[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1691] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[1691] | 18 | ! |
---|
[2000] | 19 | !------------------------------------------------------------------------------! |
---|
[2696] | 20 | ! |
---|
[1691] | 21 | ! Current revisions: |
---|
[1747] | 22 | ! ------------------ |
---|
[1758] | 23 | ! |
---|
[3745] | 24 | ! |
---|
[1692] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: surface_layer_fluxes_mod.f90 4370 2020-01-10 14:00:44Z maronga $ |
---|
[4370] | 28 | ! bugfix: openacc porting for vector version of OL calculation added |
---|
| 29 | ! |
---|
| 30 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4366] | 31 | ! vector version for calculation of Obukhov length via Newton iteration added |
---|
| 32 | ! |
---|
| 33 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4331] | 34 | ! Calculation of diagnostic-only 2-m potential temperature moved to |
---|
| 35 | ! diagnostic_output_quantities. |
---|
| 36 | ! |
---|
| 37 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
[4298] | 38 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above |
---|
| 39 | ! the first grid point. |
---|
| 40 | ! |
---|
| 41 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 42 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
| 43 | ! |
---|
| 44 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 45 | ! Added missing OpenMP directives |
---|
| 46 | ! |
---|
| 47 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4186] | 48 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 49 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic |
---|
| 50 | ! peaks in the heat fluxes during nighttime |
---|
| 51 | ! - Unused variable removed |
---|
| 52 | ! |
---|
| 53 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 54 | ! Corrected "Former revisions" section |
---|
| 55 | ! |
---|
| 56 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 57 | ! Introduce alternative switch for debug output during timestepping |
---|
| 58 | ! |
---|
| 59 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 60 | ! Changes related to global restructuring of location messages and introduction |
---|
| 61 | ! of additional debug messages |
---|
| 62 | ! |
---|
| 63 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 64 | ! Assure that Obukhov length does not become zero |
---|
| 65 | ! |
---|
| 66 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[3833] | 67 | ! added USE chem_gasphase_mod |
---|
| 68 | ! |
---|
| 69 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[3787] | 70 | ! unused variables removed |
---|
| 71 | ! |
---|
| 72 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 73 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, |
---|
| 74 | ! required for indoor model |
---|
| 75 | ! |
---|
| 76 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 77 | ! Some interface calls moved to module_interface + cleanup |
---|
| 78 | ! |
---|
| 79 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 80 | ! Removed methods "circular" and "lookup" |
---|
| 81 | ! |
---|
| 82 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 83 | ! OpenACC port for SPEC |
---|
[1692] | 84 | ! |
---|
[4182] | 85 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 86 | ! Initial revision |
---|
| 87 | ! |
---|
| 88 | ! |
---|
[1691] | 89 | ! Description: |
---|
| 90 | ! ------------ |
---|
| 91 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
[3668] | 92 | !> values of the variables at grid point k=1 based on Newton iteration |
---|
[1691] | 93 | !> |
---|
| 94 | !> @todo (re)move large_scale_forcing actions |
---|
[2118] | 95 | !> @todo check/optimize OpenMP directives |
---|
[2696] | 96 | !> @todo simplify if conditions (which flux need to be computed in which case) |
---|
[1691] | 97 | !------------------------------------------------------------------------------! |
---|
| 98 | MODULE surface_layer_fluxes_mod |
---|
| 99 | |
---|
| 100 | USE arrays_3d, & |
---|
[2292] | 101 | ONLY: e, kh, nc, nr, pt, q, ql, qc, qr, s, u, v, vpt, w, zu, zw, & |
---|
[3274] | 102 | drho_air_zw, rho_air_zw, d_exner |
---|
[1691] | 103 | |
---|
[3274] | 104 | USE basic_constants_and_equations_mod, & |
---|
[3361] | 105 | ONLY: g, kappa, lv_d_cp, pi, rd_d_rv |
---|
[3274] | 106 | |
---|
[3833] | 107 | USE chem_gasphase_mod, & |
---|
| 108 | ONLY: nvar |
---|
| 109 | |
---|
[2696] | 110 | USE chem_modules, & |
---|
[3834] | 111 | ONLY: constant_csflux |
---|
[2696] | 112 | |
---|
[1691] | 113 | USE cpulog |
---|
| 114 | |
---|
| 115 | USE control_parameters, & |
---|
[3274] | 116 | ONLY: air_chemistry, cloud_droplets, & |
---|
| 117 | constant_heatflux, constant_scalarflux, & |
---|
[3885] | 118 | constant_waterflux, coupling_mode, & |
---|
[3987] | 119 | debug_output_timestep, & |
---|
[4366] | 120 | humidity, loop_optimization, & |
---|
[4298] | 121 | ibc_e_b, ibc_pt_b, indoor_model, & |
---|
[3274] | 122 | land_surface, large_scale_forcing, lsf_surf, message_string, & |
---|
[3668] | 123 | neutral, passive_scalar, pt_surface, q_surface, & |
---|
[4298] | 124 | run_coupled, surface_pressure, simulated_time, & |
---|
[3157] | 125 | time_since_reference_point, urban_surface, & |
---|
| 126 | use_free_convection_scaling, zeta_max, zeta_min |
---|
[1691] | 127 | |
---|
[2232] | 128 | USE grid_variables, & |
---|
| 129 | ONLY: dx, dy |
---|
| 130 | |
---|
[1691] | 131 | USE indices, & |
---|
[4298] | 132 | ONLY: nzt |
---|
[1691] | 133 | |
---|
| 134 | USE kinds |
---|
| 135 | |
---|
[3274] | 136 | USE bulk_cloud_model_mod, & |
---|
| 137 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 138 | |
---|
[1691] | 139 | USE pegrid |
---|
| 140 | |
---|
| 141 | USE land_surface_model_mod, & |
---|
[2232] | 142 | ONLY: aero_resist_kray, skip_time_do_lsm |
---|
[2011] | 143 | |
---|
[2232] | 144 | USE surface_mod, & |
---|
| 145 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_type, & |
---|
| 146 | surf_usm_h, surf_usm_v |
---|
[2007] | 147 | |
---|
[1691] | 148 | |
---|
| 149 | IMPLICIT NONE |
---|
| 150 | |
---|
[1992] | 151 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 152 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 153 | INTEGER(iwp) :: k !< loop index z direction |
---|
[2232] | 154 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 155 | |
---|
[2232] | 156 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 157 | LOGICAL :: downward = .FALSE.!< Flag indicating downward-facing horizontal surface |
---|
| 158 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 159 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 160 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 161 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 162 | |
---|
| 163 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
| 164 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
| 165 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
| 166 | |
---|
[2232] | 167 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 168 | |
---|
[2232] | 169 | |
---|
[1691] | 170 | SAVE |
---|
| 171 | |
---|
| 172 | PRIVATE |
---|
| 173 | |
---|
[4331] | 174 | PUBLIC init_surface_layer_fluxes, & |
---|
| 175 | phi_m, & |
---|
| 176 | psi_h, & |
---|
| 177 | psi_m, & |
---|
| 178 | surface_layer_fluxes |
---|
[1691] | 179 | |
---|
| 180 | INTERFACE init_surface_layer_fluxes |
---|
| 181 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 182 | END INTERFACE init_surface_layer_fluxes |
---|
| 183 | |
---|
[3130] | 184 | INTERFACE phi_m |
---|
| 185 | MODULE PROCEDURE phi_m |
---|
| 186 | END INTERFACE phi_m |
---|
| 187 | |
---|
[4331] | 188 | INTERFACE psi_h |
---|
| 189 | MODULE PROCEDURE psi_h |
---|
| 190 | END INTERFACE psi_h |
---|
| 191 | |
---|
| 192 | INTERFACE psi_m |
---|
| 193 | MODULE PROCEDURE psi_m |
---|
| 194 | END INTERFACE psi_m |
---|
| 195 | |
---|
[1691] | 196 | INTERFACE surface_layer_fluxes |
---|
| 197 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 198 | END INTERFACE surface_layer_fluxes |
---|
| 199 | |
---|
| 200 | |
---|
| 201 | CONTAINS |
---|
| 202 | |
---|
| 203 | |
---|
| 204 | !------------------------------------------------------------------------------! |
---|
| 205 | ! Description: |
---|
| 206 | ! ------------ |
---|
| 207 | !> Main routine to compute the surface fluxes |
---|
| 208 | !------------------------------------------------------------------------------! |
---|
| 209 | SUBROUTINE surface_layer_fluxes |
---|
| 210 | |
---|
| 211 | IMPLICIT NONE |
---|
| 212 | |
---|
[3885] | 213 | |
---|
[3987] | 214 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 215 | |
---|
[3547] | 216 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 217 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 218 | ! |
---|
[2696] | 219 | !-- Derive potential temperature and specific humidity at first grid level |
---|
| 220 | !-- from the fields pt and q |
---|
[2232] | 221 | ! |
---|
[2696] | 222 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, |
---|
| 223 | !-- l=1 - downward facing) |
---|
| 224 | DO l = 0, 1 |
---|
| 225 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 226 | surf => surf_def_h(l) |
---|
| 227 | CALL calc_pt_q |
---|
[3146] | 228 | IF ( .NOT. neutral ) THEN |
---|
| 229 | CALL calc_pt_surface |
---|
| 230 | IF ( humidity ) THEN |
---|
[3152] | 231 | CALL calc_q_surface |
---|
[3146] | 232 | CALL calc_vpt_surface |
---|
| 233 | ENDIF |
---|
| 234 | ENDIF |
---|
[2696] | 235 | ENDIF |
---|
| 236 | ENDDO |
---|
[2232] | 237 | ! |
---|
[2696] | 238 | !-- Call for natural-type horizontal surfaces |
---|
| 239 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 240 | surf => surf_lsm_h |
---|
| 241 | CALL calc_pt_q |
---|
| 242 | ENDIF |
---|
| 243 | |
---|
| 244 | ! |
---|
| 245 | !-- Call for urban-type horizontal surfaces |
---|
| 246 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 247 | surf => surf_usm_h |
---|
| 248 | CALL calc_pt_q |
---|
| 249 | ENDIF |
---|
| 250 | |
---|
| 251 | ! |
---|
| 252 | !-- Call for natural-type vertical surfaces |
---|
| 253 | DO l = 0, 3 |
---|
| 254 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 255 | surf => surf_lsm_v(l) |
---|
[2232] | 256 | CALL calc_pt_q |
---|
| 257 | ENDIF |
---|
[2696] | 258 | |
---|
[3146] | 259 | !-- Call for urban-type vertical surfaces |
---|
[2696] | 260 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 261 | surf => surf_usm_v(l) |
---|
[2232] | 262 | CALL calc_pt_q |
---|
| 263 | ENDIF |
---|
[2696] | 264 | ENDDO |
---|
[1691] | 265 | |
---|
| 266 | ! |
---|
| 267 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
| 268 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
[3668] | 269 | !-- surface fluxes if required. Note, each routine is called for different surface types. |
---|
[2232] | 270 | !-- First call for default-type horizontal surfaces, for natural- and |
---|
| 271 | !-- urban-type surfaces. Note, at this place only upward-facing horizontal |
---|
[3668] | 272 | !-- surfaces are treated. |
---|
| 273 | |
---|
[2232] | 274 | ! |
---|
[3668] | 275 | !-- Default-type upward-facing horizontal surfaces |
---|
| 276 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 277 | surf => surf_def_h(0) |
---|
| 278 | CALL calc_uvw_abs |
---|
| 279 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 280 | CALL calc_us |
---|
| 281 | CALL calc_scaling_parameters |
---|
| 282 | CALL calc_surface_fluxes |
---|
| 283 | ENDIF |
---|
[1691] | 284 | ! |
---|
[3668] | 285 | !-- Natural-type horizontal surfaces |
---|
| 286 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 287 | surf => surf_lsm_h |
---|
| 288 | CALL calc_uvw_abs |
---|
| 289 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 290 | CALL calc_us |
---|
| 291 | CALL calc_scaling_parameters |
---|
| 292 | CALL calc_surface_fluxes |
---|
| 293 | ENDIF |
---|
[2232] | 294 | ! |
---|
[3668] | 295 | !-- Urban-type horizontal surfaces |
---|
| 296 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 297 | surf => surf_usm_h |
---|
| 298 | CALL calc_uvw_abs |
---|
| 299 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 300 | CALL calc_us |
---|
| 301 | CALL calc_scaling_parameters |
---|
| 302 | CALL calc_surface_fluxes |
---|
[3744] | 303 | ! |
---|
| 304 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 305 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[3668] | 306 | ENDIF |
---|
[1691] | 307 | |
---|
[2232] | 308 | ! |
---|
| 309 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are |
---|
| 310 | !-- always default type. Stratification is not considered |
---|
| 311 | !-- in this case, hence, no further distinction between different |
---|
| 312 | !-- most_method is required. |
---|
| 313 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 314 | downward = .TRUE. |
---|
| 315 | surf => surf_def_h(1) |
---|
| 316 | CALL calc_uvw_abs |
---|
[1691] | 317 | CALL calc_us |
---|
| 318 | CALL calc_surface_fluxes |
---|
[2232] | 319 | downward = .FALSE. |
---|
[1691] | 320 | ENDIF |
---|
[2232] | 321 | ! |
---|
| 322 | !-- Calculate surfaces fluxes at vertical surfaces for momentum |
---|
| 323 | !-- and subgrid-scale TKE. |
---|
| 324 | !-- No stability is considered. Therefore, scaling parameters and Obukhov- |
---|
| 325 | !-- length do not need to be calculated and no distinction in 'circular', |
---|
| 326 | !-- 'Newton' or 'lookup' is necessary so far. |
---|
| 327 | !-- Note, this will change if stability is once considered. |
---|
| 328 | surf_vertical = .TRUE. |
---|
| 329 | ! |
---|
| 330 | !-- Calculate horizontal momentum fluxes at north- and south-facing |
---|
| 331 | !-- surfaces(usvs). |
---|
| 332 | !-- For default-type surfaces |
---|
| 333 | mom_uv = .TRUE. |
---|
| 334 | DO l = 0, 1 |
---|
| 335 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 336 | surf => surf_def_v(l) |
---|
| 337 | ! |
---|
| 338 | !-- Compute surface-parallel velocity |
---|
| 339 | CALL calc_uvw_abs_v_ugrid |
---|
| 340 | ! |
---|
| 341 | !-- Compute respective friction velocity on staggered grid |
---|
| 342 | CALL calc_us |
---|
| 343 | ! |
---|
| 344 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 345 | CALL calc_surface_fluxes |
---|
| 346 | ENDIF |
---|
| 347 | ENDDO |
---|
| 348 | ! |
---|
| 349 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 350 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 351 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 352 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 353 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 354 | IF ( .NOT. aero_resist_kray ) THEN |
---|
[3668] | 355 | DO l = 0, 1 |
---|
| 356 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 357 | surf => surf_lsm_v(l) |
---|
[2232] | 358 | ! |
---|
[3668] | 359 | !-- Compute surface-parallel velocity |
---|
| 360 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 361 | ! |
---|
[3668] | 362 | !-- Compute Obukhov length |
---|
| 363 | IF ( .NOT. neutral ) CALL calc_ol |
---|
[2232] | 364 | ! |
---|
[3668] | 365 | !-- Compute respective friction velocity on staggered grid |
---|
| 366 | CALL calc_us |
---|
[2232] | 367 | ! |
---|
[3668] | 368 | !-- Compute scaling parameters |
---|
| 369 | CALL calc_scaling_parameters |
---|
[2232] | 370 | ! |
---|
[3668] | 371 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 372 | CALL calc_surface_fluxes |
---|
| 373 | ENDIF |
---|
| 374 | ENDDO |
---|
[2232] | 375 | ! |
---|
| 376 | !-- No ts is required, so scaling parameters and Obukhov length do not need |
---|
| 377 | !-- to be computed. |
---|
| 378 | ELSE |
---|
| 379 | DO l = 0, 1 |
---|
| 380 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 381 | surf => surf_lsm_v(l) |
---|
| 382 | ! |
---|
| 383 | !-- Compute surface-parallel velocity |
---|
| 384 | CALL calc_uvw_abs_v_ugrid |
---|
| 385 | ! |
---|
| 386 | !-- Compute respective friction velocity on staggered grid |
---|
| 387 | CALL calc_us |
---|
| 388 | ! |
---|
| 389 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 390 | CALL calc_surface_fluxes |
---|
| 391 | ENDIF |
---|
| 392 | ENDDO |
---|
| 393 | ENDIF |
---|
| 394 | ! |
---|
| 395 | !-- For urban-type surfaces |
---|
| 396 | DO l = 0, 1 |
---|
| 397 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 398 | surf => surf_usm_v(l) |
---|
| 399 | ! |
---|
| 400 | !-- Compute surface-parallel velocity |
---|
| 401 | CALL calc_uvw_abs_v_ugrid |
---|
| 402 | ! |
---|
| 403 | !-- Compute respective friction velocity on staggered grid |
---|
| 404 | CALL calc_us |
---|
| 405 | ! |
---|
| 406 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 407 | CALL calc_surface_fluxes |
---|
[3744] | 408 | ! |
---|
| 409 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 410 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[2232] | 411 | ENDIF |
---|
| 412 | ENDDO |
---|
| 413 | ! |
---|
| 414 | !-- Calculate horizontal momentum fluxes at east- and west-facing |
---|
| 415 | !-- surfaces (vsus). |
---|
| 416 | !-- For default-type surfaces |
---|
| 417 | DO l = 2, 3 |
---|
| 418 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 419 | surf => surf_def_v(l) |
---|
| 420 | ! |
---|
| 421 | !-- Compute surface-parallel velocity |
---|
| 422 | CALL calc_uvw_abs_v_vgrid |
---|
| 423 | ! |
---|
| 424 | !-- Compute respective friction velocity on staggered grid |
---|
| 425 | CALL calc_us |
---|
| 426 | ! |
---|
| 427 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 428 | CALL calc_surface_fluxes |
---|
[3744] | 429 | |
---|
[2232] | 430 | ENDIF |
---|
| 431 | ENDDO |
---|
| 432 | ! |
---|
| 433 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 434 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 435 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 436 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 437 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 438 | IF ( .NOT. aero_resist_kray ) THEN |
---|
[3668] | 439 | DO l = 2, 3 |
---|
| 440 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 441 | surf => surf_lsm_v(l) |
---|
[2232] | 442 | ! |
---|
[3668] | 443 | !-- Compute surface-parallel velocity |
---|
| 444 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 445 | ! |
---|
[3668] | 446 | !-- Compute Obukhov length |
---|
| 447 | IF ( .NOT. neutral ) CALL calc_ol |
---|
[2232] | 448 | ! |
---|
[3668] | 449 | !-- Compute respective friction velocity on staggered grid |
---|
| 450 | CALL calc_us |
---|
[2232] | 451 | ! |
---|
[3668] | 452 | !-- Compute scaling parameters |
---|
| 453 | CALL calc_scaling_parameters |
---|
[2232] | 454 | ! |
---|
[3668] | 455 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 456 | CALL calc_surface_fluxes |
---|
| 457 | ENDIF |
---|
| 458 | ENDDO |
---|
[2232] | 459 | ELSE |
---|
| 460 | DO l = 2, 3 |
---|
| 461 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 462 | surf => surf_lsm_v(l) |
---|
| 463 | ! |
---|
| 464 | !-- Compute surface-parallel velocity |
---|
| 465 | CALL calc_uvw_abs_v_vgrid |
---|
| 466 | ! |
---|
| 467 | !-- Compute respective friction velocity on staggered grid |
---|
| 468 | CALL calc_us |
---|
| 469 | ! |
---|
| 470 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 471 | CALL calc_surface_fluxes |
---|
| 472 | ENDIF |
---|
| 473 | ENDDO |
---|
| 474 | ENDIF |
---|
| 475 | ! |
---|
| 476 | !-- For urban-type surfaces |
---|
| 477 | DO l = 2, 3 |
---|
| 478 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 479 | surf => surf_usm_v(l) |
---|
| 480 | ! |
---|
| 481 | !-- Compute surface-parallel velocity |
---|
| 482 | CALL calc_uvw_abs_v_vgrid |
---|
| 483 | ! |
---|
| 484 | !-- Compute respective friction velocity on staggered grid |
---|
| 485 | CALL calc_us |
---|
| 486 | ! |
---|
| 487 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 488 | CALL calc_surface_fluxes |
---|
[3744] | 489 | ! |
---|
| 490 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 491 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[2232] | 492 | ENDIF |
---|
| 493 | ENDDO |
---|
| 494 | mom_uv = .FALSE. |
---|
| 495 | ! |
---|
| 496 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial |
---|
| 497 | !-- surfaces. |
---|
| 498 | mom_w = .TRUE. |
---|
| 499 | ! |
---|
| 500 | !-- Default-type surfaces |
---|
| 501 | DO l = 0, 3 |
---|
| 502 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 503 | surf => surf_def_v(l) |
---|
| 504 | CALL calc_uvw_abs_v_wgrid |
---|
| 505 | CALL calc_us |
---|
| 506 | CALL calc_surface_fluxes |
---|
| 507 | ENDIF |
---|
| 508 | ENDDO |
---|
| 509 | ! |
---|
| 510 | !-- Natural-type surfaces |
---|
| 511 | DO l = 0, 3 |
---|
| 512 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 513 | surf => surf_lsm_v(l) |
---|
| 514 | CALL calc_uvw_abs_v_wgrid |
---|
| 515 | CALL calc_us |
---|
| 516 | CALL calc_surface_fluxes |
---|
| 517 | ENDIF |
---|
| 518 | ENDDO |
---|
| 519 | ! |
---|
| 520 | !-- Urban-type surfaces |
---|
| 521 | DO l = 0, 3 |
---|
| 522 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 523 | surf => surf_usm_v(l) |
---|
| 524 | CALL calc_uvw_abs_v_wgrid |
---|
| 525 | CALL calc_us |
---|
| 526 | CALL calc_surface_fluxes |
---|
| 527 | ENDIF |
---|
| 528 | ENDDO |
---|
| 529 | mom_w = .FALSE. |
---|
| 530 | ! |
---|
| 531 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical |
---|
| 532 | !-- surfaces for TKE production. Note, here, momentum fluxes are defined |
---|
| 533 | !-- at grid center and are not staggered as before. |
---|
| 534 | mom_tke = .TRUE. |
---|
| 535 | ! |
---|
| 536 | !-- Default-type surfaces |
---|
| 537 | DO l = 0, 3 |
---|
| 538 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 539 | surf => surf_def_v(l) |
---|
| 540 | CALL calc_uvw_abs_v_sgrid |
---|
| 541 | CALL calc_us |
---|
| 542 | CALL calc_surface_fluxes |
---|
| 543 | ENDIF |
---|
| 544 | ENDDO |
---|
| 545 | ! |
---|
| 546 | !-- Natural-type surfaces |
---|
| 547 | DO l = 0, 3 |
---|
| 548 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 549 | surf => surf_lsm_v(l) |
---|
| 550 | CALL calc_uvw_abs_v_sgrid |
---|
| 551 | CALL calc_us |
---|
| 552 | CALL calc_surface_fluxes |
---|
| 553 | ENDIF |
---|
| 554 | ENDDO |
---|
| 555 | ! |
---|
| 556 | !-- Urban-type surfaces |
---|
| 557 | DO l = 0, 3 |
---|
| 558 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 559 | surf => surf_usm_v(l) |
---|
| 560 | CALL calc_uvw_abs_v_sgrid |
---|
| 561 | CALL calc_us |
---|
| 562 | CALL calc_surface_fluxes |
---|
| 563 | ENDIF |
---|
| 564 | ENDDO |
---|
| 565 | mom_tke = .FALSE. |
---|
[1691] | 566 | |
---|
[3987] | 567 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 568 | |
---|
[1691] | 569 | END SUBROUTINE surface_layer_fluxes |
---|
| 570 | |
---|
| 571 | |
---|
| 572 | !------------------------------------------------------------------------------! |
---|
| 573 | ! Description: |
---|
| 574 | ! ------------ |
---|
[4258] | 575 | !> Initializing actions for the surface layer routine. |
---|
[1691] | 576 | !------------------------------------------------------------------------------! |
---|
| 577 | SUBROUTINE init_surface_layer_fluxes |
---|
| 578 | |
---|
| 579 | IMPLICIT NONE |
---|
| 580 | |
---|
[4258] | 581 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 582 | |
---|
[3885] | 583 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 584 | |
---|
| 585 | ! |
---|
| 586 | !-- In case of runs with neutral statification, set Obukhov length to a |
---|
| 587 | !-- large value |
---|
[2232] | 588 | IF ( neutral ) THEN |
---|
| 589 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 590 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 591 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
[4258] | 592 | |
---|
| 593 | DO l = 0, 3 |
---|
| 594 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 595 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 596 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 597 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 598 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 599 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 600 | ENDDO |
---|
| 601 | |
---|
[2232] | 602 | ENDIF |
---|
[1709] | 603 | |
---|
[3885] | 604 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[3685] | 605 | |
---|
[1691] | 606 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 607 | |
---|
| 608 | |
---|
| 609 | !------------------------------------------------------------------------------! |
---|
| 610 | ! Description: |
---|
| 611 | ! ------------ |
---|
[1709] | 612 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
[2232] | 613 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
[1691] | 614 | !------------------------------------------------------------------------------! |
---|
[2232] | 615 | SUBROUTINE calc_uvw_abs |
---|
[3157] | 616 | |
---|
[1691] | 617 | IMPLICIT NONE |
---|
| 618 | |
---|
[2232] | 619 | INTEGER(iwp) :: i !< running index x direction |
---|
| 620 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 621 | INTEGER(iwp) :: j !< running index y direction |
---|
| 622 | INTEGER(iwp) :: k !< running index z direction |
---|
| 623 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1691] | 624 | |
---|
[3157] | 625 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 626 | ! |
---|
| 627 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 628 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 629 | |
---|
[4237] | 630 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
[3634] | 631 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 632 | !$ACC PRESENT(surf, u, v) |
---|
[2232] | 633 | DO m = 1, surf%ns |
---|
[1691] | 634 | |
---|
[2232] | 635 | i = surf%i(m) |
---|
| 636 | j = surf%j(m) |
---|
| 637 | k = surf%k(m) |
---|
[3157] | 638 | |
---|
[1691] | 639 | ! |
---|
[3157] | 640 | !-- Calculate free convection velocity scale w_lfc is |
---|
| 641 | !-- use_free_convection_scaling = .T.. This will maintain a horizontal |
---|
| 642 | !-- velocity even for very weak wind convective conditions. SIGN is used |
---|
| 643 | !-- to set w_lfc to zero under stable conditions. |
---|
| 644 | IF ( use_free_convection_scaling ) THEN |
---|
| 645 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 646 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
| 647 | ELSE |
---|
| 648 | w_lfc = 0.0_wp |
---|
| 649 | ENDIF |
---|
| 650 | |
---|
| 651 | ! |
---|
[2232] | 652 | !-- Compute the absolute value of the horizontal velocity. |
---|
| 653 | !-- (relative to the surface in case the lower surface is the ocean). |
---|
| 654 | !-- Please note, in new surface modelling concept the index values changed, |
---|
| 655 | !-- i.e. the reference grid point is not the surface-grid point itself but |
---|
| 656 | !-- the first grid point outside of the topography. |
---|
| 657 | !-- Note, in case of coupled ocean-atmosphere simulations relative velocity |
---|
| 658 | !-- with respect to the ocean surface is used, hence, (k-1,j,i) values |
---|
| 659 | !-- are used to calculate the absolute velocity. |
---|
| 660 | !-- However, this do not apply for downward-facing walls. To mask this, |
---|
| 661 | !-- use ibit, which checks for upward/downward-facing surfaces. |
---|
| 662 | surf%uvw_abs(m) = SQRT( & |
---|
| 663 | ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) & |
---|
| 664 | - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 665 | ) * ibit & |
---|
| 666 | ) & |
---|
| 667 | )**2 + & |
---|
| 668 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) & |
---|
| 669 | - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 670 | ) * ibit & |
---|
| 671 | ) & |
---|
[3157] | 672 | )**2 + w_lfc**2 & |
---|
[2232] | 673 | ) |
---|
| 674 | |
---|
[3148] | 675 | |
---|
| 676 | |
---|
[1691] | 677 | ENDDO |
---|
| 678 | |
---|
[2232] | 679 | END SUBROUTINE calc_uvw_abs |
---|
| 680 | |
---|
| 681 | |
---|
| 682 | !------------------------------------------------------------------------------! |
---|
| 683 | ! Description: |
---|
| 684 | ! ------------ |
---|
| 685 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 686 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 687 | !------------------------------------------------------------------------------! |
---|
| 688 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 689 | |
---|
| 690 | IMPLICIT NONE |
---|
| 691 | |
---|
[3547] | 692 | INTEGER(iwp) :: i !< running index x direction |
---|
| 693 | INTEGER(iwp) :: j !< running index y direction |
---|
| 694 | INTEGER(iwp) :: k !< running index z direction |
---|
| 695 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 696 | |
---|
[3547] | 697 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 698 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 699 | |
---|
| 700 | |
---|
| 701 | DO m = 1, surf%ns |
---|
| 702 | i = surf%i(m) |
---|
| 703 | j = surf%j(m) |
---|
| 704 | k = surf%k(m) |
---|
[1691] | 705 | ! |
---|
[2232] | 706 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 707 | u_i = u(k,j,i) |
---|
| 708 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + & |
---|
| 709 | w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 710 | |
---|
[2232] | 711 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
[1709] | 712 | |
---|
[2232] | 713 | ENDDO |
---|
[1709] | 714 | |
---|
[2232] | 715 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 716 | |
---|
[1709] | 717 | !------------------------------------------------------------------------------! |
---|
| 718 | ! Description: |
---|
| 719 | ! ------------ |
---|
[2232] | 720 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 721 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 722 | !------------------------------------------------------------------------------! |
---|
| 723 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 724 | |
---|
| 725 | IMPLICIT NONE |
---|
| 726 | |
---|
[3547] | 727 | INTEGER(iwp) :: i !< running index x direction |
---|
| 728 | INTEGER(iwp) :: j !< running index y direction |
---|
| 729 | INTEGER(iwp) :: k !< running index z direction |
---|
| 730 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 731 | |
---|
[3547] | 732 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 733 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 734 | |
---|
| 735 | |
---|
| 736 | DO m = 1, surf%ns |
---|
| 737 | i = surf%i(m) |
---|
| 738 | j = surf%j(m) |
---|
| 739 | k = surf%k(m) |
---|
| 740 | |
---|
| 741 | v_i = u(k,j,i) |
---|
| 742 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + & |
---|
| 743 | w(k,j-1,i) + w(k,j,i) ) |
---|
| 744 | |
---|
| 745 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 746 | |
---|
| 747 | ENDDO |
---|
| 748 | |
---|
| 749 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 750 | |
---|
| 751 | !------------------------------------------------------------------------------! |
---|
| 752 | ! Description: |
---|
| 753 | ! ------------ |
---|
| 754 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 755 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 756 | !------------------------------------------------------------------------------! |
---|
| 757 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 758 | |
---|
| 759 | IMPLICIT NONE |
---|
| 760 | |
---|
[3547] | 761 | INTEGER(iwp) :: i !< running index x direction |
---|
| 762 | INTEGER(iwp) :: j !< running index y direction |
---|
| 763 | INTEGER(iwp) :: k !< running index z direction |
---|
| 764 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 765 | |
---|
[3547] | 766 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 767 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 768 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 769 | ! |
---|
| 770 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 771 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 772 | DO m = 1, surf%ns |
---|
| 773 | i = surf%i(m) |
---|
| 774 | j = surf%j(m) |
---|
| 775 | k = surf%k(m) |
---|
| 776 | |
---|
| 777 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + & |
---|
| 778 | u(k,j,i+1) + u(k,j,i) ) |
---|
| 779 | v_i = 0.0_wp |
---|
| 780 | w_i = w(k,j,i) |
---|
| 781 | |
---|
| 782 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 783 | ENDDO |
---|
| 784 | ! |
---|
| 785 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 786 | ELSE |
---|
| 787 | DO m = 1, surf%ns |
---|
| 788 | i = surf%i(m) |
---|
| 789 | j = surf%j(m) |
---|
| 790 | k = surf%k(m) |
---|
| 791 | |
---|
| 792 | u_i = 0.0_wp |
---|
| 793 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + & |
---|
| 794 | v(k,j+1,i) + v(k,j,i) ) |
---|
| 795 | w_i = w(k,j,i) |
---|
| 796 | |
---|
| 797 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 798 | ENDDO |
---|
| 799 | ENDIF |
---|
| 800 | |
---|
| 801 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 802 | |
---|
| 803 | !------------------------------------------------------------------------------! |
---|
| 804 | ! Description: |
---|
| 805 | ! ------------ |
---|
| 806 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 807 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 808 | !------------------------------------------------------------------------------! |
---|
| 809 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 810 | |
---|
| 811 | IMPLICIT NONE |
---|
| 812 | |
---|
[3547] | 813 | INTEGER(iwp) :: i !< running index x direction |
---|
| 814 | INTEGER(iwp) :: j !< running index y direction |
---|
| 815 | INTEGER(iwp) :: k !< running index z direction |
---|
| 816 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 817 | |
---|
[3547] | 818 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 819 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 820 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 821 | |
---|
| 822 | ! |
---|
| 823 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 824 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 825 | DO m = 1, surf%ns |
---|
| 826 | i = surf%i(m) |
---|
| 827 | j = surf%j(m) |
---|
| 828 | k = surf%k(m) |
---|
| 829 | |
---|
| 830 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 831 | v_i = 0.0_wp |
---|
| 832 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 833 | |
---|
| 834 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 835 | ENDDO |
---|
| 836 | ! |
---|
| 837 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 838 | ELSE |
---|
| 839 | DO m = 1, surf%ns |
---|
| 840 | i = surf%i(m) |
---|
| 841 | j = surf%j(m) |
---|
| 842 | k = surf%k(m) |
---|
| 843 | |
---|
| 844 | u_i = 0.0_wp |
---|
| 845 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 846 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 847 | |
---|
| 848 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 849 | ENDDO |
---|
| 850 | ENDIF |
---|
| 851 | |
---|
| 852 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 853 | |
---|
| 854 | |
---|
| 855 | !------------------------------------------------------------------------------! |
---|
| 856 | ! Description: |
---|
| 857 | ! ------------ |
---|
[1709] | 858 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
| 859 | !------------------------------------------------------------------------------! |
---|
| 860 | SUBROUTINE calc_ol |
---|
| 861 | |
---|
| 862 | IMPLICIT NONE |
---|
| 863 | |
---|
[2232] | 864 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 865 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 866 | |
---|
[4366] | 867 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
[4370] | 868 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
[4366] | 869 | |
---|
[1709] | 870 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 871 | f_d_ol, & !< Derivative of f |
---|
| 872 | ol_l, & !< Lower bound of L for Newton iteration |
---|
| 873 | ol_m, & !< Previous value of L for Newton iteration |
---|
| 874 | ol_old, & !< Previous time step value of L |
---|
| 875 | ol_u !< Upper bound of L for Newton iteration |
---|
| 876 | |
---|
[4366] | 877 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
| 878 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
[4370] | 879 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
[4366] | 880 | |
---|
[2232] | 881 | ! |
---|
[3668] | 882 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
| 883 | !-- definition based on setting of boundary conditions |
---|
| 884 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 885 | IF ( humidity ) THEN |
---|
| 886 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 887 | DO m = 1, surf%ns |
---|
[1691] | 888 | |
---|
[3668] | 889 | z_mo = surf%z_mo(m) |
---|
[2232] | 890 | |
---|
[3668] | 891 | surf%rib(m) = g * z_mo & |
---|
| 892 | * ( surf%vpt1(m) - surf%vpt_surface(m) ) & |
---|
| 893 | / ( surf%uvw_abs(m)**2 * surf%vpt1(m) & |
---|
| 894 | + 1.0E-20_wp ) |
---|
| 895 | ENDDO |
---|
| 896 | ELSE |
---|
| 897 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 898 | DO m = 1, surf%ns |
---|
[2232] | 899 | |
---|
[3668] | 900 | z_mo = surf%z_mo(m) |
---|
[2232] | 901 | |
---|
[3668] | 902 | surf%rib(m) = g * z_mo & |
---|
| 903 | * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 904 | / ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 905 | ENDDO |
---|
| 906 | ENDIF |
---|
| 907 | ELSE |
---|
| 908 | IF ( humidity ) THEN |
---|
| 909 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 910 | DO m = 1, surf%ns |
---|
[2232] | 911 | |
---|
[3668] | 912 | k = surf%k(m) |
---|
[2232] | 913 | |
---|
[3668] | 914 | z_mo = surf%z_mo(m) |
---|
[2232] | 915 | |
---|
[3668] | 916 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
[3146] | 917 | * surf%qv1(m) ) * surf%shf(m) + 0.61_wp & |
---|
| 918 | * surf%pt1(m) * surf%qsws(m) ) * & |
---|
[2232] | 919 | drho_air_zw(k-1) / & |
---|
[3146] | 920 | ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 921 | + 1.0E-20_wp ) |
---|
[3668] | 922 | ENDDO |
---|
| 923 | ELSE |
---|
| 924 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 925 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 926 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 927 | DO m = 1, surf%ns |
---|
[1691] | 928 | |
---|
[3668] | 929 | k = surf%k(m) |
---|
[2232] | 930 | |
---|
[3668] | 931 | z_mo = surf%z_mo(m) |
---|
[2232] | 932 | |
---|
[3668] | 933 | surf%rib(m) = - g * z_mo * surf%shf(m) * & |
---|
| 934 | drho_air_zw(k-1) / & |
---|
| 935 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 & |
---|
| 936 | + 1.0E-20_wp ) |
---|
| 937 | ENDDO |
---|
[2232] | 938 | ENDIF |
---|
[1691] | 939 | ENDIF |
---|
| 940 | |
---|
[4366] | 941 | IF ( loop_optimization == 'cache' ) THEN |
---|
[1691] | 942 | ! |
---|
[4366] | 943 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 944 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
| 945 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
| 946 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 947 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 948 | !$ACC PRESENT(surf) |
---|
| 949 | DO m = 1, surf%ns |
---|
[1691] | 950 | |
---|
[4366] | 951 | i = surf%i(m) |
---|
| 952 | j = surf%j(m) |
---|
[1691] | 953 | |
---|
[4366] | 954 | z_mo = surf%z_mo(m) |
---|
[1691] | 955 | |
---|
| 956 | ! |
---|
[4366] | 957 | !-- Store current value in case the Newton iteration fails |
---|
| 958 | ol_old = surf%ol(m) |
---|
[1691] | 959 | |
---|
| 960 | ! |
---|
[4366] | 961 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 962 | !-- length have the same sign |
---|
| 963 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 964 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 965 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 966 | ENDIF |
---|
[1691] | 967 | ! |
---|
[4366] | 968 | !-- Iteration to find Obukhov length |
---|
| 969 | iter = 0 |
---|
| 970 | DO |
---|
| 971 | iter = iter + 1 |
---|
| 972 | ! |
---|
| 973 | !-- In case of divergence, use the value of the previous time step |
---|
| 974 | IF ( iter > 1000 ) THEN |
---|
| 975 | surf%ol(m) = ol_old |
---|
| 976 | EXIT |
---|
| 977 | ENDIF |
---|
| 978 | |
---|
| 979 | ol_m = surf%ol(m) |
---|
| 980 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 981 | ol_u = ol_m + 0.001_wp * ol_m |
---|
| 982 | |
---|
| 983 | |
---|
| 984 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 985 | ! |
---|
| 986 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 987 | f = surf%rib(m) - ( z_mo / ol_m ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 988 | - psi_h( z_mo / ol_m ) & |
---|
| 989 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
| 990 | ) / & |
---|
| 991 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 992 | - psi_m( z_mo / ol_m ) & |
---|
| 993 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 994 | )**2 |
---|
| 995 | |
---|
| 996 | ! |
---|
| 997 | !-- Calculate df/dL |
---|
| 998 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 999 | - psi_h( z_mo / ol_u ) & |
---|
| 1000 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1001 | ) / & |
---|
| 1002 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1003 | - psi_m( z_mo / ol_u ) & |
---|
| 1004 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1005 | )**2 & |
---|
| 1006 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1007 | - psi_h( z_mo / ol_l ) & |
---|
| 1008 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1009 | ) / & |
---|
| 1010 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1011 | - psi_m( z_mo / ol_l ) & |
---|
| 1012 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1013 | )**2 & |
---|
| 1014 | ) / ( ol_u - ol_l ) |
---|
| 1015 | ELSE |
---|
| 1016 | ! |
---|
| 1017 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1018 | f = surf%rib(m) - ( z_mo / ol_m ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1019 | - psi_m( z_mo / ol_m ) & |
---|
| 1020 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1021 | )**3 |
---|
| 1022 | |
---|
| 1023 | ! |
---|
| 1024 | !-- Calculate df/dL |
---|
| 1025 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1026 | - psi_m( z_mo / ol_u ) & |
---|
| 1027 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1028 | )**3 & |
---|
| 1029 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1030 | - psi_m( z_mo / ol_l ) & |
---|
| 1031 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1032 | )**3 & |
---|
| 1033 | ) / ( ol_u - ol_l ) |
---|
| 1034 | ENDIF |
---|
| 1035 | ! |
---|
| 1036 | !-- Calculate new L |
---|
| 1037 | surf%ol(m) = ol_m - f / f_d_ol |
---|
| 1038 | |
---|
| 1039 | ! |
---|
| 1040 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1041 | !-- length have the same sign and ensure convergence. |
---|
| 1042 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
| 1043 | ! |
---|
| 1044 | !-- If unrealistic value occurs, set L to the maximum |
---|
| 1045 | !-- value that is allowed |
---|
| 1046 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1047 | surf%ol(m) = ol_max |
---|
| 1048 | EXIT |
---|
| 1049 | ENDIF |
---|
| 1050 | ! |
---|
| 1051 | !-- Assure that Obukhov length does not become zero. If the limit is |
---|
| 1052 | !-- reached, exit the loop. |
---|
| 1053 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1054 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1055 | EXIT |
---|
| 1056 | ENDIF |
---|
| 1057 | ! |
---|
| 1058 | !-- Check for convergence |
---|
| 1059 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
| 1060 | |
---|
| 1061 | ENDDO |
---|
| 1062 | ENDDO |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Vector Version |
---|
| 1066 | ELSE |
---|
| 1067 | ! |
---|
| 1068 | !-- Calculate the Obukhov length using Newton iteration |
---|
| 1069 | !-- First set arrays required for vectorization |
---|
[4370] | 1070 | !$ACC PARALLEL LOOP & |
---|
| 1071 | !$ACC PRESENT(surf) |
---|
[4366] | 1072 | DO m = 1, surf%ns |
---|
| 1073 | |
---|
| 1074 | z_mo_vec(m) = surf%z_mo(m) |
---|
| 1075 | |
---|
| 1076 | ! |
---|
| 1077 | !-- Store current value in case the Newton iteration fails |
---|
| 1078 | ol_old_vec(m) = surf%ol(m) |
---|
| 1079 | |
---|
| 1080 | ! |
---|
| 1081 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
| 1082 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1083 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1084 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1085 | ENDIF |
---|
[4370] | 1086 | ! |
---|
| 1087 | !-- Initialize convergence flag |
---|
| 1088 | convergence_reached(m) = .FALSE. |
---|
[4366] | 1089 | |
---|
| 1090 | ENDDO |
---|
| 1091 | |
---|
| 1092 | ! |
---|
[3668] | 1093 | !-- Iteration to find Obukhov length |
---|
| 1094 | iter = 0 |
---|
| 1095 | DO |
---|
[4366] | 1096 | |
---|
[3668] | 1097 | iter = iter + 1 |
---|
[1691] | 1098 | ! |
---|
[4366] | 1099 | !-- In case of divergence, use the value(s) of the previous time step |
---|
[3668] | 1100 | IF ( iter > 1000 ) THEN |
---|
[4370] | 1101 | !$ACC PARALLEL LOOP & |
---|
| 1102 | !$ACC PRESENT(surf) |
---|
[4366] | 1103 | DO m = 1, surf%ns |
---|
[4370] | 1104 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
[4366] | 1105 | ENDDO |
---|
[3668] | 1106 | EXIT |
---|
| 1107 | ENDIF |
---|
[1691] | 1108 | |
---|
[4370] | 1109 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 1110 | !$ACC PRESENT(surf) |
---|
[4366] | 1111 | DO m = 1, surf%ns |
---|
[1691] | 1112 | |
---|
[4366] | 1113 | IF ( convergence_reached(m) ) CYCLE |
---|
| 1114 | |
---|
| 1115 | ol_m = surf%ol(m) |
---|
| 1116 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1117 | ol_u = ol_m + 0.001_wp * ol_m |
---|
| 1118 | |
---|
| 1119 | |
---|
| 1120 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1121 | ! |
---|
[4366] | 1122 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 1123 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
| 1124 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
| 1125 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
| 1126 | ) / & |
---|
| 1127 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1128 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1129 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1130 | )**2 |
---|
[1691] | 1131 | |
---|
| 1132 | ! |
---|
[4366] | 1133 | !-- Calculate df/dL |
---|
| 1134 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
| 1135 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
| 1136 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1137 | ) / & |
---|
| 1138 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1139 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1140 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1141 | )**2 & |
---|
| 1142 | + ( z_mo_vec(m) / ol_l ) * ( LOG( z_mo_vec(m) / surf%z0h(m) ) & |
---|
| 1143 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
| 1144 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1145 | ) / & |
---|
| 1146 | ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1147 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1148 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1149 | )**2 & |
---|
| 1150 | ) / ( ol_u - ol_l ) |
---|
| 1151 | ELSE |
---|
[1691] | 1152 | ! |
---|
[4366] | 1153 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1154 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1155 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
| 1156 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1157 | )**3 |
---|
[1691] | 1158 | |
---|
| 1159 | ! |
---|
[4366] | 1160 | !-- Calculate df/dL |
---|
| 1161 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1162 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
| 1163 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1164 | )**3 & |
---|
| 1165 | + ( z_mo_vec(m) / ol_l ) / ( LOG( z_mo_vec(m) / surf%z0(m) ) & |
---|
| 1166 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
| 1167 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1168 | )**3 & |
---|
| 1169 | ) / ( ol_u - ol_l ) |
---|
| 1170 | ENDIF |
---|
[1691] | 1171 | ! |
---|
[4366] | 1172 | !-- Calculate new L |
---|
| 1173 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1174 | |
---|
| 1175 | ! |
---|
[4366] | 1176 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1177 | !-- length have the same sign and ensure convergence. |
---|
| 1178 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
| 1179 | |
---|
[1691] | 1180 | ! |
---|
[4366] | 1181 | !-- Check for convergence |
---|
| 1182 | !-- This check does not modify surf%ol, therefore this is done first |
---|
| 1183 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1184 | convergence_reached(m) = .TRUE. |
---|
| 1185 | ENDIF |
---|
[1691] | 1186 | ! |
---|
[4366] | 1187 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
| 1188 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1189 | surf%ol(m) = ol_max |
---|
| 1190 | convergence_reached(m) = .TRUE. |
---|
| 1191 | ENDIF |
---|
| 1192 | |
---|
| 1193 | ENDDO |
---|
[4186] | 1194 | ! |
---|
[4366] | 1195 | !-- Assure that Obukhov length does not become zero |
---|
[4370] | 1196 | !$ACC PARALLEL LOOP & |
---|
| 1197 | !$ACC PRESENT(surf) |
---|
[4366] | 1198 | DO m = 1, surf%ns |
---|
| 1199 | IF ( convergence_reached(m) ) CYCLE |
---|
| 1200 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1201 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
| 1202 | convergence_reached(m) = .TRUE. |
---|
| 1203 | ENDIF |
---|
| 1204 | ENDDO |
---|
[1691] | 1205 | |
---|
[4366] | 1206 | IF ( ALL( convergence_reached ) ) EXIT |
---|
[1691] | 1207 | |
---|
[4366] | 1208 | ENDDO ! end of iteration loop |
---|
| 1209 | |
---|
| 1210 | ENDIF ! end of vector branch |
---|
| 1211 | |
---|
[1691] | 1212 | END SUBROUTINE calc_ol |
---|
| 1213 | |
---|
| 1214 | ! |
---|
| 1215 | !-- Calculate friction velocity u* |
---|
| 1216 | SUBROUTINE calc_us |
---|
| 1217 | |
---|
| 1218 | IMPLICIT NONE |
---|
| 1219 | |
---|
[2232] | 1220 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1221 | |
---|
[2232] | 1222 | ! |
---|
| 1223 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1224 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1225 | ! |
---|
| 1226 | !-- Compute u* at upward-facing surfaces |
---|
| 1227 | IF ( .NOT. downward ) THEN |
---|
[2281] | 1228 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1229 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1230 | !$ACC PRESENT(surf) |
---|
[2232] | 1231 | DO m = 1, surf%ns |
---|
[1691] | 1232 | |
---|
[2232] | 1233 | z_mo = surf%z_mo(m) |
---|
[1691] | 1234 | ! |
---|
[2232] | 1235 | !-- Compute u* at the scalars' grid points |
---|
| 1236 | surf%us(m) = kappa * surf%uvw_abs(m) / & |
---|
| 1237 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1238 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1239 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1240 | |
---|
| 1241 | ENDDO |
---|
| 1242 | ! |
---|
| 1243 | !-- Compute u* at downward-facing surfaces. This case, do not consider |
---|
| 1244 | !-- any stability. |
---|
| 1245 | ELSE |
---|
[2281] | 1246 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1247 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1248 | !$ACC PRESENT(surf) |
---|
[2232] | 1249 | DO m = 1, surf%ns |
---|
| 1250 | |
---|
| 1251 | z_mo = surf%z_mo(m) |
---|
| 1252 | ! |
---|
| 1253 | !-- Compute u* at the scalars' grid points |
---|
| 1254 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
| 1255 | |
---|
| 1256 | ENDDO |
---|
| 1257 | ENDIF |
---|
| 1258 | ! |
---|
| 1259 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1260 | !-- No stability is considered in this case. |
---|
| 1261 | ELSE |
---|
| 1262 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1263 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1264 | !$ACC PRESENT(surf) |
---|
[2232] | 1265 | DO m = 1, surf%ns |
---|
| 1266 | z_mo = surf%z_mo(m) |
---|
| 1267 | |
---|
| 1268 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1269 | ENDDO |
---|
[2232] | 1270 | ENDIF |
---|
[1691] | 1271 | |
---|
| 1272 | END SUBROUTINE calc_us |
---|
| 1273 | |
---|
| 1274 | ! |
---|
[3146] | 1275 | !-- Calculate potential temperature, specific humidity, and virtual potential |
---|
| 1276 | !-- temperature at first grid level |
---|
[1691] | 1277 | SUBROUTINE calc_pt_q |
---|
| 1278 | |
---|
| 1279 | IMPLICIT NONE |
---|
| 1280 | |
---|
[2232] | 1281 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1282 | |
---|
| 1283 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1284 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1285 | !$ACC PRESENT(surf, pt) |
---|
[2232] | 1286 | DO m = 1, surf%ns |
---|
| 1287 | |
---|
| 1288 | i = surf%i(m) |
---|
| 1289 | j = surf%j(m) |
---|
| 1290 | k = surf%k(m) |
---|
| 1291 | |
---|
[3634] | 1292 | #ifndef _OPENACC |
---|
[3274] | 1293 | IF ( bulk_cloud_model ) THEN |
---|
| 1294 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
[2547] | 1295 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1296 | ELSEIF( cloud_droplets ) THEN |
---|
[3274] | 1297 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
[2547] | 1298 | surf%qv1(m) = q(k,j,i) |
---|
[2696] | 1299 | ELSE |
---|
[3634] | 1300 | #endif |
---|
[2696] | 1301 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1302 | #ifndef _OPENACC |
---|
[2696] | 1303 | IF ( humidity ) THEN |
---|
| 1304 | surf%qv1(m) = q(k,j,i) |
---|
| 1305 | ELSE |
---|
[3634] | 1306 | #endif |
---|
[2696] | 1307 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1308 | #ifndef _OPENACC |
---|
[2696] | 1309 | ENDIF |
---|
[2547] | 1310 | ENDIF |
---|
[2232] | 1311 | |
---|
[3146] | 1312 | IF ( humidity ) THEN |
---|
| 1313 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1314 | ENDIF |
---|
[3634] | 1315 | #endif |
---|
[3146] | 1316 | |
---|
[1691] | 1317 | ENDDO |
---|
| 1318 | |
---|
| 1319 | END SUBROUTINE calc_pt_q |
---|
| 1320 | |
---|
[2696] | 1321 | |
---|
[1691] | 1322 | ! |
---|
[3152] | 1323 | !-- Set potential temperature at surface grid level. |
---|
[2696] | 1324 | !-- ( only for upward-facing surfs ) |
---|
| 1325 | SUBROUTINE calc_pt_surface |
---|
| 1326 | |
---|
| 1327 | IMPLICIT NONE |
---|
| 1328 | |
---|
[3146] | 1329 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
[2696] | 1330 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1331 | |
---|
[3146] | 1332 | k_off = surf%koff |
---|
[2696] | 1333 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1334 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1335 | !$ACC PRESENT(surf, pt) |
---|
[2696] | 1336 | DO m = 1, surf%ns |
---|
| 1337 | |
---|
| 1338 | i = surf%i(m) |
---|
| 1339 | j = surf%j(m) |
---|
| 1340 | k = surf%k(m) |
---|
| 1341 | |
---|
[3146] | 1342 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
[2696] | 1343 | |
---|
| 1344 | ENDDO |
---|
| 1345 | |
---|
| 1346 | END SUBROUTINE calc_pt_surface |
---|
| 1347 | |
---|
| 1348 | ! |
---|
[3152] | 1349 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
| 1350 | SUBROUTINE calc_q_surface |
---|
| 1351 | |
---|
| 1352 | IMPLICIT NONE |
---|
| 1353 | |
---|
| 1354 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1355 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1356 | |
---|
| 1357 | k_off = surf%koff |
---|
| 1358 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1359 | DO m = 1, surf%ns |
---|
| 1360 | |
---|
| 1361 | i = surf%i(m) |
---|
| 1362 | j = surf%j(m) |
---|
| 1363 | k = surf%k(m) |
---|
| 1364 | |
---|
| 1365 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1366 | |
---|
| 1367 | ENDDO |
---|
| 1368 | |
---|
| 1369 | END SUBROUTINE calc_q_surface |
---|
| 1370 | |
---|
| 1371 | ! |
---|
| 1372 | !-- Set virtual potential temperature at surface grid level. |
---|
[3146] | 1373 | !-- ( only for upward-facing surfs ) |
---|
| 1374 | SUBROUTINE calc_vpt_surface |
---|
| 1375 | |
---|
| 1376 | IMPLICIT NONE |
---|
| 1377 | |
---|
| 1378 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1379 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1380 | |
---|
| 1381 | k_off = surf%koff |
---|
| 1382 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1383 | DO m = 1, surf%ns |
---|
| 1384 | |
---|
| 1385 | i = surf%i(m) |
---|
| 1386 | j = surf%j(m) |
---|
| 1387 | k = surf%k(m) |
---|
| 1388 | |
---|
| 1389 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
| 1390 | |
---|
| 1391 | ENDDO |
---|
| 1392 | |
---|
| 1393 | END SUBROUTINE calc_vpt_surface |
---|
| 1394 | |
---|
| 1395 | ! |
---|
[2292] | 1396 | !-- Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
[1691] | 1397 | SUBROUTINE calc_scaling_parameters |
---|
| 1398 | |
---|
| 1399 | IMPLICIT NONE |
---|
| 1400 | |
---|
[2232] | 1401 | |
---|
| 1402 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1403 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1404 | ! |
---|
[2232] | 1405 | !-- Compute theta* at horizontal surfaces |
---|
| 1406 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1407 | ! |
---|
| 1408 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1409 | |
---|
| 1410 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1411 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1412 | !$ACC PRESENT(surf, drho_air_zw) |
---|
[2232] | 1413 | DO m = 1, surf%ns |
---|
| 1414 | |
---|
| 1415 | i = surf%i(m) |
---|
| 1416 | j = surf%j(m) |
---|
| 1417 | k = surf%k(m) |
---|
| 1418 | |
---|
| 1419 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1420 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1421 | |
---|
[1691] | 1422 | ! |
---|
[2232] | 1423 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1424 | !-- of us=0 when computing ol further below |
---|
| 1425 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1426 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1427 | |
---|
[1691] | 1428 | ENDDO |
---|
| 1429 | |
---|
[2232] | 1430 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1431 | ! |
---|
| 1432 | !-- For a given surface temperature: |
---|
[1788] | 1433 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1434 | |
---|
| 1435 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1436 | DO m = 1, surf%ns |
---|
| 1437 | i = surf%i(m) |
---|
| 1438 | j = surf%j(m) |
---|
| 1439 | k = surf%k(m) |
---|
| 1440 | |
---|
| 1441 | pt(k-1,j,i) = pt_surface |
---|
[1691] | 1442 | ENDDO |
---|
| 1443 | ENDIF |
---|
| 1444 | |
---|
[2696] | 1445 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1446 | DO m = 1, surf%ns |
---|
[1691] | 1447 | |
---|
[2696] | 1448 | z_mo = surf%z_mo(m) |
---|
[1691] | 1449 | |
---|
[2696] | 1450 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 1451 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1452 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1453 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[1691] | 1454 | |
---|
[2696] | 1455 | ENDDO |
---|
[2232] | 1456 | |
---|
| 1457 | ENDIF |
---|
| 1458 | ! |
---|
| 1459 | !-- Compute theta* at vertical surfaces. This is only required in case of |
---|
| 1460 | !-- land-surface model, in order to compute aerodynamical resistance. |
---|
| 1461 | IF ( surf_vertical ) THEN |
---|
[2281] | 1462 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1463 | DO m = 1, surf%ns |
---|
| 1464 | |
---|
| 1465 | i = surf%i(m) |
---|
| 1466 | j = surf%j(m) |
---|
| 1467 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1468 | ! |
---|
| 1469 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1470 | !-- of us=0 when computing ol further below |
---|
| 1471 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1472 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1473 | |
---|
[1691] | 1474 | ENDDO |
---|
| 1475 | ENDIF |
---|
| 1476 | |
---|
| 1477 | ! |
---|
[2232] | 1478 | !-- If required compute q* at horizontal surfaces |
---|
[1960] | 1479 | IF ( humidity ) THEN |
---|
[2232] | 1480 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1481 | ! |
---|
[1788] | 1482 | !-- For a given water flux in the surface layer |
---|
[2232] | 1483 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1484 | DO m = 1, surf%ns |
---|
| 1485 | |
---|
| 1486 | i = surf%i(m) |
---|
| 1487 | j = surf%j(m) |
---|
| 1488 | k = surf%k(m) |
---|
| 1489 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / & |
---|
| 1490 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1491 | |
---|
[1691] | 1492 | ENDDO |
---|
| 1493 | |
---|
[2232] | 1494 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1788] | 1495 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
[1691] | 1496 | run_coupled ) |
---|
| 1497 | |
---|
[1788] | 1498 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1499 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1500 | DO m = 1, surf%ns |
---|
| 1501 | |
---|
| 1502 | i = surf%i(m) |
---|
| 1503 | j = surf%j(m) |
---|
| 1504 | k = surf%k(m) |
---|
| 1505 | q(k-1,j,i) = q_surface |
---|
| 1506 | |
---|
[1691] | 1507 | ENDDO |
---|
| 1508 | ENDIF |
---|
| 1509 | |
---|
| 1510 | ! |
---|
[2232] | 1511 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 1512 | !-- in case of precursor runs) |
---|
| 1513 | IF ( coupled_run ) THEN |
---|
| 1514 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1515 | DO m = 1, surf%ns |
---|
| 1516 | i = surf%i(m) |
---|
| 1517 | j = surf%j(m) |
---|
| 1518 | k = surf%k(m) |
---|
| 1519 | e_s = 6.1_wp * & |
---|
| 1520 | EXP( 0.07_wp * ( MIN(pt(k-1,j,i),pt(k,j,i)) & |
---|
[1691] | 1521 | - 273.15_wp ) ) |
---|
[3361] | 1522 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
[2232] | 1523 | ENDDO |
---|
| 1524 | ENDIF |
---|
[1691] | 1525 | |
---|
[3274] | 1526 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[2232] | 1527 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1528 | DO m = 1, surf%ns |
---|
[1691] | 1529 | |
---|
[2232] | 1530 | i = surf%i(m) |
---|
| 1531 | j = surf%j(m) |
---|
| 1532 | k = surf%k(m) |
---|
| 1533 | |
---|
| 1534 | z_mo = surf%z_mo(m) |
---|
[1691] | 1535 | |
---|
[3152] | 1536 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[2232] | 1537 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1538 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1539 | + psi_h( surf%z0q(m) / & |
---|
| 1540 | surf%ol(m) ) ) |
---|
[1691] | 1541 | ENDDO |
---|
[2232] | 1542 | ELSE |
---|
| 1543 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1544 | DO m = 1, surf%ns |
---|
| 1545 | |
---|
| 1546 | i = surf%i(m) |
---|
| 1547 | j = surf%j(m) |
---|
| 1548 | k = surf%k(m) |
---|
| 1549 | |
---|
| 1550 | z_mo = surf%z_mo(m) |
---|
| 1551 | |
---|
| 1552 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
| 1553 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1554 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1555 | + psi_h( surf%z0q(m) / & |
---|
| 1556 | surf%ol(m) ) ) |
---|
| 1557 | ENDDO |
---|
| 1558 | ENDIF |
---|
| 1559 | ENDIF |
---|
| 1560 | ! |
---|
| 1561 | !-- Compute q* at vertical surfaces |
---|
| 1562 | IF ( surf_vertical ) THEN |
---|
[2281] | 1563 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1564 | DO m = 1, surf%ns |
---|
| 1565 | |
---|
| 1566 | i = surf%i(m) |
---|
| 1567 | j = surf%j(m) |
---|
| 1568 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1569 | |
---|
[1691] | 1570 | ENDDO |
---|
| 1571 | ENDIF |
---|
| 1572 | ENDIF |
---|
[1960] | 1573 | |
---|
| 1574 | ! |
---|
| 1575 | !-- If required compute s* |
---|
| 1576 | IF ( passive_scalar ) THEN |
---|
| 1577 | ! |
---|
[2232] | 1578 | !-- At horizontal surfaces |
---|
| 1579 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1580 | ! |
---|
| 1581 | !-- For a given scalar flux in the surface layer |
---|
[2281] | 1582 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1583 | DO m = 1, surf%ns |
---|
| 1584 | i = surf%i(m) |
---|
| 1585 | j = surf%j(m) |
---|
| 1586 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1587 | ENDDO |
---|
| 1588 | ENDIF |
---|
[2232] | 1589 | ! |
---|
| 1590 | !-- At vertical surfaces |
---|
| 1591 | IF ( surf_vertical ) THEN |
---|
[2281] | 1592 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1593 | DO m = 1, surf%ns |
---|
| 1594 | i = surf%i(m) |
---|
| 1595 | j = surf%j(m) |
---|
| 1596 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1597 | ENDDO |
---|
| 1598 | ENDIF |
---|
[1960] | 1599 | ENDIF |
---|
[1691] | 1600 | |
---|
[2292] | 1601 | ! |
---|
[2696] | 1602 | !-- If required compute cs* (chemical species) |
---|
| 1603 | IF ( air_chemistry ) THEN |
---|
| 1604 | ! |
---|
| 1605 | !-- At horizontal surfaces |
---|
| 1606 | DO lsp = 1, nvar |
---|
| 1607 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1608 | !-- For a given chemical species' flux in the surface layer |
---|
| 1609 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1610 | DO m = 1, surf%ns |
---|
| 1611 | i = surf%i(m) |
---|
| 1612 | j = surf%j(m) |
---|
| 1613 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1614 | ENDDO |
---|
| 1615 | ENDIF |
---|
| 1616 | ENDDO |
---|
| 1617 | ! |
---|
| 1618 | !-- At vertical surfaces |
---|
| 1619 | IF ( surf_vertical ) THEN |
---|
| 1620 | DO lsp = 1, nvar |
---|
| 1621 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1622 | DO m = 1, surf%ns |
---|
| 1623 | i = surf%i(m) |
---|
| 1624 | j = surf%j(m) |
---|
| 1625 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1626 | ENDDO |
---|
| 1627 | ENDDO |
---|
| 1628 | ENDIF |
---|
| 1629 | ENDIF |
---|
| 1630 | |
---|
| 1631 | ! |
---|
[2292] | 1632 | !-- If required compute qc* and nc* |
---|
[3274] | 1633 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
[2292] | 1634 | .NOT. surf_vertical ) THEN |
---|
| 1635 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1636 | DO m = 1, surf%ns |
---|
[1691] | 1637 | |
---|
[2292] | 1638 | i = surf%i(m) |
---|
| 1639 | j = surf%j(m) |
---|
| 1640 | k = surf%k(m) |
---|
| 1641 | |
---|
| 1642 | z_mo = surf%z_mo(m) |
---|
| 1643 | |
---|
| 1644 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
| 1645 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1646 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1647 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1648 | |
---|
| 1649 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
| 1650 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1651 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1652 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1653 | ENDDO |
---|
| 1654 | |
---|
| 1655 | ENDIF |
---|
| 1656 | |
---|
[1691] | 1657 | ! |
---|
| 1658 | !-- If required compute qr* and nr* |
---|
[3274] | 1659 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
[2232] | 1660 | .NOT. surf_vertical ) THEN |
---|
| 1661 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1662 | DO m = 1, surf%ns |
---|
[1691] | 1663 | |
---|
[2232] | 1664 | i = surf%i(m) |
---|
| 1665 | j = surf%j(m) |
---|
| 1666 | k = surf%k(m) |
---|
[1691] | 1667 | |
---|
[2232] | 1668 | z_mo = surf%z_mo(m) |
---|
[1691] | 1669 | |
---|
[2232] | 1670 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
| 1671 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1672 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1673 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1674 | |
---|
[2232] | 1675 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
| 1676 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1677 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1678 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1679 | ENDDO |
---|
| 1680 | |
---|
| 1681 | ENDIF |
---|
| 1682 | |
---|
| 1683 | END SUBROUTINE calc_scaling_parameters |
---|
| 1684 | |
---|
| 1685 | |
---|
| 1686 | |
---|
| 1687 | ! |
---|
[2292] | 1688 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
[1691] | 1689 | SUBROUTINE calc_surface_fluxes |
---|
| 1690 | |
---|
| 1691 | IMPLICIT NONE |
---|
| 1692 | |
---|
[2696] | 1693 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1694 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1695 | |
---|
[2232] | 1696 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1697 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1698 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1699 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1700 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1701 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
[1691] | 1702 | |
---|
| 1703 | ! |
---|
[2232] | 1704 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1705 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1706 | ! |
---|
| 1707 | !-- Compute u'w' for the total model domain at upward-facing surfaces. |
---|
| 1708 | !-- First compute the corresponding component of u* and square it. |
---|
| 1709 | IF ( .NOT. downward ) THEN |
---|
| 1710 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[3634] | 1711 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1712 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
[2232] | 1713 | DO m = 1, surf%ns |
---|
| 1714 | |
---|
| 1715 | i = surf%i(m) |
---|
| 1716 | j = surf%j(m) |
---|
| 1717 | k = surf%k(m) |
---|
[1691] | 1718 | |
---|
[2232] | 1719 | z_mo = surf%z_mo(m) |
---|
[1691] | 1720 | |
---|
[2232] | 1721 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
| 1722 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1723 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1724 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1725 | ! |
---|
| 1726 | !-- Please note, the computation of usws is not fully accurate. Actually |
---|
| 1727 | !-- a further interpolation of us onto the u-grid, where usws is defined, |
---|
| 1728 | !-- is required. However, this is not done as this would require several |
---|
| 1729 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1730 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1731 | !-- tests had shown. |
---|
| 1732 | !-- Same also for ol. |
---|
| 1733 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1734 | |
---|
[2232] | 1735 | ENDDO |
---|
[1691] | 1736 | ! |
---|
[2232] | 1737 | !-- At downward-facing surfaces |
---|
| 1738 | ELSE |
---|
| 1739 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1740 | DO m = 1, surf%ns |
---|
| 1741 | |
---|
| 1742 | i = surf%i(m) |
---|
| 1743 | j = surf%j(m) |
---|
| 1744 | k = surf%k(m) |
---|
[1691] | 1745 | |
---|
[2232] | 1746 | z_mo = surf%z_mo(m) |
---|
| 1747 | |
---|
| 1748 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1749 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
[1691] | 1750 | |
---|
[2232] | 1751 | ENDDO |
---|
| 1752 | ENDIF |
---|
[1691] | 1753 | |
---|
[2232] | 1754 | ! |
---|
| 1755 | !-- Compute v'w' for the total model domain. |
---|
| 1756 | !-- First compute the corresponding component of u* and square it. |
---|
| 1757 | !-- Upward-facing surfaces |
---|
| 1758 | IF ( .NOT. downward ) THEN |
---|
| 1759 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[3634] | 1760 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1761 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
[2232] | 1762 | DO m = 1, surf%ns |
---|
| 1763 | i = surf%i(m) |
---|
| 1764 | j = surf%j(m) |
---|
| 1765 | k = surf%k(m) |
---|
[1691] | 1766 | |
---|
[2232] | 1767 | z_mo = surf%z_mo(m) |
---|
[1691] | 1768 | |
---|
[2232] | 1769 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
| 1770 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1771 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1772 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1773 | ! |
---|
[2232] | 1774 | !-- Please note, the computation of vsws is not fully accurate. Actually |
---|
| 1775 | !-- a further interpolation of us onto the v-grid, where vsws is defined, |
---|
| 1776 | !-- is required. However, this is not done as this would require several |
---|
| 1777 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1778 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1779 | !-- tests had shown. |
---|
| 1780 | !-- Same also for ol. |
---|
| 1781 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1782 | ENDDO |
---|
| 1783 | ! |
---|
| 1784 | !-- Downward-facing surfaces |
---|
| 1785 | ELSE |
---|
| 1786 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1787 | DO m = 1, surf%ns |
---|
| 1788 | i = surf%i(m) |
---|
| 1789 | j = surf%j(m) |
---|
| 1790 | k = surf%k(m) |
---|
[1691] | 1791 | |
---|
[2232] | 1792 | z_mo = surf%z_mo(m) |
---|
| 1793 | |
---|
| 1794 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1795 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1796 | ENDDO |
---|
| 1797 | ENDIF |
---|
[1691] | 1798 | ! |
---|
[2232] | 1799 | !-- Compute the vertical kinematic heat flux |
---|
[2299] | 1800 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point& |
---|
| 1801 | <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) .OR. & |
---|
[2696] | 1802 | .NOT. land_surface ) .AND. .NOT. urban_surface .AND. & |
---|
[2299] | 1803 | .NOT. downward ) THEN |
---|
[2232] | 1804 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1805 | DO m = 1, surf%ns |
---|
| 1806 | i = surf%i(m) |
---|
| 1807 | j = surf%j(m) |
---|
| 1808 | k = surf%k(m) |
---|
| 1809 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1810 | ENDDO |
---|
[2232] | 1811 | ENDIF |
---|
| 1812 | ! |
---|
| 1813 | !-- Compute the vertical water flux |
---|
| 1814 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
[2299] | 1815 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. & |
---|
[2696] | 1816 | simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1817 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[2232] | 1818 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1819 | DO m = 1, surf%ns |
---|
| 1820 | i = surf%i(m) |
---|
| 1821 | j = surf%j(m) |
---|
| 1822 | k = surf%k(m) |
---|
| 1823 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1824 | ENDDO |
---|
| 1825 | ENDIF |
---|
| 1826 | ! |
---|
| 1827 | !-- Compute the vertical scalar flux |
---|
| 1828 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. & |
---|
| 1829 | .NOT. downward ) THEN |
---|
[2281] | 1830 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1831 | DO m = 1, surf%ns |
---|
[1691] | 1832 | |
---|
[2232] | 1833 | i = surf%i(m) |
---|
| 1834 | j = surf%j(m) |
---|
| 1835 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
[1691] | 1836 | |
---|
[2232] | 1837 | ENDDO |
---|
[2292] | 1838 | ENDIF |
---|
[1691] | 1839 | ! |
---|
[2696] | 1840 | !-- Compute the vertical chemical species' flux |
---|
| 1841 | DO lsp = 1, nvar |
---|
| 1842 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. & |
---|
| 1843 | .NOT. downward ) THEN |
---|
| 1844 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1845 | DO m = 1, surf%ns |
---|
| 1846 | i = surf%i(m) |
---|
| 1847 | j = surf%j(m) |
---|
| 1848 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) |
---|
| 1849 | ENDDO |
---|
| 1850 | ENDIF |
---|
| 1851 | ENDDO |
---|
| 1852 | |
---|
| 1853 | ! |
---|
[2292] | 1854 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
[3274] | 1855 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
[2292] | 1856 | .NOT. downward) THEN |
---|
| 1857 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1858 | DO m = 1, surf%ns |
---|
| 1859 | |
---|
| 1860 | i = surf%i(m) |
---|
| 1861 | j = surf%j(m) |
---|
| 1862 | |
---|
| 1863 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) |
---|
| 1864 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) |
---|
| 1865 | ENDDO |
---|
| 1866 | ENDIF |
---|
| 1867 | ! |
---|
[2232] | 1868 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
[3274] | 1869 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
[2232] | 1870 | .NOT. downward) THEN |
---|
[2281] | 1871 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1872 | DO m = 1, surf%ns |
---|
| 1873 | |
---|
| 1874 | i = surf%i(m) |
---|
| 1875 | j = surf%j(m) |
---|
| 1876 | |
---|
| 1877 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
| 1878 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
[1691] | 1879 | ENDDO |
---|
[2232] | 1880 | ENDIF |
---|
[1691] | 1881 | |
---|
[1960] | 1882 | ! |
---|
[2232] | 1883 | !-- Bottom boundary condition for the TKE. |
---|
| 1884 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1885 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1886 | DO m = 1, surf%ns |
---|
| 1887 | |
---|
| 1888 | i = surf%i(m) |
---|
| 1889 | j = surf%j(m) |
---|
| 1890 | k = surf%k(m) |
---|
| 1891 | |
---|
| 1892 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1893 | ! |
---|
| 1894 | !-- As a test: cm = 0.4 |
---|
| 1895 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1896 | e(k-1,j,i) = e(k,j,i) |
---|
| 1897 | |
---|
[1960] | 1898 | ENDDO |
---|
[2232] | 1899 | ENDIF |
---|
| 1900 | ! |
---|
| 1901 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
| 1902 | ELSE |
---|
| 1903 | ! |
---|
| 1904 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1905 | IF ( mom_uv ) THEN |
---|
| 1906 | ! |
---|
| 1907 | !-- Generalize computation by introducing flags. At north- and south- |
---|
| 1908 | !-- facing surfaces u-component is used, at east- and west-facing |
---|
| 1909 | !-- surfaces v-component is used. |
---|
| 1910 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1911 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
| 1912 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1913 | DO m = 1, surf%ns |
---|
| 1914 | i = surf%i(m) |
---|
| 1915 | j = surf%j(m) |
---|
| 1916 | k = surf%k(m) |
---|
[1691] | 1917 | |
---|
[2232] | 1918 | z_mo = surf%z_mo(m) |
---|
[1960] | 1919 | |
---|
[2232] | 1920 | surf%mom_flux_uv(m) = kappa * & |
---|
| 1921 | ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
| 1922 | LOG( z_mo / surf%z0(m) ) |
---|
| 1923 | |
---|
| 1924 | surf%mom_flux_uv(m) = & |
---|
| 1925 | - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1926 | ENDDO |
---|
| 1927 | ENDIF |
---|
[1691] | 1928 | ! |
---|
[2232] | 1929 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1930 | IF ( mom_w ) THEN |
---|
| 1931 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1932 | DO m = 1, surf%ns |
---|
| 1933 | i = surf%i(m) |
---|
| 1934 | j = surf%j(m) |
---|
| 1935 | k = surf%k(m) |
---|
| 1936 | |
---|
| 1937 | z_mo = surf%z_mo(m) |
---|
| 1938 | |
---|
| 1939 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1940 | |
---|
| 1941 | surf%mom_flux_w(m) = & |
---|
| 1942 | - surf%mom_flux_w(m) * surf%us(m) |
---|
[1691] | 1943 | ENDDO |
---|
[2232] | 1944 | ENDIF |
---|
| 1945 | ! |
---|
| 1946 | !-- Compute momentum fluxes used for subgrid-scale TKE production at |
---|
| 1947 | !-- vertical surfaces. In constrast to the calculated momentum fluxes at |
---|
| 1948 | !-- vertical surfaces before, which are defined on the u/v/w-grid, |
---|
| 1949 | !-- respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1950 | !-- |
---|
| 1951 | IF ( mom_tke ) THEN |
---|
| 1952 | ! |
---|
| 1953 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1954 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1955 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1956 | ALLOCATE( w_i(1:surf%ns) ) |
---|
[1691] | 1957 | |
---|
[2232] | 1958 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1959 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1960 | DO m = 1, surf%ns |
---|
| 1961 | i = surf%i(m) |
---|
| 1962 | j = surf%j(m) |
---|
| 1963 | k = surf%k(m) |
---|
| 1964 | |
---|
| 1965 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1966 | v_i(m) = 0.0_wp |
---|
| 1967 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1968 | ENDDO |
---|
| 1969 | ELSE |
---|
| 1970 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1971 | DO m = 1, surf%ns |
---|
| 1972 | i = surf%i(m) |
---|
| 1973 | j = surf%j(m) |
---|
| 1974 | k = surf%k(m) |
---|
| 1975 | |
---|
| 1976 | u_i(m) = 0.0_wp |
---|
| 1977 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1978 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1979 | ENDDO |
---|
| 1980 | ENDIF |
---|
| 1981 | |
---|
[2281] | 1982 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
[2232] | 1983 | DO m = 1, surf%ns |
---|
| 1984 | i = surf%i(m) |
---|
| 1985 | j = surf%j(m) |
---|
| 1986 | |
---|
| 1987 | z_mo = surf%z_mo(m) |
---|
| 1988 | |
---|
| 1989 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1990 | ! |
---|
[2232] | 1991 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 1992 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 1993 | ! |
---|
[2232] | 1994 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 1995 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
| 1996 | |
---|
| 1997 | surf%mom_flux_tke(0:1,m) = & |
---|
| 1998 | - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
[1691] | 1999 | ENDDO |
---|
[2232] | 2000 | ! |
---|
| 2001 | !-- Deallocate temporary arrays |
---|
| 2002 | DEALLOCATE( u_i ) |
---|
| 2003 | DEALLOCATE( v_i ) |
---|
| 2004 | DEALLOCATE( w_i ) |
---|
| 2005 | ENDIF |
---|
[1691] | 2006 | ENDIF |
---|
| 2007 | |
---|
| 2008 | END SUBROUTINE calc_surface_fluxes |
---|
| 2009 | |
---|
[3597] | 2010 | |
---|
| 2011 | !------------------------------------------------------------------------------! |
---|
| 2012 | ! Description: |
---|
| 2013 | ! ------------ |
---|
| 2014 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m |
---|
| 2015 | !> temperature for output |
---|
| 2016 | !------------------------------------------------------------------------------! |
---|
| 2017 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 2018 | |
---|
[3597] | 2019 | IMPLICIT NONE |
---|
| 2020 | |
---|
[4298] | 2021 | CHARACTER (LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
| 2022 | INTEGER(iwp) :: i !< grid index x-dimension |
---|
| 2023 | INTEGER(iwp) :: j !< grid index y-dimension |
---|
| 2024 | INTEGER(iwp) :: k !< grid index z-dimension |
---|
| 2025 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 2026 | |
---|
| 2027 | |
---|
| 2028 | SELECT CASE ( z_char) |
---|
| 2029 | |
---|
| 2030 | |
---|
| 2031 | CASE ( '10cm' ) |
---|
| 2032 | |
---|
| 2033 | DO m = 1, surf%ns |
---|
| 2034 | |
---|
| 2035 | i = surf%i(m) |
---|
| 2036 | j = surf%j(m) |
---|
| 2037 | k = surf%k(m) |
---|
| 2038 | |
---|
[3744] | 2039 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
| 2040 | * ( LOG( 0.1_wp / surf%z0h(m) ) & |
---|
[4298] | 2041 | - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
[3597] | 2042 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4331] | 2043 | |
---|
[3597] | 2044 | ENDDO |
---|
| 2045 | |
---|
| 2046 | END SELECT |
---|
| 2047 | |
---|
| 2048 | END SUBROUTINE calc_pt_near_surface |
---|
| 2049 | |
---|
| 2050 | |
---|
[1691] | 2051 | ! |
---|
| 2052 | !-- Integrated stability function for momentum |
---|
| 2053 | FUNCTION psi_m( zeta ) |
---|
[3634] | 2054 | !$ACC ROUTINE SEQ |
---|
[1691] | 2055 | |
---|
| 2056 | USE kinds |
---|
| 2057 | |
---|
| 2058 | IMPLICIT NONE |
---|
| 2059 | |
---|
| 2060 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 2061 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2062 | REAL(wp) :: x !< dummy variable |
---|
| 2063 | |
---|
| 2064 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2065 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2066 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2067 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2068 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2069 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2070 | |
---|
| 2071 | |
---|
| 2072 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 2073 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
[1691] | 2074 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2075 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2076 | ELSE |
---|
| 2077 | |
---|
| 2078 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
| 2079 | - bc_d_d |
---|
| 2080 | ! |
---|
| 2081 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2082 | !-- psi_m = - 5.0_wp * zeta |
---|
| 2083 | |
---|
| 2084 | ENDIF |
---|
| 2085 | |
---|
| 2086 | END FUNCTION psi_m |
---|
| 2087 | |
---|
| 2088 | |
---|
| 2089 | ! |
---|
| 2090 | !-- Integrated stability function for heat and moisture |
---|
| 2091 | FUNCTION psi_h( zeta ) |
---|
[3634] | 2092 | !$ACC ROUTINE SEQ |
---|
[1691] | 2093 | |
---|
| 2094 | USE kinds |
---|
| 2095 | |
---|
| 2096 | IMPLICIT NONE |
---|
| 2097 | |
---|
| 2098 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2099 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2100 | REAL(wp) :: x !< dummy variable |
---|
| 2101 | |
---|
| 2102 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2103 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2104 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2105 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2106 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2107 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2108 | |
---|
| 2109 | |
---|
| 2110 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 2111 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
[1691] | 2112 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2113 | ELSE |
---|
| 2114 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2115 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
| 2116 | + 1.0_wp |
---|
| 2117 | ! |
---|
| 2118 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2119 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2120 | ENDIF |
---|
| 2121 | |
---|
| 2122 | END FUNCTION psi_h |
---|
| 2123 | |
---|
[3130] | 2124 | |
---|
| 2125 | !------------------------------------------------------------------------------! |
---|
| 2126 | ! Description: |
---|
| 2127 | ! ------------ |
---|
| 2128 | !> Calculates stability function for momentum |
---|
| 2129 | !> |
---|
| 2130 | !> @author Hauke Wurps |
---|
| 2131 | !------------------------------------------------------------------------------! |
---|
| 2132 | FUNCTION phi_m( zeta ) |
---|
[3634] | 2133 | !$ACC ROUTINE SEQ |
---|
[3130] | 2134 | |
---|
| 2135 | IMPLICIT NONE |
---|
| 2136 | |
---|
| 2137 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2138 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2139 | |
---|
| 2140 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2141 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2142 | |
---|
| 2143 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2144 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2145 | ELSE |
---|
| 2146 | phi_m = 1.0_wp + c * zeta |
---|
| 2147 | ENDIF |
---|
| 2148 | |
---|
| 2149 | END FUNCTION phi_m |
---|
| 2150 | |
---|
[1697] | 2151 | END MODULE surface_layer_fluxes_mod |
---|