[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[4562] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[4562] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1691] | 8 | ! |
---|
[4562] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1691] | 12 | ! |
---|
[4562] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1691] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4562] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 18 | ! |
---|
[2696] | 19 | ! |
---|
[1691] | 20 | ! Current revisions: |
---|
[4562] | 21 | ! ----------------- |
---|
[4593] | 22 | ! |
---|
| 23 | ! |
---|
[1692] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: surface_layer_fluxes_mod.f90 4594 2020-07-09 15:01:00Z suehring $ |
---|
[4594] | 27 | ! Include k index in OMP PRIVATE statements |
---|
| 28 | ! |
---|
| 29 | ! 4593 2020-07-09 12:48:18Z suehring |
---|
[4593] | 30 | ! - Pre-calculate ln(z/z0) at each timestep in order to reduce the number of log-calculations |
---|
| 31 | ! - Bugfix - add missing density to fluxes of passive-scalars, chemistry and cloud-phyiscal |
---|
| 32 | ! quantities at upward-facing surfaces |
---|
| 33 | ! - Move if-statement out of inner loop |
---|
| 34 | ! - Remove unnecessary index referencing |
---|
| 35 | ! |
---|
| 36 | ! 4562 2020-06-12 08:38:47Z raasch |
---|
[4562] | 37 | ! File re-formatted to follow the PALM coding standard |
---|
| 38 | ! |
---|
| 39 | ! 4519 2020-05-05 17:33:30Z suehring |
---|
[4519] | 40 | ! Add missing computation of passive scalar scaling parameter |
---|
[4562] | 41 | ! |
---|
[4519] | 42 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4562] | 43 | ! Bugfix: openacc porting for vector version of OL calculation added |
---|
| 44 | ! |
---|
[4370] | 45 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4562] | 46 | ! Vector version for calculation of Obukhov length via Newton iteration added |
---|
| 47 | ! |
---|
[4366] | 48 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4562] | 49 | ! Calculation of diagnostic-only 2-m potential temperature moved to diagnostic_output_quantities. |
---|
| 50 | ! |
---|
[4331] | 51 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
[4562] | 52 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above the first grid point. |
---|
| 53 | ! |
---|
[4298] | 54 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 55 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
[4562] | 56 | ! |
---|
[4258] | 57 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 58 | ! Added missing OpenMP directives |
---|
[4562] | 59 | ! |
---|
[4237] | 60 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4562] | 61 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 62 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic peaks in the heat fluxes |
---|
| 63 | ! during nighttime |
---|
[4186] | 64 | ! - Unused variable removed |
---|
[4562] | 65 | ! |
---|
[4186] | 66 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 67 | ! Corrected "Former revisions" section |
---|
[4562] | 68 | ! |
---|
[4182] | 69 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 70 | ! Introduce alternative switch for debug output during timestepping |
---|
[4562] | 71 | ! |
---|
[3987] | 72 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4562] | 73 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 74 | ! messages |
---|
| 75 | ! |
---|
[3885] | 76 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 77 | ! Assure that Obukhov length does not become zero |
---|
[4562] | 78 | ! |
---|
[3881] | 79 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[4562] | 80 | ! Added USE chem_gasphase_mod |
---|
| 81 | ! |
---|
[3833] | 82 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[4562] | 83 | ! Unused variables removed |
---|
| 84 | ! |
---|
[3787] | 85 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[4562] | 86 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, required for indoor |
---|
| 87 | ! model |
---|
| 88 | ! |
---|
[3745] | 89 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 90 | ! Some interface calls moved to module_interface + cleanup |
---|
[4562] | 91 | ! |
---|
[3685] | 92 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 93 | ! Removed methods "circular" and "lookup" |
---|
[4562] | 94 | ! |
---|
[3668] | 95 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 96 | ! OpenACC port for SPEC |
---|
[1692] | 97 | ! |
---|
[4182] | 98 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 99 | ! Initial revision |
---|
| 100 | ! |
---|
| 101 | ! |
---|
[1691] | 102 | ! Description: |
---|
| 103 | ! ------------ |
---|
[4562] | 104 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the values of the |
---|
| 105 | !> variables at grid point k=1 based on Newton iteration. |
---|
[1691] | 106 | !> |
---|
[4562] | 107 | !> @todo (Re)move large_scale_forcing actions |
---|
| 108 | !> @todo Check/optimize OpenMP directives |
---|
| 109 | !> @todo Simplify if conditions (which flux need to be computed in which case) |
---|
| 110 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 111 | MODULE surface_layer_fluxes_mod |
---|
| 112 | |
---|
[4562] | 113 | USE arrays_3d, & |
---|
| 114 | ONLY: d_exner, & |
---|
| 115 | drho_air_zw, & |
---|
| 116 | e, & |
---|
| 117 | kh, & |
---|
| 118 | nc, & |
---|
| 119 | nr, & |
---|
| 120 | pt, & |
---|
| 121 | q, & |
---|
| 122 | ql, & |
---|
| 123 | qc, & |
---|
| 124 | qr, & |
---|
| 125 | s, & |
---|
| 126 | u, & |
---|
| 127 | v, & |
---|
| 128 | vpt, & |
---|
| 129 | w, & |
---|
| 130 | zu, & |
---|
| 131 | zw, & |
---|
| 132 | rho_air_zw |
---|
[1691] | 133 | |
---|
[3274] | 134 | |
---|
[4562] | 135 | USE basic_constants_and_equations_mod, & |
---|
| 136 | ONLY: g, & |
---|
| 137 | kappa, & |
---|
| 138 | lv_d_cp, & |
---|
| 139 | pi, & |
---|
| 140 | rd_d_rv |
---|
| 141 | |
---|
| 142 | USE chem_gasphase_mod, & |
---|
[3833] | 143 | ONLY: nvar |
---|
| 144 | |
---|
[4562] | 145 | USE chem_modules, & |
---|
[3834] | 146 | ONLY: constant_csflux |
---|
[2696] | 147 | |
---|
[1691] | 148 | USE cpulog |
---|
| 149 | |
---|
[4562] | 150 | USE control_parameters, & |
---|
| 151 | ONLY: air_chemistry, & |
---|
| 152 | cloud_droplets, & |
---|
| 153 | constant_heatflux, & |
---|
| 154 | constant_scalarflux, & |
---|
| 155 | constant_waterflux, & |
---|
| 156 | coupling_mode, & |
---|
| 157 | debug_output_timestep, & |
---|
| 158 | humidity, & |
---|
| 159 | ibc_e_b, & |
---|
| 160 | ibc_pt_b, & |
---|
| 161 | indoor_model, & |
---|
| 162 | land_surface, & |
---|
| 163 | large_scale_forcing, & |
---|
| 164 | loop_optimization, & |
---|
| 165 | lsf_surf, & |
---|
| 166 | message_string, & |
---|
| 167 | neutral, & |
---|
| 168 | passive_scalar, & |
---|
| 169 | pt_surface, & |
---|
| 170 | q_surface, & |
---|
| 171 | run_coupled, & |
---|
| 172 | surface_pressure, & |
---|
| 173 | simulated_time, & |
---|
| 174 | time_since_reference_point, & |
---|
| 175 | urban_surface, & |
---|
| 176 | use_free_convection_scaling, & |
---|
| 177 | zeta_max, & |
---|
| 178 | zeta_min |
---|
[1691] | 179 | |
---|
[4562] | 180 | USE grid_variables, & |
---|
| 181 | ONLY: dx, & |
---|
| 182 | dy |
---|
[2232] | 183 | |
---|
[4562] | 184 | USE indices, & |
---|
[4298] | 185 | ONLY: nzt |
---|
[1691] | 186 | |
---|
| 187 | USE kinds |
---|
| 188 | |
---|
[4562] | 189 | USE bulk_cloud_model_mod, & |
---|
| 190 | ONLY: bulk_cloud_model, & |
---|
| 191 | microphysics_morrison, & |
---|
| 192 | microphysics_seifert |
---|
[3274] | 193 | |
---|
[1691] | 194 | USE pegrid |
---|
| 195 | |
---|
[4562] | 196 | USE land_surface_model_mod, & |
---|
| 197 | ONLY: aero_resist_kray, & |
---|
| 198 | skip_time_do_lsm |
---|
[2011] | 199 | |
---|
[4562] | 200 | USE surface_mod, & |
---|
| 201 | ONLY : surf_def_h, & |
---|
| 202 | surf_def_v, & |
---|
| 203 | surf_lsm_h, & |
---|
| 204 | surf_lsm_v, & |
---|
| 205 | surf_type, & |
---|
| 206 | surf_usm_h, & |
---|
| 207 | surf_usm_v |
---|
[1691] | 208 | |
---|
[4562] | 209 | |
---|
[1691] | 210 | IMPLICIT NONE |
---|
| 211 | |
---|
[4562] | 212 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 213 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 214 | INTEGER(iwp) :: k !< loop index z direction |
---|
| 215 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 216 | |
---|
[4562] | 217 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 218 | LOGICAL :: downward = .FALSE. !< Flag indicating downward-facing horizontal surface |
---|
| 219 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 220 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 221 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 222 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 223 | |
---|
[4562] | 224 | REAL(wp) :: e_s !< Saturation water vapor pressure |
---|
| 225 | REAL(wp) :: ol_max = 1.0E6_wp !< Maximum Obukhov length |
---|
| 226 | REAL(wp) :: z_mo !< Height of the constant flux layer where MOST is assumed |
---|
[1691] | 227 | |
---|
[4562] | 228 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 229 | |
---|
[2232] | 230 | |
---|
[1691] | 231 | SAVE |
---|
| 232 | |
---|
| 233 | PRIVATE |
---|
| 234 | |
---|
[4562] | 235 | PUBLIC init_surface_layer_fluxes, & |
---|
| 236 | phi_m, & |
---|
| 237 | psi_h, & |
---|
| 238 | psi_m, & |
---|
[4331] | 239 | surface_layer_fluxes |
---|
[1691] | 240 | |
---|
| 241 | INTERFACE init_surface_layer_fluxes |
---|
| 242 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 243 | END INTERFACE init_surface_layer_fluxes |
---|
| 244 | |
---|
[3130] | 245 | INTERFACE phi_m |
---|
| 246 | MODULE PROCEDURE phi_m |
---|
| 247 | END INTERFACE phi_m |
---|
| 248 | |
---|
[4331] | 249 | INTERFACE psi_h |
---|
| 250 | MODULE PROCEDURE psi_h |
---|
| 251 | END INTERFACE psi_h |
---|
| 252 | |
---|
| 253 | INTERFACE psi_m |
---|
| 254 | MODULE PROCEDURE psi_m |
---|
| 255 | END INTERFACE psi_m |
---|
| 256 | |
---|
[1691] | 257 | INTERFACE surface_layer_fluxes |
---|
| 258 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 259 | END INTERFACE surface_layer_fluxes |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | CONTAINS |
---|
| 263 | |
---|
| 264 | |
---|
[4562] | 265 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 266 | ! Description: |
---|
| 267 | ! ------------ |
---|
[4562] | 268 | !> Main routine to compute the surface fluxes. |
---|
| 269 | !--------------------------------------------------------------------------------------------------! |
---|
| 270 | SUBROUTINE surface_layer_fluxes |
---|
[1691] | 271 | |
---|
[4562] | 272 | IMPLICIT NONE |
---|
[1691] | 273 | |
---|
[3885] | 274 | |
---|
[4562] | 275 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 276 | |
---|
[4562] | 277 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 278 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 279 | ! |
---|
[4593] | 280 | !-- First, precalculate ln(z/z0) for all surfaces. This is done each timestep, in order to account |
---|
| 281 | !-- for time-dependent roughness or user-modifications. |
---|
| 282 | DO l = 0, 1 |
---|
| 283 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 284 | surf => surf_def_h(l) |
---|
| 285 | CALL calc_ln |
---|
| 286 | ENDIF |
---|
| 287 | ENDDO |
---|
| 288 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 289 | surf => surf_lsm_h |
---|
| 290 | CALL calc_ln |
---|
| 291 | ENDIF |
---|
| 292 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 293 | surf => surf_usm_h |
---|
| 294 | CALL calc_ln |
---|
| 295 | ENDIF |
---|
| 296 | |
---|
| 297 | DO l = 0, 3 |
---|
| 298 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 299 | surf => surf_def_v(l) |
---|
| 300 | CALL calc_ln |
---|
| 301 | ENDIF |
---|
| 302 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 303 | surf => surf_lsm_v(l) |
---|
| 304 | CALL calc_ln |
---|
| 305 | ENDIF |
---|
| 306 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 307 | surf => surf_usm_v(l) |
---|
| 308 | CALL calc_ln |
---|
| 309 | ENDIF |
---|
| 310 | ENDDO |
---|
| 311 | ! |
---|
[4562] | 312 | !-- Derive potential temperature and specific humidity at first grid level from the fields pt and q |
---|
| 313 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, l=1 - downward facing) |
---|
| 314 | DO l = 0, 1 |
---|
| 315 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 316 | surf => surf_def_h(l) |
---|
| 317 | CALL calc_pt_q |
---|
| 318 | IF ( .NOT. neutral ) THEN |
---|
| 319 | CALL calc_pt_surface |
---|
| 320 | IF ( humidity ) THEN |
---|
| 321 | CALL calc_q_surface |
---|
| 322 | CALL calc_vpt_surface |
---|
[3146] | 323 | ENDIF |
---|
[2696] | 324 | ENDIF |
---|
[4562] | 325 | ENDIF |
---|
| 326 | ENDDO |
---|
[2232] | 327 | ! |
---|
[4562] | 328 | !-- Call for natural-type horizontal surfaces |
---|
| 329 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 330 | surf => surf_lsm_h |
---|
| 331 | CALL calc_pt_q |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | ! |
---|
| 335 | !-- Call for urban-type horizontal surfaces |
---|
| 336 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 337 | surf => surf_usm_h |
---|
| 338 | CALL calc_pt_q |
---|
| 339 | ENDIF |
---|
| 340 | |
---|
| 341 | ! |
---|
| 342 | !-- Call for natural-type vertical surfaces |
---|
| 343 | DO l = 0, 3 |
---|
| 344 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 345 | surf => surf_lsm_v(l) |
---|
[2696] | 346 | CALL calc_pt_q |
---|
| 347 | ENDIF |
---|
| 348 | |
---|
[4562] | 349 | !-- Call for urban-type vertical surfaces |
---|
| 350 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 351 | surf => surf_usm_v(l) |
---|
[2696] | 352 | CALL calc_pt_q |
---|
| 353 | ENDIF |
---|
[4562] | 354 | ENDDO |
---|
[2696] | 355 | |
---|
| 356 | ! |
---|
[4593] | 357 | !-- First, calculate the new Obukhov length from precalculated values of log(z/z0) and wind speeds. |
---|
| 358 | !-- As a second step, then calculate new friction velocity, followed by the new scaling |
---|
[4562] | 359 | !-- parameters (th*, q*, etc.), and the new surface fluxes, if required. Note, each routine is called |
---|
| 360 | !-- for different surface types. First call for default-type horizontal surfaces, for natural- and |
---|
| 361 | !-- urban-type surfaces. Note, here only upward-facing horizontal surfaces are treated. |
---|
[4593] | 362 | !-- Note, calculation of log(z/z0) is redone each timestep, in order to account for time-dependent |
---|
| 363 | !-- values. |
---|
| 364 | !-- Start with default-type upward-facing horizontal surfaces |
---|
[4562] | 365 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 366 | surf => surf_def_h(0) |
---|
| 367 | CALL calc_uvw_abs |
---|
| 368 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 369 | CALL calc_us |
---|
| 370 | CALL calc_scaling_parameters |
---|
| 371 | CALL calc_surface_fluxes |
---|
| 372 | ENDIF |
---|
| 373 | ! |
---|
| 374 | !-- Natural-type horizontal surfaces |
---|
| 375 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 376 | surf => surf_lsm_h |
---|
| 377 | CALL calc_uvw_abs |
---|
| 378 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 379 | CALL calc_us |
---|
| 380 | CALL calc_scaling_parameters |
---|
| 381 | CALL calc_surface_fluxes |
---|
| 382 | ENDIF |
---|
| 383 | ! |
---|
| 384 | !-- Urban-type horizontal surfaces |
---|
| 385 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 386 | surf => surf_usm_h |
---|
| 387 | CALL calc_uvw_abs |
---|
| 388 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 389 | CALL calc_us |
---|
| 390 | CALL calc_scaling_parameters |
---|
| 391 | CALL calc_surface_fluxes |
---|
| 392 | ! |
---|
| 393 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 394 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 395 | ENDIF |
---|
[3668] | 396 | |
---|
[2232] | 397 | ! |
---|
[4562] | 398 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are always default type. |
---|
| 399 | !-- Stratification is not considered in this case, hence, no further distinction between different |
---|
| 400 | !-- most_method is required. |
---|
| 401 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 402 | downward = .TRUE. |
---|
| 403 | surf => surf_def_h(1) |
---|
| 404 | CALL calc_uvw_abs |
---|
| 405 | CALL calc_us |
---|
| 406 | CALL calc_surface_fluxes |
---|
| 407 | downward = .FALSE. |
---|
| 408 | ENDIF |
---|
[1691] | 409 | ! |
---|
[4562] | 410 | !-- Calculate surfaces fluxes at vertical surfaces for momentum and subgrid-scale TKE. No stability |
---|
| 411 | !-- is considered. Therefore, scaling parameters and Obukhov length do not need to be calculated and |
---|
| 412 | !-- no distinction in 'circular', 'Newton' or 'lookup' is necessary so far. Note, this will change |
---|
| 413 | !-- if stability is once considered. |
---|
| 414 | surf_vertical = .TRUE. |
---|
[2232] | 415 | ! |
---|
[4562] | 416 | !-- Calculate horizontal momentum fluxes at north- and south-facing surfaces(usvs). |
---|
| 417 | !-- For default-type surfaces |
---|
| 418 | mom_uv = .TRUE. |
---|
| 419 | DO l = 0, 1 |
---|
| 420 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 421 | surf => surf_def_v(l) |
---|
[3744] | 422 | ! |
---|
[4562] | 423 | !-- Compute surface-parallel velocity |
---|
| 424 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 425 | ! |
---|
[4562] | 426 | !-- Compute respective friction velocity on staggered grid |
---|
[1691] | 427 | CALL calc_us |
---|
[4562] | 428 | ! |
---|
| 429 | !-- Compute respective surface fluxes for momentum and TKE |
---|
[1691] | 430 | CALL calc_surface_fluxes |
---|
| 431 | ENDIF |
---|
[4562] | 432 | ENDDO |
---|
[2232] | 433 | ! |
---|
[4562] | 434 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 435 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukhov length are |
---|
| 436 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 437 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 438 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 439 | DO l = 0, 1 |
---|
| 440 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 441 | surf => surf_lsm_v(l) |
---|
[2232] | 442 | ! |
---|
[4562] | 443 | !-- Compute surface-parallel velocity |
---|
| 444 | CALL calc_uvw_abs_v_ugrid |
---|
| 445 | ! |
---|
| 446 | !-- Compute Obukhov length |
---|
| 447 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 448 | ! |
---|
| 449 | !-- Compute respective friction velocity on staggered grid |
---|
| 450 | CALL calc_us |
---|
| 451 | ! |
---|
| 452 | !-- Compute scaling parameters |
---|
| 453 | CALL calc_scaling_parameters |
---|
| 454 | ! |
---|
| 455 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 456 | CALL calc_surface_fluxes |
---|
| 457 | ENDIF |
---|
| 458 | ENDDO |
---|
| 459 | ! |
---|
| 460 | !-- No ts is required, so scaling parameters and Obukhov length do not need to be computed. |
---|
| 461 | ELSE |
---|
[2232] | 462 | DO l = 0, 1 |
---|
[4562] | 463 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 464 | surf => surf_lsm_v(l) |
---|
[2232] | 465 | ! |
---|
| 466 | !-- Compute surface-parallel velocity |
---|
| 467 | CALL calc_uvw_abs_v_ugrid |
---|
| 468 | ! |
---|
| 469 | !-- Compute respective friction velocity on staggered grid |
---|
| 470 | CALL calc_us |
---|
| 471 | ! |
---|
| 472 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 473 | CALL calc_surface_fluxes |
---|
| 474 | ENDIF |
---|
| 475 | ENDDO |
---|
[4562] | 476 | ENDIF |
---|
[2232] | 477 | ! |
---|
[4562] | 478 | !-- For urban-type surfaces |
---|
| 479 | DO l = 0, 1 |
---|
| 480 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 481 | surf => surf_usm_v(l) |
---|
[2232] | 482 | ! |
---|
[4562] | 483 | !-- Compute surface-parallel velocity |
---|
| 484 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 485 | ! |
---|
[4562] | 486 | !-- Compute respective friction velocity on staggered grid |
---|
| 487 | CALL calc_us |
---|
[2232] | 488 | ! |
---|
[4562] | 489 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 490 | CALL calc_surface_fluxes |
---|
[2232] | 491 | ! |
---|
[4562] | 492 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 493 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 494 | ENDIF |
---|
| 495 | ENDDO |
---|
[2232] | 496 | ! |
---|
[4562] | 497 | !-- Calculate horizontal momentum fluxes at east- and west-facing surfaces (vsus). |
---|
| 498 | !-- For default-type surfaces |
---|
| 499 | DO l = 2, 3 |
---|
| 500 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 501 | surf => surf_def_v(l) |
---|
[2232] | 502 | ! |
---|
[4562] | 503 | !-- Compute surface-parallel velocity |
---|
| 504 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 505 | ! |
---|
[4562] | 506 | !-- Compute respective friction velocity on staggered grid |
---|
| 507 | CALL calc_us |
---|
[2232] | 508 | ! |
---|
[4562] | 509 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 510 | CALL calc_surface_fluxes |
---|
[2232] | 511 | ENDIF |
---|
[4562] | 512 | ENDDO |
---|
[2232] | 513 | ! |
---|
[4562] | 514 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
| 515 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukov length are |
---|
| 516 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
| 517 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
| 518 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 519 | DO l = 2, 3 |
---|
| 520 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 521 | surf => surf_lsm_v(l) |
---|
[2232] | 522 | ! |
---|
| 523 | !-- Compute surface-parallel velocity |
---|
[4562] | 524 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 525 | ! |
---|
[4562] | 526 | !-- Compute Obukhov length |
---|
| 527 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 528 | ! |
---|
[2232] | 529 | !-- Compute respective friction velocity on staggered grid |
---|
| 530 | CALL calc_us |
---|
| 531 | ! |
---|
[4562] | 532 | !-- Compute scaling parameters |
---|
| 533 | CALL calc_scaling_parameters |
---|
| 534 | ! |
---|
[2232] | 535 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 536 | CALL calc_surface_fluxes |
---|
| 537 | ENDIF |
---|
| 538 | ENDDO |
---|
[4562] | 539 | ELSE |
---|
[2232] | 540 | DO l = 2, 3 |
---|
[4562] | 541 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 542 | surf => surf_lsm_v(l) |
---|
[2232] | 543 | ! |
---|
| 544 | !-- Compute surface-parallel velocity |
---|
| 545 | CALL calc_uvw_abs_v_vgrid |
---|
| 546 | ! |
---|
| 547 | !-- Compute respective friction velocity on staggered grid |
---|
| 548 | CALL calc_us |
---|
| 549 | ! |
---|
| 550 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 551 | CALL calc_surface_fluxes |
---|
| 552 | ENDIF |
---|
| 553 | ENDDO |
---|
[4562] | 554 | ENDIF |
---|
[2232] | 555 | ! |
---|
[4562] | 556 | !-- For urban-type surfaces |
---|
| 557 | DO l = 2, 3 |
---|
| 558 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 559 | surf => surf_usm_v(l) |
---|
[2232] | 560 | ! |
---|
[4562] | 561 | !-- Compute surface-parallel velocity |
---|
| 562 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 563 | ! |
---|
[4562] | 564 | !-- Compute respective friction velocity on staggered grid |
---|
| 565 | CALL calc_us |
---|
[2232] | 566 | ! |
---|
[4562] | 567 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 568 | CALL calc_surface_fluxes |
---|
[2232] | 569 | ! |
---|
[4562] | 570 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 571 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
| 572 | ENDIF |
---|
| 573 | ENDDO |
---|
| 574 | mom_uv = .FALSE. |
---|
[2232] | 575 | ! |
---|
[4562] | 576 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial surfaces. |
---|
| 577 | mom_w = .TRUE. |
---|
[2232] | 578 | ! |
---|
[4562] | 579 | !-- Default-type surfaces |
---|
| 580 | DO l = 0, 3 |
---|
| 581 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 582 | surf => surf_def_v(l) |
---|
| 583 | CALL calc_uvw_abs_v_wgrid |
---|
| 584 | CALL calc_us |
---|
| 585 | CALL calc_surface_fluxes |
---|
| 586 | ENDIF |
---|
| 587 | ENDDO |
---|
[2232] | 588 | ! |
---|
[4562] | 589 | !-- Natural-type surfaces |
---|
| 590 | DO l = 0, 3 |
---|
| 591 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 592 | surf => surf_lsm_v(l) |
---|
| 593 | CALL calc_uvw_abs_v_wgrid |
---|
| 594 | CALL calc_us |
---|
| 595 | CALL calc_surface_fluxes |
---|
[2232] | 596 | ENDIF |
---|
[4562] | 597 | ENDDO |
---|
[2232] | 598 | ! |
---|
[4562] | 599 | !-- Urban-type surfaces |
---|
| 600 | DO l = 0, 3 |
---|
| 601 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 602 | surf => surf_usm_v(l) |
---|
| 603 | CALL calc_uvw_abs_v_wgrid |
---|
| 604 | CALL calc_us |
---|
| 605 | CALL calc_surface_fluxes |
---|
| 606 | ENDIF |
---|
| 607 | ENDDO |
---|
| 608 | mom_w = .FALSE. |
---|
[2232] | 609 | ! |
---|
[4562] | 610 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical surfaces for TKE production. |
---|
| 611 | !-- Note, here, momentum fluxes are defined at grid center and are not staggered as before. |
---|
| 612 | mom_tke = .TRUE. |
---|
[2232] | 613 | ! |
---|
[4562] | 614 | !-- Default-type surfaces |
---|
| 615 | DO l = 0, 3 |
---|
| 616 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 617 | surf => surf_def_v(l) |
---|
| 618 | CALL calc_uvw_abs_v_sgrid |
---|
| 619 | CALL calc_us |
---|
| 620 | CALL calc_surface_fluxes |
---|
| 621 | ENDIF |
---|
| 622 | ENDDO |
---|
[2232] | 623 | ! |
---|
[4562] | 624 | !-- Natural-type surfaces |
---|
| 625 | DO l = 0, 3 |
---|
| 626 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 627 | surf => surf_lsm_v(l) |
---|
| 628 | CALL calc_uvw_abs_v_sgrid |
---|
| 629 | CALL calc_us |
---|
| 630 | CALL calc_surface_fluxes |
---|
| 631 | ENDIF |
---|
| 632 | ENDDO |
---|
[3744] | 633 | ! |
---|
[4562] | 634 | !-- Urban-type surfaces |
---|
| 635 | DO l = 0, 3 |
---|
| 636 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 637 | surf => surf_usm_v(l) |
---|
| 638 | CALL calc_uvw_abs_v_sgrid |
---|
| 639 | CALL calc_us |
---|
| 640 | CALL calc_surface_fluxes |
---|
| 641 | ENDIF |
---|
| 642 | ENDDO |
---|
| 643 | mom_tke = .FALSE. |
---|
[1691] | 644 | |
---|
[4562] | 645 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 646 | |
---|
[4562] | 647 | END SUBROUTINE surface_layer_fluxes |
---|
[1691] | 648 | |
---|
| 649 | |
---|
[4562] | 650 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 651 | ! Description: |
---|
| 652 | ! ------------ |
---|
[4258] | 653 | !> Initializing actions for the surface layer routine. |
---|
[4562] | 654 | !--------------------------------------------------------------------------------------------------! |
---|
| 655 | SUBROUTINE init_surface_layer_fluxes |
---|
[1691] | 656 | |
---|
[4562] | 657 | IMPLICIT NONE |
---|
[1691] | 658 | |
---|
[4562] | 659 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 660 | |
---|
[4562] | 661 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 662 | |
---|
| 663 | ! |
---|
[4562] | 664 | !-- In case of runs with neutral statification, set Obukhov length to a large value |
---|
| 665 | IF ( neutral ) THEN |
---|
| 666 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 667 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 668 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
[1709] | 669 | |
---|
[4562] | 670 | DO l = 0, 3 |
---|
| 671 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 672 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 673 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 674 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 675 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 676 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 677 | ENDDO |
---|
[3685] | 678 | |
---|
[4562] | 679 | ENDIF |
---|
[1691] | 680 | |
---|
[4562] | 681 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[1691] | 682 | |
---|
[4562] | 683 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 684 | |
---|
| 685 | |
---|
| 686 | !--------------------------------------------------------------------------------------------------! |
---|
[1691] | 687 | ! Description: |
---|
| 688 | ! ------------ |
---|
[4593] | 689 | !> Compute ln(z/z0). |
---|
| 690 | !--------------------------------------------------------------------------------------------------! |
---|
| 691 | SUBROUTINE calc_ln |
---|
| 692 | |
---|
| 693 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 694 | |
---|
| 695 | ! |
---|
| 696 | !-- Note, ln(z/z0h) and ln(z/z0q) is also calculated even if neural simulations are applied. |
---|
| 697 | !-- This is because the scalar coefficients are also used for other scalars such as passive scalars, |
---|
| 698 | !-- chemistry and aerosols. |
---|
| 699 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 700 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 701 | !$ACC PRESENT(surf) |
---|
| 702 | DO m = 1, surf%ns |
---|
| 703 | z_mo = surf%z_mo(m) |
---|
| 704 | surf%ln_z_z0(m) = LOG( z_mo / surf%z0(m) ) |
---|
| 705 | surf%ln_z_z0h(m) = LOG( z_mo / surf%z0h(m) ) |
---|
| 706 | surf%ln_z_z0q(m) = LOG( z_mo / surf%z0q(m) ) |
---|
| 707 | ENDDO |
---|
| 708 | |
---|
| 709 | END SUBROUTINE calc_ln |
---|
| 710 | |
---|
| 711 | !--------------------------------------------------------------------------------------------------! |
---|
| 712 | ! Description: |
---|
| 713 | ! ------------ |
---|
[4562] | 714 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 715 | !> surface elements. This is required by all methods. |
---|
| 716 | !--------------------------------------------------------------------------------------------------! |
---|
| 717 | SUBROUTINE calc_uvw_abs |
---|
[1691] | 718 | |
---|
[4562] | 719 | IMPLICIT NONE |
---|
[1691] | 720 | |
---|
[4562] | 721 | INTEGER(iwp) :: i !< running index x direction |
---|
| 722 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 723 | INTEGER(iwp) :: j !< running index y direction |
---|
| 724 | INTEGER(iwp) :: k !< running index z direction |
---|
| 725 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 726 | |
---|
| 727 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 728 | ! |
---|
[4562] | 729 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 730 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 731 | |
---|
[4593] | 732 | IF ( use_free_convection_scaling ) THEN |
---|
| 733 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
| 734 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 735 | !$ACC PRESENT(surf, u, v) |
---|
| 736 | DO m = 1, surf%ns |
---|
| 737 | i = surf%i(m) |
---|
| 738 | j = surf%j(m) |
---|
| 739 | k = surf%k(m) |
---|
[1691] | 740 | |
---|
| 741 | ! |
---|
[4593] | 742 | !-- Calculate free convection velocity scale w_lfc is use_free_convection_scaling = .T.. This |
---|
| 743 | !-- will maintain a horizontal velocity even for very weak wind convective conditions. SIGN is |
---|
| 744 | !-- used to set w_lfc to zero under stable conditions. |
---|
[4562] | 745 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 746 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
[3157] | 747 | ! |
---|
[4593] | 748 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 749 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 750 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 751 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 752 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 753 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 754 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 755 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 756 | ) * ibit ) & |
---|
| 757 | )**2 & |
---|
| 758 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 759 | ) * ibit ) & |
---|
[4562] | 760 | )**2 + w_lfc**2 ) |
---|
[4593] | 761 | ENDDO |
---|
| 762 | ELSE |
---|
| 763 | !$OMP PARALLEL DO PRIVATE(i, j, k) |
---|
| 764 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 765 | !$ACC PRESENT(surf, u, v) |
---|
| 766 | DO m = 1, surf%ns |
---|
| 767 | i = surf%i(m) |
---|
| 768 | j = surf%j(m) |
---|
| 769 | k = surf%k(m) |
---|
| 770 | ! |
---|
| 771 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
| 772 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
| 773 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
| 774 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
| 775 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
| 776 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
| 777 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
| 778 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 779 | ) * ibit ) & |
---|
| 780 | )**2 & |
---|
| 781 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 782 | ) * ibit ) & |
---|
| 783 | )**2 ) |
---|
| 784 | ENDDO |
---|
| 785 | ENDIF |
---|
[2232] | 786 | |
---|
[4562] | 787 | END SUBROUTINE calc_uvw_abs |
---|
[3148] | 788 | |
---|
[1691] | 789 | |
---|
[4562] | 790 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 791 | ! Description: |
---|
| 792 | ! ------------ |
---|
[4562] | 793 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 794 | !> surface elements. This is required by all methods. |
---|
| 795 | !--------------------------------------------------------------------------------------------------! |
---|
| 796 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[2232] | 797 | |
---|
[4562] | 798 | IMPLICIT NONE |
---|
[2232] | 799 | |
---|
[4562] | 800 | INTEGER(iwp) :: i !< running index x direction |
---|
| 801 | INTEGER(iwp) :: j !< running index y direction |
---|
| 802 | INTEGER(iwp) :: k !< running index z direction |
---|
| 803 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 804 | |
---|
[4562] | 805 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 806 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 807 | |
---|
| 808 | |
---|
[4562] | 809 | DO m = 1, surf%ns |
---|
| 810 | i = surf%i(m) |
---|
| 811 | j = surf%j(m) |
---|
| 812 | k = surf%k(m) |
---|
[1691] | 813 | ! |
---|
[4562] | 814 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 815 | u_i = u(k,j,i) |
---|
| 816 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 817 | |
---|
[4562] | 818 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
| 819 | ENDDO |
---|
[1709] | 820 | |
---|
[4562] | 821 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
[1709] | 822 | |
---|
[4562] | 823 | !--------------------------------------------------------------------------------------------------! |
---|
[1709] | 824 | ! Description: |
---|
| 825 | ! ------------ |
---|
[4562] | 826 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 827 | !> surface elements. This is required by all methods. |
---|
| 828 | !--------------------------------------------------------------------------------------------------! |
---|
| 829 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 830 | |
---|
[4562] | 831 | IMPLICIT NONE |
---|
[2232] | 832 | |
---|
[4562] | 833 | INTEGER(iwp) :: i !< running index x direction |
---|
| 834 | INTEGER(iwp) :: j !< running index y direction |
---|
| 835 | INTEGER(iwp) :: k !< running index z direction |
---|
| 836 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 837 | |
---|
[4562] | 838 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 839 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 840 | |
---|
| 841 | |
---|
[4562] | 842 | DO m = 1, surf%ns |
---|
| 843 | i = surf%i(m) |
---|
| 844 | j = surf%j(m) |
---|
| 845 | k = surf%k(m) |
---|
[2232] | 846 | |
---|
[4562] | 847 | v_i = u(k,j,i) |
---|
| 848 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) |
---|
[2232] | 849 | |
---|
[4562] | 850 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 851 | ENDDO |
---|
[2232] | 852 | |
---|
[4562] | 853 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
[2232] | 854 | |
---|
[4562] | 855 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 856 | ! Description: |
---|
| 857 | ! ------------ |
---|
[4562] | 858 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 859 | !> surface elements. This is required by all methods. |
---|
| 860 | !--------------------------------------------------------------------------------------------------! |
---|
| 861 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 862 | |
---|
[4562] | 863 | IMPLICIT NONE |
---|
[2232] | 864 | |
---|
[4562] | 865 | INTEGER(iwp) :: i !< running index x direction |
---|
| 866 | INTEGER(iwp) :: j !< running index y direction |
---|
| 867 | INTEGER(iwp) :: k !< running index z direction |
---|
| 868 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 869 | |
---|
[4562] | 870 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 871 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 872 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 873 | ! |
---|
[4562] | 874 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 875 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 876 | DO m = 1, surf%ns |
---|
| 877 | i = surf%i(m) |
---|
| 878 | j = surf%j(m) |
---|
| 879 | k = surf%k(m) |
---|
[2232] | 880 | |
---|
[4562] | 881 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
| 882 | v_i = 0.0_wp |
---|
| 883 | w_i = w(k,j,i) |
---|
[2232] | 884 | |
---|
[4562] | 885 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 886 | ENDDO |
---|
[2232] | 887 | ! |
---|
[4562] | 888 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 889 | ELSE |
---|
| 890 | DO m = 1, surf%ns |
---|
| 891 | i = surf%i(m) |
---|
| 892 | j = surf%j(m) |
---|
| 893 | k = surf%k(m) |
---|
[2232] | 894 | |
---|
[4562] | 895 | u_i = 0.0_wp |
---|
| 896 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
| 897 | w_i = w(k,j,i) |
---|
[2232] | 898 | |
---|
[4562] | 899 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 900 | ENDDO |
---|
| 901 | ENDIF |
---|
[2232] | 902 | |
---|
[4562] | 903 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
[2232] | 904 | |
---|
[4562] | 905 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 906 | ! Description: |
---|
| 907 | ! ------------ |
---|
[4562] | 908 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
| 909 | !> surface elements. This is required by all methods. |
---|
| 910 | !--------------------------------------------------------------------------------------------------! |
---|
| 911 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 912 | |
---|
[4562] | 913 | IMPLICIT NONE |
---|
[2232] | 914 | |
---|
[4562] | 915 | INTEGER(iwp) :: i !< running index x direction |
---|
| 916 | INTEGER(iwp) :: j !< running index y direction |
---|
| 917 | INTEGER(iwp) :: k !< running index z direction |
---|
| 918 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 919 | |
---|
[4562] | 920 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 921 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 922 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 923 | |
---|
| 924 | ! |
---|
[4562] | 925 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 926 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 927 | DO m = 1, surf%ns |
---|
| 928 | i = surf%i(m) |
---|
| 929 | j = surf%j(m) |
---|
| 930 | k = surf%k(m) |
---|
[2232] | 931 | |
---|
[4562] | 932 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 933 | v_i = 0.0_wp |
---|
| 934 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 935 | |
---|
[4562] | 936 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 937 | ENDDO |
---|
[2232] | 938 | ! |
---|
[4562] | 939 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 940 | ELSE |
---|
| 941 | DO m = 1, surf%ns |
---|
| 942 | i = surf%i(m) |
---|
| 943 | j = surf%j(m) |
---|
| 944 | k = surf%k(m) |
---|
[2232] | 945 | |
---|
[4562] | 946 | u_i = 0.0_wp |
---|
| 947 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 948 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 949 | |
---|
[4562] | 950 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 951 | ENDDO |
---|
| 952 | ENDIF |
---|
[2232] | 953 | |
---|
[4562] | 954 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
[2232] | 955 | |
---|
| 956 | |
---|
[4562] | 957 | !--------------------------------------------------------------------------------------------------! |
---|
[2232] | 958 | ! Description: |
---|
| 959 | ! ------------ |
---|
[1709] | 960 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
[4562] | 961 | !--------------------------------------------------------------------------------------------------! |
---|
| 962 | SUBROUTINE calc_ol |
---|
[1709] | 963 | |
---|
[4562] | 964 | IMPLICIT NONE |
---|
[1709] | 965 | |
---|
[4562] | 966 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 967 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 968 | |
---|
[4562] | 969 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
| 970 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
[4366] | 971 | |
---|
[4562] | 972 | REAL(wp) :: f !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 973 | REAL(wp) :: f_d_ol !< Derivative of f |
---|
| 974 | REAL(wp) :: ol_l !< Lower bound of L for Newton iteration |
---|
| 975 | REAL(wp) :: ol_m !< Previous value of L for Newton iteration |
---|
| 976 | REAL(wp) :: ol_old !< Previous time step value of L |
---|
| 977 | REAL(wp) :: ol_u !< Upper bound of L for Newton iteration |
---|
[1709] | 978 | |
---|
[4562] | 979 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
| 980 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
| 981 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
[4366] | 982 | |
---|
[2232] | 983 | ! |
---|
[4562] | 984 | !-- Evaluate bulk Richardson number (calculation depends on definition based on setting of boundary |
---|
| 985 | !-- conditions) |
---|
| 986 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 987 | IF ( humidity ) THEN |
---|
| 988 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 989 | DO m = 1, surf%ns |
---|
| 990 | z_mo = surf%z_mo(m) |
---|
| 991 | surf%rib(m) = g * z_mo * ( surf%vpt1(m) - surf%vpt_surface(m) ) / & |
---|
| 992 | ( surf%uvw_abs(m)**2 * surf%vpt1(m) + 1.0E-20_wp ) |
---|
| 993 | ENDDO |
---|
[3668] | 994 | ELSE |
---|
[4562] | 995 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 996 | DO m = 1, surf%ns |
---|
| 997 | z_mo = surf%z_mo(m) |
---|
| 998 | surf%rib(m) = g * z_mo * ( surf%pt1(m) - surf%pt_surface(m) ) / & |
---|
| 999 | ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 1000 | ENDDO |
---|
| 1001 | ENDIF |
---|
| 1002 | ELSE |
---|
| 1003 | IF ( humidity ) THEN |
---|
| 1004 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 1005 | DO m = 1, surf%ns |
---|
| 1006 | k = surf%k(m) |
---|
| 1007 | z_mo = surf%z_mo(m) |
---|
| 1008 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp * surf%qv1(m) ) * & |
---|
| 1009 | surf%shf(m) + 0.61_wp * surf%pt1(m) * surf%qsws(m) ) * & |
---|
| 1010 | drho_air_zw(k-1) / ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 1011 | + 1.0E-20_wp ) |
---|
[4562] | 1012 | ENDDO |
---|
| 1013 | ELSE |
---|
| 1014 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 1015 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 1016 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1017 | DO m = 1, surf%ns |
---|
| 1018 | k = surf%k(m) |
---|
| 1019 | z_mo = surf%z_mo(m) |
---|
| 1020 | surf%rib(m) = - g * z_mo * surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1021 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 + 1.0E-20_wp ) |
---|
| 1022 | ENDDO |
---|
[1691] | 1023 | ENDIF |
---|
[4562] | 1024 | ENDIF |
---|
[1691] | 1025 | |
---|
[4562] | 1026 | IF ( loop_optimization == 'cache' ) THEN |
---|
[1691] | 1027 | ! |
---|
[4562] | 1028 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1029 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
| 1030 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
| 1031 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 1032 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1033 | !$ACC PRESENT(surf) |
---|
| 1034 | DO m = 1, surf%ns |
---|
| 1035 | i = surf%i(m) |
---|
| 1036 | j = surf%j(m) |
---|
[1691] | 1037 | |
---|
[4562] | 1038 | z_mo = surf%z_mo(m) |
---|
[1691] | 1039 | |
---|
| 1040 | ! |
---|
[4562] | 1041 | !-- Store current value in case the Newton iteration fails |
---|
| 1042 | ol_old = surf%ol(m) |
---|
[1691] | 1043 | |
---|
| 1044 | ! |
---|
[4562] | 1045 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1046 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1047 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1048 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1049 | ENDIF |
---|
[1691] | 1050 | ! |
---|
[4562] | 1051 | !-- Iteration to find Obukhov length |
---|
| 1052 | iter = 0 |
---|
| 1053 | DO |
---|
| 1054 | iter = iter + 1 |
---|
[4366] | 1055 | ! |
---|
[4562] | 1056 | !-- In case of divergence, use the value of the previous time step |
---|
| 1057 | IF ( iter > 1000 ) THEN |
---|
| 1058 | surf%ol(m) = ol_old |
---|
| 1059 | EXIT |
---|
| 1060 | ENDIF |
---|
[4366] | 1061 | |
---|
[4562] | 1062 | ol_m = surf%ol(m) |
---|
| 1063 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1064 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1065 | |
---|
| 1066 | |
---|
[4562] | 1067 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[4366] | 1068 | ! |
---|
[4562] | 1069 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
[4593] | 1070 | f = surf%rib(m) - ( z_mo / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1071 | - psi_h( z_mo / ol_m ) & |
---|
| 1072 | + psi_h( surf%z0h(m) / ol_m ) ) / & |
---|
[4593] | 1073 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) & |
---|
| 1074 | + psi_m( surf%z0(m) / ol_m ) )**2 |
---|
[4366] | 1075 | |
---|
| 1076 | ! |
---|
[4562] | 1077 | !-- Calculate df/dL |
---|
[4593] | 1078 | f_d_ol = ( - ( z_mo / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1079 | - psi_h( z_mo / ol_u ) & |
---|
| 1080 | + psi_h( surf%z0h(m) / ol_u ) ) / & |
---|
[4593] | 1081 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_u ) & |
---|
| 1082 | + psi_m( surf%z0(m) / ol_u ) )**2 & |
---|
| 1083 | + ( z_mo / ol_l ) * ( surf%ln_z_z0h(m) - psi_h( z_mo / ol_l ) & |
---|
| 1084 | + psi_h( surf%z0h(m) / ol_l ) ) /& |
---|
| 1085 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_l ) & |
---|
| 1086 | + psi_m( surf%z0(m) / ol_l ) )**2 ) / ( ol_u - ol_l ) |
---|
[4562] | 1087 | ELSE |
---|
[4366] | 1088 | ! |
---|
[4562] | 1089 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1090 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
[4593] | 1091 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) + psi_m( surf%z0(m) / ol_m ) )**3 |
---|
[4366] | 1092 | |
---|
| 1093 | ! |
---|
[4562] | 1094 | !-- Calculate df/dL |
---|
[4593] | 1095 | f_d_ol = ( - ( z_mo / ol_u ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1096 | - psi_m( z_mo / ol_u ) & |
---|
| 1097 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1098 | )**3 & |
---|
[4593] | 1099 | + ( z_mo / ol_l ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1100 | - psi_m( z_mo / ol_l ) & |
---|
| 1101 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1102 | )**3 & |
---|
| 1103 | ) / ( ol_u - ol_l ) |
---|
| 1104 | ENDIF |
---|
[4366] | 1105 | ! |
---|
[4562] | 1106 | !-- Calculate new L |
---|
| 1107 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[4366] | 1108 | |
---|
| 1109 | ! |
---|
[4562] | 1110 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1111 | !-- ensure convergence. |
---|
| 1112 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1113 | ! |
---|
[4562] | 1114 | !-- If unrealistic value occurs, set L to the maximum value that is allowed |
---|
| 1115 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1116 | surf%ol(m) = ol_max |
---|
| 1117 | EXIT |
---|
| 1118 | ENDIF |
---|
[4366] | 1119 | ! |
---|
[4562] | 1120 | !-- Assure that Obukhov length does not become zero. If the limit is reached, exit the loop. |
---|
| 1121 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1122 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1123 | EXIT |
---|
| 1124 | ENDIF |
---|
[4366] | 1125 | ! |
---|
[4562] | 1126 | !-- Check for convergence |
---|
| 1127 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
[4366] | 1128 | ENDDO |
---|
[4562] | 1129 | ENDDO |
---|
[4366] | 1130 | |
---|
| 1131 | ! |
---|
[4562] | 1132 | !-- Vector Version |
---|
| 1133 | ELSE |
---|
[4366] | 1134 | ! |
---|
[4562] | 1135 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1136 | !-- First set arrays required for vectorization |
---|
| 1137 | !$ACC PARALLEL LOOP & |
---|
| 1138 | !$ACC PRESENT(surf) |
---|
| 1139 | DO m = 1, surf%ns |
---|
| 1140 | z_mo_vec(m) = surf%z_mo(m) |
---|
[4366] | 1141 | ! |
---|
[4562] | 1142 | !-- Store current value in case the Newton iteration fails |
---|
| 1143 | ol_old_vec(m) = surf%ol(m) |
---|
[4366] | 1144 | ! |
---|
[4562] | 1145 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1146 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1147 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1148 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1149 | ENDIF |
---|
[4370] | 1150 | ! |
---|
[4562] | 1151 | !-- Initialize convergence flag |
---|
| 1152 | convergence_reached(m) = .FALSE. |
---|
| 1153 | ENDDO |
---|
[4366] | 1154 | |
---|
| 1155 | ! |
---|
[4562] | 1156 | !-- Iteration to find Obukhov length |
---|
| 1157 | iter = 0 |
---|
| 1158 | DO |
---|
| 1159 | iter = iter + 1 |
---|
[1691] | 1160 | ! |
---|
[4562] | 1161 | !-- In case of divergence, use the value(s) of the previous time step |
---|
| 1162 | IF ( iter > 1000 ) THEN |
---|
| 1163 | !$ACC PARALLEL LOOP & |
---|
[4370] | 1164 | !$ACC PRESENT(surf) |
---|
[4366] | 1165 | DO m = 1, surf%ns |
---|
[4562] | 1166 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
| 1167 | ENDDO |
---|
| 1168 | EXIT |
---|
| 1169 | ENDIF |
---|
[1691] | 1170 | |
---|
[4562] | 1171 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1172 | !$ACC PRESENT(surf) |
---|
| 1173 | DO m = 1, surf%ns |
---|
| 1174 | IF ( convergence_reached(m) ) CYCLE |
---|
[4366] | 1175 | |
---|
[4562] | 1176 | ol_m = surf%ol(m) |
---|
| 1177 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1178 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[4366] | 1179 | |
---|
| 1180 | |
---|
[4562] | 1181 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1182 | ! |
---|
[4562] | 1183 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
[4593] | 1184 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( surf%ln_z_z0(m) & |
---|
[4562] | 1185 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
| 1186 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
| 1187 | ) / & |
---|
[4593] | 1188 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1189 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1190 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1191 | )**2 |
---|
[1691] | 1192 | |
---|
| 1193 | ! |
---|
[4562] | 1194 | !-- Calculate df/dL |
---|
[4593] | 1195 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1196 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
| 1197 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1198 | ) / & |
---|
[4593] | 1199 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1200 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1201 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1202 | )**2 & |
---|
[4593] | 1203 | + ( z_mo_vec(m) / ol_l ) * ( surf%ln_z_z0h(m) & |
---|
[4562] | 1204 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
| 1205 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1206 | ) / & |
---|
[4593] | 1207 | ( surf%ln_z_z0(m) & |
---|
[4562] | 1208 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1209 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1210 | )**2 & |
---|
| 1211 | ) / ( ol_u - ol_l ) |
---|
| 1212 | ELSE |
---|
[1691] | 1213 | ! |
---|
[4562] | 1214 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
[4593] | 1215 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1216 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1217 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1218 | )**3 |
---|
[1691] | 1219 | |
---|
| 1220 | ! |
---|
[4562] | 1221 | !-- Calculate df/dL |
---|
[4593] | 1222 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1223 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1224 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1225 | )**3 & |
---|
[4593] | 1226 | + ( z_mo_vec(m) / ol_l ) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1227 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1228 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1229 | )**3 & |
---|
| 1230 | ) / ( ol_u - ol_l ) |
---|
| 1231 | ENDIF |
---|
[1691] | 1232 | ! |
---|
[4562] | 1233 | !-- Calculate new L |
---|
| 1234 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1235 | |
---|
| 1236 | ! |
---|
[4562] | 1237 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
| 1238 | !-- ensure convergence. |
---|
| 1239 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[4366] | 1240 | |
---|
[1691] | 1241 | ! |
---|
[4562] | 1242 | !-- Check for convergence |
---|
| 1243 | !-- This check does not modify surf%ol, therefore this is done first |
---|
| 1244 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1245 | convergence_reached(m) = .TRUE. |
---|
| 1246 | ENDIF |
---|
[1691] | 1247 | ! |
---|
[4562] | 1248 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
| 1249 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1250 | surf%ol(m) = ol_max |
---|
| 1251 | convergence_reached(m) = .TRUE. |
---|
| 1252 | ENDIF |
---|
| 1253 | ENDDO |
---|
[4186] | 1254 | ! |
---|
[4562] | 1255 | !-- Assure that Obukhov length does not become zero |
---|
| 1256 | !$ACC PARALLEL LOOP & |
---|
| 1257 | !$ACC PRESENT(surf) |
---|
| 1258 | DO m = 1, surf%ns |
---|
| 1259 | IF ( convergence_reached(m) ) CYCLE |
---|
| 1260 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1261 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
| 1262 | convergence_reached(m) = .TRUE. |
---|
| 1263 | ENDIF |
---|
| 1264 | ENDDO |
---|
[1691] | 1265 | |
---|
[4562] | 1266 | IF ( ALL( convergence_reached ) ) EXIT |
---|
[1691] | 1267 | |
---|
[4562] | 1268 | ENDDO ! End of iteration loop |
---|
[4366] | 1269 | |
---|
[4562] | 1270 | ENDIF ! End of vector branch |
---|
[4366] | 1271 | |
---|
[4562] | 1272 | END SUBROUTINE calc_ol |
---|
[1691] | 1273 | |
---|
| 1274 | |
---|
[4562] | 1275 | !--------------------------------------------------------------------------------------------------! |
---|
| 1276 | ! Description: |
---|
| 1277 | ! ------------ |
---|
| 1278 | !> Calculate friction velocity u*. |
---|
| 1279 | !--------------------------------------------------------------------------------------------------! |
---|
| 1280 | SUBROUTINE calc_us |
---|
[1691] | 1281 | |
---|
[4562] | 1282 | IMPLICIT NONE |
---|
[1691] | 1283 | |
---|
[4562] | 1284 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1285 | |
---|
| 1286 | ! |
---|
[4562] | 1287 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1288 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1289 | ! |
---|
[4562] | 1290 | !-- Compute u* at upward-facing surfaces |
---|
| 1291 | IF ( .NOT. downward ) THEN |
---|
| 1292 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1293 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1294 | !$ACC PRESENT(surf) |
---|
| 1295 | DO m = 1, surf%ns |
---|
| 1296 | z_mo = surf%z_mo(m) |
---|
[2232] | 1297 | ! |
---|
[4562] | 1298 | !-- Compute u* at the scalars' grid points |
---|
[4593] | 1299 | surf%us(m) = kappa * surf%uvw_abs(m) / ( surf%ln_z_z0(m) & |
---|
[4562] | 1300 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1301 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1302 | ENDDO |
---|
[2232] | 1303 | ! |
---|
[4562] | 1304 | !-- Compute u* at downward-facing surfaces. This case, do not consider any stability. |
---|
[2232] | 1305 | ELSE |
---|
[4594] | 1306 | !$OMP PARALLEL DO |
---|
[4593] | 1307 | !$ACC PARALLEL LOOP & |
---|
[3634] | 1308 | !$ACC PRESENT(surf) |
---|
[2232] | 1309 | DO m = 1, surf%ns |
---|
[4562] | 1310 | ! |
---|
| 1311 | !-- Compute u* at the scalars' grid points |
---|
[4593] | 1312 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
[1691] | 1313 | ENDDO |
---|
[2232] | 1314 | ENDIF |
---|
[4562] | 1315 | ! |
---|
| 1316 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1317 | !-- No stability is considered in this case. |
---|
| 1318 | ELSE |
---|
[4593] | 1319 | !$OMP PARALLEL DO |
---|
| 1320 | !$ACC PARALLEL LOOP & |
---|
[4562] | 1321 | !$ACC PRESENT(surf) |
---|
| 1322 | DO m = 1, surf%ns |
---|
[4593] | 1323 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
[4562] | 1324 | ENDDO |
---|
| 1325 | ENDIF |
---|
[1691] | 1326 | |
---|
[4562] | 1327 | END SUBROUTINE calc_us |
---|
[1691] | 1328 | |
---|
[4562] | 1329 | !--------------------------------------------------------------------------------------------------! |
---|
| 1330 | ! Description: |
---|
| 1331 | ! ------------ |
---|
| 1332 | !> Calculate potential temperature, specific humidity, and virtual potential temperature at first |
---|
| 1333 | !> grid level. |
---|
| 1334 | !--------------------------------------------------------------------------------------------------! |
---|
| 1335 | SUBROUTINE calc_pt_q |
---|
[1691] | 1336 | |
---|
[4562] | 1337 | IMPLICIT NONE |
---|
[1691] | 1338 | |
---|
[4562] | 1339 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2232] | 1340 | |
---|
[4562] | 1341 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1342 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1343 | !$ACC PRESENT(surf, pt) |
---|
| 1344 | DO m = 1, surf%ns |
---|
| 1345 | i = surf%i(m) |
---|
| 1346 | j = surf%j(m) |
---|
| 1347 | k = surf%k(m) |
---|
[2232] | 1348 | |
---|
[3634] | 1349 | #ifndef _OPENACC |
---|
[4562] | 1350 | IF ( bulk_cloud_model ) THEN |
---|
| 1351 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1352 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1353 | ELSEIF( cloud_droplets ) THEN |
---|
| 1354 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
| 1355 | surf%qv1(m) = q(k,j,i) |
---|
| 1356 | ELSE |
---|
[3634] | 1357 | #endif |
---|
[4562] | 1358 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1359 | #ifndef _OPENACC |
---|
[4562] | 1360 | IF ( humidity ) THEN |
---|
| 1361 | surf%qv1(m) = q(k,j,i) |
---|
| 1362 | ELSE |
---|
[3634] | 1363 | #endif |
---|
[4562] | 1364 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1365 | #ifndef _OPENACC |
---|
[4562] | 1366 | ENDIF |
---|
| 1367 | ENDIF |
---|
[2232] | 1368 | |
---|
[4562] | 1369 | IF ( humidity ) THEN |
---|
| 1370 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1371 | ENDIF |
---|
[3634] | 1372 | #endif |
---|
[4562] | 1373 | ENDDO |
---|
[1691] | 1374 | |
---|
[4562] | 1375 | END SUBROUTINE calc_pt_q |
---|
[1691] | 1376 | |
---|
[2696] | 1377 | |
---|
[4562] | 1378 | !--------------------------------------------------------------------------------------------------! |
---|
| 1379 | ! Description: |
---|
| 1380 | ! ------------ |
---|
| 1381 | !> Set potential temperature at surface grid level( only for upward-facing surfs ). |
---|
| 1382 | !--------------------------------------------------------------------------------------------------! |
---|
| 1383 | SUBROUTINE calc_pt_surface |
---|
[2696] | 1384 | |
---|
[4562] | 1385 | IMPLICIT NONE |
---|
[2696] | 1386 | |
---|
[4562] | 1387 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1388 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1389 | |
---|
[4562] | 1390 | k_off = surf%koff |
---|
| 1391 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1392 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1393 | !$ACC PRESENT(surf, pt) |
---|
| 1394 | DO m = 1, surf%ns |
---|
| 1395 | i = surf%i(m) |
---|
| 1396 | j = surf%j(m) |
---|
| 1397 | k = surf%k(m) |
---|
| 1398 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
| 1399 | ENDDO |
---|
[2696] | 1400 | |
---|
[4562] | 1401 | END SUBROUTINE calc_pt_surface |
---|
[2696] | 1402 | |
---|
| 1403 | ! |
---|
[3152] | 1404 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
[4562] | 1405 | SUBROUTINE calc_q_surface |
---|
[3152] | 1406 | |
---|
[4562] | 1407 | IMPLICIT NONE |
---|
[3152] | 1408 | |
---|
[4562] | 1409 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1410 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3152] | 1411 | |
---|
[4562] | 1412 | k_off = surf%koff |
---|
| 1413 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1414 | DO m = 1, surf%ns |
---|
| 1415 | i = surf%i(m) |
---|
| 1416 | j = surf%j(m) |
---|
| 1417 | k = surf%k(m) |
---|
| 1418 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1419 | ENDDO |
---|
[3152] | 1420 | |
---|
[4562] | 1421 | END SUBROUTINE calc_q_surface |
---|
[3152] | 1422 | |
---|
[4562] | 1423 | !--------------------------------------------------------------------------------------------------! |
---|
| 1424 | ! Description: |
---|
| 1425 | ! ------------ |
---|
| 1426 | !> Set virtual potential temperature at surface grid level ( only for upward-facing surfs ). |
---|
| 1427 | !--------------------------------------------------------------------------------------------------! |
---|
| 1428 | SUBROUTINE calc_vpt_surface |
---|
[3152] | 1429 | |
---|
[4562] | 1430 | IMPLICIT NONE |
---|
[3146] | 1431 | |
---|
[4562] | 1432 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1433 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[3146] | 1434 | |
---|
[4562] | 1435 | k_off = surf%koff |
---|
| 1436 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1437 | DO m = 1, surf%ns |
---|
| 1438 | i = surf%i(m) |
---|
| 1439 | j = surf%j(m) |
---|
| 1440 | k = surf%k(m) |
---|
| 1441 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
[3146] | 1442 | |
---|
[4562] | 1443 | ENDDO |
---|
[3146] | 1444 | |
---|
[4562] | 1445 | END SUBROUTINE calc_vpt_surface |
---|
[3146] | 1446 | |
---|
[4562] | 1447 | !--------------------------------------------------------------------------------------------------! |
---|
| 1448 | ! Description: |
---|
| 1449 | ! ------------ |
---|
| 1450 | !> Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
| 1451 | !--------------------------------------------------------------------------------------------------! |
---|
| 1452 | SUBROUTINE calc_scaling_parameters |
---|
[3146] | 1453 | |
---|
[4562] | 1454 | IMPLICIT NONE |
---|
[1691] | 1455 | |
---|
| 1456 | |
---|
[4562] | 1457 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1458 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1459 | ! |
---|
| 1460 | !-- Compute theta* at horizontal surfaces |
---|
| 1461 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1462 | ! |
---|
| 1463 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1464 | |
---|
[4562] | 1465 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1466 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1467 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 1468 | DO m = 1, surf%ns |
---|
| 1469 | i = surf%i(m) |
---|
| 1470 | j = surf%j(m) |
---|
| 1471 | k = surf%k(m) |
---|
| 1472 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1473 | ! |
---|
[4562] | 1474 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing |
---|
| 1475 | !-- ol further below |
---|
| 1476 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1477 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1478 | ENDDO |
---|
[2232] | 1479 | |
---|
[4562] | 1480 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1481 | ! |
---|
| 1482 | !-- For a given surface temperature: |
---|
| 1483 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 1484 | |
---|
[2232] | 1485 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1486 | DO m = 1, surf%ns |
---|
| 1487 | i = surf%i(m) |
---|
[2232] | 1488 | j = surf%j(m) |
---|
| 1489 | k = surf%k(m) |
---|
[4562] | 1490 | pt(k-1,j,i) = pt_surface |
---|
| 1491 | ENDDO |
---|
| 1492 | ENDIF |
---|
[2232] | 1493 | |
---|
[4562] | 1494 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1495 | DO m = 1, surf%ns |
---|
| 1496 | z_mo = surf%z_mo(m) |
---|
| 1497 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
[4593] | 1498 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1499 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4562] | 1500 | ENDDO |
---|
[2232] | 1501 | |
---|
[4562] | 1502 | ENDIF |
---|
[1691] | 1503 | ! |
---|
[4562] | 1504 | !-- Compute theta* at vertical surfaces. This is only required in case of land-surface model, in |
---|
| 1505 | !-- order to compute aerodynamical resistance. |
---|
| 1506 | IF ( surf_vertical ) THEN |
---|
| 1507 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1508 | DO m = 1, surf%ns |
---|
| 1509 | i = surf%i(m) |
---|
| 1510 | j = surf%j(m) |
---|
| 1511 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1512 | ! |
---|
| 1513 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing ol |
---|
| 1514 | !-- further below |
---|
| 1515 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1516 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1517 | ENDDO |
---|
| 1518 | ENDIF |
---|
[2232] | 1519 | |
---|
[4562] | 1520 | ! |
---|
| 1521 | !-- If required compute q* at horizontal surfaces |
---|
| 1522 | IF ( humidity ) THEN |
---|
| 1523 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1524 | ! |
---|
| 1525 | !-- For a given water flux in the surface layer |
---|
| 1526 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1527 | DO m = 1, surf%ns |
---|
| 1528 | i = surf%i(m) |
---|
| 1529 | j = surf%j(m) |
---|
| 1530 | k = surf%k(m) |
---|
| 1531 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
[1691] | 1532 | ENDDO |
---|
| 1533 | |
---|
[4562] | 1534 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
| 1535 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
| 1536 | |
---|
[1788] | 1537 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[4562] | 1538 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1539 | DO m = 1, surf%ns |
---|
| 1540 | i = surf%i(m) |
---|
| 1541 | j = surf%j(m) |
---|
| 1542 | k = surf%k(m) |
---|
| 1543 | q(k-1,j,i) = q_surface |
---|
[2232] | 1544 | |
---|
[4562] | 1545 | ENDDO |
---|
| 1546 | ENDIF |
---|
| 1547 | |
---|
| 1548 | ! |
---|
| 1549 | !-- Assume saturation for atmosphere coupled to ocean (but not in case of precursor runs) |
---|
| 1550 | IF ( coupled_run ) THEN |
---|
| 1551 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1552 | DO m = 1, surf%ns |
---|
| 1553 | i = surf%i(m) |
---|
[2232] | 1554 | j = surf%j(m) |
---|
| 1555 | k = surf%k(m) |
---|
[4562] | 1556 | e_s = 6.1_wp * EXP( 0.07_wp * ( MIN( pt(k-1,j,i), pt(k,j,i) ) - 273.15_wp ) ) |
---|
| 1557 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
| 1558 | ENDDO |
---|
| 1559 | ENDIF |
---|
[2232] | 1560 | |
---|
[4562] | 1561 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
| 1562 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1563 | DO m = 1, surf%ns |
---|
| 1564 | i = surf%i(m) |
---|
| 1565 | j = surf%j(m) |
---|
| 1566 | k = surf%k(m) |
---|
| 1567 | z_mo = surf%z_mo(m) |
---|
| 1568 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[4593] | 1569 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1570 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1571 | ENDDO |
---|
[4562] | 1572 | ELSE |
---|
| 1573 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1574 | DO m = 1, surf%ns |
---|
| 1575 | i = surf%i(m) |
---|
| 1576 | j = surf%j(m) |
---|
| 1577 | k = surf%k(m) |
---|
| 1578 | z_mo = surf%z_mo(m) |
---|
| 1579 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
[4593] | 1580 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1581 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1582 | ENDDO |
---|
[1691] | 1583 | ENDIF |
---|
[2232] | 1584 | ENDIF |
---|
[4562] | 1585 | ! |
---|
| 1586 | !-- Compute q* at vertical surfaces |
---|
[2232] | 1587 | IF ( surf_vertical ) THEN |
---|
[2281] | 1588 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1589 | DO m = 1, surf%ns |
---|
[2232] | 1590 | |
---|
[4562] | 1591 | i = surf%i(m) |
---|
| 1592 | j = surf%j(m) |
---|
| 1593 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1594 | |
---|
[1691] | 1595 | ENDDO |
---|
| 1596 | ENDIF |
---|
[4562] | 1597 | ENDIF |
---|
[1691] | 1598 | |
---|
| 1599 | ! |
---|
[4562] | 1600 | !-- If required compute s* |
---|
| 1601 | IF ( passive_scalar ) THEN |
---|
[1691] | 1602 | ! |
---|
[4562] | 1603 | !-- At horizontal surfaces |
---|
| 1604 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1605 | ! |
---|
[4562] | 1606 | !-- For a given scalar flux in the surface layer |
---|
| 1607 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1608 | DO m = 1, surf%ns |
---|
| 1609 | i = surf%i(m) |
---|
| 1610 | j = surf%j(m) |
---|
| 1611 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1612 | ENDDO |
---|
| 1613 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1614 | |
---|
[4562] | 1615 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1616 | DO m = 1, surf%ns |
---|
| 1617 | i = surf%i(m) |
---|
| 1618 | j = surf%j(m) |
---|
| 1619 | k = surf%k(m) |
---|
| 1620 | z_mo = surf%z_mo(m) |
---|
[1691] | 1621 | |
---|
[4562] | 1622 | surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & |
---|
[4593] | 1623 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1624 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4562] | 1625 | ENDDO |
---|
[1691] | 1626 | ENDIF |
---|
[1960] | 1627 | ! |
---|
[4562] | 1628 | !-- At vertical surfaces |
---|
| 1629 | IF ( surf_vertical ) THEN |
---|
| 1630 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1631 | DO m = 1, surf%ns |
---|
| 1632 | i = surf%i(m) |
---|
| 1633 | j = surf%j(m) |
---|
| 1634 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1635 | ENDDO |
---|
| 1636 | ENDIF |
---|
| 1637 | ENDIF |
---|
| 1638 | |
---|
[1960] | 1639 | ! |
---|
[4562] | 1640 | !-- If required compute cs* (chemical species) |
---|
| 1641 | IF ( air_chemistry ) THEN |
---|
[2232] | 1642 | ! |
---|
[4562] | 1643 | !-- At horizontal surfaces |
---|
| 1644 | DO lsp = 1, nvar |
---|
| 1645 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1646 | !-- For a given chemical species' flux in the surface layer |
---|
[2281] | 1647 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1648 | DO m = 1, surf%ns |
---|
| 1649 | i = surf%i(m) |
---|
| 1650 | j = surf%j(m) |
---|
| 1651 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1652 | ENDDO |
---|
| 1653 | ENDIF |
---|
[4562] | 1654 | ENDDO |
---|
[2232] | 1655 | ! |
---|
[4562] | 1656 | !-- At vertical surfaces |
---|
| 1657 | IF ( surf_vertical ) THEN |
---|
| 1658 | DO lsp = 1, nvar |
---|
[2281] | 1659 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[4562] | 1660 | DO m = 1, surf%ns |
---|
| 1661 | i = surf%i(m) |
---|
| 1662 | j = surf%j(m) |
---|
| 1663 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
[2232] | 1664 | ENDDO |
---|
[2696] | 1665 | ENDDO |
---|
| 1666 | ENDIF |
---|
[4562] | 1667 | ENDIF |
---|
[2696] | 1668 | |
---|
| 1669 | ! |
---|
[4562] | 1670 | !-- If required compute qc* and nc* |
---|
| 1671 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. surf_vertical ) THEN |
---|
| 1672 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1673 | DO m = 1, surf%ns |
---|
| 1674 | i = surf%i(m) |
---|
| 1675 | j = surf%j(m) |
---|
| 1676 | k = surf%k(m) |
---|
[1691] | 1677 | |
---|
[4562] | 1678 | z_mo = surf%z_mo(m) |
---|
[2292] | 1679 | |
---|
[4562] | 1680 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
[4593] | 1681 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1682 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[2292] | 1683 | |
---|
[4562] | 1684 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
[4593] | 1685 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1686 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1687 | ENDDO |
---|
[2292] | 1688 | |
---|
[4562] | 1689 | ENDIF |
---|
[2292] | 1690 | |
---|
[1691] | 1691 | ! |
---|
[4562] | 1692 | !-- If required compute qr* and nr* |
---|
| 1693 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. surf_vertical ) THEN |
---|
| 1694 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1695 | DO m = 1, surf%ns |
---|
| 1696 | i = surf%i(m) |
---|
| 1697 | j = surf%j(m) |
---|
| 1698 | k = surf%k(m) |
---|
[1691] | 1699 | |
---|
[4562] | 1700 | z_mo = surf%z_mo(m) |
---|
[1691] | 1701 | |
---|
[4562] | 1702 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
[4593] | 1703 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1704 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1705 | |
---|
[4562] | 1706 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
[4593] | 1707 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1708 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[4562] | 1709 | ENDDO |
---|
[1691] | 1710 | |
---|
[4562] | 1711 | ENDIF |
---|
[1691] | 1712 | |
---|
[4562] | 1713 | END SUBROUTINE calc_scaling_parameters |
---|
[1691] | 1714 | |
---|
| 1715 | |
---|
| 1716 | |
---|
[4562] | 1717 | !--------------------------------------------------------------------------------------------------! |
---|
| 1718 | ! Description: |
---|
| 1719 | ! ------------ |
---|
| 1720 | !> Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
| 1721 | !--------------------------------------------------------------------------------------------------! |
---|
| 1722 | SUBROUTINE calc_surface_fluxes |
---|
[1691] | 1723 | |
---|
[4562] | 1724 | IMPLICIT NONE |
---|
[1691] | 1725 | |
---|
[4562] | 1726 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
| 1727 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1728 | |
---|
[4562] | 1729 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1730 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1731 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
[1691] | 1732 | |
---|
[4562] | 1733 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1734 | !< at vertical surfaces |
---|
| 1735 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1736 | !< at vertical surfaces |
---|
| 1737 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes |
---|
| 1738 | !< at vertical surfaces |
---|
[1691] | 1739 | |
---|
| 1740 | ! |
---|
[4562] | 1741 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1742 | IF ( .NOT. surf_vertical ) THEN |
---|
[2232] | 1743 | ! |
---|
[4562] | 1744 | !-- Compute u'w' for the total model domain at upward-facing surfaces. First compute the |
---|
| 1745 | !-- corresponding component of u* and square it. |
---|
| 1746 | IF ( .NOT. downward ) THEN |
---|
| 1747 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1748 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1749 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
| 1750 | DO m = 1, surf%ns |
---|
| 1751 | i = surf%i(m) |
---|
| 1752 | j = surf%j(m) |
---|
| 1753 | k = surf%k(m) |
---|
[1691] | 1754 | |
---|
[4562] | 1755 | z_mo = surf%z_mo(m) |
---|
[1691] | 1756 | |
---|
[4562] | 1757 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
[4593] | 1758 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1759 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[2232] | 1760 | ! |
---|
[4562] | 1761 | !-- Please note, the computation of usws is not fully accurate. Actually a further |
---|
| 1762 | !-- interpolation of us onto the u-grid, where usws is defined, is required. However, this |
---|
| 1763 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1764 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1765 | !-- shown. Same also for ol. |
---|
| 1766 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1767 | ENDDO |
---|
[1691] | 1768 | ! |
---|
[4562] | 1769 | !-- At downward-facing surfaces |
---|
| 1770 | ELSE |
---|
[4593] | 1771 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1772 | DO m = 1, surf%ns |
---|
| 1773 | i = surf%i(m) |
---|
| 1774 | j = surf%j(m) |
---|
| 1775 | k = surf%k(m) |
---|
[1691] | 1776 | |
---|
[4593] | 1777 | surf%usws(m) = kappa * u(k,j,i) / surf%ln_z_z0(m) |
---|
[4562] | 1778 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1779 | ENDDO |
---|
| 1780 | ENDIF |
---|
[1691] | 1781 | |
---|
[2232] | 1782 | ! |
---|
[4562] | 1783 | !-- Compute v'w' for the total model domain. First compute the corresponding component of u* and |
---|
| 1784 | !-- square it. |
---|
| 1785 | !-- Upward-facing surfaces |
---|
| 1786 | IF ( .NOT. downward ) THEN |
---|
| 1787 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1788 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1789 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
| 1790 | DO m = 1, surf%ns |
---|
| 1791 | i = surf%i(m) |
---|
| 1792 | j = surf%j(m) |
---|
| 1793 | k = surf%k(m) |
---|
[1691] | 1794 | |
---|
[4562] | 1795 | z_mo = surf%z_mo(m) |
---|
[1691] | 1796 | |
---|
[4562] | 1797 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
[4593] | 1798 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1799 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1800 | ! |
---|
[4562] | 1801 | !-- Please note, the computation of vsws is not fully accurate. Actually a further |
---|
| 1802 | !-- interpolation of us onto the v-grid, where vsws is defined, is required. However, this |
---|
| 1803 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
| 1804 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
| 1805 | !-- shown. Same also for ol. |
---|
| 1806 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1807 | ENDDO |
---|
[2232] | 1808 | ! |
---|
[4562] | 1809 | !-- Downward-facing surfaces |
---|
| 1810 | ELSE |
---|
[4593] | 1811 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1812 | DO m = 1, surf%ns |
---|
| 1813 | i = surf%i(m) |
---|
| 1814 | j = surf%j(m) |
---|
| 1815 | k = surf%k(m) |
---|
[1691] | 1816 | |
---|
[4593] | 1817 | surf%vsws(m) = kappa * v(k,j,i) / surf%ln_z_z0(m) |
---|
[4562] | 1818 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1819 | ENDDO |
---|
| 1820 | ENDIF |
---|
[1691] | 1821 | ! |
---|
[4593] | 1822 | !-- Compute the vertical kinematic heat flux. Note, only upward-facing surfaces are considered, |
---|
| 1823 | !-- at downward-facing surfaces the flux is not parametrized with a scaling parameter. |
---|
[4562] | 1824 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point <= skip_time_do_lsm & |
---|
| 1825 | .AND. simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1826 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[4593] | 1827 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1828 | DO m = 1, surf%ns |
---|
| 1829 | k = surf%k(m) |
---|
| 1830 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1831 | ENDDO |
---|
| 1832 | ENDIF |
---|
[2232] | 1833 | ! |
---|
[4562] | 1834 | !-- Compute the vertical water flux |
---|
| 1835 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
| 1836 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) & |
---|
| 1837 | .OR. .NOT. land_surface ) .AND. .NOT. urban_surface .AND. .NOT. downward ) & |
---|
| 1838 | THEN |
---|
[4593] | 1839 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1840 | DO m = 1, surf%ns |
---|
[4594] | 1841 | k = surf%k(m) |
---|
[4562] | 1842 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1843 | ENDDO |
---|
| 1844 | ENDIF |
---|
| 1845 | ! |
---|
| 1846 | !-- Compute the vertical scalar flux |
---|
| 1847 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. .NOT. downward ) THEN |
---|
[4594] | 1848 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1849 | DO m = 1, surf%ns |
---|
[4594] | 1850 | k = surf%k(m) |
---|
[4593] | 1851 | surf%ssws(m) = -surf%ss(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[4562] | 1852 | ENDDO |
---|
| 1853 | ENDIF |
---|
| 1854 | ! |
---|
| 1855 | !-- Compute the vertical chemical species' flux |
---|
| 1856 | DO lsp = 1, nvar |
---|
| 1857 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. .NOT. downward ) THEN |
---|
[4594] | 1858 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1859 | DO m = 1, surf%ns |
---|
[4594] | 1860 | k = surf%k(m) |
---|
[4593] | 1861 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) * rho_air_zw(k-1) |
---|
[2232] | 1862 | ENDDO |
---|
| 1863 | ENDIF |
---|
[4562] | 1864 | ENDDO |
---|
| 1865 | |
---|
[2232] | 1866 | ! |
---|
[4562] | 1867 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
| 1868 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. downward) THEN |
---|
[4594] | 1869 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1870 | DO m = 1, surf%ns |
---|
[4594] | 1871 | k = surf%k(m) |
---|
[4593] | 1872 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1873 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[4562] | 1874 | ENDDO |
---|
| 1875 | ENDIF |
---|
| 1876 | ! |
---|
| 1877 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
| 1878 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. downward) THEN |
---|
[4594] | 1879 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
[4562] | 1880 | DO m = 1, surf%ns |
---|
[4594] | 1881 | k = surf%k(m) |
---|
[4593] | 1882 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1883 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[2696] | 1884 | ENDDO |
---|
[4562] | 1885 | ENDIF |
---|
[2696] | 1886 | |
---|
| 1887 | ! |
---|
[4562] | 1888 | !-- Bottom boundary condition for the TKE. |
---|
| 1889 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1890 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1891 | DO m = 1, surf%ns |
---|
| 1892 | i = surf%i(m) |
---|
| 1893 | j = surf%j(m) |
---|
| 1894 | k = surf%k(m) |
---|
[2292] | 1895 | |
---|
[4562] | 1896 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1897 | ! |
---|
| 1898 | !-- As a test: cm = 0.4 |
---|
| 1899 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1900 | e(k-1,j,i) = e(k,j,i) |
---|
[2292] | 1901 | |
---|
[4562] | 1902 | ENDDO |
---|
| 1903 | ENDIF |
---|
[2292] | 1904 | ! |
---|
[4562] | 1905 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
[4593] | 1906 | !-- Further, no density needs to be considered here. |
---|
[4562] | 1907 | ELSE |
---|
| 1908 | ! |
---|
| 1909 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1910 | IF ( mom_uv ) THEN |
---|
| 1911 | ! |
---|
| 1912 | !-- Generalize computation by introducing flags. At north- and south-facing surfaces |
---|
| 1913 | !-- u-component is used, at east- and west-facing surfaces v-component is used. |
---|
| 1914 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1915 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
[4593] | 1916 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1917 | DO m = 1, surf%ns |
---|
| 1918 | i = surf%i(m) |
---|
| 1919 | j = surf%j(m) |
---|
| 1920 | k = surf%k(m) |
---|
[2232] | 1921 | |
---|
[4562] | 1922 | surf%mom_flux_uv(m) = kappa * ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
[4593] | 1923 | surf%ln_z_z0(m) |
---|
[1691] | 1924 | |
---|
[4562] | 1925 | surf%mom_flux_uv(m) = - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1926 | ENDDO |
---|
| 1927 | ENDIF |
---|
[1960] | 1928 | ! |
---|
[4562] | 1929 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1930 | IF ( mom_w ) THEN |
---|
[4593] | 1931 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[4562] | 1932 | DO m = 1, surf%ns |
---|
| 1933 | i = surf%i(m) |
---|
| 1934 | j = surf%j(m) |
---|
| 1935 | k = surf%k(m) |
---|
[2232] | 1936 | |
---|
[4593] | 1937 | surf%mom_flux_w(m) = kappa * w(k,j,i) / surf%ln_z_z0(m) |
---|
[2232] | 1938 | |
---|
[4562] | 1939 | surf%mom_flux_w(m) = - surf%mom_flux_w(m) * surf%us(m) |
---|
| 1940 | ENDDO |
---|
| 1941 | ENDIF |
---|
[2232] | 1942 | ! |
---|
[4562] | 1943 | !-- Compute momentum fluxes used for subgrid-scale TKE production at vertical surfaces. In |
---|
| 1944 | !-- constrast to the calculated momentum fluxes at vertical surfaces before, which are defined on |
---|
| 1945 | !-- the u/v/w-grid, respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1946 | !-- |
---|
| 1947 | IF ( mom_tke ) THEN |
---|
[2232] | 1948 | ! |
---|
[4562] | 1949 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1950 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1951 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1952 | ALLOCATE( w_i(1:surf%ns) ) |
---|
| 1953 | |
---|
| 1954 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1955 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1956 | DO m = 1, surf%ns |
---|
| 1957 | i = surf%i(m) |
---|
[2232] | 1958 | j = surf%j(m) |
---|
| 1959 | k = surf%k(m) |
---|
[1691] | 1960 | |
---|
[4562] | 1961 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1962 | v_i(m) = 0.0_wp |
---|
| 1963 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[2232] | 1964 | ENDDO |
---|
[4562] | 1965 | ELSE |
---|
| 1966 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1967 | DO m = 1, surf%ns |
---|
| 1968 | i = surf%i(m) |
---|
[2232] | 1969 | j = surf%j(m) |
---|
| 1970 | k = surf%k(m) |
---|
| 1971 | |
---|
[4562] | 1972 | u_i(m) = 0.0_wp |
---|
| 1973 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1974 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
[1691] | 1975 | ENDDO |
---|
[2232] | 1976 | ENDIF |
---|
[1691] | 1977 | |
---|
[4593] | 1978 | !$OMP PARALLEL DO PRIVATE( i, j, dum ) |
---|
[4562] | 1979 | DO m = 1, surf%ns |
---|
| 1980 | i = surf%i(m) |
---|
| 1981 | j = surf%j(m) |
---|
[2232] | 1982 | |
---|
[4593] | 1983 | dum = kappa / surf%ln_z_z0(m) |
---|
[1691] | 1984 | ! |
---|
[4562] | 1985 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 1986 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 1987 | ! |
---|
[4562] | 1988 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 1989 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
[2232] | 1990 | |
---|
[4562] | 1991 | surf%mom_flux_tke(0:1,m) = - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
| 1992 | ENDDO |
---|
[2232] | 1993 | ! |
---|
[4562] | 1994 | !-- Deallocate temporary arrays |
---|
| 1995 | DEALLOCATE( u_i ) |
---|
| 1996 | DEALLOCATE( v_i ) |
---|
| 1997 | DEALLOCATE( w_i ) |
---|
[1691] | 1998 | ENDIF |
---|
[4562] | 1999 | ENDIF |
---|
[1691] | 2000 | |
---|
[4562] | 2001 | END SUBROUTINE calc_surface_fluxes |
---|
[1691] | 2002 | |
---|
[4562] | 2003 | |
---|
| 2004 | !--------------------------------------------------------------------------------------------------! |
---|
[3597] | 2005 | ! Description: |
---|
| 2006 | ! ------------ |
---|
[4562] | 2007 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m temperature for output. |
---|
| 2008 | !--------------------------------------------------------------------------------------------------! |
---|
| 2009 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 2010 | |
---|
[4562] | 2011 | IMPLICIT NONE |
---|
[3597] | 2012 | |
---|
[4562] | 2013 | CHARACTER(LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
[3597] | 2014 | |
---|
[4562] | 2015 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 2016 | |
---|
[4562] | 2017 | SELECT CASE ( z_char) |
---|
[3597] | 2018 | |
---|
[4562] | 2019 | CASE ( '10cm' ) |
---|
[4331] | 2020 | |
---|
[4562] | 2021 | DO m = 1, surf%ns |
---|
| 2022 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
| 2023 | * ( LOG( 0.1_wp / surf%z0h(m) ) - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
| 2024 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 2025 | ENDDO |
---|
[3597] | 2026 | |
---|
[4562] | 2027 | END SELECT |
---|
[1691] | 2028 | |
---|
[4562] | 2029 | END SUBROUTINE calc_pt_near_surface |
---|
[1691] | 2030 | |
---|
| 2031 | |
---|
[4562] | 2032 | !--------------------------------------------------------------------------------------------------! |
---|
| 2033 | ! Description: |
---|
| 2034 | ! ------------ |
---|
| 2035 | !> Integrated stability function for momentum. |
---|
| 2036 | !--------------------------------------------------------------------------------------------------! |
---|
| 2037 | FUNCTION psi_m( zeta ) |
---|
| 2038 | !$ACC ROUTINE SEQ |
---|
[1691] | 2039 | |
---|
[4562] | 2040 | USE kinds |
---|
[1691] | 2041 | |
---|
[4562] | 2042 | IMPLICIT NONE |
---|
[1691] | 2043 | |
---|
[4562] | 2044 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 2045 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2046 | REAL(wp) :: x !< dummy variable |
---|
[1691] | 2047 | |
---|
[4562] | 2048 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2049 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2050 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2051 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2052 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2053 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
[1691] | 2054 | |
---|
| 2055 | |
---|
[4562] | 2056 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2057 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
| 2058 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2059 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2060 | ELSE |
---|
[1691] | 2061 | |
---|
[4562] | 2062 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta - bc_d_d |
---|
[1691] | 2063 | ! |
---|
[4562] | 2064 | !-- Old version for stable conditions (only valid for z/L < 0.5) psi_m = - 5.0_wp * zeta |
---|
[1691] | 2065 | |
---|
[4562] | 2066 | ENDIF |
---|
[1691] | 2067 | |
---|
[4562] | 2068 | END FUNCTION psi_m |
---|
[1691] | 2069 | |
---|
| 2070 | |
---|
[4562] | 2071 | !--------------------------------------------------------------------------------------------------! |
---|
| 2072 | ! Description: |
---|
| 2073 | !------------ |
---|
| 2074 | !> Integrated stability function for heat and moisture. |
---|
| 2075 | !--------------------------------------------------------------------------------------------------! |
---|
| 2076 | FUNCTION psi_h( zeta ) |
---|
| 2077 | !$ACC ROUTINE SEQ |
---|
[1691] | 2078 | |
---|
[4562] | 2079 | USE kinds |
---|
| 2080 | |
---|
| 2081 | IMPLICIT NONE |
---|
| 2082 | |
---|
| 2083 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2084 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2085 | REAL(wp) :: x !< dummy variable |
---|
| 2086 | |
---|
| 2087 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2088 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2089 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2090 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2091 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2092 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2093 | |
---|
| 2094 | |
---|
| 2095 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2096 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
| 2097 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2098 | ELSE |
---|
| 2099 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2100 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d + 1.0_wp |
---|
[1691] | 2101 | ! |
---|
[4562] | 2102 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2103 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2104 | ENDIF |
---|
[1691] | 2105 | |
---|
[4562] | 2106 | END FUNCTION psi_h |
---|
[1691] | 2107 | |
---|
[3130] | 2108 | |
---|
[4562] | 2109 | !--------------------------------------------------------------------------------------------------! |
---|
[3130] | 2110 | ! Description: |
---|
| 2111 | ! ------------ |
---|
| 2112 | !> Calculates stability function for momentum |
---|
| 2113 | !> |
---|
| 2114 | !> @author Hauke Wurps |
---|
[4562] | 2115 | !--------------------------------------------------------------------------------------------------! |
---|
| 2116 | FUNCTION phi_m( zeta ) |
---|
| 2117 | !$ACC ROUTINE SEQ |
---|
[3130] | 2118 | |
---|
[4562] | 2119 | IMPLICIT NONE |
---|
| 2120 | |
---|
| 2121 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2122 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2123 | |
---|
| 2124 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2125 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2126 | |
---|
| 2127 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2128 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2129 | ELSE |
---|
| 2130 | phi_m = 1.0_wp + c * zeta |
---|
| 2131 | ENDIF |
---|
| 2132 | |
---|
| 2133 | END FUNCTION phi_m |
---|
| 2134 | |
---|
[1697] | 2135 | END MODULE surface_layer_fluxes_mod |
---|