[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[4562] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[4562] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1691] | 8 | ! |
---|
[4562] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1691] | 12 | ! |
---|
[4562] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1691] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4562] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 18 | ! |
---|
[2696] | 19 | ! |
---|
[1691] | 20 | ! Current revisions: |
---|
[4562] | 21 | ! ----------------- |
---|
[4593] | 22 | ! |
---|
[4691] | 23 | ! |
---|
[1692] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: surface_layer_fluxes_mod.f90 4750 2020-10-16 14:27:48Z raasch $ |
---|
[4750] | 27 | ! Revision of 10-cm temperature at vertical walls - assume grid-cell temperature rather than employ |
---|
| 28 | ! MOST |
---|
| 29 | ! |
---|
| 30 | ! 4717 2020-09-30 22:27:40Z pavelkrc |
---|
[4717] | 31 | ! Fixes and optimizations of OpenMP parallelization, formatting of OpenMP |
---|
| 32 | ! directives (J. Resler) |
---|
| 33 | ! |
---|
| 34 | ! 4691 2020-09-22 14:38:38Z suehring |
---|
[4691] | 35 | ! Bugfix for commit 4593 in vector branch of calc_ol |
---|
| 36 | ! |
---|
| 37 | ! 4671 2020-09-09 20:27:58Z pavelkrc |
---|
[4671] | 38 | ! Implementation of downward facing USM and LSM surfaces |
---|
| 39 | ! |
---|
| 40 | ! 4594 2020-07-09 15:01:00Z suehring |
---|
[4594] | 41 | ! Include k index in OMP PRIVATE statements |
---|
| 42 | ! |
---|
| 43 | ! 4593 2020-07-09 12:48:18Z suehring |
---|
[4593] | 44 | ! - Pre-calculate ln(z/z0) at each timestep in order to reduce the number of log-calculations |
---|
| 45 | ! - Bugfix - add missing density to fluxes of passive-scalars, chemistry and cloud-phyiscal |
---|
| 46 | ! quantities at upward-facing surfaces |
---|
| 47 | ! - Move if-statement out of inner loop |
---|
| 48 | ! - Remove unnecessary index referencing |
---|
| 49 | ! |
---|
| 50 | ! 4562 2020-06-12 08:38:47Z raasch |
---|
[4562] | 51 | ! File re-formatted to follow the PALM coding standard |
---|
| 52 | ! |
---|
| 53 | ! 4519 2020-05-05 17:33:30Z suehring |
---|
[4519] | 54 | ! Add missing computation of passive scalar scaling parameter |
---|
[4562] | 55 | ! |
---|
[4519] | 56 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4562] | 57 | ! Bugfix: openacc porting for vector version of OL calculation added |
---|
| 58 | ! |
---|
[4370] | 59 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4562] | 60 | ! Vector version for calculation of Obukhov length via Newton iteration added |
---|
| 61 | ! |
---|
[4366] | 62 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4562] | 63 | ! Calculation of diagnostic-only 2-m potential temperature moved to diagnostic_output_quantities. |
---|
| 64 | ! |
---|
[4331] | 65 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
[4562] | 66 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above the first grid point. |
---|
| 67 | ! |
---|
[4298] | 68 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 69 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
[4562] | 70 | ! |
---|
[4258] | 71 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 72 | ! Added missing OpenMP directives |
---|
[4562] | 73 | ! |
---|
[4237] | 74 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4562] | 75 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 76 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic peaks in the heat fluxes |
---|
| 77 | ! during nighttime |
---|
[4186] | 78 | ! - Unused variable removed |
---|
[4562] | 79 | ! |
---|
[4186] | 80 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 81 | ! Corrected "Former revisions" section |
---|
[4562] | 82 | ! |
---|
[4182] | 83 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 84 | ! Introduce alternative switch for debug output during timestepping |
---|
[4562] | 85 | ! |
---|
[3987] | 86 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4562] | 87 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 88 | ! messages |
---|
| 89 | ! |
---|
[3885] | 90 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 91 | ! Assure that Obukhov length does not become zero |
---|
[4562] | 92 | ! |
---|
[3881] | 93 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[4562] | 94 | ! Added USE chem_gasphase_mod |
---|
| 95 | ! |
---|
[3833] | 96 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[4562] | 97 | ! Unused variables removed |
---|
| 98 | ! |
---|
[3787] | 99 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[4562] | 100 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, required for indoor |
---|
| 101 | ! model |
---|
| 102 | ! |
---|
[3745] | 103 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 104 | ! Some interface calls moved to module_interface + cleanup |
---|
[4562] | 105 | ! |
---|
[3685] | 106 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 107 | ! Removed methods "circular" and "lookup" |
---|
[4562] | 108 | ! |
---|
[3668] | 109 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 110 | ! OpenACC port for SPEC |
---|
[1692] | 111 | ! |
---|
[4182] | 112 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 113 | ! Initial revision |
---|
| 114 | ! |
---|
| 115 | ! |
---|
[1691] | 116 | ! Description: |
---|
| 117 | ! ------------ |
---|
[4562] | 118 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the values of the |
---|
| 119 | !> variables at grid point k=1 based on Newton iteration. |
---|
[1691] | 120 | !> |
---|
[4562] | 121 | !> @todo (Re)move large_scale_forcing actions |
---|
| 122 | !> @todo Check/optimize OpenMP directives |
---|
| 123 | !> @todo Simplify if conditions (which flux need to be computed in which case) |
---|
| 124 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 125 | MODULE surface_layer_fluxes_mod |
---|
| 126 | |
---|
[4562] | 127 | USE arrays_3d, & |
---|
| 128 | ONLY: d_exner, & |
---|
| 129 | drho_air_zw, & |
---|
| 130 | e, & |
---|
| 131 | kh, & |
---|
| 132 | nc, & |
---|
| 133 | nr, & |
---|
| 134 | pt, & |
---|
| 135 | q, & |
---|
| 136 | ql, & |
---|
| 137 | qc, & |
---|
| 138 | qr, & |
---|
| 139 | s, & |
---|
| 140 | u, & |
---|
| 141 | v, & |
---|
| 142 | vpt, & |
---|
| 143 | w, & |
---|
| 144 | zu, & |
---|
| 145 | zw, & |
---|
| 146 | rho_air_zw |
---|
[1691] | 147 | |
---|
[3274] | 148 | |
---|
[4562] | 149 | USE basic_constants_and_equations_mod, & |
---|
| 150 | ONLY: g, & |
---|
| 151 | kappa, & |
---|
| 152 | lv_d_cp, & |
---|
| 153 | pi, & |
---|
| 154 | rd_d_rv |
---|
| 155 | |
---|
| 156 | USE chem_gasphase_mod, & |
---|
[3833] | 157 | ONLY: nvar |
---|
| 158 | |
---|
[4562] | 159 | USE chem_modules, & |
---|
[3834] | 160 | ONLY: constant_csflux |
---|
[2696] | 161 | |
---|
[1691] | 162 | USE cpulog |
---|
| 163 | |
---|
[4562] | 164 | USE control_parameters, & |
---|
| 165 | ONLY: air_chemistry, & |
---|
| 166 | cloud_droplets, & |
---|
| 167 | constant_heatflux, & |
---|
| 168 | constant_scalarflux, & |
---|
| 169 | constant_waterflux, & |
---|
| 170 | coupling_mode, & |
---|
| 171 | debug_output_timestep, & |
---|
| 172 | humidity, & |
---|
| 173 | ibc_e_b, & |
---|
| 174 | ibc_pt_b, & |
---|
| 175 | indoor_model, & |
---|
| 176 | land_surface, & |
---|
| 177 | large_scale_forcing, & |
---|
| 178 | loop_optimization, & |
---|
| 179 | lsf_surf, & |
---|
| 180 | message_string, & |
---|
| 181 | neutral, & |
---|
| 182 | passive_scalar, & |
---|
| 183 | pt_surface, & |
---|
| 184 | q_surface, & |
---|
| 185 | run_coupled, & |
---|
| 186 | surface_pressure, & |
---|
| 187 | simulated_time, & |
---|
| 188 | time_since_reference_point, & |
---|
| 189 | urban_surface, & |
---|
| 190 | use_free_convection_scaling, & |
---|
| 191 | zeta_max, & |
---|
| 192 | zeta_min |
---|
[1691] | 193 | |
---|
[4562] | 194 | USE grid_variables, & |
---|
| 195 | ONLY: dx, & |
---|
| 196 | dy |
---|
[2232] | 197 | |
---|
[4562] | 198 | USE indices, & |
---|
[4298] | 199 | ONLY: nzt |
---|
[1691] | 200 | |
---|
| 201 | USE kinds |
---|
| 202 | |
---|
[4562] | 203 | USE bulk_cloud_model_mod, & |
---|
| 204 | ONLY: bulk_cloud_model, & |
---|
| 205 | microphysics_morrison, & |
---|
| 206 | microphysics_seifert |
---|
[3274] | 207 | |
---|
[1691] | 208 | USE pegrid |
---|
| 209 | |
---|
[4562] | 210 | USE land_surface_model_mod, & |
---|
| 211 | ONLY: aero_resist_kray, & |
---|
| 212 | skip_time_do_lsm |
---|
[2011] | 213 | |
---|
[4562] | 214 | USE surface_mod, & |
---|
| 215 | ONLY : surf_def_h, & |
---|
| 216 | surf_def_v, & |
---|
| 217 | surf_lsm_h, & |
---|
| 218 | surf_lsm_v, & |
---|
| 219 | surf_type, & |
---|
| 220 | surf_usm_h, & |
---|
| 221 | surf_usm_v |
---|
[1691] | 222 | |
---|
[4562] | 223 | |
---|
[1691] | 224 | IMPLICIT NONE |
---|
| 225 | |
---|
[4562] | 226 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 227 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 228 | INTEGER(iwp) :: k !< loop index z direction |
---|
| 229 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 230 | |
---|
[4562] | 231 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 232 | LOGICAL :: downward = .FALSE. !< Flag indicating downward-facing horizontal surface |
---|
| 233 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 234 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 235 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 236 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 237 | |
---|
[4562] | 238 | REAL(wp) :: e_s !< Saturation water vapor pressure |
---|
| 239 | REAL(wp) :: ol_max = 1.0E6_wp !< Maximum Obukhov length |
---|
| 240 | REAL(wp) :: z_mo !< Height of the constant flux layer where MOST is assumed |
---|
[1691] | 241 | |
---|
[4562] | 242 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 243 | |
---|
[2232] | 244 | |
---|
[1691] | 245 | SAVE |
---|
| 246 | |
---|
| 247 | PRIVATE |
---|
| 248 | |
---|
[4562] | 249 | PUBLIC init_surface_layer_fluxes, & |
---|
| 250 | phi_m, & |
---|
| 251 | psi_h, & |
---|
| 252 | psi_m, & |
---|
[4331] | 253 | surface_layer_fluxes |
---|
[1691] | 254 | |
---|
| 255 | INTERFACE init_surface_layer_fluxes |
---|
| 256 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 257 | END INTERFACE init_surface_layer_fluxes |
---|
| 258 | |
---|
[3130] | 259 | INTERFACE phi_m |
---|
| 260 | MODULE PROCEDURE phi_m |
---|
| 261 | END INTERFACE phi_m |
---|
| 262 | |
---|
[4331] | 263 | INTERFACE psi_h |
---|
| 264 | MODULE PROCEDURE psi_h |
---|
| 265 | END INTERFACE psi_h |
---|
| 266 | |
---|
| 267 | INTERFACE psi_m |
---|
| 268 | MODULE PROCEDURE psi_m |
---|
| 269 | END INTERFACE psi_m |
---|
| 270 | |
---|
[1691] | 271 | INTERFACE surface_layer_fluxes |
---|
| 272 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 273 | END INTERFACE surface_layer_fluxes |
---|
| 274 | |
---|
| 275 | |
---|
| 276 | CONTAINS |
---|
| 277 | |
---|
| 278 | |
---|
[4562] | 279 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 280 | ! Description: |
---|
| 281 | ! ------------ |
---|
[4562] | 282 | !> Main routine to compute the surface fluxes. |
---|
| 283 | !--------------------------------------------------------------------------------------------------! |
---|
| 284 | SUBROUTINE surface_layer_fluxes |
---|
[1691] | 285 | |
---|
[4562] | 286 | IMPLICIT NONE |
---|
[1691] | 287 | |
---|
[3885] | 288 | |
---|
[4562] | 289 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 290 | |
---|
[4562] | 291 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 292 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 293 | ! |
---|
[4593] | 294 | !-- First, precalculate ln(z/z0) for all surfaces. This is done each timestep, in order to account |
---|
| 295 | !-- for time-dependent roughness or user-modifications. |
---|
| 296 | DO l = 0, 1 |
---|
| 297 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 298 | surf => surf_def_h(l) |
---|
| 299 | CALL calc_ln |
---|
| 300 | ENDIF |
---|
[4671] | 301 | IF ( surf_lsm_h(l)%ns >= 1 ) THEN |
---|
| 302 | surf => surf_lsm_h(l) |
---|
| 303 | CALL calc_ln |
---|
| 304 | ENDIF |
---|
| 305 | IF ( surf_usm_h(l)%ns >= 1 ) THEN |
---|
| 306 | surf => surf_usm_h(l) |
---|
| 307 | CALL calc_ln |
---|
| 308 | ENDIF |
---|
[4593] | 309 | ENDDO |
---|
| 310 | |
---|
| 311 | DO l = 0, 3 |
---|
| 312 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 313 | surf => surf_def_v(l) |
---|
| 314 | CALL calc_ln |
---|
| 315 | ENDIF |
---|
| 316 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 317 | surf => surf_lsm_v(l) |
---|
| 318 | CALL calc_ln |
---|
| 319 | ENDIF |
---|
| 320 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 321 | surf => surf_usm_v(l) |
---|
| 322 | CALL calc_ln |
---|
| 323 | ENDIF |
---|
| 324 | ENDDO |
---|
| 325 | ! |
---|
[4562] | 326 | !-- Derive potential temperature and specific humidity at first grid level from the fields pt and q |
---|
| 327 | DO l = 0, 1 |
---|
[4671] | 328 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, l=1 - downward facing) |
---|
[4562] | 329 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 330 | surf => surf_def_h(l) |
---|
| 331 | CALL calc_pt_q |
---|
| 332 | IF ( .NOT. neutral ) THEN |
---|
| 333 | CALL calc_pt_surface |
---|
| 334 | IF ( humidity ) THEN |
---|
| 335 | CALL calc_q_surface |
---|
| 336 | CALL calc_vpt_surface |
---|
[3146] | 337 | ENDIF |
---|
[2696] | 338 | ENDIF |
---|
[4562] | 339 | ENDIF |
---|
[2232] | 340 | ! |
---|
[4671] | 341 | !-- Call for natural-type horizontal surfaces |
---|
| 342 | IF ( surf_lsm_h(l)%ns >= 1 ) THEN |
---|
| 343 | surf => surf_lsm_h(l) |
---|
| 344 | CALL calc_pt_q |
---|
| 345 | ENDIF |
---|
[4562] | 346 | ! |
---|
[4671] | 347 | !-- Call for urban-type horizontal surfaces |
---|
| 348 | IF ( surf_usm_h(l)%ns >= 1 ) THEN |
---|
| 349 | surf => surf_usm_h(l) |
---|
| 350 | CALL calc_pt_q |
---|
| 351 | ENDIF |
---|
| 352 | ENDDO |
---|
[4562] | 353 | ! |
---|
| 354 | !-- Call for natural-type vertical surfaces |
---|
| 355 | DO l = 0, 3 |
---|
| 356 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 357 | surf => surf_lsm_v(l) |
---|
[2696] | 358 | CALL calc_pt_q |
---|
| 359 | ENDIF |
---|
| 360 | |
---|
[4562] | 361 | !-- Call for urban-type vertical surfaces |
---|
| 362 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 363 | surf => surf_usm_v(l) |
---|
[2696] | 364 | CALL calc_pt_q |
---|
| 365 | ENDIF |
---|
[4562] | 366 | ENDDO |
---|
[2696] | 367 | |
---|
| 368 | ! |
---|
[4593] | 369 | !-- First, calculate the new Obukhov length from precalculated values of log(z/z0) and wind speeds. |
---|
| 370 | !-- As a second step, then calculate new friction velocity, followed by the new scaling |
---|
[4562] | 371 | !-- parameters (th*, q*, etc.), and the new surface fluxes, if required. Note, each routine is called |
---|
| 372 | !-- for different surface types. First call for default-type horizontal surfaces, for natural- and |
---|
| 373 | !-- urban-type surfaces. Note, here only upward-facing horizontal surfaces are treated. |
---|
[4593] | 374 | !-- Note, calculation of log(z/z0) is redone each timestep, in order to account for time-dependent |
---|
| 375 | !-- values. |
---|
| 376 | !-- Start with default-type upward-facing horizontal surfaces |
---|
[4562] | 377 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 378 | surf => surf_def_h(0) |
---|
| 379 | CALL calc_uvw_abs |
---|
| 380 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 381 | CALL calc_us |
---|
| 382 | CALL calc_scaling_parameters |
---|
| 383 | CALL calc_surface_fluxes |
---|
| 384 | ENDIF |
---|
| 385 | ! |
---|
| 386 | !-- Natural-type horizontal surfaces |
---|
[4671] | 387 | IF ( surf_lsm_h(0)%ns >= 1 ) THEN |
---|
| 388 | surf => surf_lsm_h(0) |
---|
[4562] | 389 | CALL calc_uvw_abs |
---|
| 390 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 391 | CALL calc_us |
---|
| 392 | CALL calc_scaling_parameters |
---|
| 393 | CALL calc_surface_fluxes |
---|
| 394 | ENDIF |
---|
| 395 | ! |
---|
| 396 | !-- Urban-type horizontal surfaces |
---|
[4671] | 397 | IF ( surf_usm_h(0)%ns >= 1 ) THEN |
---|
| 398 | surf => surf_usm_h(0) |
---|
[4562] | 399 | CALL calc_uvw_abs |
---|
| 400 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 401 | CALL calc_us |
---|
| 402 | CALL calc_scaling_parameters |
---|
| 403 | CALL calc_surface_fluxes |
---|
| 404 | ! |
---|
| 405 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 406 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 407 | ENDIF |
---|
[3668] | 408 | |
---|
[2232] | 409 | ! |
---|
[4671] | 410 | !-- Treat downward-facing horizontal surfaces. |
---|
[4562] | 411 | !-- Stratification is not considered in this case, hence, no further distinction between different |
---|
| 412 | !-- most_method is required. |
---|
[4671] | 413 | downward = .TRUE. |
---|
| 414 | !-- Default type. |
---|
[4562] | 415 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 416 | surf => surf_def_h(1) |
---|
| 417 | CALL calc_uvw_abs |
---|
| 418 | CALL calc_us |
---|
| 419 | CALL calc_surface_fluxes |
---|
| 420 | ENDIF |
---|
[4671] | 421 | !-- Natural surface type. |
---|
| 422 | IF ( surf_lsm_h(1)%ns >= 1 ) THEN |
---|
| 423 | surf => surf_lsm_h(1) |
---|
| 424 | CALL calc_uvw_abs |
---|
| 425 | CALL calc_us |
---|
| 426 | CALL calc_surface_fluxes |
---|
| 427 | ENDIF |
---|
| 428 | !-- Urban surface type. |
---|
| 429 | IF ( surf_usm_h(1)%ns >= 1 ) THEN |
---|
| 430 | surf => surf_usm_h(1) |
---|
| 431 | CALL calc_uvw_abs |
---|
| 432 | CALL calc_us |
---|
| 433 | CALL calc_surface_fluxes |
---|
| 434 | ENDIF |
---|
| 435 | downward = .FALSE. |
---|
[1691] | 436 | ! |
---|
[4562] | 437 | !-- Calculate surfaces fluxes at vertical surfaces for momentum and subgrid-scale TKE. No stability |
---|
| 438 | !-- is considered. Therefore, scaling parameters and Obukhov length do not need to be calculated and |
---|
| 439 | !-- no distinction in 'circular', 'Newton' or 'lookup' is necessary so far. Note, this will change |
---|
| 440 | !-- if stability is once considered. |
---|
| 441 | surf_vertical = .TRUE. |
---|
[2232] | 442 | ! |
---|
[4562] | 443 | !-- Calculate horizontal momentum fluxes at north- and south-facing surfaces(usvs). |
---|
| 444 | !-- For default-type surfaces |
---|
| 445 | mom_uv = .TRUE. |
---|
| 446 | DO l = 0, 1 |
---|
| 447 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 448 | surf => surf_def_v(l) |
---|
[3744] | 449 | ! |
---|
[4562] | 450 | !-- Compute surface-parallel velocity |
---|
| 451 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 452 | ! |
---|
[4562] | 453 | !-- Compute respective friction velocity on staggered grid |
---|
[1691] | 454 | CALL calc_us |
---|
[4562] | 455 | ! |
---|
| 456 | !-- Compute respective surface fluxes for momentum and TKE |
---|
[1691] | 457 | CALL calc_surface_fluxes |
---|
| 458 | ENDIF |
---|
[4562] | 459 | ENDDO |
---|
[2232] | 460 | ! |
---|
[4562] | 461 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 462 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukhov length are |
---|
| 463 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 464 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 465 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 466 | DO l = 0, 1 |
---|
| 467 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 468 | surf => surf_lsm_v(l) |
---|
[2232] | 469 | ! |
---|
[4562] | 470 | !-- Compute surface-parallel velocity |
---|
| 471 | CALL calc_uvw_abs_v_ugrid |
---|
| 472 | ! |
---|
| 473 | !-- Compute Obukhov length |
---|
| 474 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 475 | ! |
---|
| 476 | !-- Compute respective friction velocity on staggered grid |
---|
| 477 | CALL calc_us |
---|
| 478 | ! |
---|
| 479 | !-- Compute scaling parameters |
---|
| 480 | CALL calc_scaling_parameters |
---|
| 481 | ! |
---|
| 482 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 483 | CALL calc_surface_fluxes |
---|
| 484 | ENDIF |
---|
| 485 | ENDDO |
---|
| 486 | ! |
---|
| 487 | !-- No ts is required, so scaling parameters and Obukhov length do not need to be computed. |
---|
| 488 | ELSE |
---|
[2232] | 489 | DO l = 0, 1 |
---|
[4562] | 490 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 491 | surf => surf_lsm_v(l) |
---|
[2232] | 492 | ! |
---|
| 493 | !-- Compute surface-parallel velocity |
---|
| 494 | CALL calc_uvw_abs_v_ugrid |
---|
| 495 | ! |
---|
| 496 | !-- Compute respective friction velocity on staggered grid |
---|
| 497 | CALL calc_us |
---|
| 498 | ! |
---|
| 499 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 500 | CALL calc_surface_fluxes |
---|
| 501 | ENDIF |
---|
| 502 | ENDDO |
---|
[4562] | 503 | ENDIF |
---|
[2232] | 504 | ! |
---|
[4562] | 505 | !-- For urban-type surfaces |
---|
| 506 | DO l = 0, 1 |
---|
| 507 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 508 | surf => surf_usm_v(l) |
---|
[2232] | 509 | ! |
---|
[4562] | 510 | !-- Compute surface-parallel velocity |
---|
| 511 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 512 | ! |
---|
[4562] | 513 | !-- Compute respective friction velocity on staggered grid |
---|
| 514 | CALL calc_us |
---|
[2232] | 515 | ! |
---|
[4562] | 516 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 517 | CALL calc_surface_fluxes |
---|
[2232] | 518 | ! |
---|
[4562] | 519 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 520 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 521 | ENDIF |
---|
| 522 | ENDDO |
---|
[2232] | 523 | ! |
---|
[4562] | 524 | !-- Calculate horizontal momentum fluxes at east- and west-facing surfaces (vsus). |
---|
| 525 | !-- For default-type surfaces |
---|
| 526 | DO l = 2, 3 |
---|
| 527 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 528 | surf => surf_def_v(l) |
---|
[2232] | 529 | ! |
---|
[4562] | 530 | !-- Compute surface-parallel velocity |
---|
| 531 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 532 | ! |
---|
[4562] | 533 | !-- Compute respective friction velocity on staggered grid |
---|
| 534 | CALL calc_us |
---|
[2232] | 535 | ! |
---|
[4562] | 536 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 537 | CALL calc_surface_fluxes |
---|
[2232] | 538 | ENDIF |
---|
[4562] | 539 | ENDDO |
---|
[2232] | 540 | ! |
---|
[4562] | 541 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 542 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukov length are |
---|
| 543 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 544 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 545 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 546 | DO l = 2, 3 |
---|
| 547 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 548 | surf => surf_lsm_v(l) |
---|
[2232] | 549 | ! |
---|
| 550 | !-- Compute surface-parallel velocity |
---|
[4562] | 551 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 552 | ! |
---|
[4562] | 553 | !-- Compute Obukhov length |
---|
| 554 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 555 | ! |
---|
[2232] | 556 | !-- Compute respective friction velocity on staggered grid |
---|
| 557 | CALL calc_us |
---|
| 558 | ! |
---|
[4562] | 559 | !-- Compute scaling parameters |
---|
| 560 | CALL calc_scaling_parameters |
---|
| 561 | ! |
---|
[2232] | 562 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 563 | CALL calc_surface_fluxes |
---|
| 564 | ENDIF |
---|
| 565 | ENDDO |
---|
[4562] | 566 | ELSE |
---|
[2232] | 567 | DO l = 2, 3 |
---|
[4562] | 568 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 569 | surf => surf_lsm_v(l) |
---|
[2232] | 570 | ! |
---|
| 571 | !-- Compute surface-parallel velocity |
---|
| 572 | CALL calc_uvw_abs_v_vgrid |
---|
| 573 | ! |
---|
| 574 | !-- Compute respective friction velocity on staggered grid |
---|
| 575 | CALL calc_us |
---|
| 576 | ! |
---|
| 577 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 578 | CALL calc_surface_fluxes |
---|
| 579 | ENDIF |
---|
| 580 | ENDDO |
---|
[4562] | 581 | ENDIF |
---|
[2232] | 582 | ! |
---|
[4562] | 583 | !-- For urban-type surfaces |
---|
| 584 | DO l = 2, 3 |
---|
| 585 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 586 | surf => surf_usm_v(l) |
---|
[2232] | 587 | ! |
---|
[4562] | 588 | !-- Compute surface-parallel velocity |
---|
| 589 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 590 | ! |
---|
[4562] | 591 | !-- Compute respective friction velocity on staggered grid |
---|
| 592 | CALL calc_us |
---|
[2232] | 593 | ! |
---|
[4562] | 594 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 595 | CALL calc_surface_fluxes |
---|
[2232] | 596 | ! |
---|
[4562] | 597 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 598 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 599 | ENDIF |
---|
| 600 | ENDDO |
---|
| 601 | mom_uv = .FALSE. |
---|
[2232] | 602 | ! |
---|
[4562] | 603 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial surfaces. |
---|
| 604 | mom_w = .TRUE. |
---|
[2232] | 605 | ! |
---|
[4562] | 606 | !-- Default-type surfaces |
---|
| 607 | DO l = 0, 3 |
---|
| 608 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 609 | surf => surf_def_v(l) |
---|
| 610 | CALL calc_uvw_abs_v_wgrid |
---|
| 611 | CALL calc_us |
---|
| 612 | CALL calc_surface_fluxes |
---|
| 613 | ENDIF |
---|
| 614 | ENDDO |
---|
[2232] | 615 | ! |
---|
[4562] | 616 | !-- Natural-type surfaces |
---|
| 617 | DO l = 0, 3 |
---|
| 618 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 619 | surf => surf_lsm_v(l) |
---|
| 620 | CALL calc_uvw_abs_v_wgrid |
---|
| 621 | CALL calc_us |
---|
| 622 | CALL calc_surface_fluxes |
---|
[2232] | 623 | ENDIF |
---|
[4562] | 624 | ENDDO |
---|
[2232] | 625 | ! |
---|
[4562] | 626 | !-- Urban-type surfaces |
---|
| 627 | DO l = 0, 3 |
---|
| 628 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 629 | surf => surf_usm_v(l) |
---|
| 630 | CALL calc_uvw_abs_v_wgrid |
---|
| 631 | CALL calc_us |
---|
| 632 | CALL calc_surface_fluxes |
---|
| 633 | ENDIF |
---|
| 634 | ENDDO |
---|
| 635 | mom_w = .FALSE. |
---|
[2232] | 636 | ! |
---|
[4562] | 637 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical surfaces for TKE production. |
---|
| 638 | !-- Note, here, momentum fluxes are defined at grid center and are not staggered as before. |
---|
| 639 | mom_tke = .TRUE. |
---|
[2232] | 640 | ! |
---|
[4562] | 641 | !-- Default-type surfaces |
---|
| 642 | DO l = 0, 3 |
---|
| 643 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 644 | surf => surf_def_v(l) |
---|
| 645 | CALL calc_uvw_abs_v_sgrid |
---|
| 646 | CALL calc_us |
---|
| 647 | CALL calc_surface_fluxes |
---|
| 648 | ENDIF |
---|
| 649 | ENDDO |
---|
[2232] | 650 | ! |
---|
[4562] | 651 | !-- Natural-type surfaces |
---|
| 652 | DO l = 0, 3 |
---|
| 653 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 654 | surf => surf_lsm_v(l) |
---|
| 655 | CALL calc_uvw_abs_v_sgrid |
---|
| 656 | CALL calc_us |
---|
| 657 | CALL calc_surface_fluxes |
---|
| 658 | ENDIF |
---|
| 659 | ENDDO |
---|
[3744] | 660 | ! |
---|
[4562] | 661 | !-- Urban-type surfaces |
---|
| 662 | DO l = 0, 3 |
---|
| 663 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 664 | surf => surf_usm_v(l) |
---|
| 665 | CALL calc_uvw_abs_v_sgrid |
---|
| 666 | CALL calc_us |
---|
| 667 | CALL calc_surface_fluxes |
---|
| 668 | ENDIF |
---|
| 669 | ENDDO |
---|
| 670 | mom_tke = .FALSE. |
---|
[1691] | 671 | |
---|
[4562] | 672 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 673 | |
---|
[4562] | 674 | END SUBROUTINE surface_layer_fluxes |
---|
[1691] | 675 | |
---|
| 676 | |
---|
[4562] | 677 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 678 | ! Description: |
---|
| 679 | ! ------------ |
---|
[4258] | 680 | !> Initializing actions for the surface layer routine. |
---|
[4562] | 681 | !--------------------------------------------------------------------------------------------------! |
---|
| 682 | SUBROUTINE init_surface_layer_fluxes |
---|
[1691] | 683 | |
---|
[4562] | 684 | IMPLICIT NONE |
---|
[1691] | 685 | |
---|
[4562] | 686 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 687 | |
---|
[4562] | 688 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 689 | |
---|
| 690 | ! |
---|
[4562] | 691 | !-- In case of runs with neutral statification, set Obukhov length to a large value |
---|
| 692 | IF ( neutral ) THEN |
---|
[4671] | 693 | DO l = 0, 1 |
---|
| 694 | IF ( surf_def_h(l)%ns >= 1 .AND. & |
---|
| 695 | ALLOCATED( surf_def_h(l)%ol ) ) surf_def_h(l)%ol = 1.0E10_wp |
---|
| 696 | IF ( surf_lsm_h(l)%ns >= 1 .AND. & |
---|
| 697 | ALLOCATED( surf_lsm_h(l)%ol ) ) surf_lsm_h(l)%ol = 1.0E10_wp |
---|
| 698 | IF ( surf_usm_h(l)%ns >= 1 .AND. & |
---|
| 699 | ALLOCATED( surf_usm_h(l)%ol ) ) surf_usm_h(l)%ol = 1.0E10_wp |
---|
| 700 | ENDDO |
---|
[4562] | 701 | DO l = 0, 3 |
---|
| 702 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 703 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 704 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 705 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 706 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 707 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 708 | ENDDO |
---|
[3685] | 709 | |
---|
[4562] | 710 | ENDIF |
---|
[1691] | 711 | |
---|
[4562] | 712 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[1691] | 713 | |
---|
[4562] | 714 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 718 | ! Description: |
---|
| 719 | ! ------------ |
---|
[4593] | 720 | !> Compute ln(z/z0). |
---|
| 721 | !--------------------------------------------------------------------------------------------------! |
---|
| 722 | SUBROUTINE calc_ln |
---|
| 723 | |
---|
| 724 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 725 | |
---|
| 726 | ! |
---|
| 727 | !-- Note, ln(z/z0h) and ln(z/z0q) is also calculated even if neural simulations are applied. |
---|
| 728 | !-- This is because the scalar coefficients are also used for other scalars such as passive scalars, |
---|
| 729 | !-- chemistry and aerosols. |
---|
[4717] | 730 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[4593] | 731 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 732 | !$ACC PRESENT(surf) |
---|
| 733 | DO m = 1, surf%ns |
---|
| 734 | z_mo = surf%z_mo(m) |
---|
| 735 | surf%ln_z_z0(m) = LOG( z_mo / surf%z0(m) ) |
---|
| 736 | surf%ln_z_z0h(m) = LOG( z_mo / surf%z0h(m) ) |
---|
| 737 | surf%ln_z_z0q(m) = LOG( z_mo / surf%z0q(m) ) |
---|
| 738 | ENDDO |
---|
| 739 | |
---|
| 740 | END SUBROUTINE calc_ln |
---|
| 741 | |
---|
| 742 | !--------------------------------------------------------------------------------------------------! |
---|
| 743 | ! Description: |
---|
| 744 | ! ------------ |
---|
[4562] | 745 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 746 | !> surface elements. This is required by all methods. |
---|
| 747 | !--------------------------------------------------------------------------------------------------! |
---|
| 748 | SUBROUTINE calc_uvw_abs |
---|
[1691] | 749 | |
---|
[4562] | 750 | IMPLICIT NONE |
---|
[1691] | 751 | |
---|
[4562] | 752 | INTEGER(iwp) :: i !< running index x direction |
---|
| 753 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 754 | INTEGER(iwp) :: j !< running index y direction |
---|
| 755 | INTEGER(iwp) :: k !< running index z direction |
---|
| 756 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 757 | |
---|
| 758 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 759 | ! |
---|
[4562] | 760 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 761 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 762 | |
---|
[4593] | 763 | IF ( use_free_convection_scaling ) THEN |
---|
| 764 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
| 765 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 766 | !$ACC PRESENT(surf, u, v) |
---|
| 767 | DO m = 1, surf%ns |
---|
| 768 | i = surf%i(m) |
---|
| 769 | j = surf%j(m) |
---|
| 770 | k = surf%k(m) |
---|
[1691] | 771 | |
---|
| 772 | ! |
---|
[4593] | 773 | !-- Calculate free convection velocity scale w_lfc is use_free_convection_scaling = .T.. This |
---|
| 774 | !-- will maintain a horizontal velocity even for very weak wind convective conditions. SIGN is |
---|
| 775 | !-- used to set w_lfc to zero under stable conditions. |
---|
[4562] | 776 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 777 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
[3157] | 778 | ! |
---|
[4593] | 779 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 780 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 781 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 782 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 783 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 784 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 785 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 786 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 787 | ) * ibit ) & |
---|
| 788 | )**2 & |
---|
| 789 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 790 | ) * ibit ) & |
---|
[4562] | 791 | )**2 + w_lfc**2 ) |
---|
[4593] | 792 | ENDDO |
---|
| 793 | ELSE |
---|
| 794 | !$OMP PARALLEL DO PRIVATE(i, j, k) |
---|
| 795 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 796 | !$ACC PRESENT(surf, u, v) |
---|
| 797 | DO m = 1, surf%ns |
---|
| 798 | i = surf%i(m) |
---|
| 799 | j = surf%j(m) |
---|
| 800 | k = surf%k(m) |
---|
| 801 | ! |
---|
| 802 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 803 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 804 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 805 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 806 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 807 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 808 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 809 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 810 | ) * ibit ) & |
---|
| 811 | )**2 & |
---|
| 812 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 813 | ) * ibit ) & |
---|
| 814 | )**2 ) |
---|
| 815 | ENDDO |
---|
| 816 | ENDIF |
---|
[2232] | 817 | |
---|
[4562] | 818 | END SUBROUTINE calc_uvw_abs |
---|
[3148] | 819 | |
---|
[1691] | 820 | |
---|
[4562] | 821 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 822 | ! Description: |
---|
| 823 | ! ------------ |
---|
[4562] | 824 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 825 | !> surface elements. This is required by all methods. |
---|
| 826 | !--------------------------------------------------------------------------------------------------! |
---|
| 827 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[2232] | 828 | |
---|
[4562] | 829 | IMPLICIT NONE |
---|
[2232] | 830 | |
---|
[4562] | 831 | INTEGER(iwp) :: i !< running index x direction |
---|
| 832 | INTEGER(iwp) :: j !< running index y direction |
---|
| 833 | INTEGER(iwp) :: k !< running index z direction |
---|
| 834 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 835 | |
---|
[4562] | 836 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 837 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 838 | |
---|
| 839 | |
---|
[4562] | 840 | DO m = 1, surf%ns |
---|
| 841 | i = surf%i(m) |
---|
| 842 | j = surf%j(m) |
---|
| 843 | k = surf%k(m) |
---|
[1691] | 844 | ! |
---|
[4562] | 845 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 846 | u_i = u(k,j,i) |
---|
| 847 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 848 | |
---|
[4562] | 849 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
| 850 | ENDDO |
---|
[1709] | 851 | |
---|
[4562] | 852 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[1709] | 853 | |
---|
[4562] | 854 | !--------------------------------------------------------------------------------------------------! |
---|
[1709] | 855 | ! Description: |
---|
| 856 | ! ------------ |
---|
[4562] | 857 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 858 | !> surface elements. This is required by all methods. |
---|
| 859 | !--------------------------------------------------------------------------------------------------! |
---|
| 860 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 861 | |
---|
[4562] | 862 | IMPLICIT NONE |
---|
[2232] | 863 | |
---|
[4562] | 864 | INTEGER(iwp) :: i !< running index x direction |
---|
| 865 | INTEGER(iwp) :: j !< running index y direction |
---|
| 866 | INTEGER(iwp) :: k !< running index z direction |
---|
| 867 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 868 | |
---|
[4562] | 869 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 870 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 871 | |
---|
| 872 | |
---|
[4562] | 873 | DO m = 1, surf%ns |
---|
| 874 | i = surf%i(m) |
---|
| 875 | j = surf%j(m) |
---|
| 876 | k = surf%k(m) |
---|
[2232] | 877 | |
---|
[4562] | 878 | v_i = u(k,j,i) |
---|
| 879 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) |
---|
[2232] | 880 | |
---|
[4562] | 881 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 882 | ENDDO |
---|
[2232] | 883 | |
---|
[4562] | 884 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 885 | |
---|
[4562] | 886 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 887 | ! Description: |
---|
| 888 | ! ------------ |
---|
[4562] | 889 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 890 | !> surface elements. This is required by all methods. |
---|
| 891 | !--------------------------------------------------------------------------------------------------! |
---|
| 892 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 893 | |
---|
[4562] | 894 | IMPLICIT NONE |
---|
[2232] | 895 | |
---|
[4562] | 896 | INTEGER(iwp) :: i !< running index x direction |
---|
| 897 | INTEGER(iwp) :: j !< running index y direction |
---|
| 898 | INTEGER(iwp) :: k !< running index z direction |
---|
| 899 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 900 | |
---|
[4562] | 901 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 902 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 903 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 904 | ! |
---|
[4562] | 905 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 906 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 907 | DO m = 1, surf%ns |
---|
| 908 | i = surf%i(m) |
---|
| 909 | j = surf%j(m) |
---|
| 910 | k = surf%k(m) |
---|
[2232] | 911 | |
---|
[4562] | 912 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 913 | v_i = 0.0_wp |
---|
| 914 | w_i = w(k,j,i) |
---|
[2232] | 915 | |
---|
[4562] | 916 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 917 | ENDDO |
---|
[2232] | 918 | ! |
---|
[4562] | 919 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 920 | ELSE |
---|
| 921 | DO m = 1, surf%ns |
---|
| 922 | i = surf%i(m) |
---|
| 923 | j = surf%j(m) |
---|
| 924 | k = surf%k(m) |
---|
[2232] | 925 | |
---|
[4562] | 926 | u_i = 0.0_wp |
---|
| 927 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 928 | w_i = w(k,j,i) |
---|
[2232] | 929 | |
---|
[4562] | 930 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 931 | ENDDO |
---|
| 932 | ENDIF |
---|
[2232] | 933 | |
---|
[4562] | 934 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 935 | |
---|
[4562] | 936 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 937 | ! Description: |
---|
| 938 | ! ------------ |
---|
[4562] | 939 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 940 | !> surface elements. This is required by all methods. |
---|
| 941 | !--------------------------------------------------------------------------------------------------! |
---|
| 942 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 943 | |
---|
[4562] | 944 | IMPLICIT NONE |
---|
[2232] | 945 | |
---|
[4562] | 946 | INTEGER(iwp) :: i !< running index x direction |
---|
| 947 | INTEGER(iwp) :: j !< running index y direction |
---|
| 948 | INTEGER(iwp) :: k !< running index z direction |
---|
| 949 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 950 | |
---|
[4562] | 951 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 952 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 953 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 954 | |
---|
| 955 | ! |
---|
[4562] | 956 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 957 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 958 | DO m = 1, surf%ns |
---|
| 959 | i = surf%i(m) |
---|
| 960 | j = surf%j(m) |
---|
| 961 | k = surf%k(m) |
---|
[2232] | 962 | |
---|
[4562] | 963 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 964 | v_i = 0.0_wp |
---|
| 965 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 966 | |
---|
[4562] | 967 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 968 | ENDDO |
---|
[2232] | 969 | ! |
---|
[4562] | 970 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 971 | ELSE |
---|
| 972 | DO m = 1, surf%ns |
---|
| 973 | i = surf%i(m) |
---|
| 974 | j = surf%j(m) |
---|
| 975 | k = surf%k(m) |
---|
[2232] | 976 | |
---|
[4562] | 977 | u_i = 0.0_wp |
---|
| 978 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 979 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 980 | |
---|
[4562] | 981 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 982 | ENDDO |
---|
| 983 | ENDIF |
---|
[2232] | 984 | |
---|
[4562] | 985 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 986 | |
---|
| 987 | |
---|
[4562] | 988 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 989 | ! Description: |
---|
| 990 | ! ------------ |
---|
[1709] | 991 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
[4562] | 992 | !--------------------------------------------------------------------------------------------------! |
---|
| 993 | SUBROUTINE calc_ol |
---|
[1709] | 994 | |
---|
[4562] | 995 | IMPLICIT NONE |
---|
[1709] | 996 | |
---|
[4562] | 997 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 998 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 999 | |
---|
[4562] | 1000 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
| 1001 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
[4366] | 1002 | |
---|
[4562] | 1003 | REAL(wp) :: f !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 1004 | REAL(wp) :: f_d_ol !< Derivative of f |
---|
| 1005 | REAL(wp) :: ol_l !< Lower bound of L for Newton iteration |
---|
| 1006 | REAL(wp) :: ol_m !< Previous value of L for Newton iteration |
---|
| 1007 | REAL(wp) :: ol_old !< Previous time step value of L |
---|
| 1008 | REAL(wp) :: ol_u !< Upper bound of L for Newton iteration |
---|
[1709] | 1009 | |
---|
[4562] | 1010 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
| 1011 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
| 1012 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
[4366] | 1013 | |
---|
[2232] | 1014 | ! |
---|
[4562] | 1015 | !-- Evaluate bulk Richardson number (calculation depends on definition based on setting of boundary |
---|
| 1016 | !-- conditions) |
---|
| 1017 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 1018 | IF ( humidity ) THEN |
---|
| 1019 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1020 | DO m = 1, surf%ns |
---|
| 1021 | z_mo = surf%z_mo(m) |
---|
| 1022 | surf%rib(m) = g * z_mo * ( surf%vpt1(m) - surf%vpt_surface(m) ) / & |
---|
| 1023 | ( surf%uvw_abs(m)**2 * surf%vpt1(m) + 1.0E-20_wp ) |
---|
| 1024 | ENDDO |
---|
[3668] | 1025 | ELSE |
---|
[4562] | 1026 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1027 | DO m = 1, surf%ns |
---|
| 1028 | z_mo = surf%z_mo(m) |
---|
| 1029 | surf%rib(m) = g * z_mo * ( surf%pt1(m) - surf%pt_surface(m) ) / & |
---|
| 1030 | ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 1031 | ENDDO |
---|
| 1032 | ENDIF |
---|
| 1033 | ELSE |
---|
| 1034 | IF ( humidity ) THEN |
---|
| 1035 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 1036 | DO m = 1, surf%ns |
---|
| 1037 | k = surf%k(m) |
---|
| 1038 | z_mo = surf%z_mo(m) |
---|
| 1039 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp * surf%qv1(m) ) * & |
---|
| 1040 | surf%shf(m) + 0.61_wp * surf%pt1(m) * surf%qsws(m) ) * & |
---|
| 1041 | drho_air_zw(k-1) / ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 1042 | + 1.0E-20_wp ) |
---|
[4562] | 1043 | ENDDO |
---|
| 1044 | ELSE |
---|
| 1045 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 1046 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 1047 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1048 | DO m = 1, surf%ns |
---|
| 1049 | k = surf%k(m) |
---|
| 1050 | z_mo = surf%z_mo(m) |
---|
| 1051 | surf%rib(m) = - g * z_mo * surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1052 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 + 1.0E-20_wp ) |
---|
| 1053 | ENDDO |
---|
[1691] | 1054 | ENDIF |
---|
[4562] | 1055 | ENDIF |
---|
[1691] | 1056 | |
---|
[4562] | 1057 | IF ( loop_optimization == 'cache' ) THEN |
---|
[1691] | 1058 | ! |
---|
[4562] | 1059 | !-- Calculate the Obukhov length using Newton iteration |
---|
[4717] | 1060 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo, ol_old, iter, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
[4562] | 1061 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 1062 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1063 | !$ACC PRESENT(surf) |
---|
| 1064 | DO m = 1, surf%ns |
---|
| 1065 | i = surf%i(m) |
---|
| 1066 | j = surf%j(m) |
---|
[1691] | 1067 | |
---|
[4562] | 1068 | z_mo = surf%z_mo(m) |
---|
[1691] | 1069 | |
---|
| 1070 | ! |
---|
[4562] | 1071 | !-- Store current value in case the Newton iteration fails |
---|
| 1072 | ol_old = surf%ol(m) |
---|
[1691] | 1073 | |
---|
| 1074 | ! |
---|
[4562] | 1075 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1076 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1077 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1078 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1079 | ENDIF |
---|
[1691] | 1080 | ! |
---|
[4562] | 1081 | !-- Iteration to find Obukhov length |
---|
| 1082 | iter = 0 |
---|
| 1083 | DO |
---|
| 1084 | iter = iter + 1 |
---|
[4366] | 1085 | ! |
---|
[4562] | 1086 | !-- In case of divergence, use the value of the previous time step |
---|
| 1087 | IF ( iter > 1000 ) THEN |
---|
| 1088 | surf%ol(m) = ol_old |
---|
| 1089 | EXIT |
---|
| 1090 | ENDIF |
---|
[4366] | 1091 | |
---|
[4562] | 1092 | ol_m = surf%ol(m) |
---|
| 1093 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1094 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1095 | |
---|
| 1096 | |
---|
[4562] | 1097 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[4366] | 1098 | ! |
---|
[4562] | 1099 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
[4593] | 1100 | f = surf%rib(m) - ( z_mo / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1101 | - psi_h( z_mo / ol_m ) & |
---|
| 1102 | + psi_h( surf%z0h(m) / ol_m ) ) / & |
---|
[4593] | 1103 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) & |
---|
| 1104 | + psi_m( surf%z0(m) / ol_m ) )**2 |
---|
[4366] | 1105 | |
---|
| 1106 | ! |
---|
[4562] | 1107 | !-- Calculate df/dL |
---|
[4593] | 1108 | f_d_ol = ( - ( z_mo / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1109 | - psi_h( z_mo / ol_u ) & |
---|
| 1110 | + psi_h( surf%z0h(m) / ol_u ) ) / & |
---|
[4593] | 1111 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_u ) & |
---|
| 1112 | + psi_m( surf%z0(m) / ol_u ) )**2 & |
---|
| 1113 | + ( z_mo / ol_l ) * ( surf%ln_z_z0h(m) - psi_h( z_mo / ol_l ) & |
---|
| 1114 | + psi_h( surf%z0h(m) / ol_l ) ) /& |
---|
| 1115 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_l ) & |
---|
| 1116 | + psi_m( surf%z0(m) / ol_l ) )**2 ) / ( ol_u - ol_l ) |
---|
[4562] | 1117 | ELSE |
---|
[4366] | 1118 | ! |
---|
[4562] | 1119 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1120 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
[4593] | 1121 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) + psi_m( surf%z0(m) / ol_m ) )**3 |
---|
[4366] | 1122 | |
---|
| 1123 | ! |
---|
[4562] | 1124 | !-- Calculate df/dL |
---|
[4593] | 1125 | f_d_ol = ( - ( z_mo / ol_u ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1126 | - psi_m( z_mo / ol_u ) & |
---|
| 1127 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1128 | )**3 & |
---|
[4593] | 1129 | + ( z_mo / ol_l ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1130 | - psi_m( z_mo / ol_l ) & |
---|
| 1131 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1132 | )**3 & |
---|
| 1133 | ) / ( ol_u - ol_l ) |
---|
| 1134 | ENDIF |
---|
[4366] | 1135 | ! |
---|
[4562] | 1136 | !-- Calculate new L |
---|
| 1137 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[4366] | 1138 | |
---|
| 1139 | ! |
---|
[4562] | 1140 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1141 | !-- ensure convergence. |
---|
| 1142 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1143 | ! |
---|
[4562] | 1144 | !-- If unrealistic value occurs, set L to the maximum value that is allowed |
---|
| 1145 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1146 | surf%ol(m) = ol_max |
---|
| 1147 | EXIT |
---|
| 1148 | ENDIF |
---|
[4366] | 1149 | ! |
---|
[4562] | 1150 | !-- Assure that Obukhov length does not become zero. If the limit is reached, exit the loop. |
---|
| 1151 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1152 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1153 | EXIT |
---|
| 1154 | ENDIF |
---|
[4366] | 1155 | ! |
---|
[4562] | 1156 | !-- Check for convergence |
---|
| 1157 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
[4366] | 1158 | ENDDO |
---|
[4562] | 1159 | ENDDO |
---|
[4366] | 1160 | |
---|
| 1161 | ! |
---|
[4562] | 1162 | !-- Vector Version |
---|
| 1163 | ELSE |
---|
[4366] | 1164 | ! |
---|
[4562] | 1165 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1166 | !-- First set arrays required for vectorization |
---|
| 1167 | !$ACC PARALLEL LOOP & |
---|
| 1168 | !$ACC PRESENT(surf) |
---|
| 1169 | DO m = 1, surf%ns |
---|
| 1170 | z_mo_vec(m) = surf%z_mo(m) |
---|
[4366] | 1171 | ! |
---|
[4562] | 1172 | !-- Store current value in case the Newton iteration fails |
---|
| 1173 | ol_old_vec(m) = surf%ol(m) |
---|
[4366] | 1174 | ! |
---|
[4562] | 1175 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1176 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1177 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1178 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1179 | ENDIF |
---|
[4370] | 1180 | ! |
---|
[4562] | 1181 | !-- Initialize convergence flag |
---|
| 1182 | convergence_reached(m) = .FALSE. |
---|
| 1183 | ENDDO |
---|
[4366] | 1184 | |
---|
| 1185 | ! |
---|
[4562] | 1186 | !-- Iteration to find Obukhov length |
---|
| 1187 | iter = 0 |
---|
| 1188 | DO |
---|
| 1189 | iter = iter + 1 |
---|
[1691] | 1190 | ! |
---|
[4562] | 1191 | !-- In case of divergence, use the value(s) of the previous time step |
---|
| 1192 | IF ( iter > 1000 ) THEN |
---|
| 1193 | !$ACC PARALLEL LOOP & |
---|
[4370] | 1194 | !$ACC PRESENT(surf) |
---|
[4366] | 1195 | DO m = 1, surf%ns |
---|
[4562] | 1196 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
| 1197 | ENDDO |
---|
| 1198 | EXIT |
---|
| 1199 | ENDIF |
---|
[1691] | 1200 | |
---|
[4562] | 1201 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1202 | !$ACC PRESENT(surf) |
---|
| 1203 | DO m = 1, surf%ns |
---|
| 1204 | IF ( convergence_reached(m) ) CYCLE |
---|
[4366] | 1205 | |
---|
[4562] | 1206 | ol_m = surf%ol(m) |
---|
| 1207 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1208 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1209 | |
---|
| 1210 | |
---|
[4562] | 1211 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1212 | ! |
---|
[4562] | 1213 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
[4690] | 1214 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1215 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
| 1216 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
| 1217 | ) / & |
---|
[4593] | 1218 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1219 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1220 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1221 | )**2 |
---|
[1691] | 1222 | |
---|
| 1223 | ! |
---|
[4562] | 1224 | !-- Calculate df/dL |
---|
[4593] | 1225 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1226 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
| 1227 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1228 | ) / & |
---|
[4593] | 1229 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1230 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1231 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1232 | )**2 & |
---|
[4593] | 1233 | + ( z_mo_vec(m) / ol_l ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1234 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
| 1235 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1236 | ) / & |
---|
[4593] | 1237 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1238 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1239 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1240 | )**2 & |
---|
| 1241 | ) / ( ol_u - ol_l ) |
---|
| 1242 | ELSE |
---|
[1691] | 1243 | ! |
---|
[4562] | 1244 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
[4593] | 1245 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1246 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1247 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1248 | )**3 |
---|
[1691] | 1249 | |
---|
| 1250 | ! |
---|
[4562] | 1251 | !-- Calculate df/dL |
---|
[4593] | 1252 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1253 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1254 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1255 | )**3 & |
---|
[4593] | 1256 | + ( z_mo_vec(m) / ol_l ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1257 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1258 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1259 | )**3 & |
---|
| 1260 | ) / ( ol_u - ol_l ) |
---|
| 1261 | ENDIF |
---|
[1691] | 1262 | ! |
---|
[4562] | 1263 | !-- Calculate new L |
---|
| 1264 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1265 | |
---|
| 1266 | ! |
---|
[4562] | 1267 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1268 | !-- ensure convergence. |
---|
| 1269 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1270 | |
---|
[1691] | 1271 | ! |
---|
[4562] | 1272 | !-- Check for convergence |
---|
| 1273 | !-- This check does not modify surf%ol, therefore this is done first |
---|
| 1274 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1275 | convergence_reached(m) = .TRUE. |
---|
| 1276 | ENDIF |
---|
[1691] | 1277 | ! |
---|
[4562] | 1278 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
| 1279 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1280 | surf%ol(m) = ol_max |
---|
| 1281 | convergence_reached(m) = .TRUE. |
---|
| 1282 | ENDIF |
---|
| 1283 | ENDDO |
---|
[4186] | 1284 | ! |
---|
[4562] | 1285 | !-- Assure that Obukhov length does not become zero |
---|
| 1286 | !$ACC PARALLEL LOOP & |
---|
| 1287 | !$ACC PRESENT(surf) |
---|
| 1288 | DO m = 1, surf%ns |
---|
| 1289 | IF ( convergence_reached(m) ) CYCLE |
---|
| 1290 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1291 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
| 1292 | convergence_reached(m) = .TRUE. |
---|
| 1293 | ENDIF |
---|
| 1294 | ENDDO |
---|
[1691] | 1295 | |
---|
[4562] | 1296 | IF ( ALL( convergence_reached ) ) EXIT |
---|
[1691] | 1297 | |
---|
[4562] | 1298 | ENDDO ! End of iteration loop |
---|
[4366] | 1299 | |
---|
[4562] | 1300 | ENDIF ! End of vector branch |
---|
[4366] | 1301 | |
---|
[4562] | 1302 | END SUBROUTINE calc_ol |
---|
[1691] | 1303 | |
---|
| 1304 | |
---|
[4562] | 1305 | !--------------------------------------------------------------------------------------------------! |
---|
| 1306 | ! Description: |
---|
| 1307 | ! ------------ |
---|
| 1308 | !> Calculate friction velocity u*. |
---|
| 1309 | !--------------------------------------------------------------------------------------------------! |
---|
| 1310 | SUBROUTINE calc_us |
---|
[1691] | 1311 | |
---|
[4562] | 1312 | IMPLICIT NONE |
---|
[1691] | 1313 | |
---|
[4562] | 1314 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1315 | |
---|
| 1316 | ! |
---|
[4562] | 1317 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1318 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1319 | ! |
---|
[4562] | 1320 | !-- Compute u* at upward-facing surfaces |
---|
| 1321 | IF ( .NOT. downward ) THEN |
---|
| 1322 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1323 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1324 | !$ACC PRESENT(surf) |
---|
| 1325 | DO m = 1, surf%ns |
---|
| 1326 | z_mo = surf%z_mo(m) |
---|
[2232] | 1327 | ! |
---|
[4562] | 1328 | !-- Compute u* at the scalars' grid points |
---|
[4593] | 1329 | surf%us(m) = kappa * surf%uvw_abs(m) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1330 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1331 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1332 | ENDDO |
---|
[2232] | 1333 | ! |
---|
[4562] | 1334 | !-- Compute u* at downward-facing surfaces. This case, do not consider any stability. |
---|
[2232] | 1335 | ELSE |
---|
[4594] | 1336 | !$OMP PARALLEL DO |
---|
[4593] | 1337 | !$ACC PARALLEL LOOP & |
---|
[3634] | 1338 | !$ACC PRESENT(surf) |
---|
[2232] | 1339 | DO m = 1, surf%ns |
---|
[4562] | 1340 | ! |
---|
| 1341 | !-- Compute u* at the scalars' grid points |
---|
[4593] | 1342 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
[1691] | 1343 | ENDDO |
---|
[2232] | 1344 | ENDIF |
---|
[4562] | 1345 | ! |
---|
| 1346 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1347 | !-- No stability is considered in this case. |
---|
| 1348 | ELSE |
---|
[4593] | 1349 | !$OMP PARALLEL DO |
---|
| 1350 | !$ACC PARALLEL LOOP & |
---|
[4562] | 1351 | !$ACC PRESENT(surf) |
---|
| 1352 | DO m = 1, surf%ns |
---|
[4593] | 1353 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
[4562] | 1354 | ENDDO |
---|
| 1355 | ENDIF |
---|
[1691] | 1356 | |
---|
[4562] | 1357 | END SUBROUTINE calc_us |
---|
[1691] | 1358 | |
---|
[4562] | 1359 | !--------------------------------------------------------------------------------------------------! |
---|
| 1360 | ! Description: |
---|
| 1361 | ! ------------ |
---|
| 1362 | !> Calculate potential temperature, specific humidity, and virtual potential temperature at first |
---|
| 1363 | !> grid level. |
---|
| 1364 | !--------------------------------------------------------------------------------------------------! |
---|
| 1365 | SUBROUTINE calc_pt_q |
---|
[1691] | 1366 | |
---|
[4562] | 1367 | IMPLICIT NONE |
---|
[1691] | 1368 | |
---|
[4562] | 1369 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2232] | 1370 | |
---|
[4562] | 1371 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1372 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1373 | !$ACC PRESENT(surf, pt) |
---|
| 1374 | DO m = 1, surf%ns |
---|
| 1375 | i = surf%i(m) |
---|
| 1376 | j = surf%j(m) |
---|
| 1377 | k = surf%k(m) |
---|
[2232] | 1378 | |
---|
[3634] | 1379 | #ifndef _OPENACC |
---|
[4562] | 1380 | IF ( bulk_cloud_model ) THEN |
---|
| 1381 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1382 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1383 | ELSEIF( cloud_droplets ) THEN |
---|
| 1384 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1385 | surf%qv1(m) = q(k,j,i) |
---|
| 1386 | ELSE |
---|
[3634] | 1387 | #endif |
---|
[4562] | 1388 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1389 | #ifndef _OPENACC |
---|
[4562] | 1390 | IF ( humidity ) THEN |
---|
| 1391 | surf%qv1(m) = q(k,j,i) |
---|
| 1392 | ELSE |
---|
[3634] | 1393 | #endif |
---|
[4562] | 1394 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1395 | #ifndef _OPENACC |
---|
[4562] | 1396 | ENDIF |
---|
| 1397 | ENDIF |
---|
[2232] | 1398 | |
---|
[4562] | 1399 | IF ( humidity ) THEN |
---|
| 1400 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1401 | ENDIF |
---|
[3634] | 1402 | #endif |
---|
[4562] | 1403 | ENDDO |
---|
[1691] | 1404 | |
---|
[4562] | 1405 | END SUBROUTINE calc_pt_q |
---|
[1691] | 1406 | |
---|
[2696] | 1407 | |
---|
[4562] | 1408 | !--------------------------------------------------------------------------------------------------! |
---|
| 1409 | ! Description: |
---|
| 1410 | ! ------------ |
---|
| 1411 | !> Set potential temperature at surface grid level( only for upward-facing surfs ). |
---|
| 1412 | !--------------------------------------------------------------------------------------------------! |
---|
| 1413 | SUBROUTINE calc_pt_surface |
---|
[2696] | 1414 | |
---|
[4562] | 1415 | IMPLICIT NONE |
---|
[2696] | 1416 | |
---|
[4562] | 1417 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1418 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1419 | |
---|
[4562] | 1420 | k_off = surf%koff |
---|
| 1421 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1422 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1423 | !$ACC PRESENT(surf, pt) |
---|
| 1424 | DO m = 1, surf%ns |
---|
| 1425 | i = surf%i(m) |
---|
| 1426 | j = surf%j(m) |
---|
| 1427 | k = surf%k(m) |
---|
| 1428 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
| 1429 | ENDDO |
---|
[2696] | 1430 | |
---|
[4562] | 1431 | END SUBROUTINE calc_pt_surface |
---|
[2696] | 1432 | |
---|
| 1433 | ! |
---|
[3152] | 1434 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
[4562] | 1435 | SUBROUTINE calc_q_surface |
---|
[3152] | 1436 | |
---|
[4562] | 1437 | IMPLICIT NONE |
---|
[3152] | 1438 | |
---|
[4562] | 1439 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1440 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3152] | 1441 | |
---|
[4562] | 1442 | k_off = surf%koff |
---|
| 1443 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1444 | DO m = 1, surf%ns |
---|
| 1445 | i = surf%i(m) |
---|
| 1446 | j = surf%j(m) |
---|
| 1447 | k = surf%k(m) |
---|
| 1448 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1449 | ENDDO |
---|
[3152] | 1450 | |
---|
[4562] | 1451 | END SUBROUTINE calc_q_surface |
---|
[3152] | 1452 | |
---|
[4562] | 1453 | !--------------------------------------------------------------------------------------------------! |
---|
| 1454 | ! Description: |
---|
| 1455 | ! ------------ |
---|
| 1456 | !> Set virtual potential temperature at surface grid level ( only for upward-facing surfs ). |
---|
| 1457 | !--------------------------------------------------------------------------------------------------! |
---|
| 1458 | SUBROUTINE calc_vpt_surface |
---|
[3152] | 1459 | |
---|
[4562] | 1460 | IMPLICIT NONE |
---|
[3146] | 1461 | |
---|
[4562] | 1462 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1463 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3146] | 1464 | |
---|
[4562] | 1465 | k_off = surf%koff |
---|
| 1466 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1467 | DO m = 1, surf%ns |
---|
| 1468 | i = surf%i(m) |
---|
| 1469 | j = surf%j(m) |
---|
| 1470 | k = surf%k(m) |
---|
| 1471 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
[3146] | 1472 | |
---|
[4562] | 1473 | ENDDO |
---|
[3146] | 1474 | |
---|
[4562] | 1475 | END SUBROUTINE calc_vpt_surface |
---|
[3146] | 1476 | |
---|
[4562] | 1477 | !--------------------------------------------------------------------------------------------------! |
---|
| 1478 | ! Description: |
---|
| 1479 | ! ------------ |
---|
| 1480 | !> Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
| 1481 | !--------------------------------------------------------------------------------------------------! |
---|
| 1482 | SUBROUTINE calc_scaling_parameters |
---|
[3146] | 1483 | |
---|
[4562] | 1484 | IMPLICIT NONE |
---|
[1691] | 1485 | |
---|
| 1486 | |
---|
[4562] | 1487 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1488 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1489 | ! |
---|
| 1490 | !-- Compute theta* at horizontal surfaces |
---|
| 1491 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1492 | ! |
---|
| 1493 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1494 | |
---|
[4562] | 1495 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1496 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1497 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1498 | DO m = 1, surf%ns |
---|
| 1499 | i = surf%i(m) |
---|
| 1500 | j = surf%j(m) |
---|
| 1501 | k = surf%k(m) |
---|
| 1502 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1503 | ! |
---|
[4562] | 1504 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing |
---|
| 1505 | !-- ol further below |
---|
| 1506 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1507 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1508 | ENDDO |
---|
[2232] | 1509 | |
---|
[4562] | 1510 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1511 | ! |
---|
| 1512 | !-- For a given surface temperature: |
---|
| 1513 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 1514 | |
---|
[2232] | 1515 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1516 | DO m = 1, surf%ns |
---|
| 1517 | i = surf%i(m) |
---|
[2232] | 1518 | j = surf%j(m) |
---|
| 1519 | k = surf%k(m) |
---|
[4562] | 1520 | pt(k-1,j,i) = pt_surface |
---|
| 1521 | ENDDO |
---|
| 1522 | ENDIF |
---|
[2232] | 1523 | |
---|
[4562] | 1524 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1525 | DO m = 1, surf%ns |
---|
| 1526 | z_mo = surf%z_mo(m) |
---|
| 1527 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
[4593] | 1528 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1529 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4562] | 1530 | ENDDO |
---|
[2232] | 1531 | |
---|
[4562] | 1532 | ENDIF |
---|
[1691] | 1533 | ! |
---|
[4562] | 1534 | !-- Compute theta* at vertical surfaces. This is only required in case of land-surface model, in |
---|
| 1535 | !-- order to compute aerodynamical resistance. |
---|
| 1536 | IF ( surf_vertical ) THEN |
---|
| 1537 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1538 | DO m = 1, surf%ns |
---|
| 1539 | i = surf%i(m) |
---|
| 1540 | j = surf%j(m) |
---|
| 1541 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1542 | ! |
---|
| 1543 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing ol |
---|
| 1544 | !-- further below |
---|
| 1545 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1546 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1547 | ENDDO |
---|
| 1548 | ENDIF |
---|
[2232] | 1549 | |
---|
[4562] | 1550 | ! |
---|
| 1551 | !-- If required compute q* at horizontal surfaces |
---|
| 1552 | IF ( humidity ) THEN |
---|
| 1553 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1554 | ! |
---|
| 1555 | !-- For a given water flux in the surface layer |
---|
| 1556 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1557 | DO m = 1, surf%ns |
---|
| 1558 | i = surf%i(m) |
---|
| 1559 | j = surf%j(m) |
---|
| 1560 | k = surf%k(m) |
---|
| 1561 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1562 | ENDDO |
---|
| 1563 | |
---|
[4562] | 1564 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1565 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
| 1566 | |
---|
[1788] | 1567 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[4562] | 1568 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1569 | DO m = 1, surf%ns |
---|
| 1570 | i = surf%i(m) |
---|
| 1571 | j = surf%j(m) |
---|
| 1572 | k = surf%k(m) |
---|
| 1573 | q(k-1,j,i) = q_surface |
---|
[2232] | 1574 | |
---|
[4562] | 1575 | ENDDO |
---|
| 1576 | ENDIF |
---|
| 1577 | |
---|
| 1578 | ! |
---|
| 1579 | !-- Assume saturation for atmosphere coupled to ocean (but not in case of precursor runs) |
---|
| 1580 | IF ( coupled_run ) THEN |
---|
| 1581 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1582 | DO m = 1, surf%ns |
---|
| 1583 | i = surf%i(m) |
---|
[2232] | 1584 | j = surf%j(m) |
---|
| 1585 | k = surf%k(m) |
---|
[4562] | 1586 | e_s = 6.1_wp * EXP( 0.07_wp * ( MIN( pt(k-1,j,i), pt(k,j,i) ) - 273.15_wp ) ) |
---|
| 1587 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
| 1588 | ENDDO |
---|
| 1589 | ENDIF |
---|
[2232] | 1590 | |
---|
[4562] | 1591 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[4717] | 1592 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[4562] | 1593 | DO m = 1, surf%ns |
---|
| 1594 | i = surf%i(m) |
---|
| 1595 | j = surf%j(m) |
---|
| 1596 | k = surf%k(m) |
---|
| 1597 | z_mo = surf%z_mo(m) |
---|
| 1598 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[4593] | 1599 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1600 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1601 | ENDDO |
---|
[4562] | 1602 | ELSE |
---|
| 1603 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1604 | DO m = 1, surf%ns |
---|
| 1605 | i = surf%i(m) |
---|
| 1606 | j = surf%j(m) |
---|
| 1607 | k = surf%k(m) |
---|
| 1608 | z_mo = surf%z_mo(m) |
---|
| 1609 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
[4593] | 1610 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1611 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1612 | ENDDO |
---|
[1691] | 1613 | ENDIF |
---|
[2232] | 1614 | ENDIF |
---|
[4562] | 1615 | ! |
---|
| 1616 | !-- Compute q* at vertical surfaces |
---|
[2232] | 1617 | IF ( surf_vertical ) THEN |
---|
[2281] | 1618 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1619 | DO m = 1, surf%ns |
---|
[2232] | 1620 | |
---|
[4562] | 1621 | i = surf%i(m) |
---|
| 1622 | j = surf%j(m) |
---|
| 1623 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1624 | |
---|
[1691] | 1625 | ENDDO |
---|
| 1626 | ENDIF |
---|
[4562] | 1627 | ENDIF |
---|
[1691] | 1628 | |
---|
| 1629 | ! |
---|
[4562] | 1630 | !-- If required compute s* |
---|
| 1631 | IF ( passive_scalar ) THEN |
---|
[1691] | 1632 | ! |
---|
[4562] | 1633 | !-- At horizontal surfaces |
---|
| 1634 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1635 | ! |
---|
[4562] | 1636 | !-- For a given scalar flux in the surface layer |
---|
| 1637 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1638 | DO m = 1, surf%ns |
---|
| 1639 | i = surf%i(m) |
---|
| 1640 | j = surf%j(m) |
---|
| 1641 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1642 | ENDDO |
---|
| 1643 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1644 | |
---|
[4562] | 1645 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1646 | DO m = 1, surf%ns |
---|
| 1647 | i = surf%i(m) |
---|
| 1648 | j = surf%j(m) |
---|
| 1649 | k = surf%k(m) |
---|
| 1650 | z_mo = surf%z_mo(m) |
---|
[1691] | 1651 | |
---|
[4562] | 1652 | surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & |
---|
[4593] | 1653 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1654 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4562] | 1655 | ENDDO |
---|
[1691] | 1656 | ENDIF |
---|
[1960] | 1657 | ! |
---|
[4562] | 1658 | !-- At vertical surfaces |
---|
| 1659 | IF ( surf_vertical ) THEN |
---|
| 1660 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1661 | DO m = 1, surf%ns |
---|
| 1662 | i = surf%i(m) |
---|
| 1663 | j = surf%j(m) |
---|
| 1664 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1665 | ENDDO |
---|
| 1666 | ENDIF |
---|
| 1667 | ENDIF |
---|
| 1668 | |
---|
[1960] | 1669 | ! |
---|
[4562] | 1670 | !-- If required compute cs* (chemical species) |
---|
| 1671 | IF ( air_chemistry ) THEN |
---|
[2232] | 1672 | ! |
---|
[4562] | 1673 | !-- At horizontal surfaces |
---|
| 1674 | DO lsp = 1, nvar |
---|
| 1675 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1676 | !-- For a given chemical species' flux in the surface layer |
---|
[2281] | 1677 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1678 | DO m = 1, surf%ns |
---|
| 1679 | i = surf%i(m) |
---|
| 1680 | j = surf%j(m) |
---|
| 1681 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1682 | ENDDO |
---|
| 1683 | ENDIF |
---|
[4562] | 1684 | ENDDO |
---|
[2232] | 1685 | ! |
---|
[4562] | 1686 | !-- At vertical surfaces |
---|
| 1687 | IF ( surf_vertical ) THEN |
---|
| 1688 | DO lsp = 1, nvar |
---|
[2281] | 1689 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1690 | DO m = 1, surf%ns |
---|
| 1691 | i = surf%i(m) |
---|
| 1692 | j = surf%j(m) |
---|
| 1693 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1694 | ENDDO |
---|
[2696] | 1695 | ENDDO |
---|
| 1696 | ENDIF |
---|
[4562] | 1697 | ENDIF |
---|
[2696] | 1698 | |
---|
| 1699 | ! |
---|
[4562] | 1700 | !-- If required compute qc* and nc* |
---|
| 1701 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. surf_vertical ) THEN |
---|
| 1702 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1703 | DO m = 1, surf%ns |
---|
| 1704 | i = surf%i(m) |
---|
| 1705 | j = surf%j(m) |
---|
| 1706 | k = surf%k(m) |
---|
[1691] | 1707 | |
---|
[4562] | 1708 | z_mo = surf%z_mo(m) |
---|
[2292] | 1709 | |
---|
[4562] | 1710 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
[4593] | 1711 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1712 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[2292] | 1713 | |
---|
[4562] | 1714 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
[4593] | 1715 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1716 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1717 | ENDDO |
---|
[2292] | 1718 | |
---|
[4562] | 1719 | ENDIF |
---|
[2292] | 1720 | |
---|
[1691] | 1721 | ! |
---|
[4562] | 1722 | !-- If required compute qr* and nr* |
---|
| 1723 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. surf_vertical ) THEN |
---|
| 1724 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1725 | DO m = 1, surf%ns |
---|
| 1726 | i = surf%i(m) |
---|
| 1727 | j = surf%j(m) |
---|
| 1728 | k = surf%k(m) |
---|
[1691] | 1729 | |
---|
[4562] | 1730 | z_mo = surf%z_mo(m) |
---|
[1691] | 1731 | |
---|
[4562] | 1732 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
[4593] | 1733 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1734 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1735 | |
---|
[4562] | 1736 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
[4593] | 1737 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1738 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1739 | ENDDO |
---|
[1691] | 1740 | |
---|
[4562] | 1741 | ENDIF |
---|
[1691] | 1742 | |
---|
[4562] | 1743 | END SUBROUTINE calc_scaling_parameters |
---|
[1691] | 1744 | |
---|
| 1745 | |
---|
| 1746 | |
---|
[4562] | 1747 | !--------------------------------------------------------------------------------------------------! |
---|
| 1748 | ! Description: |
---|
| 1749 | ! ------------ |
---|
| 1750 | !> Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
| 1751 | !--------------------------------------------------------------------------------------------------! |
---|
| 1752 | SUBROUTINE calc_surface_fluxes |
---|
[1691] | 1753 | |
---|
[4562] | 1754 | IMPLICIT NONE |
---|
[1691] | 1755 | |
---|
[4562] | 1756 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1757 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1758 | |
---|
[4562] | 1759 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1760 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1761 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
[1691] | 1762 | |
---|
[4562] | 1763 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1764 | !< at vertical surfaces |
---|
| 1765 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1766 | !< at vertical surfaces |
---|
| 1767 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1768 | !< at vertical surfaces |
---|
[1691] | 1769 | |
---|
| 1770 | ! |
---|
[4562] | 1771 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1772 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1773 | ! |
---|
[4562] | 1774 | !-- Compute u'w' for the total model domain at upward-facing surfaces. First compute the |
---|
| 1775 | !-- corresponding component of u* and square it. |
---|
| 1776 | IF ( .NOT. downward ) THEN |
---|
| 1777 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1778 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1779 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
| 1780 | DO m = 1, surf%ns |
---|
| 1781 | i = surf%i(m) |
---|
| 1782 | j = surf%j(m) |
---|
| 1783 | k = surf%k(m) |
---|
[1691] | 1784 | |
---|
[4562] | 1785 | z_mo = surf%z_mo(m) |
---|
[1691] | 1786 | |
---|
[4562] | 1787 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
[4593] | 1788 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1789 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[2232] | 1790 | ! |
---|
[4562] | 1791 | !-- Please note, the computation of usws is not fully accurate. Actually a further |
---|
| 1792 | !-- interpolation of us onto the u-grid, where usws is defined, is required. However, this |
---|
| 1793 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1794 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1795 | !-- shown. Same also for ol. |
---|
| 1796 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1797 | ENDDO |
---|
[1691] | 1798 | ! |
---|
[4562] | 1799 | !-- At downward-facing surfaces |
---|
| 1800 | ELSE |
---|
[4593] | 1801 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1802 | DO m = 1, surf%ns |
---|
| 1803 | i = surf%i(m) |
---|
| 1804 | j = surf%j(m) |
---|
| 1805 | k = surf%k(m) |
---|
[1691] | 1806 | |
---|
[4593] | 1807 | surf%usws(m) = kappa * u(k,j,i) / surf%ln_z_z0(m) |
---|
[4562] | 1808 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1809 | ENDDO |
---|
| 1810 | ENDIF |
---|
[1691] | 1811 | |
---|
[2232] | 1812 | ! |
---|
[4562] | 1813 | !-- Compute v'w' for the total model domain. First compute the corresponding component of u* and |
---|
| 1814 | !-- square it. |
---|
| 1815 | !-- Upward-facing surfaces |
---|
| 1816 | IF ( .NOT. downward ) THEN |
---|
| 1817 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1818 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1819 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
| 1820 | DO m = 1, surf%ns |
---|
| 1821 | i = surf%i(m) |
---|
| 1822 | j = surf%j(m) |
---|
| 1823 | k = surf%k(m) |
---|
[1691] | 1824 | |
---|
[4562] | 1825 | z_mo = surf%z_mo(m) |
---|
[1691] | 1826 | |
---|
[4562] | 1827 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
[4593] | 1828 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1829 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1830 | ! |
---|
[4562] | 1831 | !-- Please note, the computation of vsws is not fully accurate. Actually a further |
---|
| 1832 | !-- interpolation of us onto the v-grid, where vsws is defined, is required. However, this |
---|
| 1833 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1834 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1835 | !-- shown. Same also for ol. |
---|
| 1836 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1837 | ENDDO |
---|
[2232] | 1838 | ! |
---|
[4562] | 1839 | !-- Downward-facing surfaces |
---|
| 1840 | ELSE |
---|
[4593] | 1841 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1842 | DO m = 1, surf%ns |
---|
| 1843 | i = surf%i(m) |
---|
| 1844 | j = surf%j(m) |
---|
| 1845 | k = surf%k(m) |
---|
[1691] | 1846 | |
---|
[4593] | 1847 | surf%vsws(m) = kappa * v(k,j,i) / surf%ln_z_z0(m) |
---|
[4562] | 1848 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1849 | ENDDO |
---|
| 1850 | ENDIF |
---|
[1691] | 1851 | ! |
---|
[4593] | 1852 | !-- Compute the vertical kinematic heat flux. Note, only upward-facing surfaces are considered, |
---|
| 1853 | !-- at downward-facing surfaces the flux is not parametrized with a scaling parameter. |
---|
[4562] | 1854 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point <= skip_time_do_lsm & |
---|
| 1855 | .AND. simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1856 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[4593] | 1857 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1858 | DO m = 1, surf%ns |
---|
| 1859 | k = surf%k(m) |
---|
| 1860 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1861 | ENDDO |
---|
| 1862 | ENDIF |
---|
[2232] | 1863 | ! |
---|
[4562] | 1864 | !-- Compute the vertical water flux |
---|
| 1865 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
| 1866 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) & |
---|
| 1867 | .OR. .NOT. land_surface ) .AND. .NOT. urban_surface .AND. .NOT. downward ) & |
---|
| 1868 | THEN |
---|
[4593] | 1869 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1870 | DO m = 1, surf%ns |
---|
[4594] | 1871 | k = surf%k(m) |
---|
[4562] | 1872 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1873 | ENDDO |
---|
| 1874 | ENDIF |
---|
| 1875 | ! |
---|
| 1876 | !-- Compute the vertical scalar flux |
---|
| 1877 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. .NOT. downward ) THEN |
---|
[4594] | 1878 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1879 | DO m = 1, surf%ns |
---|
[4594] | 1880 | k = surf%k(m) |
---|
[4593] | 1881 | surf%ssws(m) = -surf%ss(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[4562] | 1882 | ENDDO |
---|
| 1883 | ENDIF |
---|
| 1884 | ! |
---|
| 1885 | !-- Compute the vertical chemical species' flux |
---|
| 1886 | DO lsp = 1, nvar |
---|
| 1887 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. .NOT. downward ) THEN |
---|
[4594] | 1888 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1889 | DO m = 1, surf%ns |
---|
[4594] | 1890 | k = surf%k(m) |
---|
[4593] | 1891 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) * rho_air_zw(k-1) |
---|
[2232] | 1892 | ENDDO |
---|
| 1893 | ENDIF |
---|
[4562] | 1894 | ENDDO |
---|
| 1895 | |
---|
[2232] | 1896 | ! |
---|
[4562] | 1897 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
| 1898 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. downward) THEN |
---|
[4594] | 1899 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1900 | DO m = 1, surf%ns |
---|
[4594] | 1901 | k = surf%k(m) |
---|
[4593] | 1902 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1903 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[4562] | 1904 | ENDDO |
---|
| 1905 | ENDIF |
---|
| 1906 | ! |
---|
| 1907 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
| 1908 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. downward) THEN |
---|
[4594] | 1909 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1910 | DO m = 1, surf%ns |
---|
[4594] | 1911 | k = surf%k(m) |
---|
[4593] | 1912 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1913 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[2696] | 1914 | ENDDO |
---|
[4562] | 1915 | ENDIF |
---|
[2696] | 1916 | |
---|
| 1917 | ! |
---|
[4562] | 1918 | !-- Bottom boundary condition for the TKE. |
---|
| 1919 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1920 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1921 | DO m = 1, surf%ns |
---|
| 1922 | i = surf%i(m) |
---|
| 1923 | j = surf%j(m) |
---|
| 1924 | k = surf%k(m) |
---|
[2292] | 1925 | |
---|
[4562] | 1926 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1927 | ! |
---|
| 1928 | !-- As a test: cm = 0.4 |
---|
| 1929 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1930 | e(k-1,j,i) = e(k,j,i) |
---|
[2292] | 1931 | |
---|
[4562] | 1932 | ENDDO |
---|
| 1933 | ENDIF |
---|
[2292] | 1934 | ! |
---|
[4562] | 1935 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
[4593] | 1936 | !-- Further, no density needs to be considered here. |
---|
[4562] | 1937 | ELSE |
---|
| 1938 | ! |
---|
| 1939 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1940 | IF ( mom_uv ) THEN |
---|
| 1941 | ! |
---|
| 1942 | !-- Generalize computation by introducing flags. At north- and south-facing surfaces |
---|
| 1943 | !-- u-component is used, at east- and west-facing surfaces v-component is used. |
---|
| 1944 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1945 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
[4593] | 1946 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1947 | DO m = 1, surf%ns |
---|
| 1948 | i = surf%i(m) |
---|
| 1949 | j = surf%j(m) |
---|
| 1950 | k = surf%k(m) |
---|
[2232] | 1951 | |
---|
[4562] | 1952 | surf%mom_flux_uv(m) = kappa * ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
[4593] | 1953 | surf%ln_z_z0(m) |
---|
[1691] | 1954 | |
---|
[4562] | 1955 | surf%mom_flux_uv(m) = - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1956 | ENDDO |
---|
| 1957 | ENDIF |
---|
[1960] | 1958 | ! |
---|
[4562] | 1959 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1960 | IF ( mom_w ) THEN |
---|
[4717] | 1961 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1962 | DO m = 1, surf%ns |
---|
| 1963 | i = surf%i(m) |
---|
| 1964 | j = surf%j(m) |
---|
| 1965 | k = surf%k(m) |
---|
[2232] | 1966 | |
---|
[4593] | 1967 | surf%mom_flux_w(m) = kappa * w(k,j,i) / surf%ln_z_z0(m) |
---|
[2232] | 1968 | |
---|
[4562] | 1969 | surf%mom_flux_w(m) = - surf%mom_flux_w(m) * surf%us(m) |
---|
| 1970 | ENDDO |
---|
| 1971 | ENDIF |
---|
[2232] | 1972 | ! |
---|
[4562] | 1973 | !-- Compute momentum fluxes used for subgrid-scale TKE production at vertical surfaces. In |
---|
| 1974 | !-- constrast to the calculated momentum fluxes at vertical surfaces before, which are defined on |
---|
| 1975 | !-- the u/v/w-grid, respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1976 | !-- |
---|
| 1977 | IF ( mom_tke ) THEN |
---|
[2232] | 1978 | ! |
---|
[4562] | 1979 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1980 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1981 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1982 | ALLOCATE( w_i(1:surf%ns) ) |
---|
| 1983 | |
---|
| 1984 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1985 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1986 | DO m = 1, surf%ns |
---|
| 1987 | i = surf%i(m) |
---|
[2232] | 1988 | j = surf%j(m) |
---|
| 1989 | k = surf%k(m) |
---|
[1691] | 1990 | |
---|
[4562] | 1991 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1992 | v_i(m) = 0.0_wp |
---|
| 1993 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 1994 | ENDDO |
---|
[4562] | 1995 | ELSE |
---|
| 1996 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1997 | DO m = 1, surf%ns |
---|
| 1998 | i = surf%i(m) |
---|
[2232] | 1999 | j = surf%j(m) |
---|
| 2000 | k = surf%k(m) |
---|
| 2001 | |
---|
[4562] | 2002 | u_i(m) = 0.0_wp |
---|
| 2003 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 2004 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[1691] | 2005 | ENDDO |
---|
[2232] | 2006 | ENDIF |
---|
[1691] | 2007 | |
---|
[4593] | 2008 | !$OMP PARALLEL DO PRIVATE( i, j, dum ) |
---|
[4562] | 2009 | DO m = 1, surf%ns |
---|
| 2010 | i = surf%i(m) |
---|
| 2011 | j = surf%j(m) |
---|
[2232] | 2012 | |
---|
[4593] | 2013 | dum = kappa / surf%ln_z_z0(m) |
---|
[1691] | 2014 | ! |
---|
[4562] | 2015 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 2016 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 2017 | ! |
---|
[4562] | 2018 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 2019 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
[2232] | 2020 | |
---|
[4562] | 2021 | surf%mom_flux_tke(0:1,m) = - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
| 2022 | ENDDO |
---|
[2232] | 2023 | ! |
---|
[4562] | 2024 | !-- Deallocate temporary arrays |
---|
| 2025 | DEALLOCATE( u_i ) |
---|
| 2026 | DEALLOCATE( v_i ) |
---|
| 2027 | DEALLOCATE( w_i ) |
---|
[1691] | 2028 | ENDIF |
---|
[4562] | 2029 | ENDIF |
---|
[1691] | 2030 | |
---|
[4562] | 2031 | END SUBROUTINE calc_surface_fluxes |
---|
[1691] | 2032 | |
---|
[4562] | 2033 | |
---|
| 2034 | !--------------------------------------------------------------------------------------------------! |
---|
[3597] | 2035 | ! Description: |
---|
| 2036 | ! ------------ |
---|
[4562] | 2037 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m temperature for output. |
---|
| 2038 | !--------------------------------------------------------------------------------------------------! |
---|
| 2039 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 2040 | |
---|
[4562] | 2041 | IMPLICIT NONE |
---|
[3597] | 2042 | |
---|
[4562] | 2043 | CHARACTER(LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
[3597] | 2044 | |
---|
[4562] | 2045 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 2046 | |
---|
[4562] | 2047 | SELECT CASE ( z_char) |
---|
[3597] | 2048 | |
---|
[4562] | 2049 | CASE ( '10cm' ) |
---|
[4750] | 2050 | ! |
---|
| 2051 | !-- For horizontal upward-facing surfaces 10-cm temperature can be calculated using MOST. |
---|
| 2052 | IF ( .NOT. downward .AND. .NOT. surf_vertical ) THEN |
---|
| 2053 | DO m = 1, surf%ns |
---|
| 2054 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
[4562] | 2055 | * ( LOG( 0.1_wp / surf%z0h(m) ) - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
| 2056 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4750] | 2057 | ENDDO |
---|
| 2058 | ! |
---|
| 2059 | !-- At vertical surfaces 10-cm temperature cannot be calculated via MOST as the Obukhov length |
---|
| 2060 | !-- and temperature scaling parameter are not calculated. Hence, set 10-cm temperature to |
---|
| 2061 | !-- the grid-cell temperature. |
---|
| 2062 | ELSE |
---|
| 2063 | DO m = 1, surf%ns |
---|
| 2064 | surf%pt_10cm(m) = pt(surf%k(m)+surf%koff,surf%j(m)+surf%joff,surf%i(m)+surf%ioff) |
---|
| 2065 | ENDDO |
---|
| 2066 | ENDIF |
---|
[3597] | 2067 | |
---|
[4562] | 2068 | END SELECT |
---|
[1691] | 2069 | |
---|
[4562] | 2070 | END SUBROUTINE calc_pt_near_surface |
---|
[1691] | 2071 | |
---|
| 2072 | |
---|
[4562] | 2073 | !--------------------------------------------------------------------------------------------------! |
---|
| 2074 | ! Description: |
---|
| 2075 | ! ------------ |
---|
| 2076 | !> Integrated stability function for momentum. |
---|
| 2077 | !--------------------------------------------------------------------------------------------------! |
---|
| 2078 | FUNCTION psi_m( zeta ) |
---|
| 2079 | !$ACC ROUTINE SEQ |
---|
[1691] | 2080 | |
---|
[4562] | 2081 | USE kinds |
---|
[1691] | 2082 | |
---|
[4562] | 2083 | IMPLICIT NONE |
---|
[1691] | 2084 | |
---|
[4562] | 2085 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 2086 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2087 | REAL(wp) :: x !< dummy variable |
---|
[1691] | 2088 | |
---|
[4562] | 2089 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2090 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2091 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2092 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2093 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2094 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
[1691] | 2095 | |
---|
| 2096 | |
---|
[4562] | 2097 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2098 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
| 2099 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2100 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2101 | ELSE |
---|
[1691] | 2102 | |
---|
[4562] | 2103 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta - bc_d_d |
---|
[1691] | 2104 | ! |
---|
[4562] | 2105 | !-- Old version for stable conditions (only valid for z/L < 0.5) psi_m = - 5.0_wp * zeta |
---|
[1691] | 2106 | |
---|
[4562] | 2107 | ENDIF |
---|
[1691] | 2108 | |
---|
[4562] | 2109 | END FUNCTION psi_m |
---|
[1691] | 2110 | |
---|
| 2111 | |
---|
[4562] | 2112 | !--------------------------------------------------------------------------------------------------! |
---|
| 2113 | ! Description: |
---|
| 2114 | !------------ |
---|
| 2115 | !> Integrated stability function for heat and moisture. |
---|
| 2116 | !--------------------------------------------------------------------------------------------------! |
---|
| 2117 | FUNCTION psi_h( zeta ) |
---|
| 2118 | !$ACC ROUTINE SEQ |
---|
[1691] | 2119 | |
---|
[4562] | 2120 | USE kinds |
---|
| 2121 | |
---|
| 2122 | IMPLICIT NONE |
---|
| 2123 | |
---|
| 2124 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2125 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2126 | REAL(wp) :: x !< dummy variable |
---|
| 2127 | |
---|
| 2128 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2129 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2130 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2131 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2132 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2133 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2134 | |
---|
| 2135 | |
---|
| 2136 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2137 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
| 2138 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2139 | ELSE |
---|
| 2140 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2141 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d + 1.0_wp |
---|
[1691] | 2142 | ! |
---|
[4562] | 2143 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2144 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2145 | ENDIF |
---|
[1691] | 2146 | |
---|
[4562] | 2147 | END FUNCTION psi_h |
---|
[1691] | 2148 | |
---|
[3130] | 2149 | |
---|
[4562] | 2150 | !--------------------------------------------------------------------------------------------------! |
---|
[3130] | 2151 | ! Description: |
---|
| 2152 | ! ------------ |
---|
| 2153 | !> Calculates stability function for momentum |
---|
| 2154 | !> |
---|
| 2155 | !> @author Hauke Wurps |
---|
[4562] | 2156 | !--------------------------------------------------------------------------------------------------! |
---|
| 2157 | FUNCTION phi_m( zeta ) |
---|
| 2158 | !$ACC ROUTINE SEQ |
---|
[3130] | 2159 | |
---|
[4562] | 2160 | IMPLICIT NONE |
---|
| 2161 | |
---|
| 2162 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2163 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2164 | |
---|
| 2165 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2166 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2167 | |
---|
| 2168 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2169 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2170 | ELSE |
---|
| 2171 | phi_m = 1.0_wp + c * zeta |
---|
| 2172 | ENDIF |
---|
| 2173 | |
---|
| 2174 | END FUNCTION phi_m |
---|
| 2175 | |
---|
[1697] | 2176 | END MODULE surface_layer_fluxes_mod |
---|