[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[4562] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[4562] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1691] | 8 | ! |
---|
[4562] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1691] | 12 | ! |
---|
[4562] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1691] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4562] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 18 | ! |
---|
[2696] | 19 | ! |
---|
[1691] | 20 | ! Current revisions: |
---|
[4562] | 21 | ! ----------------- |
---|
[4593] | 22 | ! |
---|
[4691] | 23 | ! |
---|
[1692] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: surface_layer_fluxes_mod.f90 4691 2020-09-22 14:38:38Z suehring $ |
---|
[4691] | 27 | ! Bugfix for commit 4593 in vector branch of calc_ol |
---|
| 28 | ! |
---|
| 29 | ! 4671 2020-09-09 20:27:58Z pavelkrc |
---|
[4671] | 30 | ! Implementation of downward facing USM and LSM surfaces |
---|
| 31 | ! |
---|
| 32 | ! 4594 2020-07-09 15:01:00Z suehring |
---|
[4594] | 33 | ! Include k index in OMP PRIVATE statements |
---|
| 34 | ! |
---|
| 35 | ! 4593 2020-07-09 12:48:18Z suehring |
---|
[4593] | 36 | ! - Pre-calculate ln(z/z0) at each timestep in order to reduce the number of log-calculations |
---|
| 37 | ! - Bugfix - add missing density to fluxes of passive-scalars, chemistry and cloud-phyiscal |
---|
| 38 | ! quantities at upward-facing surfaces |
---|
| 39 | ! - Move if-statement out of inner loop |
---|
| 40 | ! - Remove unnecessary index referencing |
---|
| 41 | ! |
---|
| 42 | ! 4562 2020-06-12 08:38:47Z raasch |
---|
[4562] | 43 | ! File re-formatted to follow the PALM coding standard |
---|
| 44 | ! |
---|
| 45 | ! 4519 2020-05-05 17:33:30Z suehring |
---|
[4519] | 46 | ! Add missing computation of passive scalar scaling parameter |
---|
[4562] | 47 | ! |
---|
[4519] | 48 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4562] | 49 | ! Bugfix: openacc porting for vector version of OL calculation added |
---|
| 50 | ! |
---|
[4370] | 51 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4562] | 52 | ! Vector version for calculation of Obukhov length via Newton iteration added |
---|
| 53 | ! |
---|
[4366] | 54 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4562] | 55 | ! Calculation of diagnostic-only 2-m potential temperature moved to diagnostic_output_quantities. |
---|
| 56 | ! |
---|
[4331] | 57 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
[4562] | 58 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above the first grid point. |
---|
| 59 | ! |
---|
[4298] | 60 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 61 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
[4562] | 62 | ! |
---|
[4258] | 63 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 64 | ! Added missing OpenMP directives |
---|
[4562] | 65 | ! |
---|
[4237] | 66 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4562] | 67 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 68 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic peaks in the heat fluxes |
---|
| 69 | ! during nighttime |
---|
[4186] | 70 | ! - Unused variable removed |
---|
[4562] | 71 | ! |
---|
[4186] | 72 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 73 | ! Corrected "Former revisions" section |
---|
[4562] | 74 | ! |
---|
[4182] | 75 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 76 | ! Introduce alternative switch for debug output during timestepping |
---|
[4562] | 77 | ! |
---|
[3987] | 78 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4562] | 79 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 80 | ! messages |
---|
| 81 | ! |
---|
[3885] | 82 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 83 | ! Assure that Obukhov length does not become zero |
---|
[4562] | 84 | ! |
---|
[3881] | 85 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[4562] | 86 | ! Added USE chem_gasphase_mod |
---|
| 87 | ! |
---|
[3833] | 88 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[4562] | 89 | ! Unused variables removed |
---|
| 90 | ! |
---|
[3787] | 91 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[4562] | 92 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, required for indoor |
---|
| 93 | ! model |
---|
| 94 | ! |
---|
[3745] | 95 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 96 | ! Some interface calls moved to module_interface + cleanup |
---|
[4562] | 97 | ! |
---|
[3685] | 98 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 99 | ! Removed methods "circular" and "lookup" |
---|
[4562] | 100 | ! |
---|
[3668] | 101 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 102 | ! OpenACC port for SPEC |
---|
[1692] | 103 | ! |
---|
[4182] | 104 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 105 | ! Initial revision |
---|
| 106 | ! |
---|
| 107 | ! |
---|
[1691] | 108 | ! Description: |
---|
| 109 | ! ------------ |
---|
[4562] | 110 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the values of the |
---|
| 111 | !> variables at grid point k=1 based on Newton iteration. |
---|
[1691] | 112 | !> |
---|
[4562] | 113 | !> @todo (Re)move large_scale_forcing actions |
---|
| 114 | !> @todo Check/optimize OpenMP directives |
---|
| 115 | !> @todo Simplify if conditions (which flux need to be computed in which case) |
---|
| 116 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 117 | MODULE surface_layer_fluxes_mod |
---|
| 118 | |
---|
[4562] | 119 | USE arrays_3d, & |
---|
| 120 | ONLY: d_exner, & |
---|
| 121 | drho_air_zw, & |
---|
| 122 | e, & |
---|
| 123 | kh, & |
---|
| 124 | nc, & |
---|
| 125 | nr, & |
---|
| 126 | pt, & |
---|
| 127 | q, & |
---|
| 128 | ql, & |
---|
| 129 | qc, & |
---|
| 130 | qr, & |
---|
| 131 | s, & |
---|
| 132 | u, & |
---|
| 133 | v, & |
---|
| 134 | vpt, & |
---|
| 135 | w, & |
---|
| 136 | zu, & |
---|
| 137 | zw, & |
---|
| 138 | rho_air_zw |
---|
[1691] | 139 | |
---|
[3274] | 140 | |
---|
[4562] | 141 | USE basic_constants_and_equations_mod, & |
---|
| 142 | ONLY: g, & |
---|
| 143 | kappa, & |
---|
| 144 | lv_d_cp, & |
---|
| 145 | pi, & |
---|
| 146 | rd_d_rv |
---|
| 147 | |
---|
| 148 | USE chem_gasphase_mod, & |
---|
[3833] | 149 | ONLY: nvar |
---|
| 150 | |
---|
[4562] | 151 | USE chem_modules, & |
---|
[3834] | 152 | ONLY: constant_csflux |
---|
[2696] | 153 | |
---|
[1691] | 154 | USE cpulog |
---|
| 155 | |
---|
[4562] | 156 | USE control_parameters, & |
---|
| 157 | ONLY: air_chemistry, & |
---|
| 158 | cloud_droplets, & |
---|
| 159 | constant_heatflux, & |
---|
| 160 | constant_scalarflux, & |
---|
| 161 | constant_waterflux, & |
---|
| 162 | coupling_mode, & |
---|
| 163 | debug_output_timestep, & |
---|
| 164 | humidity, & |
---|
| 165 | ibc_e_b, & |
---|
| 166 | ibc_pt_b, & |
---|
| 167 | indoor_model, & |
---|
| 168 | land_surface, & |
---|
| 169 | large_scale_forcing, & |
---|
| 170 | loop_optimization, & |
---|
| 171 | lsf_surf, & |
---|
| 172 | message_string, & |
---|
| 173 | neutral, & |
---|
| 174 | passive_scalar, & |
---|
| 175 | pt_surface, & |
---|
| 176 | q_surface, & |
---|
| 177 | run_coupled, & |
---|
| 178 | surface_pressure, & |
---|
| 179 | simulated_time, & |
---|
| 180 | time_since_reference_point, & |
---|
| 181 | urban_surface, & |
---|
| 182 | use_free_convection_scaling, & |
---|
| 183 | zeta_max, & |
---|
| 184 | zeta_min |
---|
[1691] | 185 | |
---|
[4562] | 186 | USE grid_variables, & |
---|
| 187 | ONLY: dx, & |
---|
| 188 | dy |
---|
[2232] | 189 | |
---|
[4562] | 190 | USE indices, & |
---|
[4298] | 191 | ONLY: nzt |
---|
[1691] | 192 | |
---|
| 193 | USE kinds |
---|
| 194 | |
---|
[4562] | 195 | USE bulk_cloud_model_mod, & |
---|
| 196 | ONLY: bulk_cloud_model, & |
---|
| 197 | microphysics_morrison, & |
---|
| 198 | microphysics_seifert |
---|
[3274] | 199 | |
---|
[1691] | 200 | USE pegrid |
---|
| 201 | |
---|
[4562] | 202 | USE land_surface_model_mod, & |
---|
| 203 | ONLY: aero_resist_kray, & |
---|
| 204 | skip_time_do_lsm |
---|
[2011] | 205 | |
---|
[4562] | 206 | USE surface_mod, & |
---|
| 207 | ONLY : surf_def_h, & |
---|
| 208 | surf_def_v, & |
---|
| 209 | surf_lsm_h, & |
---|
| 210 | surf_lsm_v, & |
---|
| 211 | surf_type, & |
---|
| 212 | surf_usm_h, & |
---|
| 213 | surf_usm_v |
---|
[1691] | 214 | |
---|
[4562] | 215 | |
---|
[1691] | 216 | IMPLICIT NONE |
---|
| 217 | |
---|
[4562] | 218 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 219 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 220 | INTEGER(iwp) :: k !< loop index z direction |
---|
| 221 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 222 | |
---|
[4562] | 223 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 224 | LOGICAL :: downward = .FALSE. !< Flag indicating downward-facing horizontal surface |
---|
| 225 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 226 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 227 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 228 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 229 | |
---|
[4562] | 230 | REAL(wp) :: e_s !< Saturation water vapor pressure |
---|
| 231 | REAL(wp) :: ol_max = 1.0E6_wp !< Maximum Obukhov length |
---|
| 232 | REAL(wp) :: z_mo !< Height of the constant flux layer where MOST is assumed |
---|
[1691] | 233 | |
---|
[4562] | 234 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 235 | |
---|
[2232] | 236 | |
---|
[1691] | 237 | SAVE |
---|
| 238 | |
---|
| 239 | PRIVATE |
---|
| 240 | |
---|
[4562] | 241 | PUBLIC init_surface_layer_fluxes, & |
---|
| 242 | phi_m, & |
---|
| 243 | psi_h, & |
---|
| 244 | psi_m, & |
---|
[4331] | 245 | surface_layer_fluxes |
---|
[1691] | 246 | |
---|
| 247 | INTERFACE init_surface_layer_fluxes |
---|
| 248 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 249 | END INTERFACE init_surface_layer_fluxes |
---|
| 250 | |
---|
[3130] | 251 | INTERFACE phi_m |
---|
| 252 | MODULE PROCEDURE phi_m |
---|
| 253 | END INTERFACE phi_m |
---|
| 254 | |
---|
[4331] | 255 | INTERFACE psi_h |
---|
| 256 | MODULE PROCEDURE psi_h |
---|
| 257 | END INTERFACE psi_h |
---|
| 258 | |
---|
| 259 | INTERFACE psi_m |
---|
| 260 | MODULE PROCEDURE psi_m |
---|
| 261 | END INTERFACE psi_m |
---|
| 262 | |
---|
[1691] | 263 | INTERFACE surface_layer_fluxes |
---|
| 264 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 265 | END INTERFACE surface_layer_fluxes |
---|
| 266 | |
---|
| 267 | |
---|
| 268 | CONTAINS |
---|
| 269 | |
---|
| 270 | |
---|
[4562] | 271 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 272 | ! Description: |
---|
| 273 | ! ------------ |
---|
[4562] | 274 | !> Main routine to compute the surface fluxes. |
---|
| 275 | !--------------------------------------------------------------------------------------------------! |
---|
| 276 | SUBROUTINE surface_layer_fluxes |
---|
[1691] | 277 | |
---|
[4562] | 278 | IMPLICIT NONE |
---|
[1691] | 279 | |
---|
[3885] | 280 | |
---|
[4562] | 281 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 282 | |
---|
[4562] | 283 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 284 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 285 | ! |
---|
[4593] | 286 | !-- First, precalculate ln(z/z0) for all surfaces. This is done each timestep, in order to account |
---|
| 287 | !-- for time-dependent roughness or user-modifications. |
---|
| 288 | DO l = 0, 1 |
---|
| 289 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 290 | surf => surf_def_h(l) |
---|
| 291 | CALL calc_ln |
---|
| 292 | ENDIF |
---|
[4671] | 293 | IF ( surf_lsm_h(l)%ns >= 1 ) THEN |
---|
| 294 | surf => surf_lsm_h(l) |
---|
| 295 | CALL calc_ln |
---|
| 296 | ENDIF |
---|
| 297 | IF ( surf_usm_h(l)%ns >= 1 ) THEN |
---|
| 298 | surf => surf_usm_h(l) |
---|
| 299 | CALL calc_ln |
---|
| 300 | ENDIF |
---|
[4593] | 301 | ENDDO |
---|
| 302 | |
---|
| 303 | DO l = 0, 3 |
---|
| 304 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 305 | surf => surf_def_v(l) |
---|
| 306 | CALL calc_ln |
---|
| 307 | ENDIF |
---|
| 308 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 309 | surf => surf_lsm_v(l) |
---|
| 310 | CALL calc_ln |
---|
| 311 | ENDIF |
---|
| 312 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 313 | surf => surf_usm_v(l) |
---|
| 314 | CALL calc_ln |
---|
| 315 | ENDIF |
---|
| 316 | ENDDO |
---|
| 317 | ! |
---|
[4562] | 318 | !-- Derive potential temperature and specific humidity at first grid level from the fields pt and q |
---|
| 319 | DO l = 0, 1 |
---|
[4671] | 320 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, l=1 - downward facing) |
---|
[4562] | 321 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 322 | surf => surf_def_h(l) |
---|
| 323 | CALL calc_pt_q |
---|
| 324 | IF ( .NOT. neutral ) THEN |
---|
| 325 | CALL calc_pt_surface |
---|
| 326 | IF ( humidity ) THEN |
---|
| 327 | CALL calc_q_surface |
---|
| 328 | CALL calc_vpt_surface |
---|
[3146] | 329 | ENDIF |
---|
[2696] | 330 | ENDIF |
---|
[4562] | 331 | ENDIF |
---|
[2232] | 332 | ! |
---|
[4671] | 333 | !-- Call for natural-type horizontal surfaces |
---|
| 334 | IF ( surf_lsm_h(l)%ns >= 1 ) THEN |
---|
| 335 | surf => surf_lsm_h(l) |
---|
| 336 | CALL calc_pt_q |
---|
| 337 | ENDIF |
---|
[4562] | 338 | ! |
---|
[4671] | 339 | !-- Call for urban-type horizontal surfaces |
---|
| 340 | IF ( surf_usm_h(l)%ns >= 1 ) THEN |
---|
| 341 | surf => surf_usm_h(l) |
---|
| 342 | CALL calc_pt_q |
---|
| 343 | ENDIF |
---|
| 344 | ENDDO |
---|
[4562] | 345 | ! |
---|
| 346 | !-- Call for natural-type vertical surfaces |
---|
| 347 | DO l = 0, 3 |
---|
| 348 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 349 | surf => surf_lsm_v(l) |
---|
[2696] | 350 | CALL calc_pt_q |
---|
| 351 | ENDIF |
---|
| 352 | |
---|
[4562] | 353 | !-- Call for urban-type vertical surfaces |
---|
| 354 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 355 | surf => surf_usm_v(l) |
---|
[2696] | 356 | CALL calc_pt_q |
---|
| 357 | ENDIF |
---|
[4562] | 358 | ENDDO |
---|
[2696] | 359 | |
---|
| 360 | ! |
---|
[4593] | 361 | !-- First, calculate the new Obukhov length from precalculated values of log(z/z0) and wind speeds. |
---|
| 362 | !-- As a second step, then calculate new friction velocity, followed by the new scaling |
---|
[4562] | 363 | !-- parameters (th*, q*, etc.), and the new surface fluxes, if required. Note, each routine is called |
---|
| 364 | !-- for different surface types. First call for default-type horizontal surfaces, for natural- and |
---|
| 365 | !-- urban-type surfaces. Note, here only upward-facing horizontal surfaces are treated. |
---|
[4593] | 366 | !-- Note, calculation of log(z/z0) is redone each timestep, in order to account for time-dependent |
---|
| 367 | !-- values. |
---|
| 368 | !-- Start with default-type upward-facing horizontal surfaces |
---|
[4562] | 369 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 370 | surf => surf_def_h(0) |
---|
| 371 | CALL calc_uvw_abs |
---|
| 372 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 373 | CALL calc_us |
---|
| 374 | CALL calc_scaling_parameters |
---|
| 375 | CALL calc_surface_fluxes |
---|
| 376 | ENDIF |
---|
| 377 | ! |
---|
| 378 | !-- Natural-type horizontal surfaces |
---|
[4671] | 379 | IF ( surf_lsm_h(0)%ns >= 1 ) THEN |
---|
| 380 | surf => surf_lsm_h(0) |
---|
[4562] | 381 | CALL calc_uvw_abs |
---|
| 382 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 383 | CALL calc_us |
---|
| 384 | CALL calc_scaling_parameters |
---|
| 385 | CALL calc_surface_fluxes |
---|
| 386 | ENDIF |
---|
| 387 | ! |
---|
| 388 | !-- Urban-type horizontal surfaces |
---|
[4671] | 389 | IF ( surf_usm_h(0)%ns >= 1 ) THEN |
---|
| 390 | surf => surf_usm_h(0) |
---|
[4562] | 391 | CALL calc_uvw_abs |
---|
| 392 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 393 | CALL calc_us |
---|
| 394 | CALL calc_scaling_parameters |
---|
| 395 | CALL calc_surface_fluxes |
---|
| 396 | ! |
---|
| 397 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 398 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 399 | ENDIF |
---|
[3668] | 400 | |
---|
[2232] | 401 | ! |
---|
[4671] | 402 | !-- Treat downward-facing horizontal surfaces. |
---|
[4562] | 403 | !-- Stratification is not considered in this case, hence, no further distinction between different |
---|
| 404 | !-- most_method is required. |
---|
[4671] | 405 | downward = .TRUE. |
---|
| 406 | !-- Default type. |
---|
[4562] | 407 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 408 | surf => surf_def_h(1) |
---|
| 409 | CALL calc_uvw_abs |
---|
| 410 | CALL calc_us |
---|
| 411 | CALL calc_surface_fluxes |
---|
| 412 | ENDIF |
---|
[4671] | 413 | !-- Natural surface type. |
---|
| 414 | IF ( surf_lsm_h(1)%ns >= 1 ) THEN |
---|
| 415 | surf => surf_lsm_h(1) |
---|
| 416 | CALL calc_uvw_abs |
---|
| 417 | CALL calc_us |
---|
| 418 | CALL calc_surface_fluxes |
---|
| 419 | ENDIF |
---|
| 420 | !-- Urban surface type. |
---|
| 421 | IF ( surf_usm_h(1)%ns >= 1 ) THEN |
---|
| 422 | surf => surf_usm_h(1) |
---|
| 423 | CALL calc_uvw_abs |
---|
| 424 | CALL calc_us |
---|
| 425 | CALL calc_surface_fluxes |
---|
| 426 | ENDIF |
---|
| 427 | downward = .FALSE. |
---|
[1691] | 428 | ! |
---|
[4562] | 429 | !-- Calculate surfaces fluxes at vertical surfaces for momentum and subgrid-scale TKE. No stability |
---|
| 430 | !-- is considered. Therefore, scaling parameters and Obukhov length do not need to be calculated and |
---|
| 431 | !-- no distinction in 'circular', 'Newton' or 'lookup' is necessary so far. Note, this will change |
---|
| 432 | !-- if stability is once considered. |
---|
| 433 | surf_vertical = .TRUE. |
---|
[2232] | 434 | ! |
---|
[4562] | 435 | !-- Calculate horizontal momentum fluxes at north- and south-facing surfaces(usvs). |
---|
| 436 | !-- For default-type surfaces |
---|
| 437 | mom_uv = .TRUE. |
---|
| 438 | DO l = 0, 1 |
---|
| 439 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 440 | surf => surf_def_v(l) |
---|
[3744] | 441 | ! |
---|
[4562] | 442 | !-- Compute surface-parallel velocity |
---|
| 443 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 444 | ! |
---|
[4562] | 445 | !-- Compute respective friction velocity on staggered grid |
---|
[1691] | 446 | CALL calc_us |
---|
[4562] | 447 | ! |
---|
| 448 | !-- Compute respective surface fluxes for momentum and TKE |
---|
[1691] | 449 | CALL calc_surface_fluxes |
---|
| 450 | ENDIF |
---|
[4562] | 451 | ENDDO |
---|
[2232] | 452 | ! |
---|
[4562] | 453 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 454 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukhov length are |
---|
| 455 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 456 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 457 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 458 | DO l = 0, 1 |
---|
| 459 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 460 | surf => surf_lsm_v(l) |
---|
[2232] | 461 | ! |
---|
[4562] | 462 | !-- Compute surface-parallel velocity |
---|
| 463 | CALL calc_uvw_abs_v_ugrid |
---|
| 464 | ! |
---|
| 465 | !-- Compute Obukhov length |
---|
| 466 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 467 | ! |
---|
| 468 | !-- Compute respective friction velocity on staggered grid |
---|
| 469 | CALL calc_us |
---|
| 470 | ! |
---|
| 471 | !-- Compute scaling parameters |
---|
| 472 | CALL calc_scaling_parameters |
---|
| 473 | ! |
---|
| 474 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 475 | CALL calc_surface_fluxes |
---|
| 476 | ENDIF |
---|
| 477 | ENDDO |
---|
| 478 | ! |
---|
| 479 | !-- No ts is required, so scaling parameters and Obukhov length do not need to be computed. |
---|
| 480 | ELSE |
---|
[2232] | 481 | DO l = 0, 1 |
---|
[4562] | 482 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 483 | surf => surf_lsm_v(l) |
---|
[2232] | 484 | ! |
---|
| 485 | !-- Compute surface-parallel velocity |
---|
| 486 | CALL calc_uvw_abs_v_ugrid |
---|
| 487 | ! |
---|
| 488 | !-- Compute respective friction velocity on staggered grid |
---|
| 489 | CALL calc_us |
---|
| 490 | ! |
---|
| 491 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 492 | CALL calc_surface_fluxes |
---|
| 493 | ENDIF |
---|
| 494 | ENDDO |
---|
[4562] | 495 | ENDIF |
---|
[2232] | 496 | ! |
---|
[4562] | 497 | !-- For urban-type surfaces |
---|
| 498 | DO l = 0, 1 |
---|
| 499 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 500 | surf => surf_usm_v(l) |
---|
[2232] | 501 | ! |
---|
[4562] | 502 | !-- Compute surface-parallel velocity |
---|
| 503 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 504 | ! |
---|
[4562] | 505 | !-- Compute respective friction velocity on staggered grid |
---|
| 506 | CALL calc_us |
---|
[2232] | 507 | ! |
---|
[4562] | 508 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 509 | CALL calc_surface_fluxes |
---|
[2232] | 510 | ! |
---|
[4562] | 511 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 512 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 513 | ENDIF |
---|
| 514 | ENDDO |
---|
[2232] | 515 | ! |
---|
[4562] | 516 | !-- Calculate horizontal momentum fluxes at east- and west-facing surfaces (vsus). |
---|
| 517 | !-- For default-type surfaces |
---|
| 518 | DO l = 2, 3 |
---|
| 519 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 520 | surf => surf_def_v(l) |
---|
[2232] | 521 | ! |
---|
[4562] | 522 | !-- Compute surface-parallel velocity |
---|
| 523 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 524 | ! |
---|
[4562] | 525 | !-- Compute respective friction velocity on staggered grid |
---|
| 526 | CALL calc_us |
---|
[2232] | 527 | ! |
---|
[4562] | 528 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 529 | CALL calc_surface_fluxes |
---|
[2232] | 530 | ENDIF |
---|
[4562] | 531 | ENDDO |
---|
[2232] | 532 | ! |
---|
[4562] | 533 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 534 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukov length are |
---|
| 535 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 536 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 537 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 538 | DO l = 2, 3 |
---|
| 539 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 540 | surf => surf_lsm_v(l) |
---|
[2232] | 541 | ! |
---|
| 542 | !-- Compute surface-parallel velocity |
---|
[4562] | 543 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 544 | ! |
---|
[4562] | 545 | !-- Compute Obukhov length |
---|
| 546 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 547 | ! |
---|
[2232] | 548 | !-- Compute respective friction velocity on staggered grid |
---|
| 549 | CALL calc_us |
---|
| 550 | ! |
---|
[4562] | 551 | !-- Compute scaling parameters |
---|
| 552 | CALL calc_scaling_parameters |
---|
| 553 | ! |
---|
[2232] | 554 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 555 | CALL calc_surface_fluxes |
---|
| 556 | ENDIF |
---|
| 557 | ENDDO |
---|
[4562] | 558 | ELSE |
---|
[2232] | 559 | DO l = 2, 3 |
---|
[4562] | 560 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 561 | surf => surf_lsm_v(l) |
---|
[2232] | 562 | ! |
---|
| 563 | !-- Compute surface-parallel velocity |
---|
| 564 | CALL calc_uvw_abs_v_vgrid |
---|
| 565 | ! |
---|
| 566 | !-- Compute respective friction velocity on staggered grid |
---|
| 567 | CALL calc_us |
---|
| 568 | ! |
---|
| 569 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 570 | CALL calc_surface_fluxes |
---|
| 571 | ENDIF |
---|
| 572 | ENDDO |
---|
[4562] | 573 | ENDIF |
---|
[2232] | 574 | ! |
---|
[4562] | 575 | !-- For urban-type surfaces |
---|
| 576 | DO l = 2, 3 |
---|
| 577 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 578 | surf => surf_usm_v(l) |
---|
[2232] | 579 | ! |
---|
[4562] | 580 | !-- Compute surface-parallel velocity |
---|
| 581 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 582 | ! |
---|
[4562] | 583 | !-- Compute respective friction velocity on staggered grid |
---|
| 584 | CALL calc_us |
---|
[2232] | 585 | ! |
---|
[4562] | 586 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 587 | CALL calc_surface_fluxes |
---|
[2232] | 588 | ! |
---|
[4562] | 589 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 590 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 591 | ENDIF |
---|
| 592 | ENDDO |
---|
| 593 | mom_uv = .FALSE. |
---|
[2232] | 594 | ! |
---|
[4562] | 595 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial surfaces. |
---|
| 596 | mom_w = .TRUE. |
---|
[2232] | 597 | ! |
---|
[4562] | 598 | !-- Default-type surfaces |
---|
| 599 | DO l = 0, 3 |
---|
| 600 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 601 | surf => surf_def_v(l) |
---|
| 602 | CALL calc_uvw_abs_v_wgrid |
---|
| 603 | CALL calc_us |
---|
| 604 | CALL calc_surface_fluxes |
---|
| 605 | ENDIF |
---|
| 606 | ENDDO |
---|
[2232] | 607 | ! |
---|
[4562] | 608 | !-- Natural-type surfaces |
---|
| 609 | DO l = 0, 3 |
---|
| 610 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 611 | surf => surf_lsm_v(l) |
---|
| 612 | CALL calc_uvw_abs_v_wgrid |
---|
| 613 | CALL calc_us |
---|
| 614 | CALL calc_surface_fluxes |
---|
[2232] | 615 | ENDIF |
---|
[4562] | 616 | ENDDO |
---|
[2232] | 617 | ! |
---|
[4562] | 618 | !-- Urban-type surfaces |
---|
| 619 | DO l = 0, 3 |
---|
| 620 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 621 | surf => surf_usm_v(l) |
---|
| 622 | CALL calc_uvw_abs_v_wgrid |
---|
| 623 | CALL calc_us |
---|
| 624 | CALL calc_surface_fluxes |
---|
| 625 | ENDIF |
---|
| 626 | ENDDO |
---|
| 627 | mom_w = .FALSE. |
---|
[2232] | 628 | ! |
---|
[4562] | 629 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical surfaces for TKE production. |
---|
| 630 | !-- Note, here, momentum fluxes are defined at grid center and are not staggered as before. |
---|
| 631 | mom_tke = .TRUE. |
---|
[2232] | 632 | ! |
---|
[4562] | 633 | !-- Default-type surfaces |
---|
| 634 | DO l = 0, 3 |
---|
| 635 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 636 | surf => surf_def_v(l) |
---|
| 637 | CALL calc_uvw_abs_v_sgrid |
---|
| 638 | CALL calc_us |
---|
| 639 | CALL calc_surface_fluxes |
---|
| 640 | ENDIF |
---|
| 641 | ENDDO |
---|
[2232] | 642 | ! |
---|
[4562] | 643 | !-- Natural-type surfaces |
---|
| 644 | DO l = 0, 3 |
---|
| 645 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 646 | surf => surf_lsm_v(l) |
---|
| 647 | CALL calc_uvw_abs_v_sgrid |
---|
| 648 | CALL calc_us |
---|
| 649 | CALL calc_surface_fluxes |
---|
| 650 | ENDIF |
---|
| 651 | ENDDO |
---|
[3744] | 652 | ! |
---|
[4562] | 653 | !-- Urban-type surfaces |
---|
| 654 | DO l = 0, 3 |
---|
| 655 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 656 | surf => surf_usm_v(l) |
---|
| 657 | CALL calc_uvw_abs_v_sgrid |
---|
| 658 | CALL calc_us |
---|
| 659 | CALL calc_surface_fluxes |
---|
| 660 | ENDIF |
---|
| 661 | ENDDO |
---|
| 662 | mom_tke = .FALSE. |
---|
[1691] | 663 | |
---|
[4562] | 664 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 665 | |
---|
[4562] | 666 | END SUBROUTINE surface_layer_fluxes |
---|
[1691] | 667 | |
---|
| 668 | |
---|
[4562] | 669 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 670 | ! Description: |
---|
| 671 | ! ------------ |
---|
[4258] | 672 | !> Initializing actions for the surface layer routine. |
---|
[4562] | 673 | !--------------------------------------------------------------------------------------------------! |
---|
| 674 | SUBROUTINE init_surface_layer_fluxes |
---|
[1691] | 675 | |
---|
[4562] | 676 | IMPLICIT NONE |
---|
[1691] | 677 | |
---|
[4562] | 678 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 679 | |
---|
[4562] | 680 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 681 | |
---|
| 682 | ! |
---|
[4562] | 683 | !-- In case of runs with neutral statification, set Obukhov length to a large value |
---|
| 684 | IF ( neutral ) THEN |
---|
[4671] | 685 | DO l = 0, 1 |
---|
| 686 | IF ( surf_def_h(l)%ns >= 1 .AND. & |
---|
| 687 | ALLOCATED( surf_def_h(l)%ol ) ) surf_def_h(l)%ol = 1.0E10_wp |
---|
| 688 | IF ( surf_lsm_h(l)%ns >= 1 .AND. & |
---|
| 689 | ALLOCATED( surf_lsm_h(l)%ol ) ) surf_lsm_h(l)%ol = 1.0E10_wp |
---|
| 690 | IF ( surf_usm_h(l)%ns >= 1 .AND. & |
---|
| 691 | ALLOCATED( surf_usm_h(l)%ol ) ) surf_usm_h(l)%ol = 1.0E10_wp |
---|
| 692 | ENDDO |
---|
[4562] | 693 | DO l = 0, 3 |
---|
| 694 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 695 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 696 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 697 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 698 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 699 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 700 | ENDDO |
---|
[3685] | 701 | |
---|
[4562] | 702 | ENDIF |
---|
[1691] | 703 | |
---|
[4562] | 704 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[1691] | 705 | |
---|
[4562] | 706 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 710 | ! Description: |
---|
| 711 | ! ------------ |
---|
[4593] | 712 | !> Compute ln(z/z0). |
---|
| 713 | !--------------------------------------------------------------------------------------------------! |
---|
| 714 | SUBROUTINE calc_ln |
---|
| 715 | |
---|
| 716 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 717 | |
---|
| 718 | ! |
---|
| 719 | !-- Note, ln(z/z0h) and ln(z/z0q) is also calculated even if neural simulations are applied. |
---|
| 720 | !-- This is because the scalar coefficients are also used for other scalars such as passive scalars, |
---|
| 721 | !-- chemistry and aerosols. |
---|
| 722 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 723 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 724 | !$ACC PRESENT(surf) |
---|
| 725 | DO m = 1, surf%ns |
---|
| 726 | z_mo = surf%z_mo(m) |
---|
| 727 | surf%ln_z_z0(m) = LOG( z_mo / surf%z0(m) ) |
---|
| 728 | surf%ln_z_z0h(m) = LOG( z_mo / surf%z0h(m) ) |
---|
| 729 | surf%ln_z_z0q(m) = LOG( z_mo / surf%z0q(m) ) |
---|
| 730 | ENDDO |
---|
| 731 | |
---|
| 732 | END SUBROUTINE calc_ln |
---|
| 733 | |
---|
| 734 | !--------------------------------------------------------------------------------------------------! |
---|
| 735 | ! Description: |
---|
| 736 | ! ------------ |
---|
[4562] | 737 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 738 | !> surface elements. This is required by all methods. |
---|
| 739 | !--------------------------------------------------------------------------------------------------! |
---|
| 740 | SUBROUTINE calc_uvw_abs |
---|
[1691] | 741 | |
---|
[4562] | 742 | IMPLICIT NONE |
---|
[1691] | 743 | |
---|
[4562] | 744 | INTEGER(iwp) :: i !< running index x direction |
---|
| 745 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 746 | INTEGER(iwp) :: j !< running index y direction |
---|
| 747 | INTEGER(iwp) :: k !< running index z direction |
---|
| 748 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 749 | |
---|
| 750 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 751 | ! |
---|
[4562] | 752 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 753 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 754 | |
---|
[4593] | 755 | IF ( use_free_convection_scaling ) THEN |
---|
| 756 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
| 757 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 758 | !$ACC PRESENT(surf, u, v) |
---|
| 759 | DO m = 1, surf%ns |
---|
| 760 | i = surf%i(m) |
---|
| 761 | j = surf%j(m) |
---|
| 762 | k = surf%k(m) |
---|
[1691] | 763 | |
---|
| 764 | ! |
---|
[4593] | 765 | !-- Calculate free convection velocity scale w_lfc is use_free_convection_scaling = .T.. This |
---|
| 766 | !-- will maintain a horizontal velocity even for very weak wind convective conditions. SIGN is |
---|
| 767 | !-- used to set w_lfc to zero under stable conditions. |
---|
[4562] | 768 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 769 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
[3157] | 770 | ! |
---|
[4593] | 771 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 772 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 773 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 774 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 775 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 776 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 777 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 778 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 779 | ) * ibit ) & |
---|
| 780 | )**2 & |
---|
| 781 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 782 | ) * ibit ) & |
---|
[4562] | 783 | )**2 + w_lfc**2 ) |
---|
[4593] | 784 | ENDDO |
---|
| 785 | ELSE |
---|
| 786 | !$OMP PARALLEL DO PRIVATE(i, j, k) |
---|
| 787 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 788 | !$ACC PRESENT(surf, u, v) |
---|
| 789 | DO m = 1, surf%ns |
---|
| 790 | i = surf%i(m) |
---|
| 791 | j = surf%j(m) |
---|
| 792 | k = surf%k(m) |
---|
| 793 | ! |
---|
| 794 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 795 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 796 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 797 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 798 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 799 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 800 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 801 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 802 | ) * ibit ) & |
---|
| 803 | )**2 & |
---|
| 804 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 805 | ) * ibit ) & |
---|
| 806 | )**2 ) |
---|
| 807 | ENDDO |
---|
| 808 | ENDIF |
---|
[2232] | 809 | |
---|
[4562] | 810 | END SUBROUTINE calc_uvw_abs |
---|
[3148] | 811 | |
---|
[1691] | 812 | |
---|
[4562] | 813 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 814 | ! Description: |
---|
| 815 | ! ------------ |
---|
[4562] | 816 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 817 | !> surface elements. This is required by all methods. |
---|
| 818 | !--------------------------------------------------------------------------------------------------! |
---|
| 819 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[2232] | 820 | |
---|
[4562] | 821 | IMPLICIT NONE |
---|
[2232] | 822 | |
---|
[4562] | 823 | INTEGER(iwp) :: i !< running index x direction |
---|
| 824 | INTEGER(iwp) :: j !< running index y direction |
---|
| 825 | INTEGER(iwp) :: k !< running index z direction |
---|
| 826 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 827 | |
---|
[4562] | 828 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 829 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 830 | |
---|
| 831 | |
---|
[4562] | 832 | DO m = 1, surf%ns |
---|
| 833 | i = surf%i(m) |
---|
| 834 | j = surf%j(m) |
---|
| 835 | k = surf%k(m) |
---|
[1691] | 836 | ! |
---|
[4562] | 837 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 838 | u_i = u(k,j,i) |
---|
| 839 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 840 | |
---|
[4562] | 841 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
| 842 | ENDDO |
---|
[1709] | 843 | |
---|
[4562] | 844 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[1709] | 845 | |
---|
[4562] | 846 | !--------------------------------------------------------------------------------------------------! |
---|
[1709] | 847 | ! Description: |
---|
| 848 | ! ------------ |
---|
[4562] | 849 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 850 | !> surface elements. This is required by all methods. |
---|
| 851 | !--------------------------------------------------------------------------------------------------! |
---|
| 852 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 853 | |
---|
[4562] | 854 | IMPLICIT NONE |
---|
[2232] | 855 | |
---|
[4562] | 856 | INTEGER(iwp) :: i !< running index x direction |
---|
| 857 | INTEGER(iwp) :: j !< running index y direction |
---|
| 858 | INTEGER(iwp) :: k !< running index z direction |
---|
| 859 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 860 | |
---|
[4562] | 861 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 862 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 863 | |
---|
| 864 | |
---|
[4562] | 865 | DO m = 1, surf%ns |
---|
| 866 | i = surf%i(m) |
---|
| 867 | j = surf%j(m) |
---|
| 868 | k = surf%k(m) |
---|
[2232] | 869 | |
---|
[4562] | 870 | v_i = u(k,j,i) |
---|
| 871 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) |
---|
[2232] | 872 | |
---|
[4562] | 873 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 874 | ENDDO |
---|
[2232] | 875 | |
---|
[4562] | 876 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 877 | |
---|
[4562] | 878 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 879 | ! Description: |
---|
| 880 | ! ------------ |
---|
[4562] | 881 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 882 | !> surface elements. This is required by all methods. |
---|
| 883 | !--------------------------------------------------------------------------------------------------! |
---|
| 884 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 885 | |
---|
[4562] | 886 | IMPLICIT NONE |
---|
[2232] | 887 | |
---|
[4562] | 888 | INTEGER(iwp) :: i !< running index x direction |
---|
| 889 | INTEGER(iwp) :: j !< running index y direction |
---|
| 890 | INTEGER(iwp) :: k !< running index z direction |
---|
| 891 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 892 | |
---|
[4562] | 893 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 894 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 895 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 896 | ! |
---|
[4562] | 897 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 898 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 899 | DO m = 1, surf%ns |
---|
| 900 | i = surf%i(m) |
---|
| 901 | j = surf%j(m) |
---|
| 902 | k = surf%k(m) |
---|
[2232] | 903 | |
---|
[4562] | 904 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 905 | v_i = 0.0_wp |
---|
| 906 | w_i = w(k,j,i) |
---|
[2232] | 907 | |
---|
[4562] | 908 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 909 | ENDDO |
---|
[2232] | 910 | ! |
---|
[4562] | 911 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 912 | ELSE |
---|
| 913 | DO m = 1, surf%ns |
---|
| 914 | i = surf%i(m) |
---|
| 915 | j = surf%j(m) |
---|
| 916 | k = surf%k(m) |
---|
[2232] | 917 | |
---|
[4562] | 918 | u_i = 0.0_wp |
---|
| 919 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 920 | w_i = w(k,j,i) |
---|
[2232] | 921 | |
---|
[4562] | 922 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 923 | ENDDO |
---|
| 924 | ENDIF |
---|
[2232] | 925 | |
---|
[4562] | 926 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 927 | |
---|
[4562] | 928 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 929 | ! Description: |
---|
| 930 | ! ------------ |
---|
[4562] | 931 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 932 | !> surface elements. This is required by all methods. |
---|
| 933 | !--------------------------------------------------------------------------------------------------! |
---|
| 934 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 935 | |
---|
[4562] | 936 | IMPLICIT NONE |
---|
[2232] | 937 | |
---|
[4562] | 938 | INTEGER(iwp) :: i !< running index x direction |
---|
| 939 | INTEGER(iwp) :: j !< running index y direction |
---|
| 940 | INTEGER(iwp) :: k !< running index z direction |
---|
| 941 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 942 | |
---|
[4562] | 943 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 944 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 945 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 946 | |
---|
| 947 | ! |
---|
[4562] | 948 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 949 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 950 | DO m = 1, surf%ns |
---|
| 951 | i = surf%i(m) |
---|
| 952 | j = surf%j(m) |
---|
| 953 | k = surf%k(m) |
---|
[2232] | 954 | |
---|
[4562] | 955 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 956 | v_i = 0.0_wp |
---|
| 957 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 958 | |
---|
[4562] | 959 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 960 | ENDDO |
---|
[2232] | 961 | ! |
---|
[4562] | 962 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 963 | ELSE |
---|
| 964 | DO m = 1, surf%ns |
---|
| 965 | i = surf%i(m) |
---|
| 966 | j = surf%j(m) |
---|
| 967 | k = surf%k(m) |
---|
[2232] | 968 | |
---|
[4562] | 969 | u_i = 0.0_wp |
---|
| 970 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 971 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 972 | |
---|
[4562] | 973 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 974 | ENDDO |
---|
| 975 | ENDIF |
---|
[2232] | 976 | |
---|
[4562] | 977 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 978 | |
---|
| 979 | |
---|
[4562] | 980 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 981 | ! Description: |
---|
| 982 | ! ------------ |
---|
[1709] | 983 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
[4562] | 984 | !--------------------------------------------------------------------------------------------------! |
---|
| 985 | SUBROUTINE calc_ol |
---|
[1709] | 986 | |
---|
[4562] | 987 | IMPLICIT NONE |
---|
[1709] | 988 | |
---|
[4562] | 989 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 990 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 991 | |
---|
[4562] | 992 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
| 993 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
[4366] | 994 | |
---|
[4562] | 995 | REAL(wp) :: f !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 996 | REAL(wp) :: f_d_ol !< Derivative of f |
---|
| 997 | REAL(wp) :: ol_l !< Lower bound of L for Newton iteration |
---|
| 998 | REAL(wp) :: ol_m !< Previous value of L for Newton iteration |
---|
| 999 | REAL(wp) :: ol_old !< Previous time step value of L |
---|
| 1000 | REAL(wp) :: ol_u !< Upper bound of L for Newton iteration |
---|
[1709] | 1001 | |
---|
[4562] | 1002 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
| 1003 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
| 1004 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
[4366] | 1005 | |
---|
[2232] | 1006 | ! |
---|
[4562] | 1007 | !-- Evaluate bulk Richardson number (calculation depends on definition based on setting of boundary |
---|
| 1008 | !-- conditions) |
---|
| 1009 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 1010 | IF ( humidity ) THEN |
---|
| 1011 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1012 | DO m = 1, surf%ns |
---|
| 1013 | z_mo = surf%z_mo(m) |
---|
| 1014 | surf%rib(m) = g * z_mo * ( surf%vpt1(m) - surf%vpt_surface(m) ) / & |
---|
| 1015 | ( surf%uvw_abs(m)**2 * surf%vpt1(m) + 1.0E-20_wp ) |
---|
| 1016 | ENDDO |
---|
[3668] | 1017 | ELSE |
---|
[4562] | 1018 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1019 | DO m = 1, surf%ns |
---|
| 1020 | z_mo = surf%z_mo(m) |
---|
| 1021 | surf%rib(m) = g * z_mo * ( surf%pt1(m) - surf%pt_surface(m) ) / & |
---|
| 1022 | ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 1023 | ENDDO |
---|
| 1024 | ENDIF |
---|
| 1025 | ELSE |
---|
| 1026 | IF ( humidity ) THEN |
---|
| 1027 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 1028 | DO m = 1, surf%ns |
---|
| 1029 | k = surf%k(m) |
---|
| 1030 | z_mo = surf%z_mo(m) |
---|
| 1031 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp * surf%qv1(m) ) * & |
---|
| 1032 | surf%shf(m) + 0.61_wp * surf%pt1(m) * surf%qsws(m) ) * & |
---|
| 1033 | drho_air_zw(k-1) / ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 1034 | + 1.0E-20_wp ) |
---|
[4562] | 1035 | ENDDO |
---|
| 1036 | ELSE |
---|
| 1037 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 1038 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 1039 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1040 | DO m = 1, surf%ns |
---|
| 1041 | k = surf%k(m) |
---|
| 1042 | z_mo = surf%z_mo(m) |
---|
| 1043 | surf%rib(m) = - g * z_mo * surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1044 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 + 1.0E-20_wp ) |
---|
| 1045 | ENDDO |
---|
[1691] | 1046 | ENDIF |
---|
[4562] | 1047 | ENDIF |
---|
[1691] | 1048 | |
---|
[4562] | 1049 | IF ( loop_optimization == 'cache' ) THEN |
---|
[1691] | 1050 | ! |
---|
[4562] | 1051 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1052 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
| 1053 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
| 1054 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 1055 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1056 | !$ACC PRESENT(surf) |
---|
| 1057 | DO m = 1, surf%ns |
---|
| 1058 | i = surf%i(m) |
---|
| 1059 | j = surf%j(m) |
---|
[1691] | 1060 | |
---|
[4562] | 1061 | z_mo = surf%z_mo(m) |
---|
[1691] | 1062 | |
---|
| 1063 | ! |
---|
[4562] | 1064 | !-- Store current value in case the Newton iteration fails |
---|
| 1065 | ol_old = surf%ol(m) |
---|
[1691] | 1066 | |
---|
| 1067 | ! |
---|
[4562] | 1068 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1069 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1070 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1071 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1072 | ENDIF |
---|
[1691] | 1073 | ! |
---|
[4562] | 1074 | !-- Iteration to find Obukhov length |
---|
| 1075 | iter = 0 |
---|
| 1076 | DO |
---|
| 1077 | iter = iter + 1 |
---|
[4366] | 1078 | ! |
---|
[4562] | 1079 | !-- In case of divergence, use the value of the previous time step |
---|
| 1080 | IF ( iter > 1000 ) THEN |
---|
| 1081 | surf%ol(m) = ol_old |
---|
| 1082 | EXIT |
---|
| 1083 | ENDIF |
---|
[4366] | 1084 | |
---|
[4562] | 1085 | ol_m = surf%ol(m) |
---|
| 1086 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1087 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1088 | |
---|
| 1089 | |
---|
[4562] | 1090 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[4366] | 1091 | ! |
---|
[4562] | 1092 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
[4593] | 1093 | f = surf%rib(m) - ( z_mo / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1094 | - psi_h( z_mo / ol_m ) & |
---|
| 1095 | + psi_h( surf%z0h(m) / ol_m ) ) / & |
---|
[4593] | 1096 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) & |
---|
| 1097 | + psi_m( surf%z0(m) / ol_m ) )**2 |
---|
[4366] | 1098 | |
---|
| 1099 | ! |
---|
[4562] | 1100 | !-- Calculate df/dL |
---|
[4593] | 1101 | f_d_ol = ( - ( z_mo / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1102 | - psi_h( z_mo / ol_u ) & |
---|
| 1103 | + psi_h( surf%z0h(m) / ol_u ) ) / & |
---|
[4593] | 1104 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_u ) & |
---|
| 1105 | + psi_m( surf%z0(m) / ol_u ) )**2 & |
---|
| 1106 | + ( z_mo / ol_l ) * ( surf%ln_z_z0h(m) - psi_h( z_mo / ol_l ) & |
---|
| 1107 | + psi_h( surf%z0h(m) / ol_l ) ) /& |
---|
| 1108 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_l ) & |
---|
| 1109 | + psi_m( surf%z0(m) / ol_l ) )**2 ) / ( ol_u - ol_l ) |
---|
[4562] | 1110 | ELSE |
---|
[4366] | 1111 | ! |
---|
[4562] | 1112 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1113 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
[4593] | 1114 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) + psi_m( surf%z0(m) / ol_m ) )**3 |
---|
[4366] | 1115 | |
---|
| 1116 | ! |
---|
[4562] | 1117 | !-- Calculate df/dL |
---|
[4593] | 1118 | f_d_ol = ( - ( z_mo / ol_u ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1119 | - psi_m( z_mo / ol_u ) & |
---|
| 1120 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1121 | )**3 & |
---|
[4593] | 1122 | + ( z_mo / ol_l ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1123 | - psi_m( z_mo / ol_l ) & |
---|
| 1124 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1125 | )**3 & |
---|
| 1126 | ) / ( ol_u - ol_l ) |
---|
| 1127 | ENDIF |
---|
[4366] | 1128 | ! |
---|
[4562] | 1129 | !-- Calculate new L |
---|
| 1130 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[4366] | 1131 | |
---|
| 1132 | ! |
---|
[4562] | 1133 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1134 | !-- ensure convergence. |
---|
| 1135 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1136 | ! |
---|
[4562] | 1137 | !-- If unrealistic value occurs, set L to the maximum value that is allowed |
---|
| 1138 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1139 | surf%ol(m) = ol_max |
---|
| 1140 | EXIT |
---|
| 1141 | ENDIF |
---|
[4366] | 1142 | ! |
---|
[4562] | 1143 | !-- Assure that Obukhov length does not become zero. If the limit is reached, exit the loop. |
---|
| 1144 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1145 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1146 | EXIT |
---|
| 1147 | ENDIF |
---|
[4366] | 1148 | ! |
---|
[4562] | 1149 | !-- Check for convergence |
---|
| 1150 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
[4366] | 1151 | ENDDO |
---|
[4562] | 1152 | ENDDO |
---|
[4366] | 1153 | |
---|
| 1154 | ! |
---|
[4562] | 1155 | !-- Vector Version |
---|
| 1156 | ELSE |
---|
[4366] | 1157 | ! |
---|
[4562] | 1158 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1159 | !-- First set arrays required for vectorization |
---|
| 1160 | !$ACC PARALLEL LOOP & |
---|
| 1161 | !$ACC PRESENT(surf) |
---|
| 1162 | DO m = 1, surf%ns |
---|
| 1163 | z_mo_vec(m) = surf%z_mo(m) |
---|
[4366] | 1164 | ! |
---|
[4562] | 1165 | !-- Store current value in case the Newton iteration fails |
---|
| 1166 | ol_old_vec(m) = surf%ol(m) |
---|
[4366] | 1167 | ! |
---|
[4562] | 1168 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1169 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1170 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1171 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1172 | ENDIF |
---|
[4370] | 1173 | ! |
---|
[4562] | 1174 | !-- Initialize convergence flag |
---|
| 1175 | convergence_reached(m) = .FALSE. |
---|
| 1176 | ENDDO |
---|
[4366] | 1177 | |
---|
| 1178 | ! |
---|
[4562] | 1179 | !-- Iteration to find Obukhov length |
---|
| 1180 | iter = 0 |
---|
| 1181 | DO |
---|
| 1182 | iter = iter + 1 |
---|
[1691] | 1183 | ! |
---|
[4562] | 1184 | !-- In case of divergence, use the value(s) of the previous time step |
---|
| 1185 | IF ( iter > 1000 ) THEN |
---|
| 1186 | !$ACC PARALLEL LOOP & |
---|
[4370] | 1187 | !$ACC PRESENT(surf) |
---|
[4366] | 1188 | DO m = 1, surf%ns |
---|
[4562] | 1189 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
| 1190 | ENDDO |
---|
| 1191 | EXIT |
---|
| 1192 | ENDIF |
---|
[1691] | 1193 | |
---|
[4562] | 1194 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1195 | !$ACC PRESENT(surf) |
---|
| 1196 | DO m = 1, surf%ns |
---|
| 1197 | IF ( convergence_reached(m) ) CYCLE |
---|
[4366] | 1198 | |
---|
[4562] | 1199 | ol_m = surf%ol(m) |
---|
| 1200 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1201 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1202 | |
---|
| 1203 | |
---|
[4562] | 1204 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1205 | ! |
---|
[4562] | 1206 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
[4690] | 1207 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1208 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
| 1209 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
| 1210 | ) / & |
---|
[4593] | 1211 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1212 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1213 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1214 | )**2 |
---|
[1691] | 1215 | |
---|
| 1216 | ! |
---|
[4562] | 1217 | !-- Calculate df/dL |
---|
[4593] | 1218 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1219 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
| 1220 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1221 | ) / & |
---|
[4593] | 1222 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1223 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1224 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1225 | )**2 & |
---|
[4593] | 1226 | + ( z_mo_vec(m) / ol_l ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1227 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
| 1228 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1229 | ) / & |
---|
[4593] | 1230 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1231 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1232 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1233 | )**2 & |
---|
| 1234 | ) / ( ol_u - ol_l ) |
---|
| 1235 | ELSE |
---|
[1691] | 1236 | ! |
---|
[4562] | 1237 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
[4593] | 1238 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1239 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1240 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1241 | )**3 |
---|
[1691] | 1242 | |
---|
| 1243 | ! |
---|
[4562] | 1244 | !-- Calculate df/dL |
---|
[4593] | 1245 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1246 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1247 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1248 | )**3 & |
---|
[4593] | 1249 | + ( z_mo_vec(m) / ol_l ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1250 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1251 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1252 | )**3 & |
---|
| 1253 | ) / ( ol_u - ol_l ) |
---|
| 1254 | ENDIF |
---|
[1691] | 1255 | ! |
---|
[4562] | 1256 | !-- Calculate new L |
---|
| 1257 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1258 | |
---|
| 1259 | ! |
---|
[4562] | 1260 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1261 | !-- ensure convergence. |
---|
| 1262 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1263 | |
---|
[1691] | 1264 | ! |
---|
[4562] | 1265 | !-- Check for convergence |
---|
| 1266 | !-- This check does not modify surf%ol, therefore this is done first |
---|
| 1267 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1268 | convergence_reached(m) = .TRUE. |
---|
| 1269 | ENDIF |
---|
[1691] | 1270 | ! |
---|
[4562] | 1271 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
| 1272 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1273 | surf%ol(m) = ol_max |
---|
| 1274 | convergence_reached(m) = .TRUE. |
---|
| 1275 | ENDIF |
---|
| 1276 | ENDDO |
---|
[4186] | 1277 | ! |
---|
[4562] | 1278 | !-- Assure that Obukhov length does not become zero |
---|
| 1279 | !$ACC PARALLEL LOOP & |
---|
| 1280 | !$ACC PRESENT(surf) |
---|
| 1281 | DO m = 1, surf%ns |
---|
| 1282 | IF ( convergence_reached(m) ) CYCLE |
---|
| 1283 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1284 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
| 1285 | convergence_reached(m) = .TRUE. |
---|
| 1286 | ENDIF |
---|
| 1287 | ENDDO |
---|
[1691] | 1288 | |
---|
[4562] | 1289 | IF ( ALL( convergence_reached ) ) EXIT |
---|
[1691] | 1290 | |
---|
[4562] | 1291 | ENDDO ! End of iteration loop |
---|
[4366] | 1292 | |
---|
[4562] | 1293 | ENDIF ! End of vector branch |
---|
[4366] | 1294 | |
---|
[4562] | 1295 | END SUBROUTINE calc_ol |
---|
[1691] | 1296 | |
---|
| 1297 | |
---|
[4562] | 1298 | !--------------------------------------------------------------------------------------------------! |
---|
| 1299 | ! Description: |
---|
| 1300 | ! ------------ |
---|
| 1301 | !> Calculate friction velocity u*. |
---|
| 1302 | !--------------------------------------------------------------------------------------------------! |
---|
| 1303 | SUBROUTINE calc_us |
---|
[1691] | 1304 | |
---|
[4562] | 1305 | IMPLICIT NONE |
---|
[1691] | 1306 | |
---|
[4562] | 1307 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1308 | |
---|
| 1309 | ! |
---|
[4562] | 1310 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1311 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1312 | ! |
---|
[4562] | 1313 | !-- Compute u* at upward-facing surfaces |
---|
| 1314 | IF ( .NOT. downward ) THEN |
---|
| 1315 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1316 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1317 | !$ACC PRESENT(surf) |
---|
| 1318 | DO m = 1, surf%ns |
---|
| 1319 | z_mo = surf%z_mo(m) |
---|
[2232] | 1320 | ! |
---|
[4562] | 1321 | !-- Compute u* at the scalars' grid points |
---|
[4593] | 1322 | surf%us(m) = kappa * surf%uvw_abs(m) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1323 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1324 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1325 | ENDDO |
---|
[2232] | 1326 | ! |
---|
[4562] | 1327 | !-- Compute u* at downward-facing surfaces. This case, do not consider any stability. |
---|
[2232] | 1328 | ELSE |
---|
[4594] | 1329 | !$OMP PARALLEL DO |
---|
[4593] | 1330 | !$ACC PARALLEL LOOP & |
---|
[3634] | 1331 | !$ACC PRESENT(surf) |
---|
[2232] | 1332 | DO m = 1, surf%ns |
---|
[4562] | 1333 | ! |
---|
| 1334 | !-- Compute u* at the scalars' grid points |
---|
[4593] | 1335 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
[1691] | 1336 | ENDDO |
---|
[2232] | 1337 | ENDIF |
---|
[4562] | 1338 | ! |
---|
| 1339 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1340 | !-- No stability is considered in this case. |
---|
| 1341 | ELSE |
---|
[4593] | 1342 | !$OMP PARALLEL DO |
---|
| 1343 | !$ACC PARALLEL LOOP & |
---|
[4562] | 1344 | !$ACC PRESENT(surf) |
---|
| 1345 | DO m = 1, surf%ns |
---|
[4593] | 1346 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
[4562] | 1347 | ENDDO |
---|
| 1348 | ENDIF |
---|
[1691] | 1349 | |
---|
[4562] | 1350 | END SUBROUTINE calc_us |
---|
[1691] | 1351 | |
---|
[4562] | 1352 | !--------------------------------------------------------------------------------------------------! |
---|
| 1353 | ! Description: |
---|
| 1354 | ! ------------ |
---|
| 1355 | !> Calculate potential temperature, specific humidity, and virtual potential temperature at first |
---|
| 1356 | !> grid level. |
---|
| 1357 | !--------------------------------------------------------------------------------------------------! |
---|
| 1358 | SUBROUTINE calc_pt_q |
---|
[1691] | 1359 | |
---|
[4562] | 1360 | IMPLICIT NONE |
---|
[1691] | 1361 | |
---|
[4562] | 1362 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2232] | 1363 | |
---|
[4562] | 1364 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1365 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1366 | !$ACC PRESENT(surf, pt) |
---|
| 1367 | DO m = 1, surf%ns |
---|
| 1368 | i = surf%i(m) |
---|
| 1369 | j = surf%j(m) |
---|
| 1370 | k = surf%k(m) |
---|
[2232] | 1371 | |
---|
[3634] | 1372 | #ifndef _OPENACC |
---|
[4562] | 1373 | IF ( bulk_cloud_model ) THEN |
---|
| 1374 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1375 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1376 | ELSEIF( cloud_droplets ) THEN |
---|
| 1377 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1378 | surf%qv1(m) = q(k,j,i) |
---|
| 1379 | ELSE |
---|
[3634] | 1380 | #endif |
---|
[4562] | 1381 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1382 | #ifndef _OPENACC |
---|
[4562] | 1383 | IF ( humidity ) THEN |
---|
| 1384 | surf%qv1(m) = q(k,j,i) |
---|
| 1385 | ELSE |
---|
[3634] | 1386 | #endif |
---|
[4562] | 1387 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1388 | #ifndef _OPENACC |
---|
[4562] | 1389 | ENDIF |
---|
| 1390 | ENDIF |
---|
[2232] | 1391 | |
---|
[4562] | 1392 | IF ( humidity ) THEN |
---|
| 1393 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1394 | ENDIF |
---|
[3634] | 1395 | #endif |
---|
[4562] | 1396 | ENDDO |
---|
[1691] | 1397 | |
---|
[4562] | 1398 | END SUBROUTINE calc_pt_q |
---|
[1691] | 1399 | |
---|
[2696] | 1400 | |
---|
[4562] | 1401 | !--------------------------------------------------------------------------------------------------! |
---|
| 1402 | ! Description: |
---|
| 1403 | ! ------------ |
---|
| 1404 | !> Set potential temperature at surface grid level( only for upward-facing surfs ). |
---|
| 1405 | !--------------------------------------------------------------------------------------------------! |
---|
| 1406 | SUBROUTINE calc_pt_surface |
---|
[2696] | 1407 | |
---|
[4562] | 1408 | IMPLICIT NONE |
---|
[2696] | 1409 | |
---|
[4562] | 1410 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1411 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1412 | |
---|
[4562] | 1413 | k_off = surf%koff |
---|
| 1414 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1415 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1416 | !$ACC PRESENT(surf, pt) |
---|
| 1417 | DO m = 1, surf%ns |
---|
| 1418 | i = surf%i(m) |
---|
| 1419 | j = surf%j(m) |
---|
| 1420 | k = surf%k(m) |
---|
| 1421 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
| 1422 | ENDDO |
---|
[2696] | 1423 | |
---|
[4562] | 1424 | END SUBROUTINE calc_pt_surface |
---|
[2696] | 1425 | |
---|
| 1426 | ! |
---|
[3152] | 1427 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
[4562] | 1428 | SUBROUTINE calc_q_surface |
---|
[3152] | 1429 | |
---|
[4562] | 1430 | IMPLICIT NONE |
---|
[3152] | 1431 | |
---|
[4562] | 1432 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1433 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3152] | 1434 | |
---|
[4562] | 1435 | k_off = surf%koff |
---|
| 1436 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1437 | DO m = 1, surf%ns |
---|
| 1438 | i = surf%i(m) |
---|
| 1439 | j = surf%j(m) |
---|
| 1440 | k = surf%k(m) |
---|
| 1441 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1442 | ENDDO |
---|
[3152] | 1443 | |
---|
[4562] | 1444 | END SUBROUTINE calc_q_surface |
---|
[3152] | 1445 | |
---|
[4562] | 1446 | !--------------------------------------------------------------------------------------------------! |
---|
| 1447 | ! Description: |
---|
| 1448 | ! ------------ |
---|
| 1449 | !> Set virtual potential temperature at surface grid level ( only for upward-facing surfs ). |
---|
| 1450 | !--------------------------------------------------------------------------------------------------! |
---|
| 1451 | SUBROUTINE calc_vpt_surface |
---|
[3152] | 1452 | |
---|
[4562] | 1453 | IMPLICIT NONE |
---|
[3146] | 1454 | |
---|
[4562] | 1455 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1456 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3146] | 1457 | |
---|
[4562] | 1458 | k_off = surf%koff |
---|
| 1459 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1460 | DO m = 1, surf%ns |
---|
| 1461 | i = surf%i(m) |
---|
| 1462 | j = surf%j(m) |
---|
| 1463 | k = surf%k(m) |
---|
| 1464 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
[3146] | 1465 | |
---|
[4562] | 1466 | ENDDO |
---|
[3146] | 1467 | |
---|
[4562] | 1468 | END SUBROUTINE calc_vpt_surface |
---|
[3146] | 1469 | |
---|
[4562] | 1470 | !--------------------------------------------------------------------------------------------------! |
---|
| 1471 | ! Description: |
---|
| 1472 | ! ------------ |
---|
| 1473 | !> Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
| 1474 | !--------------------------------------------------------------------------------------------------! |
---|
| 1475 | SUBROUTINE calc_scaling_parameters |
---|
[3146] | 1476 | |
---|
[4562] | 1477 | IMPLICIT NONE |
---|
[1691] | 1478 | |
---|
| 1479 | |
---|
[4562] | 1480 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1481 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1482 | ! |
---|
| 1483 | !-- Compute theta* at horizontal surfaces |
---|
| 1484 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1485 | ! |
---|
| 1486 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1487 | |
---|
[4562] | 1488 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1489 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1490 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1491 | DO m = 1, surf%ns |
---|
| 1492 | i = surf%i(m) |
---|
| 1493 | j = surf%j(m) |
---|
| 1494 | k = surf%k(m) |
---|
| 1495 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1496 | ! |
---|
[4562] | 1497 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing |
---|
| 1498 | !-- ol further below |
---|
| 1499 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1500 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1501 | ENDDO |
---|
[2232] | 1502 | |
---|
[4562] | 1503 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1504 | ! |
---|
| 1505 | !-- For a given surface temperature: |
---|
| 1506 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 1507 | |
---|
[2232] | 1508 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1509 | DO m = 1, surf%ns |
---|
| 1510 | i = surf%i(m) |
---|
[2232] | 1511 | j = surf%j(m) |
---|
| 1512 | k = surf%k(m) |
---|
[4562] | 1513 | pt(k-1,j,i) = pt_surface |
---|
| 1514 | ENDDO |
---|
| 1515 | ENDIF |
---|
[2232] | 1516 | |
---|
[4562] | 1517 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1518 | DO m = 1, surf%ns |
---|
| 1519 | z_mo = surf%z_mo(m) |
---|
| 1520 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
[4593] | 1521 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1522 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4562] | 1523 | ENDDO |
---|
[2232] | 1524 | |
---|
[4562] | 1525 | ENDIF |
---|
[1691] | 1526 | ! |
---|
[4562] | 1527 | !-- Compute theta* at vertical surfaces. This is only required in case of land-surface model, in |
---|
| 1528 | !-- order to compute aerodynamical resistance. |
---|
| 1529 | IF ( surf_vertical ) THEN |
---|
| 1530 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1531 | DO m = 1, surf%ns |
---|
| 1532 | i = surf%i(m) |
---|
| 1533 | j = surf%j(m) |
---|
| 1534 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1535 | ! |
---|
| 1536 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing ol |
---|
| 1537 | !-- further below |
---|
| 1538 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1539 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1540 | ENDDO |
---|
| 1541 | ENDIF |
---|
[2232] | 1542 | |
---|
[4562] | 1543 | ! |
---|
| 1544 | !-- If required compute q* at horizontal surfaces |
---|
| 1545 | IF ( humidity ) THEN |
---|
| 1546 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1547 | ! |
---|
| 1548 | !-- For a given water flux in the surface layer |
---|
| 1549 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1550 | DO m = 1, surf%ns |
---|
| 1551 | i = surf%i(m) |
---|
| 1552 | j = surf%j(m) |
---|
| 1553 | k = surf%k(m) |
---|
| 1554 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1555 | ENDDO |
---|
| 1556 | |
---|
[4562] | 1557 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1558 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
| 1559 | |
---|
[1788] | 1560 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[4562] | 1561 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1562 | DO m = 1, surf%ns |
---|
| 1563 | i = surf%i(m) |
---|
| 1564 | j = surf%j(m) |
---|
| 1565 | k = surf%k(m) |
---|
| 1566 | q(k-1,j,i) = q_surface |
---|
[2232] | 1567 | |
---|
[4562] | 1568 | ENDDO |
---|
| 1569 | ENDIF |
---|
| 1570 | |
---|
| 1571 | ! |
---|
| 1572 | !-- Assume saturation for atmosphere coupled to ocean (but not in case of precursor runs) |
---|
| 1573 | IF ( coupled_run ) THEN |
---|
| 1574 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1575 | DO m = 1, surf%ns |
---|
| 1576 | i = surf%i(m) |
---|
[2232] | 1577 | j = surf%j(m) |
---|
| 1578 | k = surf%k(m) |
---|
[4562] | 1579 | e_s = 6.1_wp * EXP( 0.07_wp * ( MIN( pt(k-1,j,i), pt(k,j,i) ) - 273.15_wp ) ) |
---|
| 1580 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
| 1581 | ENDDO |
---|
| 1582 | ENDIF |
---|
[2232] | 1583 | |
---|
[4562] | 1584 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
| 1585 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1586 | DO m = 1, surf%ns |
---|
| 1587 | i = surf%i(m) |
---|
| 1588 | j = surf%j(m) |
---|
| 1589 | k = surf%k(m) |
---|
| 1590 | z_mo = surf%z_mo(m) |
---|
| 1591 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[4593] | 1592 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1593 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1594 | ENDDO |
---|
[4562] | 1595 | ELSE |
---|
| 1596 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1597 | DO m = 1, surf%ns |
---|
| 1598 | i = surf%i(m) |
---|
| 1599 | j = surf%j(m) |
---|
| 1600 | k = surf%k(m) |
---|
| 1601 | z_mo = surf%z_mo(m) |
---|
| 1602 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
[4593] | 1603 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1604 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1605 | ENDDO |
---|
[1691] | 1606 | ENDIF |
---|
[2232] | 1607 | ENDIF |
---|
[4562] | 1608 | ! |
---|
| 1609 | !-- Compute q* at vertical surfaces |
---|
[2232] | 1610 | IF ( surf_vertical ) THEN |
---|
[2281] | 1611 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1612 | DO m = 1, surf%ns |
---|
[2232] | 1613 | |
---|
[4562] | 1614 | i = surf%i(m) |
---|
| 1615 | j = surf%j(m) |
---|
| 1616 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1617 | |
---|
[1691] | 1618 | ENDDO |
---|
| 1619 | ENDIF |
---|
[4562] | 1620 | ENDIF |
---|
[1691] | 1621 | |
---|
| 1622 | ! |
---|
[4562] | 1623 | !-- If required compute s* |
---|
| 1624 | IF ( passive_scalar ) THEN |
---|
[1691] | 1625 | ! |
---|
[4562] | 1626 | !-- At horizontal surfaces |
---|
| 1627 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1628 | ! |
---|
[4562] | 1629 | !-- For a given scalar flux in the surface layer |
---|
| 1630 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1631 | DO m = 1, surf%ns |
---|
| 1632 | i = surf%i(m) |
---|
| 1633 | j = surf%j(m) |
---|
| 1634 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1635 | ENDDO |
---|
| 1636 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1637 | |
---|
[4562] | 1638 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1639 | DO m = 1, surf%ns |
---|
| 1640 | i = surf%i(m) |
---|
| 1641 | j = surf%j(m) |
---|
| 1642 | k = surf%k(m) |
---|
| 1643 | z_mo = surf%z_mo(m) |
---|
[1691] | 1644 | |
---|
[4562] | 1645 | surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & |
---|
[4593] | 1646 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1647 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4562] | 1648 | ENDDO |
---|
[1691] | 1649 | ENDIF |
---|
[1960] | 1650 | ! |
---|
[4562] | 1651 | !-- At vertical surfaces |
---|
| 1652 | IF ( surf_vertical ) THEN |
---|
| 1653 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1654 | DO m = 1, surf%ns |
---|
| 1655 | i = surf%i(m) |
---|
| 1656 | j = surf%j(m) |
---|
| 1657 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1658 | ENDDO |
---|
| 1659 | ENDIF |
---|
| 1660 | ENDIF |
---|
| 1661 | |
---|
[1960] | 1662 | ! |
---|
[4562] | 1663 | !-- If required compute cs* (chemical species) |
---|
| 1664 | IF ( air_chemistry ) THEN |
---|
[2232] | 1665 | ! |
---|
[4562] | 1666 | !-- At horizontal surfaces |
---|
| 1667 | DO lsp = 1, nvar |
---|
| 1668 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1669 | !-- For a given chemical species' flux in the surface layer |
---|
[2281] | 1670 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1671 | DO m = 1, surf%ns |
---|
| 1672 | i = surf%i(m) |
---|
| 1673 | j = surf%j(m) |
---|
| 1674 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1675 | ENDDO |
---|
| 1676 | ENDIF |
---|
[4562] | 1677 | ENDDO |
---|
[2232] | 1678 | ! |
---|
[4562] | 1679 | !-- At vertical surfaces |
---|
| 1680 | IF ( surf_vertical ) THEN |
---|
| 1681 | DO lsp = 1, nvar |
---|
[2281] | 1682 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1683 | DO m = 1, surf%ns |
---|
| 1684 | i = surf%i(m) |
---|
| 1685 | j = surf%j(m) |
---|
| 1686 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1687 | ENDDO |
---|
[2696] | 1688 | ENDDO |
---|
| 1689 | ENDIF |
---|
[4562] | 1690 | ENDIF |
---|
[2696] | 1691 | |
---|
| 1692 | ! |
---|
[4562] | 1693 | !-- If required compute qc* and nc* |
---|
| 1694 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. surf_vertical ) THEN |
---|
| 1695 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1696 | DO m = 1, surf%ns |
---|
| 1697 | i = surf%i(m) |
---|
| 1698 | j = surf%j(m) |
---|
| 1699 | k = surf%k(m) |
---|
[1691] | 1700 | |
---|
[4562] | 1701 | z_mo = surf%z_mo(m) |
---|
[2292] | 1702 | |
---|
[4562] | 1703 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
[4593] | 1704 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1705 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[2292] | 1706 | |
---|
[4562] | 1707 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
[4593] | 1708 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1709 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1710 | ENDDO |
---|
[2292] | 1711 | |
---|
[4562] | 1712 | ENDIF |
---|
[2292] | 1713 | |
---|
[1691] | 1714 | ! |
---|
[4562] | 1715 | !-- If required compute qr* and nr* |
---|
| 1716 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. surf_vertical ) THEN |
---|
| 1717 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1718 | DO m = 1, surf%ns |
---|
| 1719 | i = surf%i(m) |
---|
| 1720 | j = surf%j(m) |
---|
| 1721 | k = surf%k(m) |
---|
[1691] | 1722 | |
---|
[4562] | 1723 | z_mo = surf%z_mo(m) |
---|
[1691] | 1724 | |
---|
[4562] | 1725 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
[4593] | 1726 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1727 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1728 | |
---|
[4562] | 1729 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
[4593] | 1730 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1731 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1732 | ENDDO |
---|
[1691] | 1733 | |
---|
[4562] | 1734 | ENDIF |
---|
[1691] | 1735 | |
---|
[4562] | 1736 | END SUBROUTINE calc_scaling_parameters |
---|
[1691] | 1737 | |
---|
| 1738 | |
---|
| 1739 | |
---|
[4562] | 1740 | !--------------------------------------------------------------------------------------------------! |
---|
| 1741 | ! Description: |
---|
| 1742 | ! ------------ |
---|
| 1743 | !> Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
| 1744 | !--------------------------------------------------------------------------------------------------! |
---|
| 1745 | SUBROUTINE calc_surface_fluxes |
---|
[1691] | 1746 | |
---|
[4562] | 1747 | IMPLICIT NONE |
---|
[1691] | 1748 | |
---|
[4562] | 1749 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1750 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1751 | |
---|
[4562] | 1752 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1753 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1754 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
[1691] | 1755 | |
---|
[4562] | 1756 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1757 | !< at vertical surfaces |
---|
| 1758 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1759 | !< at vertical surfaces |
---|
| 1760 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1761 | !< at vertical surfaces |
---|
[1691] | 1762 | |
---|
| 1763 | ! |
---|
[4562] | 1764 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1765 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1766 | ! |
---|
[4562] | 1767 | !-- Compute u'w' for the total model domain at upward-facing surfaces. First compute the |
---|
| 1768 | !-- corresponding component of u* and square it. |
---|
| 1769 | IF ( .NOT. downward ) THEN |
---|
| 1770 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1771 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1772 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
| 1773 | DO m = 1, surf%ns |
---|
| 1774 | i = surf%i(m) |
---|
| 1775 | j = surf%j(m) |
---|
| 1776 | k = surf%k(m) |
---|
[1691] | 1777 | |
---|
[4562] | 1778 | z_mo = surf%z_mo(m) |
---|
[1691] | 1779 | |
---|
[4562] | 1780 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
[4593] | 1781 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1782 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[2232] | 1783 | ! |
---|
[4562] | 1784 | !-- Please note, the computation of usws is not fully accurate. Actually a further |
---|
| 1785 | !-- interpolation of us onto the u-grid, where usws is defined, is required. However, this |
---|
| 1786 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1787 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1788 | !-- shown. Same also for ol. |
---|
| 1789 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1790 | ENDDO |
---|
[1691] | 1791 | ! |
---|
[4562] | 1792 | !-- At downward-facing surfaces |
---|
| 1793 | ELSE |
---|
[4593] | 1794 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1795 | DO m = 1, surf%ns |
---|
| 1796 | i = surf%i(m) |
---|
| 1797 | j = surf%j(m) |
---|
| 1798 | k = surf%k(m) |
---|
[1691] | 1799 | |
---|
[4593] | 1800 | surf%usws(m) = kappa * u(k,j,i) / surf%ln_z_z0(m) |
---|
[4562] | 1801 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1802 | ENDDO |
---|
| 1803 | ENDIF |
---|
[1691] | 1804 | |
---|
[2232] | 1805 | ! |
---|
[4562] | 1806 | !-- Compute v'w' for the total model domain. First compute the corresponding component of u* and |
---|
| 1807 | !-- square it. |
---|
| 1808 | !-- Upward-facing surfaces |
---|
| 1809 | IF ( .NOT. downward ) THEN |
---|
| 1810 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1811 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1812 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
| 1813 | DO m = 1, surf%ns |
---|
| 1814 | i = surf%i(m) |
---|
| 1815 | j = surf%j(m) |
---|
| 1816 | k = surf%k(m) |
---|
[1691] | 1817 | |
---|
[4562] | 1818 | z_mo = surf%z_mo(m) |
---|
[1691] | 1819 | |
---|
[4562] | 1820 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
[4593] | 1821 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1822 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1823 | ! |
---|
[4562] | 1824 | !-- Please note, the computation of vsws is not fully accurate. Actually a further |
---|
| 1825 | !-- interpolation of us onto the v-grid, where vsws is defined, is required. However, this |
---|
| 1826 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1827 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1828 | !-- shown. Same also for ol. |
---|
| 1829 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1830 | ENDDO |
---|
[2232] | 1831 | ! |
---|
[4562] | 1832 | !-- Downward-facing surfaces |
---|
| 1833 | ELSE |
---|
[4593] | 1834 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1835 | DO m = 1, surf%ns |
---|
| 1836 | i = surf%i(m) |
---|
| 1837 | j = surf%j(m) |
---|
| 1838 | k = surf%k(m) |
---|
[1691] | 1839 | |
---|
[4593] | 1840 | surf%vsws(m) = kappa * v(k,j,i) / surf%ln_z_z0(m) |
---|
[4562] | 1841 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1842 | ENDDO |
---|
| 1843 | ENDIF |
---|
[1691] | 1844 | ! |
---|
[4593] | 1845 | !-- Compute the vertical kinematic heat flux. Note, only upward-facing surfaces are considered, |
---|
| 1846 | !-- at downward-facing surfaces the flux is not parametrized with a scaling parameter. |
---|
[4562] | 1847 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point <= skip_time_do_lsm & |
---|
| 1848 | .AND. simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1849 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[4593] | 1850 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1851 | DO m = 1, surf%ns |
---|
| 1852 | k = surf%k(m) |
---|
| 1853 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1854 | ENDDO |
---|
| 1855 | ENDIF |
---|
[2232] | 1856 | ! |
---|
[4562] | 1857 | !-- Compute the vertical water flux |
---|
| 1858 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
| 1859 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) & |
---|
| 1860 | .OR. .NOT. land_surface ) .AND. .NOT. urban_surface .AND. .NOT. downward ) & |
---|
| 1861 | THEN |
---|
[4593] | 1862 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1863 | DO m = 1, surf%ns |
---|
[4594] | 1864 | k = surf%k(m) |
---|
[4562] | 1865 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1866 | ENDDO |
---|
| 1867 | ENDIF |
---|
| 1868 | ! |
---|
| 1869 | !-- Compute the vertical scalar flux |
---|
| 1870 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. .NOT. downward ) THEN |
---|
[4594] | 1871 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1872 | DO m = 1, surf%ns |
---|
[4594] | 1873 | k = surf%k(m) |
---|
[4593] | 1874 | surf%ssws(m) = -surf%ss(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[4562] | 1875 | ENDDO |
---|
| 1876 | ENDIF |
---|
| 1877 | ! |
---|
| 1878 | !-- Compute the vertical chemical species' flux |
---|
| 1879 | DO lsp = 1, nvar |
---|
| 1880 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. .NOT. downward ) THEN |
---|
[4594] | 1881 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1882 | DO m = 1, surf%ns |
---|
[4594] | 1883 | k = surf%k(m) |
---|
[4593] | 1884 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) * rho_air_zw(k-1) |
---|
[2232] | 1885 | ENDDO |
---|
| 1886 | ENDIF |
---|
[4562] | 1887 | ENDDO |
---|
| 1888 | |
---|
[2232] | 1889 | ! |
---|
[4562] | 1890 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
| 1891 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. downward) THEN |
---|
[4594] | 1892 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1893 | DO m = 1, surf%ns |
---|
[4594] | 1894 | k = surf%k(m) |
---|
[4593] | 1895 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1896 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[4562] | 1897 | ENDDO |
---|
| 1898 | ENDIF |
---|
| 1899 | ! |
---|
| 1900 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
| 1901 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. downward) THEN |
---|
[4594] | 1902 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1903 | DO m = 1, surf%ns |
---|
[4594] | 1904 | k = surf%k(m) |
---|
[4593] | 1905 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1906 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[2696] | 1907 | ENDDO |
---|
[4562] | 1908 | ENDIF |
---|
[2696] | 1909 | |
---|
| 1910 | ! |
---|
[4562] | 1911 | !-- Bottom boundary condition for the TKE. |
---|
| 1912 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1913 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1914 | DO m = 1, surf%ns |
---|
| 1915 | i = surf%i(m) |
---|
| 1916 | j = surf%j(m) |
---|
| 1917 | k = surf%k(m) |
---|
[2292] | 1918 | |
---|
[4562] | 1919 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1920 | ! |
---|
| 1921 | !-- As a test: cm = 0.4 |
---|
| 1922 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1923 | e(k-1,j,i) = e(k,j,i) |
---|
[2292] | 1924 | |
---|
[4562] | 1925 | ENDDO |
---|
| 1926 | ENDIF |
---|
[2292] | 1927 | ! |
---|
[4562] | 1928 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
[4593] | 1929 | !-- Further, no density needs to be considered here. |
---|
[4562] | 1930 | ELSE |
---|
| 1931 | ! |
---|
| 1932 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1933 | IF ( mom_uv ) THEN |
---|
| 1934 | ! |
---|
| 1935 | !-- Generalize computation by introducing flags. At north- and south-facing surfaces |
---|
| 1936 | !-- u-component is used, at east- and west-facing surfaces v-component is used. |
---|
| 1937 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1938 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
[4593] | 1939 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1940 | DO m = 1, surf%ns |
---|
| 1941 | i = surf%i(m) |
---|
| 1942 | j = surf%j(m) |
---|
| 1943 | k = surf%k(m) |
---|
[2232] | 1944 | |
---|
[4562] | 1945 | surf%mom_flux_uv(m) = kappa * ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
[4593] | 1946 | surf%ln_z_z0(m) |
---|
[1691] | 1947 | |
---|
[4562] | 1948 | surf%mom_flux_uv(m) = - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1949 | ENDDO |
---|
| 1950 | ENDIF |
---|
[1960] | 1951 | ! |
---|
[4562] | 1952 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1953 | IF ( mom_w ) THEN |
---|
[4593] | 1954 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1955 | DO m = 1, surf%ns |
---|
| 1956 | i = surf%i(m) |
---|
| 1957 | j = surf%j(m) |
---|
| 1958 | k = surf%k(m) |
---|
[2232] | 1959 | |
---|
[4593] | 1960 | surf%mom_flux_w(m) = kappa * w(k,j,i) / surf%ln_z_z0(m) |
---|
[2232] | 1961 | |
---|
[4562] | 1962 | surf%mom_flux_w(m) = - surf%mom_flux_w(m) * surf%us(m) |
---|
| 1963 | ENDDO |
---|
| 1964 | ENDIF |
---|
[2232] | 1965 | ! |
---|
[4562] | 1966 | !-- Compute momentum fluxes used for subgrid-scale TKE production at vertical surfaces. In |
---|
| 1967 | !-- constrast to the calculated momentum fluxes at vertical surfaces before, which are defined on |
---|
| 1968 | !-- the u/v/w-grid, respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1969 | !-- |
---|
| 1970 | IF ( mom_tke ) THEN |
---|
[2232] | 1971 | ! |
---|
[4562] | 1972 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1973 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1974 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1975 | ALLOCATE( w_i(1:surf%ns) ) |
---|
| 1976 | |
---|
| 1977 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1978 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1979 | DO m = 1, surf%ns |
---|
| 1980 | i = surf%i(m) |
---|
[2232] | 1981 | j = surf%j(m) |
---|
| 1982 | k = surf%k(m) |
---|
[1691] | 1983 | |
---|
[4562] | 1984 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1985 | v_i(m) = 0.0_wp |
---|
| 1986 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 1987 | ENDDO |
---|
[4562] | 1988 | ELSE |
---|
| 1989 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1990 | DO m = 1, surf%ns |
---|
| 1991 | i = surf%i(m) |
---|
[2232] | 1992 | j = surf%j(m) |
---|
| 1993 | k = surf%k(m) |
---|
| 1994 | |
---|
[4562] | 1995 | u_i(m) = 0.0_wp |
---|
| 1996 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1997 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[1691] | 1998 | ENDDO |
---|
[2232] | 1999 | ENDIF |
---|
[1691] | 2000 | |
---|
[4593] | 2001 | !$OMP PARALLEL DO PRIVATE( i, j, dum ) |
---|
[4562] | 2002 | DO m = 1, surf%ns |
---|
| 2003 | i = surf%i(m) |
---|
| 2004 | j = surf%j(m) |
---|
[2232] | 2005 | |
---|
[4593] | 2006 | dum = kappa / surf%ln_z_z0(m) |
---|
[1691] | 2007 | ! |
---|
[4562] | 2008 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 2009 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 2010 | ! |
---|
[4562] | 2011 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 2012 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
[2232] | 2013 | |
---|
[4562] | 2014 | surf%mom_flux_tke(0:1,m) = - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
| 2015 | ENDDO |
---|
[2232] | 2016 | ! |
---|
[4562] | 2017 | !-- Deallocate temporary arrays |
---|
| 2018 | DEALLOCATE( u_i ) |
---|
| 2019 | DEALLOCATE( v_i ) |
---|
| 2020 | DEALLOCATE( w_i ) |
---|
[1691] | 2021 | ENDIF |
---|
[4562] | 2022 | ENDIF |
---|
[1691] | 2023 | |
---|
[4562] | 2024 | END SUBROUTINE calc_surface_fluxes |
---|
[1691] | 2025 | |
---|
[4562] | 2026 | |
---|
| 2027 | !--------------------------------------------------------------------------------------------------! |
---|
[3597] | 2028 | ! Description: |
---|
| 2029 | ! ------------ |
---|
[4562] | 2030 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m temperature for output. |
---|
| 2031 | !--------------------------------------------------------------------------------------------------! |
---|
| 2032 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 2033 | |
---|
[4562] | 2034 | IMPLICIT NONE |
---|
[3597] | 2035 | |
---|
[4562] | 2036 | CHARACTER(LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
[3597] | 2037 | |
---|
[4562] | 2038 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 2039 | |
---|
[4562] | 2040 | SELECT CASE ( z_char) |
---|
[3597] | 2041 | |
---|
[4562] | 2042 | CASE ( '10cm' ) |
---|
[4331] | 2043 | |
---|
[4562] | 2044 | DO m = 1, surf%ns |
---|
| 2045 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
| 2046 | * ( LOG( 0.1_wp / surf%z0h(m) ) - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
| 2047 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 2048 | ENDDO |
---|
[3597] | 2049 | |
---|
[4562] | 2050 | END SELECT |
---|
[1691] | 2051 | |
---|
[4562] | 2052 | END SUBROUTINE calc_pt_near_surface |
---|
[1691] | 2053 | |
---|
| 2054 | |
---|
[4562] | 2055 | !--------------------------------------------------------------------------------------------------! |
---|
| 2056 | ! Description: |
---|
| 2057 | ! ------------ |
---|
| 2058 | !> Integrated stability function for momentum. |
---|
| 2059 | !--------------------------------------------------------------------------------------------------! |
---|
| 2060 | FUNCTION psi_m( zeta ) |
---|
| 2061 | !$ACC ROUTINE SEQ |
---|
[1691] | 2062 | |
---|
[4562] | 2063 | USE kinds |
---|
[1691] | 2064 | |
---|
[4562] | 2065 | IMPLICIT NONE |
---|
[1691] | 2066 | |
---|
[4562] | 2067 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 2068 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2069 | REAL(wp) :: x !< dummy variable |
---|
[1691] | 2070 | |
---|
[4562] | 2071 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2072 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2073 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2074 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2075 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2076 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
[1691] | 2077 | |
---|
| 2078 | |
---|
[4562] | 2079 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2080 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
| 2081 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2082 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2083 | ELSE |
---|
[1691] | 2084 | |
---|
[4562] | 2085 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta - bc_d_d |
---|
[1691] | 2086 | ! |
---|
[4562] | 2087 | !-- Old version for stable conditions (only valid for z/L < 0.5) psi_m = - 5.0_wp * zeta |
---|
[1691] | 2088 | |
---|
[4562] | 2089 | ENDIF |
---|
[1691] | 2090 | |
---|
[4562] | 2091 | END FUNCTION psi_m |
---|
[1691] | 2092 | |
---|
| 2093 | |
---|
[4562] | 2094 | !--------------------------------------------------------------------------------------------------! |
---|
| 2095 | ! Description: |
---|
| 2096 | !------------ |
---|
| 2097 | !> Integrated stability function for heat and moisture. |
---|
| 2098 | !--------------------------------------------------------------------------------------------------! |
---|
| 2099 | FUNCTION psi_h( zeta ) |
---|
| 2100 | !$ACC ROUTINE SEQ |
---|
[1691] | 2101 | |
---|
[4562] | 2102 | USE kinds |
---|
| 2103 | |
---|
| 2104 | IMPLICIT NONE |
---|
| 2105 | |
---|
| 2106 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2107 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2108 | REAL(wp) :: x !< dummy variable |
---|
| 2109 | |
---|
| 2110 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2111 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2112 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2113 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2114 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2115 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2116 | |
---|
| 2117 | |
---|
| 2118 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2119 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
| 2120 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2121 | ELSE |
---|
| 2122 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2123 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d + 1.0_wp |
---|
[1691] | 2124 | ! |
---|
[4562] | 2125 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2126 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2127 | ENDIF |
---|
[1691] | 2128 | |
---|
[4562] | 2129 | END FUNCTION psi_h |
---|
[1691] | 2130 | |
---|
[3130] | 2131 | |
---|
[4562] | 2132 | !--------------------------------------------------------------------------------------------------! |
---|
[3130] | 2133 | ! Description: |
---|
| 2134 | ! ------------ |
---|
| 2135 | !> Calculates stability function for momentum |
---|
| 2136 | !> |
---|
| 2137 | !> @author Hauke Wurps |
---|
[4562] | 2138 | !--------------------------------------------------------------------------------------------------! |
---|
| 2139 | FUNCTION phi_m( zeta ) |
---|
| 2140 | !$ACC ROUTINE SEQ |
---|
[3130] | 2141 | |
---|
[4562] | 2142 | IMPLICIT NONE |
---|
| 2143 | |
---|
| 2144 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2145 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2146 | |
---|
| 2147 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2148 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2149 | |
---|
| 2150 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2151 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2152 | ELSE |
---|
| 2153 | phi_m = 1.0_wp + c * zeta |
---|
| 2154 | ENDIF |
---|
| 2155 | |
---|
| 2156 | END FUNCTION phi_m |
---|
| 2157 | |
---|
[1697] | 2158 | END MODULE surface_layer_fluxes_mod |
---|