 | ! |
---|
1136 | !-- Calculate df/dL |
---|
1137 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
1138 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
1139 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
1140 | ) / & |
---|
1141 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
1142 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
1143 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1144 | )**2 & |
---|
1145 | + ( z_mo_vec(m) / ol_l ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
1146 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
1147 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
1148 | ) / & |
---|
1149 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
1150 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
1151 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1152 | )**2 & |
---|
1153 | ) / ( ol_u - ol_l ) |
---|
1154 | ELSE |
---|
1155 | ! |
---|
1156 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
1157 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
1158 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
1159 | + psi_m( surf%z0(m) / ol_m ) & |
---|
1160 | )**3 |
---|
1161 | |
---|
1162 | ! |
---|
1163 | !-- Calculate df/dL |
---|
1164 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
1165 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
1166 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1167 | )**3 & |
---|
1168 | + ( z_mo_vec(m) / ol_l ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
1169 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
1170 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1171 | )**3 & |
---|
1172 | ) / ( ol_u - ol_l ) |
---|
1173 | ENDIF |
---|
1174 | ! |
---|
1175 | !-- Calculate new L |
---|
1176 | surf%ol(m) = ol_m - f / f_d_ol |
---|
1177 | |
---|
1178 | ! |
---|
1179 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
1180 | !-- length have the same sign and ensure convergence. |
---|
1181 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
1182 | |
---|
1183 | ! |
---|
1184 | !-- Check for convergence |
---|
1185 | !-- This check does not modify surf%ol, therefore this is done first |
---|
1186 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
1187 | convergence_reached(m) = .TRUE. |
---|
1188 | ENDIF |
---|
1189 | ! |
---|
1190 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
1191 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
1192 | surf%ol(m) = ol_max |
---|
1193 | convergence_reached(m) = .TRUE. |
---|
1194 | ENDIF |
---|
1195 | |
---|
1196 | ENDDO |
---|
1197 | ! |
---|
1198 | !-- Assure that Obukhov length does not become zero |
---|
1199 | !$ACC PARALLEL LOOP & |
---|
1200 | !$ACC PRESENT(surf) |
---|
1201 | DO m = 1, surf%ns |
---|
1202 | IF ( convergence_reached(m) ) CYCLE |
---|
1203 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
1204 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
1205 | convergence_reached(m) = .TRUE. |
---|
1206 | ENDIF |
---|
1207 | ENDDO |
---|
1208 | |
---|
1209 | IF ( ALL( convergence_reached ) ) EXIT |
---|
1210 | |
---|
1211 | ENDDO ! end of iteration loop |
---|
1212 | |
---|
1213 | ENDIF ! end of vector branch |
---|
1214 | |
---|
1215 | END SUBROUTINE calc_ol |
---|
1216 | |
---|
1217 | ! |
---|
1218 | !-- Calculate friction velocity u* |
---|
1219 | SUBROUTINE calc_us |
---|
1220 | |
---|
1221 | IMPLICIT NONE |
---|
1222 | |
---|
1223 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1224 | |
---|
1225 | ! |
---|
1226 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
1227 | IF ( .NOT. surf_vertical ) THEN |
---|
1228 | ! |
---|
1229 | !-- Compute u* at upward-facing surfaces |
---|
1230 | IF ( .NOT. downward ) THEN |
---|
1231 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1232 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
1233 | !$ACC PRESENT(surf) |
---|
1234 | DO m = 1, surf%ns |
---|
1235 | |
---|
1236 | z_mo = surf%z_mo(m) |
---|
1237 | ! |
---|
1238 | !-- Compute u* at the scalars' grid points |
---|
1239 | surf%us(m) = kappa * surf%uvw_abs(m) / & |
---|
1240 | ( LOG( z_mo / surf%z0(m) ) & |
---|
1241 | - psi_m( z_mo / surf%ol(m) ) & |
---|
1242 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
1243 | |
---|
1244 | ENDDO |
---|
1245 | ! |
---|
1246 | !-- Compute u* at downward-facing surfaces. This case, do not consider |
---|
1247 | !-- any stability. |
---|
1248 | ELSE |
---|
1249 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1250 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
1251 | !$ACC PRESENT(surf) |
---|
1252 | DO m = 1, surf%ns |
---|
1253 | |
---|
1254 | z_mo = surf%z_mo(m) |
---|
1255 | ! |
---|
1256 | !-- Compute u* at the scalars' grid points |
---|
1257 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
1258 | |
---|
1259 | ENDDO |
---|
1260 | ENDIF |
---|
1261 | ! |
---|
1262 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
1263 | !-- No stability is considered in this case. |
---|
1264 | ELSE |
---|
1265 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1266 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
1267 | !$ACC PRESENT(surf) |
---|
1268 | DO m = 1, surf%ns |
---|
1269 | z_mo = surf%z_mo(m) |
---|
1270 | |
---|
1271 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
1272 | ENDDO |
---|
1273 | ENDIF |
---|
1274 | |
---|
1275 | END SUBROUTINE calc_us |
---|
1276 | |
---|
1277 | ! |
---|
1278 | !-- Calculate potential temperature, specific humidity, and virtual potential |
---|
1279 | !-- temperature at first grid level |
---|
1280 | SUBROUTINE calc_pt_q |
---|
1281 | |
---|
1282 | IMPLICIT NONE |
---|
1283 | |
---|
1284 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1285 | |
---|
1286 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1287 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
1288 | !$ACC PRESENT(surf, pt) |
---|
1289 | DO m = 1, surf%ns |
---|
1290 | |
---|
1291 | i = surf%i(m) |
---|
1292 | j = surf%j(m) |
---|
1293 | k = surf%k(m) |
---|
1294 | |
---|
1295 | #ifndef _OPENACC |
---|
1296 | IF ( bulk_cloud_model ) THEN |
---|
1297 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
1298 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
1299 | ELSEIF( cloud_droplets ) THEN |
---|
1300 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
1301 | surf%qv1(m) = q(k,j,i) |
---|
1302 | ELSE |
---|
1303 | #endif |
---|
1304 | surf%pt1(m) = pt(k,j,i) |
---|
1305 | #ifndef _OPENACC |
---|
1306 | IF ( humidity ) THEN |
---|
1307 | surf%qv1(m) = q(k,j,i) |
---|
1308 | ELSE |
---|
1309 | #endif |
---|
1310 | surf%qv1(m) = 0.0_wp |
---|
1311 | #ifndef _OPENACC |
---|
1312 | ENDIF |
---|
1313 | ENDIF |
---|
1314 | |
---|
1315 | IF ( humidity ) THEN |
---|
1316 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
1317 | ENDIF |
---|
1318 | #endif |
---|
1319 | |
---|
1320 | ENDDO |
---|
1321 | |
---|
1322 | END SUBROUTINE calc_pt_q |
---|
1323 | |
---|
1324 | |
---|
1325 | ! |
---|
1326 | !-- Set potential temperature at surface grid level. |
---|
1327 | !-- ( only for upward-facing surfs ) |
---|
1328 | SUBROUTINE calc_pt_surface |
---|
1329 | |
---|
1330 | IMPLICIT NONE |
---|
1331 | |
---|
1332 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
1333 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1334 | |
---|
1335 | k_off = surf%koff |
---|
1336 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1337 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
1338 | !$ACC PRESENT(surf, pt) |
---|
1339 | DO m = 1, surf%ns |
---|
1340 | |
---|
1341 | i = surf%i(m) |
---|
1342 | j = surf%j(m) |
---|
1343 | k = surf%k(m) |
---|
1344 | |
---|
1345 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
1346 | |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | END SUBROUTINE calc_pt_surface |
---|
1350 | |
---|
1351 | ! |
---|
1352 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
1353 | SUBROUTINE calc_q_surface |
---|
1354 | |
---|
1355 | IMPLICIT NONE |
---|
1356 | |
---|
1357 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
1358 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1359 | |
---|
1360 | k_off = surf%koff |
---|
1361 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1362 | DO m = 1, surf%ns |
---|
1363 | |
---|
1364 | i = surf%i(m) |
---|
1365 | j = surf%j(m) |
---|
1366 | k = surf%k(m) |
---|
1367 | |
---|
1368 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
1369 | |
---|
1370 | ENDDO |
---|
1371 | |
---|
1372 | END SUBROUTINE calc_q_surface |
---|
1373 | |
---|
1374 | ! |
---|
1375 | !-- Set virtual potential temperature at surface grid level. |
---|
1376 | !-- ( only for upward-facing surfs ) |
---|
1377 | SUBROUTINE calc_vpt_surface |
---|
1378 | |
---|
1379 | IMPLICIT NONE |
---|
1380 | |
---|
1381 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
1382 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1383 | |
---|
1384 | k_off = surf%koff |
---|
1385 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1386 | DO m = 1, surf%ns |
---|
1387 | |
---|
1388 | i = surf%i(m) |
---|
1389 | j = surf%j(m) |
---|
1390 | k = surf%k(m) |
---|
1391 | |
---|
1392 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
1393 | |
---|
1394 | ENDDO |
---|
1395 | |
---|
1396 | END SUBROUTINE calc_vpt_surface |
---|
1397 | |
---|
1398 | ! |
---|
1399 | !-- Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
1400 | SUBROUTINE calc_scaling_parameters |
---|
1401 | |
---|
1402 | IMPLICIT NONE |
---|
1403 | |
---|
1404 | |
---|
1405 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1406 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
1407 | ! |
---|
1408 | !-- Compute theta* at horizontal surfaces |
---|
1409 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
1410 | ! |
---|
1411 | !-- For a given heat flux in the surface layer: |
---|
1412 | |
---|
1413 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1414 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
1415 | !$ACC PRESENT(surf, drho_air_zw) |
---|
1416 | DO m = 1, surf%ns |
---|
1417 | |
---|
1418 | i = surf%i(m) |
---|
1419 | j = surf%j(m) |
---|
1420 | k = surf%k(m) |
---|
1421 | |
---|
1422 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / & |
---|
1423 | ( surf%us(m) + 1E-30_wp ) |
---|
1424 | |
---|
1425 | ! |
---|
1426 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
1427 | !-- of us=0 when computing ol further below |
---|
1428 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
1429 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
1430 | |
---|
1431 | ENDDO |
---|
1432 | |
---|
1433 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
1434 | ! |
---|
1435 | !-- For a given surface temperature: |
---|
1436 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1437 | |
---|
1438 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1439 | DO m = 1, surf%ns |
---|
1440 | i = surf%i(m) |
---|
1441 | j = surf%j(m) |
---|
1442 | k = surf%k(m) |
---|
1443 | |
---|
1444 | pt(k-1,j,i) = pt_surface |
---|
1445 | ENDDO |
---|
1446 | ENDIF |
---|
1447 | |
---|
1448 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1449 | DO m = 1, surf%ns |
---|
1450 | |
---|
1451 | z_mo = surf%z_mo(m) |
---|
1452 | |
---|
1453 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
1454 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
1455 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1456 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
1457 | |
---|
1458 | ENDDO |
---|
1459 | |
---|
1460 | ENDIF |
---|
1461 | ! |
---|
1462 | !-- Compute theta* at vertical surfaces. This is only required in case of |
---|
1463 | !-- land-surface model, in order to compute aerodynamical resistance. |
---|
1464 | IF ( surf_vertical ) THEN |
---|
1465 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1466 | DO m = 1, surf%ns |
---|
1467 | |
---|
1468 | i = surf%i(m) |
---|
1469 | j = surf%j(m) |
---|
1470 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1471 | ! |
---|
1472 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
1473 | !-- of us=0 when computing ol further below |
---|
1474 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
1475 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
1476 | |
---|
1477 | ENDDO |
---|
1478 | ENDIF |
---|
1479 | |
---|
1480 | ! |
---|
1481 | !-- If required compute q* at horizontal surfaces |
---|
1482 | IF ( humidity ) THEN |
---|
1483 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
1484 | ! |
---|
1485 | !-- For a given water flux in the surface layer |
---|
1486 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1487 | DO m = 1, surf%ns |
---|
1488 | |
---|
1489 | i = surf%i(m) |
---|
1490 | j = surf%j(m) |
---|
1491 | k = surf%k(m) |
---|
1492 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / & |
---|
1493 | ( surf%us(m) + 1E-30_wp ) |
---|
1494 | |
---|
1495 | ENDDO |
---|
1496 | |
---|
1497 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
1498 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
1499 | run_coupled ) |
---|
1500 | |
---|
1501 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1502 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1503 | DO m = 1, surf%ns |
---|
1504 | |
---|
1505 | i = surf%i(m) |
---|
1506 | j = surf%j(m) |
---|
1507 | k = surf%k(m) |
---|
1508 | q(k-1,j,i) = q_surface |
---|
1509 | |
---|
1510 | ENDDO |
---|
1511 | ENDIF |
---|
1512 | |
---|
1513 | ! |
---|
1514 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
1515 | !-- in case of precursor runs) |
---|
1516 | IF ( coupled_run ) THEN |
---|
1517 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
1518 | DO m = 1, surf%ns |
---|
1519 | i = surf%i(m) |
---|
1520 | j = surf%j(m) |
---|
1521 | k = surf%k(m) |
---|
1522 | e_s = 6.1_wp * & |
---|
1523 | EXP( 0.07_wp * ( MIN(pt(k-1,j,i),pt(k,j,i)) & |
---|
1524 | - 273.15_wp ) ) |
---|
1525 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
1526 | ENDDO |
---|
1527 | ENDIF |
---|
1528 | |
---|
1529 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
1530 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1531 | DO m = 1, surf%ns |
---|
1532 | |
---|
1533 | i = surf%i(m) |
---|
1534 | j = surf%j(m) |
---|
1535 | k = surf%k(m) |
---|
1536 | |
---|
1537 | z_mo = surf%z_mo(m) |
---|
1538 | |
---|
1539 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
1540 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
1541 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1542 | + psi_h( surf%z0q(m) / & |
---|
1543 | surf%ol(m) ) ) |
---|
1544 | ENDDO |
---|
1545 | ELSE |
---|
1546 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1547 | DO m = 1, surf%ns |
---|
1548 | |
---|
1549 | i = surf%i(m) |
---|
1550 | j = surf%j(m) |
---|
1551 | k = surf%k(m) |
---|
1552 | |
---|
1553 | z_mo = surf%z_mo(m) |
---|
1554 | |
---|
1555 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
1556 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
1557 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1558 | + psi_h( surf%z0q(m) / & |
---|
1559 | surf%ol(m) ) ) |
---|
1560 | ENDDO |
---|
1561 | ENDIF |
---|
1562 | ENDIF |
---|
1563 | ! |
---|
1564 | !-- Compute q* at vertical surfaces |
---|
1565 | IF ( surf_vertical ) THEN |
---|
1566 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1567 | DO m = 1, surf%ns |
---|
1568 | |
---|
1569 | i = surf%i(m) |
---|
1570 | j = surf%j(m) |
---|
1571 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1572 | |
---|
1573 | ENDDO |
---|
1574 | ENDIF |
---|
1575 | ENDIF |
---|
1576 | |
---|
1577 | ! |
---|
1578 | !-- If required compute s* |
---|
1579 | IF ( passive_scalar ) THEN |
---|
1580 | ! |
---|
1581 | !-- At horizontal surfaces |
---|
1582 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
1583 | ! |
---|
1584 | !-- For a given scalar flux in the surface layer |
---|
1585 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1586 | DO m = 1, surf%ns |
---|
1587 | i = surf%i(m) |
---|
1588 | j = surf%j(m) |
---|
1589 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1590 | ENDDO |
---|
1591 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
1592 | |
---|
1593 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1594 | DO m = 1, surf%ns |
---|
1595 | i = surf%i(m) |
---|
1596 | j = surf%j(m) |
---|
1597 | k = surf%k(m) |
---|
1598 | z_mo = surf%z_mo(m) |
---|
1599 | |
---|
1600 | surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & |
---|
1601 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
1602 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1603 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
1604 | |
---|
1605 | ENDDO |
---|
1606 | ENDIF |
---|
1607 | ! |
---|
1608 | !-- At vertical surfaces |
---|
1609 | IF ( surf_vertical ) THEN |
---|
1610 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1611 | DO m = 1, surf%ns |
---|
1612 | i = surf%i(m) |
---|
1613 | j = surf%j(m) |
---|
1614 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1615 | ENDDO |
---|
1616 | ENDIF |
---|
1617 | ENDIF |
---|
1618 | |
---|
1619 | ! |
---|
1620 | !-- If required compute cs* (chemical species) |
---|
1621 | IF ( air_chemistry ) THEN |
---|
1622 | ! |
---|
1623 | !-- At horizontal surfaces |
---|
1624 | DO lsp = 1, nvar |
---|
1625 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
1626 | !-- For a given chemical species' flux in the surface layer |
---|
1627 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1628 | DO m = 1, surf%ns |
---|
1629 | i = surf%i(m) |
---|
1630 | j = surf%j(m) |
---|
1631 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
1632 | ENDDO |
---|
1633 | ENDIF |
---|
1634 | ENDDO |
---|
1635 | ! |
---|
1636 | !-- At vertical surfaces |
---|
1637 | IF ( surf_vertical ) THEN |
---|
1638 | DO lsp = 1, nvar |
---|
1639 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1640 | DO m = 1, surf%ns |
---|
1641 | i = surf%i(m) |
---|
1642 | j = surf%j(m) |
---|
1643 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
1644 | ENDDO |
---|
1645 | ENDDO |
---|
1646 | ENDIF |
---|
1647 | ENDIF |
---|
1648 | |
---|
1649 | ! |
---|
1650 | !-- If required compute qc* and nc* |
---|
1651 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
1652 | .NOT. surf_vertical ) THEN |
---|
1653 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1654 | DO m = 1, surf%ns |
---|
1655 | |
---|
1656 | i = surf%i(m) |
---|
1657 | j = surf%j(m) |
---|
1658 | k = surf%k(m) |
---|
1659 | |
---|
1660 | z_mo = surf%z_mo(m) |
---|
1661 | |
---|
1662 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
1663 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
1664 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1665 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1666 | |
---|
1667 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
1668 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
1669 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1670 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1671 | ENDDO |
---|
1672 | |
---|
1673 | ENDIF |
---|
1674 | |
---|
1675 | ! |
---|
1676 | !-- If required compute qr* and nr* |
---|
1677 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
1678 | .NOT. surf_vertical ) THEN |
---|
1679 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1680 | DO m = 1, surf%ns |
---|
1681 | |
---|
1682 | i = surf%i(m) |
---|
1683 | j = surf%j(m) |
---|
1684 | k = surf%k(m) |
---|
1685 | |
---|
1686 | z_mo = surf%z_mo(m) |
---|
1687 | |
---|
1688 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
1689 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
1690 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1691 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1692 | |
---|
1693 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
1694 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
1695 | - psi_h( z_mo / surf%ol(m) ) & |
---|
1696 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1697 | ENDDO |
---|
1698 | |
---|
1699 | ENDIF |
---|
1700 | |
---|
1701 | END SUBROUTINE calc_scaling_parameters |
---|
1702 | |
---|
1703 | |
---|
1704 | |
---|
1705 | ! |
---|
1706 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
1707 | SUBROUTINE calc_surface_fluxes |
---|
1708 | |
---|
1709 | IMPLICIT NONE |
---|
1710 | |
---|
1711 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1712 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
1713 | |
---|
1714 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
1715 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
1716 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
1717 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
1718 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
1719 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
1720 | |
---|
1721 | ! |
---|
1722 | !-- Calcuate surface fluxes at horizontal walls |
---|
1723 | IF ( .NOT. surf_vertical ) THEN |
---|
1724 | ! |
---|
1725 | !-- Compute u'w' for the total model domain at upward-facing surfaces. |
---|
1726 | !-- First compute the corresponding component of u* and square it. |
---|
1727 | IF ( .NOT. downward ) THEN |
---|
1728 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1729 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
1730 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
1731 | DO m = 1, surf%ns |
---|
1732 | |
---|
1733 | i = surf%i(m) |
---|
1734 | j = surf%j(m) |
---|
1735 | k = surf%k(m) |
---|
1736 | |
---|
1737 | z_mo = surf%z_mo(m) |
---|
1738 | |
---|
1739 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
1740 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
1741 | - psi_m( z_mo / surf%ol(m) ) & |
---|
1742 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
1743 | ! |
---|
1744 | !-- Please note, the computation of usws is not fully accurate. Actually |
---|
1745 | !-- a further interpolation of us onto the u-grid, where usws is defined, |
---|
1746 | !-- is required. However, this is not done as this would require several |
---|
1747 | !-- data transfers between 2D-grid and the surf-type. |
---|
1748 | !-- The impact of the missing interpolation is negligible as several |
---|
1749 | !-- tests had shown. |
---|
1750 | !-- Same also for ol. |
---|
1751 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1752 | |
---|
1753 | ENDDO |
---|
1754 | ! |
---|
1755 | !-- At downward-facing surfaces |
---|
1756 | ELSE |
---|
1757 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1758 | DO m = 1, surf%ns |
---|
1759 | |
---|
1760 | i = surf%i(m) |
---|
1761 | j = surf%j(m) |
---|
1762 | k = surf%k(m) |
---|
1763 | |
---|
1764 | z_mo = surf%z_mo(m) |
---|
1765 | |
---|
1766 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
1767 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
1768 | |
---|
1769 | ENDDO |
---|
1770 | ENDIF |
---|
1771 | |
---|
1772 | ! |
---|
1773 | !-- Compute v'w' for the total model domain. |
---|
1774 | !-- First compute the corresponding component of u* and square it. |
---|
1775 | !-- Upward-facing surfaces |
---|
1776 | IF ( .NOT. downward ) THEN |
---|
1777 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1778 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
1779 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
1780 | DO m = 1, surf%ns |
---|
1781 | i = surf%i(m) |
---|
1782 | j = surf%j(m) |
---|
1783 | k = surf%k(m) |
---|
1784 | |
---|
1785 | z_mo = surf%z_mo(m) |
---|
1786 | |
---|
1787 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
1788 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
1789 | - psi_m( z_mo / surf%ol(m) ) & |
---|
1790 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
1791 | ! |
---|
1792 | !-- Please note, the computation of vsws is not fully accurate. Actually |
---|
1793 | !-- a further interpolation of us onto the v-grid, where vsws is defined, |
---|
1794 | !-- is required. However, this is not done as this would require several |
---|
1795 | !-- data transfers between 2D-grid and the surf-type. |
---|
1796 | !-- The impact of the missing interpolation is negligible as several |
---|
1797 | !-- tests had shown. |
---|
1798 | !-- Same also for ol. |
---|
1799 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1800 | ENDDO |
---|
1801 | ! |
---|
1802 | !-- Downward-facing surfaces |
---|
1803 | ELSE |
---|
1804 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1805 | DO m = 1, surf%ns |
---|
1806 | i = surf%i(m) |
---|
1807 | j = surf%j(m) |
---|
1808 | k = surf%k(m) |
---|
1809 | |
---|
1810 | z_mo = surf%z_mo(m) |
---|
1811 | |
---|
1812 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
1813 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
1814 | ENDDO |
---|
1815 | ENDIF |
---|
1816 | ! |
---|
1817 | !-- Compute the vertical kinematic heat flux |
---|
1818 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point& |
---|
1819 | <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) .OR. & |
---|
1820 | .NOT. land_surface ) .AND. .NOT. urban_surface .AND. & |
---|
1821 | .NOT. downward ) THEN |
---|
1822 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1823 | DO m = 1, surf%ns |
---|
1824 | i = surf%i(m) |
---|
1825 | j = surf%j(m) |
---|
1826 | k = surf%k(m) |
---|
1827 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1828 | ENDDO |
---|
1829 | ENDIF |
---|
1830 | ! |
---|
1831 | !-- Compute the vertical water flux |
---|
1832 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
1833 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. & |
---|
1834 | simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
1835 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
1836 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1837 | DO m = 1, surf%ns |
---|
1838 | i = surf%i(m) |
---|
1839 | j = surf%j(m) |
---|
1840 | k = surf%k(m) |
---|
1841 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1842 | ENDDO |
---|
1843 | ENDIF |
---|
1844 | ! |
---|
1845 | !-- Compute the vertical scalar flux |
---|
1846 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. & |
---|
1847 | .NOT. downward ) THEN |
---|
1848 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1849 | DO m = 1, surf%ns |
---|
1850 | |
---|
1851 | i = surf%i(m) |
---|
1852 | j = surf%j(m) |
---|
1853 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
1854 | |
---|
1855 | ENDDO |
---|
1856 | ENDIF |
---|
1857 | ! |
---|
1858 | !-- Compute the vertical chemical species' flux |
---|
1859 | DO lsp = 1, nvar |
---|
1860 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. & |
---|
1861 | .NOT. downward ) THEN |
---|
1862 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1863 | DO m = 1, surf%ns |
---|
1864 | i = surf%i(m) |
---|
1865 | j = surf%j(m) |
---|
1866 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) |
---|
1867 | ENDDO |
---|
1868 | ENDIF |
---|
1869 | ENDDO |
---|
1870 | |
---|
1871 | ! |
---|
1872 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
1873 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
1874 | .NOT. downward) THEN |
---|
1875 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1876 | DO m = 1, surf%ns |
---|
1877 | |
---|
1878 | i = surf%i(m) |
---|
1879 | j = surf%j(m) |
---|
1880 | |
---|
1881 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) |
---|
1882 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) |
---|
1883 | ENDDO |
---|
1884 | ENDIF |
---|
1885 | ! |
---|
1886 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
1887 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
1888 | .NOT. downward) THEN |
---|
1889 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1890 | DO m = 1, surf%ns |
---|
1891 | |
---|
1892 | i = surf%i(m) |
---|
1893 | j = surf%j(m) |
---|
1894 | |
---|
1895 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
1896 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
1897 | ENDDO |
---|
1898 | ENDIF |
---|
1899 | |
---|
1900 | ! |
---|
1901 | !-- Bottom boundary condition for the TKE. |
---|
1902 | IF ( ibc_e_b == 2 ) THEN |
---|
1903 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1904 | DO m = 1, surf%ns |
---|
1905 | |
---|
1906 | i = surf%i(m) |
---|
1907 | j = surf%j(m) |
---|
1908 | k = surf%k(m) |
---|
1909 | |
---|
1910 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
1911 | ! |
---|
1912 | !-- As a test: cm = 0.4 |
---|
1913 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
1914 | e(k-1,j,i) = e(k,j,i) |
---|
1915 | |
---|
1916 | ENDDO |
---|
1917 | ENDIF |
---|
1918 | ! |
---|
1919 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
1920 | ELSE |
---|
1921 | ! |
---|
1922 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
1923 | IF ( mom_uv ) THEN |
---|
1924 | ! |
---|
1925 | !-- Generalize computation by introducing flags. At north- and south- |
---|
1926 | !-- facing surfaces u-component is used, at east- and west-facing |
---|
1927 | !-- surfaces v-component is used. |
---|
1928 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
1929 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
1930 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1931 | DO m = 1, surf%ns |
---|
1932 | i = surf%i(m) |
---|
1933 | j = surf%j(m) |
---|
1934 | k = surf%k(m) |
---|
1935 | |
---|
1936 | z_mo = surf%z_mo(m) |
---|
1937 | |
---|
1938 | surf%mom_flux_uv(m) = kappa * & |
---|
1939 | ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
1940 | LOG( z_mo / surf%z0(m) ) |
---|
1941 | |
---|
1942 | surf%mom_flux_uv(m) = & |
---|
1943 | - surf%mom_flux_uv(m) * surf%us(m) |
---|
1944 | ENDDO |
---|
1945 | ENDIF |
---|
1946 | ! |
---|
1947 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
1948 | IF ( mom_w ) THEN |
---|
1949 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1950 | DO m = 1, surf%ns |
---|
1951 | i = surf%i(m) |
---|
1952 | j = surf%j(m) |
---|
1953 | k = surf%k(m) |
---|
1954 | |
---|
1955 | z_mo = surf%z_mo(m) |
---|
1956 | |
---|
1957 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
1958 | |
---|
1959 | surf%mom_flux_w(m) = & |
---|
1960 | - surf%mom_flux_w(m) * surf%us(m) |
---|
1961 | ENDDO |
---|
1962 | ENDIF |
---|
1963 | ! |
---|
1964 | !-- Compute momentum fluxes used for subgrid-scale TKE production at |
---|
1965 | !-- vertical surfaces. In constrast to the calculated momentum fluxes at |
---|
1966 | !-- vertical surfaces before, which are defined on the u/v/w-grid, |
---|
1967 | !-- respectively), the TKE fluxes are defined at the scalar grid. |
---|
1968 | !-- |
---|
1969 | IF ( mom_tke ) THEN |
---|
1970 | ! |
---|
1971 | !-- Precalculate velocity components at scalar grid point. |
---|
1972 | ALLOCATE( u_i(1:surf%ns) ) |
---|
1973 | ALLOCATE( v_i(1:surf%ns) ) |
---|
1974 | ALLOCATE( w_i(1:surf%ns) ) |
---|
1975 | |
---|
1976 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
1977 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1978 | DO m = 1, surf%ns |
---|
1979 | i = surf%i(m) |
---|
1980 | j = surf%j(m) |
---|
1981 | k = surf%k(m) |
---|
1982 | |
---|
1983 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
1984 | v_i(m) = 0.0_wp |
---|
1985 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
1986 | ENDDO |
---|
1987 | ELSE |
---|
1988 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1989 | DO m = 1, surf%ns |
---|
1990 | i = surf%i(m) |
---|
1991 | j = surf%j(m) |
---|
1992 | k = surf%k(m) |
---|
1993 | |
---|
1994 | u_i(m) = 0.0_wp |
---|
1995 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
1996 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
1997 | ENDDO |
---|
1998 | ENDIF |
---|
1999 | |
---|
2000 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
2001 | DO m = 1, surf%ns |
---|
2002 | i = surf%i(m) |
---|
2003 | j = surf%j(m) |
---|
2004 | |
---|
2005 | z_mo = surf%z_mo(m) |
---|
2006 | |
---|
2007 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
2008 | ! |
---|
2009 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
2010 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
2011 | ! |
---|
2012 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
2013 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
2014 | |
---|
2015 | surf%mom_flux_tke(0:1,m) = & |
---|
2016 | - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
2017 | ENDDO |
---|
2018 | ! |
---|
2019 | !-- Deallocate temporary arrays |
---|
2020 | DEALLOCATE( u_i ) |
---|
2021 | DEALLOCATE( v_i ) |
---|
2022 | DEALLOCATE( w_i ) |
---|
2023 | ENDIF |
---|
2024 | ENDIF |
---|
2025 | |
---|
2026 | END SUBROUTINE calc_surface_fluxes |
---|
2027 | |
---|
2028 | |
---|
2029 | !------------------------------------------------------------------------------! |
---|
2030 | ! Description: |
---|
2031 | ! ------------ |
---|
2032 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m |
---|
2033 | !> temperature for output |
---|
2034 | !------------------------------------------------------------------------------! |
---|
2035 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
2036 | |
---|
2037 | IMPLICIT NONE |
---|
2038 | |
---|
2039 | CHARACTER (LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
2040 | INTEGER(iwp) :: i !< grid index x-dimension |
---|
2041 | INTEGER(iwp) :: j !< grid index y-dimension |
---|
2042 | INTEGER(iwp) :: k !< grid index z-dimension |
---|
2043 | INTEGER(iwp) :: m !< running index for surface elements |
---|
2044 | |
---|
2045 | |
---|
2046 | SELECT CASE ( z_char) |
---|
2047 | |
---|
2048 | |
---|
2049 | CASE ( '10cm' ) |
---|
2050 | |
---|
2051 | DO m = 1, surf%ns |
---|
2052 | |
---|
2053 | i = surf%i(m) |
---|
2054 | j = surf%j(m) |
---|
2055 | k = surf%k(m) |
---|
2056 | |
---|
2057 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
2058 | * ( LOG( 0.1_wp / surf%z0h(m) ) & |
---|
2059 | - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
2060 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
2061 | |
---|
2062 | ENDDO |
---|
2063 | |
---|
2064 | END SELECT |
---|
2065 | |
---|
2066 | END SUBROUTINE calc_pt_near_surface |
---|
2067 | |
---|
2068 | |
---|
2069 | ! |
---|
2070 | !-- Integrated stability function for momentum |
---|
2071 | FUNCTION psi_m( zeta ) |
---|
2072 | !$ACC ROUTINE SEQ |
---|
2073 | |
---|
2074 | USE kinds |
---|
2075 | |
---|
2076 | IMPLICIT NONE |
---|
2077 | |
---|
2078 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
2079 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
2080 | REAL(wp) :: x !< dummy variable |
---|
2081 | |
---|
2082 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
2083 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
2084 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
2085 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
2086 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
2087 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
2088 | |
---|
2089 | |
---|
2090 | IF ( zeta < 0.0_wp ) THEN |
---|
2091 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
2092 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
2093 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
2094 | ELSE |
---|
2095 | |
---|
2096 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
2097 | - bc_d_d |
---|
2098 | ! |
---|
2099 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
2100 | !-- psi_m = - 5.0_wp * zeta |
---|
2101 | |
---|
2102 | ENDIF |
---|
2103 | |
---|
2104 | END FUNCTION psi_m |
---|
2105 | |
---|
2106 | |
---|
2107 | ! |
---|
2108 | !-- Integrated stability function for heat and moisture |
---|
2109 | FUNCTION psi_h( zeta ) |
---|
2110 | !$ACC ROUTINE SEQ |
---|
2111 | |
---|
2112 | USE kinds |
---|
2113 | |
---|
2114 | IMPLICIT NONE |
---|
2115 | |
---|
2116 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
2117 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
2118 | REAL(wp) :: x !< dummy variable |
---|
2119 | |
---|
2120 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
2121 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
2122 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
2123 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
2124 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
2125 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
2126 | |
---|
2127 | |
---|
2128 | IF ( zeta < 0.0_wp ) THEN |
---|
2129 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
2130 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
2131 | ELSE |
---|
2132 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
2133 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
2134 | + 1.0_wp |
---|
2135 | ! |
---|
2136 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
2137 | !-- psi_h = - 5.0_wp * zeta |
---|
2138 | ENDIF |
---|
2139 | |
---|
2140 | END FUNCTION psi_h |
---|
2141 | |
---|
2142 | |
---|
2143 | !------------------------------------------------------------------------------! |
---|
2144 | ! Description: |
---|
2145 | ! ------------ |
---|
2146 | !> Calculates stability function for momentum |
---|
2147 | !> |
---|
2148 | !> @author Hauke Wurps |
---|
2149 | !------------------------------------------------------------------------------! |
---|
2150 | FUNCTION phi_m( zeta ) |
---|
2151 | !$ACC ROUTINE SEQ |
---|
2152 | |
---|
2153 | IMPLICIT NONE |
---|
2154 | |
---|
2155 | REAL(wp) :: phi_m !< Value of the function |
---|
2156 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
2157 | |
---|
2158 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
2159 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
2160 | |
---|
2161 | IF ( zeta < 0.0_wp ) THEN |
---|
2162 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
2163 | ELSE |
---|
2164 | phi_m = 1.0_wp + c * zeta |
---|
2165 | ENDIF |
---|
2166 | |
---|
2167 | END FUNCTION phi_m |
---|
2168 | |
---|
2169 | END MODULE surface_layer_fluxes_mod |
---|