[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1691] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[1691] | 18 | ! |
---|
[2000] | 19 | !------------------------------------------------------------------------------! |
---|
[2696] | 20 | ! |
---|
[1691] | 21 | ! Current revisions: |
---|
[1747] | 22 | ! ------------------ |
---|
[1758] | 23 | ! |
---|
[3745] | 24 | ! |
---|
[1692] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: surface_layer_fluxes_mod.f90 4360 2020-01-07 11:25:50Z suehring $ |
---|
[4331] | 28 | ! Calculation of diagnostic-only 2-m potential temperature moved to |
---|
| 29 | ! diagnostic_output_quantities. |
---|
| 30 | ! |
---|
| 31 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
[4298] | 32 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above |
---|
| 33 | ! the first grid point. |
---|
| 34 | ! |
---|
| 35 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 36 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
| 37 | ! |
---|
| 38 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 39 | ! Added missing OpenMP directives |
---|
| 40 | ! |
---|
| 41 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4186] | 42 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 43 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic |
---|
| 44 | ! peaks in the heat fluxes during nighttime |
---|
| 45 | ! - Unused variable removed |
---|
| 46 | ! |
---|
| 47 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 48 | ! Corrected "Former revisions" section |
---|
| 49 | ! |
---|
| 50 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 51 | ! Introduce alternative switch for debug output during timestepping |
---|
| 52 | ! |
---|
| 53 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 54 | ! Changes related to global restructuring of location messages and introduction |
---|
| 55 | ! of additional debug messages |
---|
| 56 | ! |
---|
| 57 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 58 | ! Assure that Obukhov length does not become zero |
---|
| 59 | ! |
---|
| 60 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[3833] | 61 | ! added USE chem_gasphase_mod |
---|
| 62 | ! |
---|
| 63 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[3787] | 64 | ! unused variables removed |
---|
| 65 | ! |
---|
| 66 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 67 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, |
---|
| 68 | ! required for indoor model |
---|
| 69 | ! |
---|
| 70 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 71 | ! Some interface calls moved to module_interface + cleanup |
---|
| 72 | ! |
---|
| 73 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 74 | ! Removed methods "circular" and "lookup" |
---|
| 75 | ! |
---|
| 76 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 77 | ! OpenACC port for SPEC |
---|
[1692] | 78 | ! |
---|
[4182] | 79 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 80 | ! Initial revision |
---|
| 81 | ! |
---|
| 82 | ! |
---|
[1691] | 83 | ! Description: |
---|
| 84 | ! ------------ |
---|
| 85 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
[3668] | 86 | !> values of the variables at grid point k=1 based on Newton iteration |
---|
[1691] | 87 | !> |
---|
| 88 | !> @todo (re)move large_scale_forcing actions |
---|
[2118] | 89 | !> @todo check/optimize OpenMP directives |
---|
[2696] | 90 | !> @todo simplify if conditions (which flux need to be computed in which case) |
---|
[1691] | 91 | !------------------------------------------------------------------------------! |
---|
| 92 | MODULE surface_layer_fluxes_mod |
---|
| 93 | |
---|
| 94 | USE arrays_3d, & |
---|
[2292] | 95 | ONLY: e, kh, nc, nr, pt, q, ql, qc, qr, s, u, v, vpt, w, zu, zw, & |
---|
[3274] | 96 | drho_air_zw, rho_air_zw, d_exner |
---|
[1691] | 97 | |
---|
[3274] | 98 | USE basic_constants_and_equations_mod, & |
---|
[3361] | 99 | ONLY: g, kappa, lv_d_cp, pi, rd_d_rv |
---|
[3274] | 100 | |
---|
[3833] | 101 | USE chem_gasphase_mod, & |
---|
| 102 | ONLY: nvar |
---|
| 103 | |
---|
[2696] | 104 | USE chem_modules, & |
---|
[3834] | 105 | ONLY: constant_csflux |
---|
[2696] | 106 | |
---|
[1691] | 107 | USE cpulog |
---|
| 108 | |
---|
| 109 | USE control_parameters, & |
---|
[3274] | 110 | ONLY: air_chemistry, cloud_droplets, & |
---|
| 111 | constant_heatflux, constant_scalarflux, & |
---|
[3885] | 112 | constant_waterflux, coupling_mode, & |
---|
[3987] | 113 | debug_output_timestep, & |
---|
[4331] | 114 | humidity, & |
---|
[4298] | 115 | ibc_e_b, ibc_pt_b, indoor_model, & |
---|
[3274] | 116 | land_surface, large_scale_forcing, lsf_surf, message_string, & |
---|
[3668] | 117 | neutral, passive_scalar, pt_surface, q_surface, & |
---|
[4298] | 118 | run_coupled, surface_pressure, simulated_time, & |
---|
[3157] | 119 | time_since_reference_point, urban_surface, & |
---|
| 120 | use_free_convection_scaling, zeta_max, zeta_min |
---|
[1691] | 121 | |
---|
[2232] | 122 | USE grid_variables, & |
---|
| 123 | ONLY: dx, dy |
---|
| 124 | |
---|
[1691] | 125 | USE indices, & |
---|
[4298] | 126 | ONLY: nzt |
---|
[1691] | 127 | |
---|
| 128 | USE kinds |
---|
| 129 | |
---|
[3274] | 130 | USE bulk_cloud_model_mod, & |
---|
| 131 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 132 | |
---|
[1691] | 133 | USE pegrid |
---|
| 134 | |
---|
| 135 | USE land_surface_model_mod, & |
---|
[2232] | 136 | ONLY: aero_resist_kray, skip_time_do_lsm |
---|
[2011] | 137 | |
---|
[2232] | 138 | USE surface_mod, & |
---|
| 139 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_type, & |
---|
| 140 | surf_usm_h, surf_usm_v |
---|
[2007] | 141 | |
---|
[1691] | 142 | |
---|
| 143 | IMPLICIT NONE |
---|
| 144 | |
---|
[1992] | 145 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 146 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 147 | INTEGER(iwp) :: k !< loop index z direction |
---|
[2232] | 148 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 149 | |
---|
[2232] | 150 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 151 | LOGICAL :: downward = .FALSE.!< Flag indicating downward-facing horizontal surface |
---|
| 152 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 153 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 154 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 155 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 156 | |
---|
| 157 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
| 158 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
| 159 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
| 160 | |
---|
[2232] | 161 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 162 | |
---|
[2232] | 163 | |
---|
[1691] | 164 | SAVE |
---|
| 165 | |
---|
| 166 | PRIVATE |
---|
| 167 | |
---|
[4331] | 168 | PUBLIC init_surface_layer_fluxes, & |
---|
| 169 | phi_m, & |
---|
| 170 | psi_h, & |
---|
| 171 | psi_m, & |
---|
| 172 | surface_layer_fluxes |
---|
[1691] | 173 | |
---|
| 174 | INTERFACE init_surface_layer_fluxes |
---|
| 175 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 176 | END INTERFACE init_surface_layer_fluxes |
---|
| 177 | |
---|
[3130] | 178 | INTERFACE phi_m |
---|
| 179 | MODULE PROCEDURE phi_m |
---|
| 180 | END INTERFACE phi_m |
---|
| 181 | |
---|
[4331] | 182 | INTERFACE psi_h |
---|
| 183 | MODULE PROCEDURE psi_h |
---|
| 184 | END INTERFACE psi_h |
---|
| 185 | |
---|
| 186 | INTERFACE psi_m |
---|
| 187 | MODULE PROCEDURE psi_m |
---|
| 188 | END INTERFACE psi_m |
---|
| 189 | |
---|
[1691] | 190 | INTERFACE surface_layer_fluxes |
---|
| 191 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 192 | END INTERFACE surface_layer_fluxes |
---|
| 193 | |
---|
| 194 | |
---|
| 195 | CONTAINS |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | !------------------------------------------------------------------------------! |
---|
| 199 | ! Description: |
---|
| 200 | ! ------------ |
---|
| 201 | !> Main routine to compute the surface fluxes |
---|
| 202 | !------------------------------------------------------------------------------! |
---|
| 203 | SUBROUTINE surface_layer_fluxes |
---|
| 204 | |
---|
| 205 | IMPLICIT NONE |
---|
| 206 | |
---|
[3885] | 207 | |
---|
[3987] | 208 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 209 | |
---|
[3547] | 210 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 211 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 212 | ! |
---|
[2696] | 213 | !-- Derive potential temperature and specific humidity at first grid level |
---|
| 214 | !-- from the fields pt and q |
---|
[2232] | 215 | ! |
---|
[2696] | 216 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, |
---|
| 217 | !-- l=1 - downward facing) |
---|
| 218 | DO l = 0, 1 |
---|
| 219 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 220 | surf => surf_def_h(l) |
---|
| 221 | CALL calc_pt_q |
---|
[3146] | 222 | IF ( .NOT. neutral ) THEN |
---|
| 223 | CALL calc_pt_surface |
---|
| 224 | IF ( humidity ) THEN |
---|
[3152] | 225 | CALL calc_q_surface |
---|
[3146] | 226 | CALL calc_vpt_surface |
---|
| 227 | ENDIF |
---|
| 228 | ENDIF |
---|
[2696] | 229 | ENDIF |
---|
| 230 | ENDDO |
---|
[2232] | 231 | ! |
---|
[2696] | 232 | !-- Call for natural-type horizontal surfaces |
---|
| 233 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 234 | surf => surf_lsm_h |
---|
| 235 | CALL calc_pt_q |
---|
| 236 | ENDIF |
---|
| 237 | |
---|
| 238 | ! |
---|
| 239 | !-- Call for urban-type horizontal surfaces |
---|
| 240 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 241 | surf => surf_usm_h |
---|
| 242 | CALL calc_pt_q |
---|
| 243 | ENDIF |
---|
| 244 | |
---|
| 245 | ! |
---|
| 246 | !-- Call for natural-type vertical surfaces |
---|
| 247 | DO l = 0, 3 |
---|
| 248 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 249 | surf => surf_lsm_v(l) |
---|
[2232] | 250 | CALL calc_pt_q |
---|
| 251 | ENDIF |
---|
[2696] | 252 | |
---|
[3146] | 253 | !-- Call for urban-type vertical surfaces |
---|
[2696] | 254 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 255 | surf => surf_usm_v(l) |
---|
[2232] | 256 | CALL calc_pt_q |
---|
| 257 | ENDIF |
---|
[2696] | 258 | ENDDO |
---|
[1691] | 259 | |
---|
| 260 | ! |
---|
| 261 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
| 262 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
[3668] | 263 | !-- surface fluxes if required. Note, each routine is called for different surface types. |
---|
[2232] | 264 | !-- First call for default-type horizontal surfaces, for natural- and |
---|
| 265 | !-- urban-type surfaces. Note, at this place only upward-facing horizontal |
---|
[3668] | 266 | !-- surfaces are treated. |
---|
| 267 | |
---|
[2232] | 268 | ! |
---|
[3668] | 269 | !-- Default-type upward-facing horizontal surfaces |
---|
| 270 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 271 | surf => surf_def_h(0) |
---|
| 272 | CALL calc_uvw_abs |
---|
| 273 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 274 | CALL calc_us |
---|
| 275 | CALL calc_scaling_parameters |
---|
| 276 | CALL calc_surface_fluxes |
---|
| 277 | ENDIF |
---|
[1691] | 278 | ! |
---|
[3668] | 279 | !-- Natural-type horizontal surfaces |
---|
| 280 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 281 | surf => surf_lsm_h |
---|
| 282 | CALL calc_uvw_abs |
---|
| 283 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 284 | CALL calc_us |
---|
| 285 | CALL calc_scaling_parameters |
---|
| 286 | CALL calc_surface_fluxes |
---|
| 287 | ENDIF |
---|
[2232] | 288 | ! |
---|
[3668] | 289 | !-- Urban-type horizontal surfaces |
---|
| 290 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 291 | surf => surf_usm_h |
---|
| 292 | CALL calc_uvw_abs |
---|
| 293 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 294 | CALL calc_us |
---|
| 295 | CALL calc_scaling_parameters |
---|
| 296 | CALL calc_surface_fluxes |
---|
[3744] | 297 | ! |
---|
| 298 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 299 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[3668] | 300 | ENDIF |
---|
[1691] | 301 | |
---|
[2232] | 302 | ! |
---|
| 303 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are |
---|
| 304 | !-- always default type. Stratification is not considered |
---|
| 305 | !-- in this case, hence, no further distinction between different |
---|
| 306 | !-- most_method is required. |
---|
| 307 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 308 | downward = .TRUE. |
---|
| 309 | surf => surf_def_h(1) |
---|
| 310 | CALL calc_uvw_abs |
---|
[1691] | 311 | CALL calc_us |
---|
| 312 | CALL calc_surface_fluxes |
---|
[2232] | 313 | downward = .FALSE. |
---|
[1691] | 314 | ENDIF |
---|
[2232] | 315 | ! |
---|
| 316 | !-- Calculate surfaces fluxes at vertical surfaces for momentum |
---|
| 317 | !-- and subgrid-scale TKE. |
---|
| 318 | !-- No stability is considered. Therefore, scaling parameters and Obukhov- |
---|
| 319 | !-- length do not need to be calculated and no distinction in 'circular', |
---|
| 320 | !-- 'Newton' or 'lookup' is necessary so far. |
---|
| 321 | !-- Note, this will change if stability is once considered. |
---|
| 322 | surf_vertical = .TRUE. |
---|
| 323 | ! |
---|
| 324 | !-- Calculate horizontal momentum fluxes at north- and south-facing |
---|
| 325 | !-- surfaces(usvs). |
---|
| 326 | !-- For default-type surfaces |
---|
| 327 | mom_uv = .TRUE. |
---|
| 328 | DO l = 0, 1 |
---|
| 329 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 330 | surf => surf_def_v(l) |
---|
| 331 | ! |
---|
| 332 | !-- Compute surface-parallel velocity |
---|
| 333 | CALL calc_uvw_abs_v_ugrid |
---|
| 334 | ! |
---|
| 335 | !-- Compute respective friction velocity on staggered grid |
---|
| 336 | CALL calc_us |
---|
| 337 | ! |
---|
| 338 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 339 | CALL calc_surface_fluxes |
---|
| 340 | ENDIF |
---|
| 341 | ENDDO |
---|
| 342 | ! |
---|
| 343 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 344 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 345 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 346 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 347 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 348 | IF ( .NOT. aero_resist_kray ) THEN |
---|
[3668] | 349 | DO l = 0, 1 |
---|
| 350 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 351 | surf => surf_lsm_v(l) |
---|
[2232] | 352 | ! |
---|
[3668] | 353 | !-- Compute surface-parallel velocity |
---|
| 354 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 355 | ! |
---|
[3668] | 356 | !-- Compute Obukhov length |
---|
| 357 | IF ( .NOT. neutral ) CALL calc_ol |
---|
[2232] | 358 | ! |
---|
[3668] | 359 | !-- Compute respective friction velocity on staggered grid |
---|
| 360 | CALL calc_us |
---|
[2232] | 361 | ! |
---|
[3668] | 362 | !-- Compute scaling parameters |
---|
| 363 | CALL calc_scaling_parameters |
---|
[2232] | 364 | ! |
---|
[3668] | 365 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 366 | CALL calc_surface_fluxes |
---|
| 367 | ENDIF |
---|
| 368 | ENDDO |
---|
[2232] | 369 | ! |
---|
| 370 | !-- No ts is required, so scaling parameters and Obukhov length do not need |
---|
| 371 | !-- to be computed. |
---|
| 372 | ELSE |
---|
| 373 | DO l = 0, 1 |
---|
| 374 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 375 | surf => surf_lsm_v(l) |
---|
| 376 | ! |
---|
| 377 | !-- Compute surface-parallel velocity |
---|
| 378 | CALL calc_uvw_abs_v_ugrid |
---|
| 379 | ! |
---|
| 380 | !-- Compute respective friction velocity on staggered grid |
---|
| 381 | CALL calc_us |
---|
| 382 | ! |
---|
| 383 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 384 | CALL calc_surface_fluxes |
---|
| 385 | ENDIF |
---|
| 386 | ENDDO |
---|
| 387 | ENDIF |
---|
| 388 | ! |
---|
| 389 | !-- For urban-type surfaces |
---|
| 390 | DO l = 0, 1 |
---|
| 391 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 392 | surf => surf_usm_v(l) |
---|
| 393 | ! |
---|
| 394 | !-- Compute surface-parallel velocity |
---|
| 395 | CALL calc_uvw_abs_v_ugrid |
---|
| 396 | ! |
---|
| 397 | !-- Compute respective friction velocity on staggered grid |
---|
| 398 | CALL calc_us |
---|
| 399 | ! |
---|
| 400 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 401 | CALL calc_surface_fluxes |
---|
[3744] | 402 | ! |
---|
| 403 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 404 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[2232] | 405 | ENDIF |
---|
| 406 | ENDDO |
---|
| 407 | ! |
---|
| 408 | !-- Calculate horizontal momentum fluxes at east- and west-facing |
---|
| 409 | !-- surfaces (vsus). |
---|
| 410 | !-- For default-type surfaces |
---|
| 411 | DO l = 2, 3 |
---|
| 412 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 413 | surf => surf_def_v(l) |
---|
| 414 | ! |
---|
| 415 | !-- Compute surface-parallel velocity |
---|
| 416 | CALL calc_uvw_abs_v_vgrid |
---|
| 417 | ! |
---|
| 418 | !-- Compute respective friction velocity on staggered grid |
---|
| 419 | CALL calc_us |
---|
| 420 | ! |
---|
| 421 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 422 | CALL calc_surface_fluxes |
---|
[3744] | 423 | |
---|
[2232] | 424 | ENDIF |
---|
| 425 | ENDDO |
---|
| 426 | ! |
---|
| 427 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 428 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 429 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 430 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 431 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 432 | IF ( .NOT. aero_resist_kray ) THEN |
---|
[3668] | 433 | DO l = 2, 3 |
---|
| 434 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 435 | surf => surf_lsm_v(l) |
---|
[2232] | 436 | ! |
---|
[3668] | 437 | !-- Compute surface-parallel velocity |
---|
| 438 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 439 | ! |
---|
[3668] | 440 | !-- Compute Obukhov length |
---|
| 441 | IF ( .NOT. neutral ) CALL calc_ol |
---|
[2232] | 442 | ! |
---|
[3668] | 443 | !-- Compute respective friction velocity on staggered grid |
---|
| 444 | CALL calc_us |
---|
[2232] | 445 | ! |
---|
[3668] | 446 | !-- Compute scaling parameters |
---|
| 447 | CALL calc_scaling_parameters |
---|
[2232] | 448 | ! |
---|
[3668] | 449 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 450 | CALL calc_surface_fluxes |
---|
| 451 | ENDIF |
---|
| 452 | ENDDO |
---|
[2232] | 453 | ELSE |
---|
| 454 | DO l = 2, 3 |
---|
| 455 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 456 | surf => surf_lsm_v(l) |
---|
| 457 | ! |
---|
| 458 | !-- Compute surface-parallel velocity |
---|
| 459 | CALL calc_uvw_abs_v_vgrid |
---|
| 460 | ! |
---|
| 461 | !-- Compute respective friction velocity on staggered grid |
---|
| 462 | CALL calc_us |
---|
| 463 | ! |
---|
| 464 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 465 | CALL calc_surface_fluxes |
---|
| 466 | ENDIF |
---|
| 467 | ENDDO |
---|
| 468 | ENDIF |
---|
| 469 | ! |
---|
| 470 | !-- For urban-type surfaces |
---|
| 471 | DO l = 2, 3 |
---|
| 472 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 473 | surf => surf_usm_v(l) |
---|
| 474 | ! |
---|
| 475 | !-- Compute surface-parallel velocity |
---|
| 476 | CALL calc_uvw_abs_v_vgrid |
---|
| 477 | ! |
---|
| 478 | !-- Compute respective friction velocity on staggered grid |
---|
| 479 | CALL calc_us |
---|
| 480 | ! |
---|
| 481 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 482 | CALL calc_surface_fluxes |
---|
[3744] | 483 | ! |
---|
| 484 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 485 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[2232] | 486 | ENDIF |
---|
| 487 | ENDDO |
---|
| 488 | mom_uv = .FALSE. |
---|
| 489 | ! |
---|
| 490 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial |
---|
| 491 | !-- surfaces. |
---|
| 492 | mom_w = .TRUE. |
---|
| 493 | ! |
---|
| 494 | !-- Default-type surfaces |
---|
| 495 | DO l = 0, 3 |
---|
| 496 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 497 | surf => surf_def_v(l) |
---|
| 498 | CALL calc_uvw_abs_v_wgrid |
---|
| 499 | CALL calc_us |
---|
| 500 | CALL calc_surface_fluxes |
---|
| 501 | ENDIF |
---|
| 502 | ENDDO |
---|
| 503 | ! |
---|
| 504 | !-- Natural-type surfaces |
---|
| 505 | DO l = 0, 3 |
---|
| 506 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 507 | surf => surf_lsm_v(l) |
---|
| 508 | CALL calc_uvw_abs_v_wgrid |
---|
| 509 | CALL calc_us |
---|
| 510 | CALL calc_surface_fluxes |
---|
| 511 | ENDIF |
---|
| 512 | ENDDO |
---|
| 513 | ! |
---|
| 514 | !-- Urban-type surfaces |
---|
| 515 | DO l = 0, 3 |
---|
| 516 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 517 | surf => surf_usm_v(l) |
---|
| 518 | CALL calc_uvw_abs_v_wgrid |
---|
| 519 | CALL calc_us |
---|
| 520 | CALL calc_surface_fluxes |
---|
| 521 | ENDIF |
---|
| 522 | ENDDO |
---|
| 523 | mom_w = .FALSE. |
---|
| 524 | ! |
---|
| 525 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical |
---|
| 526 | !-- surfaces for TKE production. Note, here, momentum fluxes are defined |
---|
| 527 | !-- at grid center and are not staggered as before. |
---|
| 528 | mom_tke = .TRUE. |
---|
| 529 | ! |
---|
| 530 | !-- Default-type surfaces |
---|
| 531 | DO l = 0, 3 |
---|
| 532 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 533 | surf => surf_def_v(l) |
---|
| 534 | CALL calc_uvw_abs_v_sgrid |
---|
| 535 | CALL calc_us |
---|
| 536 | CALL calc_surface_fluxes |
---|
| 537 | ENDIF |
---|
| 538 | ENDDO |
---|
| 539 | ! |
---|
| 540 | !-- Natural-type surfaces |
---|
| 541 | DO l = 0, 3 |
---|
| 542 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 543 | surf => surf_lsm_v(l) |
---|
| 544 | CALL calc_uvw_abs_v_sgrid |
---|
| 545 | CALL calc_us |
---|
| 546 | CALL calc_surface_fluxes |
---|
| 547 | ENDIF |
---|
| 548 | ENDDO |
---|
| 549 | ! |
---|
| 550 | !-- Urban-type surfaces |
---|
| 551 | DO l = 0, 3 |
---|
| 552 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 553 | surf => surf_usm_v(l) |
---|
| 554 | CALL calc_uvw_abs_v_sgrid |
---|
| 555 | CALL calc_us |
---|
| 556 | CALL calc_surface_fluxes |
---|
| 557 | ENDIF |
---|
| 558 | ENDDO |
---|
| 559 | mom_tke = .FALSE. |
---|
[1691] | 560 | |
---|
[3987] | 561 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 562 | |
---|
[1691] | 563 | END SUBROUTINE surface_layer_fluxes |
---|
| 564 | |
---|
| 565 | |
---|
| 566 | !------------------------------------------------------------------------------! |
---|
| 567 | ! Description: |
---|
| 568 | ! ------------ |
---|
[4258] | 569 | !> Initializing actions for the surface layer routine. |
---|
[1691] | 570 | !------------------------------------------------------------------------------! |
---|
| 571 | SUBROUTINE init_surface_layer_fluxes |
---|
| 572 | |
---|
| 573 | IMPLICIT NONE |
---|
| 574 | |
---|
[4258] | 575 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 576 | |
---|
[3885] | 577 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 578 | |
---|
| 579 | ! |
---|
| 580 | !-- In case of runs with neutral statification, set Obukhov length to a |
---|
| 581 | !-- large value |
---|
[2232] | 582 | IF ( neutral ) THEN |
---|
| 583 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 584 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 585 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
[4258] | 586 | |
---|
| 587 | DO l = 0, 3 |
---|
| 588 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 589 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 590 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 591 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 592 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 593 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 594 | ENDDO |
---|
| 595 | |
---|
[2232] | 596 | ENDIF |
---|
[1709] | 597 | |
---|
[3885] | 598 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[3685] | 599 | |
---|
[1691] | 600 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 601 | |
---|
| 602 | |
---|
| 603 | !------------------------------------------------------------------------------! |
---|
| 604 | ! Description: |
---|
| 605 | ! ------------ |
---|
[1709] | 606 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
[2232] | 607 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
[1691] | 608 | !------------------------------------------------------------------------------! |
---|
[2232] | 609 | SUBROUTINE calc_uvw_abs |
---|
[3157] | 610 | |
---|
[1691] | 611 | IMPLICIT NONE |
---|
| 612 | |
---|
[2232] | 613 | INTEGER(iwp) :: i !< running index x direction |
---|
| 614 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 615 | INTEGER(iwp) :: j !< running index y direction |
---|
| 616 | INTEGER(iwp) :: k !< running index z direction |
---|
| 617 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1691] | 618 | |
---|
[3157] | 619 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 620 | ! |
---|
| 621 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 622 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 623 | |
---|
[4237] | 624 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
[3634] | 625 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 626 | !$ACC PRESENT(surf, u, v) |
---|
[2232] | 627 | DO m = 1, surf%ns |
---|
[1691] | 628 | |
---|
[2232] | 629 | i = surf%i(m) |
---|
| 630 | j = surf%j(m) |
---|
| 631 | k = surf%k(m) |
---|
[3157] | 632 | |
---|
[1691] | 633 | ! |
---|
[3157] | 634 | !-- Calculate free convection velocity scale w_lfc is |
---|
| 635 | !-- use_free_convection_scaling = .T.. This will maintain a horizontal |
---|
| 636 | !-- velocity even for very weak wind convective conditions. SIGN is used |
---|
| 637 | !-- to set w_lfc to zero under stable conditions. |
---|
| 638 | IF ( use_free_convection_scaling ) THEN |
---|
| 639 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 640 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
| 641 | ELSE |
---|
| 642 | w_lfc = 0.0_wp |
---|
| 643 | ENDIF |
---|
| 644 | |
---|
| 645 | ! |
---|
[2232] | 646 | !-- Compute the absolute value of the horizontal velocity. |
---|
| 647 | !-- (relative to the surface in case the lower surface is the ocean). |
---|
| 648 | !-- Please note, in new surface modelling concept the index values changed, |
---|
| 649 | !-- i.e. the reference grid point is not the surface-grid point itself but |
---|
| 650 | !-- the first grid point outside of the topography. |
---|
| 651 | !-- Note, in case of coupled ocean-atmosphere simulations relative velocity |
---|
| 652 | !-- with respect to the ocean surface is used, hence, (k-1,j,i) values |
---|
| 653 | !-- are used to calculate the absolute velocity. |
---|
| 654 | !-- However, this do not apply for downward-facing walls. To mask this, |
---|
| 655 | !-- use ibit, which checks for upward/downward-facing surfaces. |
---|
| 656 | surf%uvw_abs(m) = SQRT( & |
---|
| 657 | ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) & |
---|
| 658 | - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 659 | ) * ibit & |
---|
| 660 | ) & |
---|
| 661 | )**2 + & |
---|
| 662 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) & |
---|
| 663 | - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 664 | ) * ibit & |
---|
| 665 | ) & |
---|
[3157] | 666 | )**2 + w_lfc**2 & |
---|
[2232] | 667 | ) |
---|
| 668 | |
---|
[3148] | 669 | |
---|
| 670 | |
---|
[1691] | 671 | ENDDO |
---|
| 672 | |
---|
[2232] | 673 | END SUBROUTINE calc_uvw_abs |
---|
| 674 | |
---|
| 675 | |
---|
| 676 | !------------------------------------------------------------------------------! |
---|
| 677 | ! Description: |
---|
| 678 | ! ------------ |
---|
| 679 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 680 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 681 | !------------------------------------------------------------------------------! |
---|
| 682 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 683 | |
---|
| 684 | IMPLICIT NONE |
---|
| 685 | |
---|
[3547] | 686 | INTEGER(iwp) :: i !< running index x direction |
---|
| 687 | INTEGER(iwp) :: j !< running index y direction |
---|
| 688 | INTEGER(iwp) :: k !< running index z direction |
---|
| 689 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 690 | |
---|
[3547] | 691 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 692 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 693 | |
---|
| 694 | |
---|
| 695 | DO m = 1, surf%ns |
---|
| 696 | i = surf%i(m) |
---|
| 697 | j = surf%j(m) |
---|
| 698 | k = surf%k(m) |
---|
[1691] | 699 | ! |
---|
[2232] | 700 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 701 | u_i = u(k,j,i) |
---|
| 702 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + & |
---|
| 703 | w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 704 | |
---|
[2232] | 705 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
[1709] | 706 | |
---|
[2232] | 707 | ENDDO |
---|
[1709] | 708 | |
---|
[2232] | 709 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 710 | |
---|
[1709] | 711 | !------------------------------------------------------------------------------! |
---|
| 712 | ! Description: |
---|
| 713 | ! ------------ |
---|
[2232] | 714 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 715 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 716 | !------------------------------------------------------------------------------! |
---|
| 717 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 718 | |
---|
| 719 | IMPLICIT NONE |
---|
| 720 | |
---|
[3547] | 721 | INTEGER(iwp) :: i !< running index x direction |
---|
| 722 | INTEGER(iwp) :: j !< running index y direction |
---|
| 723 | INTEGER(iwp) :: k !< running index z direction |
---|
| 724 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 725 | |
---|
[3547] | 726 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 727 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 728 | |
---|
| 729 | |
---|
| 730 | DO m = 1, surf%ns |
---|
| 731 | i = surf%i(m) |
---|
| 732 | j = surf%j(m) |
---|
| 733 | k = surf%k(m) |
---|
| 734 | |
---|
| 735 | v_i = u(k,j,i) |
---|
| 736 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + & |
---|
| 737 | w(k,j-1,i) + w(k,j,i) ) |
---|
| 738 | |
---|
| 739 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 740 | |
---|
| 741 | ENDDO |
---|
| 742 | |
---|
| 743 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 744 | |
---|
| 745 | !------------------------------------------------------------------------------! |
---|
| 746 | ! Description: |
---|
| 747 | ! ------------ |
---|
| 748 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 749 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 750 | !------------------------------------------------------------------------------! |
---|
| 751 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 752 | |
---|
| 753 | IMPLICIT NONE |
---|
| 754 | |
---|
[3547] | 755 | INTEGER(iwp) :: i !< running index x direction |
---|
| 756 | INTEGER(iwp) :: j !< running index y direction |
---|
| 757 | INTEGER(iwp) :: k !< running index z direction |
---|
| 758 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 759 | |
---|
[3547] | 760 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 761 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 762 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 763 | ! |
---|
| 764 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 765 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 766 | DO m = 1, surf%ns |
---|
| 767 | i = surf%i(m) |
---|
| 768 | j = surf%j(m) |
---|
| 769 | k = surf%k(m) |
---|
| 770 | |
---|
| 771 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + & |
---|
| 772 | u(k,j,i+1) + u(k,j,i) ) |
---|
| 773 | v_i = 0.0_wp |
---|
| 774 | w_i = w(k,j,i) |
---|
| 775 | |
---|
| 776 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 777 | ENDDO |
---|
| 778 | ! |
---|
| 779 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 780 | ELSE |
---|
| 781 | DO m = 1, surf%ns |
---|
| 782 | i = surf%i(m) |
---|
| 783 | j = surf%j(m) |
---|
| 784 | k = surf%k(m) |
---|
| 785 | |
---|
| 786 | u_i = 0.0_wp |
---|
| 787 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + & |
---|
| 788 | v(k,j+1,i) + v(k,j,i) ) |
---|
| 789 | w_i = w(k,j,i) |
---|
| 790 | |
---|
| 791 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 792 | ENDDO |
---|
| 793 | ENDIF |
---|
| 794 | |
---|
| 795 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 796 | |
---|
| 797 | !------------------------------------------------------------------------------! |
---|
| 798 | ! Description: |
---|
| 799 | ! ------------ |
---|
| 800 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 801 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 802 | !------------------------------------------------------------------------------! |
---|
| 803 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 804 | |
---|
| 805 | IMPLICIT NONE |
---|
| 806 | |
---|
[3547] | 807 | INTEGER(iwp) :: i !< running index x direction |
---|
| 808 | INTEGER(iwp) :: j !< running index y direction |
---|
| 809 | INTEGER(iwp) :: k !< running index z direction |
---|
| 810 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 811 | |
---|
[3547] | 812 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 813 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 814 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 815 | |
---|
| 816 | ! |
---|
| 817 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 818 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 819 | DO m = 1, surf%ns |
---|
| 820 | i = surf%i(m) |
---|
| 821 | j = surf%j(m) |
---|
| 822 | k = surf%k(m) |
---|
| 823 | |
---|
| 824 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 825 | v_i = 0.0_wp |
---|
| 826 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 827 | |
---|
| 828 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 829 | ENDDO |
---|
| 830 | ! |
---|
| 831 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 832 | ELSE |
---|
| 833 | DO m = 1, surf%ns |
---|
| 834 | i = surf%i(m) |
---|
| 835 | j = surf%j(m) |
---|
| 836 | k = surf%k(m) |
---|
| 837 | |
---|
| 838 | u_i = 0.0_wp |
---|
| 839 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 840 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 841 | |
---|
| 842 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 843 | ENDDO |
---|
| 844 | ENDIF |
---|
| 845 | |
---|
| 846 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 847 | |
---|
| 848 | |
---|
| 849 | !------------------------------------------------------------------------------! |
---|
| 850 | ! Description: |
---|
| 851 | ! ------------ |
---|
[1709] | 852 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
| 853 | !------------------------------------------------------------------------------! |
---|
| 854 | SUBROUTINE calc_ol |
---|
| 855 | |
---|
| 856 | IMPLICIT NONE |
---|
| 857 | |
---|
[2232] | 858 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 859 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 860 | |
---|
| 861 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 862 | f_d_ol, & !< Derivative of f |
---|
| 863 | ol_l, & !< Lower bound of L for Newton iteration |
---|
| 864 | ol_m, & !< Previous value of L for Newton iteration |
---|
| 865 | ol_old, & !< Previous time step value of L |
---|
| 866 | ol_u !< Upper bound of L for Newton iteration |
---|
| 867 | |
---|
[2232] | 868 | ! |
---|
[3668] | 869 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
| 870 | !-- definition based on setting of boundary conditions |
---|
| 871 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 872 | IF ( humidity ) THEN |
---|
| 873 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 874 | DO m = 1, surf%ns |
---|
[1691] | 875 | |
---|
[3668] | 876 | z_mo = surf%z_mo(m) |
---|
[2232] | 877 | |
---|
[3668] | 878 | surf%rib(m) = g * z_mo & |
---|
| 879 | * ( surf%vpt1(m) - surf%vpt_surface(m) ) & |
---|
| 880 | / ( surf%uvw_abs(m)**2 * surf%vpt1(m) & |
---|
| 881 | + 1.0E-20_wp ) |
---|
| 882 | ENDDO |
---|
| 883 | ELSE |
---|
| 884 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 885 | DO m = 1, surf%ns |
---|
[2232] | 886 | |
---|
[3668] | 887 | z_mo = surf%z_mo(m) |
---|
[2232] | 888 | |
---|
[3668] | 889 | surf%rib(m) = g * z_mo & |
---|
| 890 | * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 891 | / ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 892 | ENDDO |
---|
| 893 | ENDIF |
---|
| 894 | ELSE |
---|
| 895 | IF ( humidity ) THEN |
---|
| 896 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 897 | DO m = 1, surf%ns |
---|
[2232] | 898 | |
---|
[3668] | 899 | k = surf%k(m) |
---|
[2232] | 900 | |
---|
[3668] | 901 | z_mo = surf%z_mo(m) |
---|
[2232] | 902 | |
---|
[3668] | 903 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
[3146] | 904 | * surf%qv1(m) ) * surf%shf(m) + 0.61_wp & |
---|
| 905 | * surf%pt1(m) * surf%qsws(m) ) * & |
---|
[2232] | 906 | drho_air_zw(k-1) / & |
---|
[3146] | 907 | ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 908 | + 1.0E-20_wp ) |
---|
[3668] | 909 | ENDDO |
---|
| 910 | ELSE |
---|
| 911 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 912 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 913 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 914 | DO m = 1, surf%ns |
---|
[1691] | 915 | |
---|
[3668] | 916 | k = surf%k(m) |
---|
[2232] | 917 | |
---|
[3668] | 918 | z_mo = surf%z_mo(m) |
---|
[2232] | 919 | |
---|
[3668] | 920 | surf%rib(m) = - g * z_mo * surf%shf(m) * & |
---|
| 921 | drho_air_zw(k-1) / & |
---|
| 922 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 & |
---|
| 923 | + 1.0E-20_wp ) |
---|
| 924 | ENDDO |
---|
[2232] | 925 | ENDIF |
---|
[1691] | 926 | ENDIF |
---|
| 927 | |
---|
| 928 | ! |
---|
[3668] | 929 | !-- Calculate the Obukhov length using Newton iteration |
---|
[4237] | 930 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
| 931 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
[3668] | 932 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 933 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 934 | !$ACC PRESENT(surf) |
---|
| 935 | DO m = 1, surf%ns |
---|
[1691] | 936 | |
---|
[3668] | 937 | i = surf%i(m) |
---|
| 938 | j = surf%j(m) |
---|
[1691] | 939 | |
---|
[3668] | 940 | z_mo = surf%z_mo(m) |
---|
[1691] | 941 | |
---|
| 942 | ! |
---|
[3668] | 943 | !-- Store current value in case the Newton iteration fails |
---|
| 944 | ol_old = surf%ol(m) |
---|
[1691] | 945 | |
---|
| 946 | ! |
---|
[3668] | 947 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 948 | !-- length have the same sign |
---|
| 949 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. & |
---|
| 950 | ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 951 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 952 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 953 | ENDIF |
---|
[1691] | 954 | ! |
---|
[3668] | 955 | !-- Iteration to find Obukhov length |
---|
| 956 | iter = 0 |
---|
| 957 | DO |
---|
| 958 | iter = iter + 1 |
---|
[1691] | 959 | ! |
---|
[3668] | 960 | !-- In case of divergence, use the value of the previous time step |
---|
| 961 | IF ( iter > 1000 ) THEN |
---|
| 962 | surf%ol(m) = ol_old |
---|
| 963 | EXIT |
---|
| 964 | ENDIF |
---|
[1691] | 965 | |
---|
[3668] | 966 | ol_m = surf%ol(m) |
---|
| 967 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 968 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[1691] | 969 | |
---|
| 970 | |
---|
[3668] | 971 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 972 | ! |
---|
[3668] | 973 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 974 | f = surf%rib(m) - ( z_mo / ol_m ) * ( & |
---|
| 975 | LOG( z_mo / surf%z0h(m) ) & |
---|
| 976 | - psi_h( z_mo / ol_m ) & |
---|
| 977 | + psi_h( surf%z0h(m) / & |
---|
| 978 | ol_m ) & |
---|
| 979 | ) & |
---|
| 980 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 981 | - psi_m( z_mo / ol_m ) & |
---|
| 982 | + psi_m( surf%z0(m) / ol_m ) & |
---|
[2232] | 983 | )**2 |
---|
[1691] | 984 | |
---|
| 985 | ! |
---|
[3668] | 986 | !-- Calculate df/dL |
---|
| 987 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / & |
---|
| 988 | surf%z0h(m) ) & |
---|
| 989 | - psi_h( z_mo / ol_u ) & |
---|
| 990 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 991 | ) & |
---|
| 992 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 993 | - psi_m( z_mo / ol_u ) & |
---|
| 994 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 995 | )**2 & |
---|
| 996 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 997 | - psi_h( z_mo / ol_l ) & |
---|
| 998 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 999 | ) & |
---|
| 1000 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1001 | - psi_m( z_mo / ol_l ) & |
---|
| 1002 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1003 | )**2 & |
---|
| 1004 | ) / ( ol_u - ol_l ) |
---|
| 1005 | ELSE |
---|
[1691] | 1006 | ! |
---|
[3668] | 1007 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1008 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
| 1009 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1010 | - psi_m( z_mo / ol_m ) & |
---|
| 1011 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1012 | )**3 |
---|
[1691] | 1013 | |
---|
| 1014 | ! |
---|
[3668] | 1015 | !-- Calculate df/dL |
---|
| 1016 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1017 | - psi_m( z_mo / ol_u ) & |
---|
| 1018 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1019 | )**3 & |
---|
[2232] | 1020 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
[3668] | 1021 | - psi_m( z_mo / ol_l ) & |
---|
| 1022 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1023 | )**3 & |
---|
| 1024 | ) / ( ol_u - ol_l ) |
---|
| 1025 | ENDIF |
---|
[1691] | 1026 | ! |
---|
[3668] | 1027 | !-- Calculate new L |
---|
| 1028 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1029 | |
---|
| 1030 | ! |
---|
[3668] | 1031 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1032 | !-- length have the same sign and ensure convergence. |
---|
| 1033 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[1691] | 1034 | ! |
---|
[3668] | 1035 | !-- If unrealistic value occurs, set L to the maximum |
---|
| 1036 | !-- value that is allowed |
---|
| 1037 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1038 | surf%ol(m) = ol_max |
---|
| 1039 | EXIT |
---|
| 1040 | ENDIF |
---|
[1691] | 1041 | ! |
---|
[4186] | 1042 | !-- Assure that Obukhov length does not become zero. If the limit is |
---|
| 1043 | !-- reached, exit the loop. |
---|
| 1044 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1045 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1046 | EXIT |
---|
| 1047 | ENDIF |
---|
| 1048 | ! |
---|
[3668] | 1049 | !-- Check for convergence |
---|
| 1050 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1051 | EXIT |
---|
[2232] | 1052 | ELSE |
---|
[3668] | 1053 | CYCLE |
---|
[4186] | 1054 | ENDIF |
---|
[1691] | 1055 | |
---|
| 1056 | ENDDO |
---|
[3668] | 1057 | ENDDO |
---|
[1691] | 1058 | |
---|
| 1059 | END SUBROUTINE calc_ol |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- Calculate friction velocity u* |
---|
| 1063 | SUBROUTINE calc_us |
---|
| 1064 | |
---|
| 1065 | IMPLICIT NONE |
---|
| 1066 | |
---|
[2232] | 1067 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1068 | |
---|
[2232] | 1069 | ! |
---|
| 1070 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1071 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1072 | ! |
---|
| 1073 | !-- Compute u* at upward-facing surfaces |
---|
| 1074 | IF ( .NOT. downward ) THEN |
---|
[2281] | 1075 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1076 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1077 | !$ACC PRESENT(surf) |
---|
[2232] | 1078 | DO m = 1, surf%ns |
---|
[1691] | 1079 | |
---|
[2232] | 1080 | z_mo = surf%z_mo(m) |
---|
[1691] | 1081 | ! |
---|
[2232] | 1082 | !-- Compute u* at the scalars' grid points |
---|
| 1083 | surf%us(m) = kappa * surf%uvw_abs(m) / & |
---|
| 1084 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1085 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1086 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1087 | |
---|
| 1088 | ENDDO |
---|
| 1089 | ! |
---|
| 1090 | !-- Compute u* at downward-facing surfaces. This case, do not consider |
---|
| 1091 | !-- any stability. |
---|
| 1092 | ELSE |
---|
[2281] | 1093 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1094 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1095 | !$ACC PRESENT(surf) |
---|
[2232] | 1096 | DO m = 1, surf%ns |
---|
| 1097 | |
---|
| 1098 | z_mo = surf%z_mo(m) |
---|
| 1099 | ! |
---|
| 1100 | !-- Compute u* at the scalars' grid points |
---|
| 1101 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
| 1102 | |
---|
| 1103 | ENDDO |
---|
| 1104 | ENDIF |
---|
| 1105 | ! |
---|
| 1106 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1107 | !-- No stability is considered in this case. |
---|
| 1108 | ELSE |
---|
| 1109 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1110 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1111 | !$ACC PRESENT(surf) |
---|
[2232] | 1112 | DO m = 1, surf%ns |
---|
| 1113 | z_mo = surf%z_mo(m) |
---|
| 1114 | |
---|
| 1115 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1116 | ENDDO |
---|
[2232] | 1117 | ENDIF |
---|
[1691] | 1118 | |
---|
| 1119 | END SUBROUTINE calc_us |
---|
| 1120 | |
---|
| 1121 | ! |
---|
[3146] | 1122 | !-- Calculate potential temperature, specific humidity, and virtual potential |
---|
| 1123 | !-- temperature at first grid level |
---|
[1691] | 1124 | SUBROUTINE calc_pt_q |
---|
| 1125 | |
---|
| 1126 | IMPLICIT NONE |
---|
| 1127 | |
---|
[2232] | 1128 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1129 | |
---|
| 1130 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1131 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1132 | !$ACC PRESENT(surf, pt) |
---|
[2232] | 1133 | DO m = 1, surf%ns |
---|
| 1134 | |
---|
| 1135 | i = surf%i(m) |
---|
| 1136 | j = surf%j(m) |
---|
| 1137 | k = surf%k(m) |
---|
| 1138 | |
---|
[3634] | 1139 | #ifndef _OPENACC |
---|
[3274] | 1140 | IF ( bulk_cloud_model ) THEN |
---|
| 1141 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
[2547] | 1142 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1143 | ELSEIF( cloud_droplets ) THEN |
---|
[3274] | 1144 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
[2547] | 1145 | surf%qv1(m) = q(k,j,i) |
---|
[2696] | 1146 | ELSE |
---|
[3634] | 1147 | #endif |
---|
[2696] | 1148 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1149 | #ifndef _OPENACC |
---|
[2696] | 1150 | IF ( humidity ) THEN |
---|
| 1151 | surf%qv1(m) = q(k,j,i) |
---|
| 1152 | ELSE |
---|
[3634] | 1153 | #endif |
---|
[2696] | 1154 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1155 | #ifndef _OPENACC |
---|
[2696] | 1156 | ENDIF |
---|
[2547] | 1157 | ENDIF |
---|
[2232] | 1158 | |
---|
[3146] | 1159 | IF ( humidity ) THEN |
---|
| 1160 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1161 | ENDIF |
---|
[3634] | 1162 | #endif |
---|
[3146] | 1163 | |
---|
[1691] | 1164 | ENDDO |
---|
| 1165 | |
---|
| 1166 | END SUBROUTINE calc_pt_q |
---|
| 1167 | |
---|
[2696] | 1168 | |
---|
[1691] | 1169 | ! |
---|
[3152] | 1170 | !-- Set potential temperature at surface grid level. |
---|
[2696] | 1171 | !-- ( only for upward-facing surfs ) |
---|
| 1172 | SUBROUTINE calc_pt_surface |
---|
| 1173 | |
---|
| 1174 | IMPLICIT NONE |
---|
| 1175 | |
---|
[3146] | 1176 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
[2696] | 1177 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1178 | |
---|
[3146] | 1179 | k_off = surf%koff |
---|
[2696] | 1180 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1181 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1182 | !$ACC PRESENT(surf, pt) |
---|
[2696] | 1183 | DO m = 1, surf%ns |
---|
| 1184 | |
---|
| 1185 | i = surf%i(m) |
---|
| 1186 | j = surf%j(m) |
---|
| 1187 | k = surf%k(m) |
---|
| 1188 | |
---|
[3146] | 1189 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
[2696] | 1190 | |
---|
| 1191 | ENDDO |
---|
| 1192 | |
---|
| 1193 | END SUBROUTINE calc_pt_surface |
---|
| 1194 | |
---|
| 1195 | ! |
---|
[3152] | 1196 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
| 1197 | SUBROUTINE calc_q_surface |
---|
| 1198 | |
---|
| 1199 | IMPLICIT NONE |
---|
| 1200 | |
---|
| 1201 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1202 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1203 | |
---|
| 1204 | k_off = surf%koff |
---|
| 1205 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1206 | DO m = 1, surf%ns |
---|
| 1207 | |
---|
| 1208 | i = surf%i(m) |
---|
| 1209 | j = surf%j(m) |
---|
| 1210 | k = surf%k(m) |
---|
| 1211 | |
---|
| 1212 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1213 | |
---|
| 1214 | ENDDO |
---|
| 1215 | |
---|
| 1216 | END SUBROUTINE calc_q_surface |
---|
| 1217 | |
---|
| 1218 | ! |
---|
| 1219 | !-- Set virtual potential temperature at surface grid level. |
---|
[3146] | 1220 | !-- ( only for upward-facing surfs ) |
---|
| 1221 | SUBROUTINE calc_vpt_surface |
---|
| 1222 | |
---|
| 1223 | IMPLICIT NONE |
---|
| 1224 | |
---|
| 1225 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1226 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1227 | |
---|
| 1228 | k_off = surf%koff |
---|
| 1229 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1230 | DO m = 1, surf%ns |
---|
| 1231 | |
---|
| 1232 | i = surf%i(m) |
---|
| 1233 | j = surf%j(m) |
---|
| 1234 | k = surf%k(m) |
---|
| 1235 | |
---|
| 1236 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
| 1237 | |
---|
| 1238 | ENDDO |
---|
| 1239 | |
---|
| 1240 | END SUBROUTINE calc_vpt_surface |
---|
| 1241 | |
---|
| 1242 | ! |
---|
[2292] | 1243 | !-- Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
[1691] | 1244 | SUBROUTINE calc_scaling_parameters |
---|
| 1245 | |
---|
| 1246 | IMPLICIT NONE |
---|
| 1247 | |
---|
[2232] | 1248 | |
---|
| 1249 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1250 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1251 | ! |
---|
[2232] | 1252 | !-- Compute theta* at horizontal surfaces |
---|
| 1253 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1254 | ! |
---|
| 1255 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1256 | |
---|
| 1257 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1258 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1259 | !$ACC PRESENT(surf, drho_air_zw) |
---|
[2232] | 1260 | DO m = 1, surf%ns |
---|
| 1261 | |
---|
| 1262 | i = surf%i(m) |
---|
| 1263 | j = surf%j(m) |
---|
| 1264 | k = surf%k(m) |
---|
| 1265 | |
---|
| 1266 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1267 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1268 | |
---|
[1691] | 1269 | ! |
---|
[2232] | 1270 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1271 | !-- of us=0 when computing ol further below |
---|
| 1272 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1273 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1274 | |
---|
[1691] | 1275 | ENDDO |
---|
| 1276 | |
---|
[2232] | 1277 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1278 | ! |
---|
| 1279 | !-- For a given surface temperature: |
---|
[1788] | 1280 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1281 | |
---|
| 1282 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1283 | DO m = 1, surf%ns |
---|
| 1284 | i = surf%i(m) |
---|
| 1285 | j = surf%j(m) |
---|
| 1286 | k = surf%k(m) |
---|
| 1287 | |
---|
| 1288 | pt(k-1,j,i) = pt_surface |
---|
[1691] | 1289 | ENDDO |
---|
| 1290 | ENDIF |
---|
| 1291 | |
---|
[2696] | 1292 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1293 | DO m = 1, surf%ns |
---|
[1691] | 1294 | |
---|
[2696] | 1295 | z_mo = surf%z_mo(m) |
---|
[1691] | 1296 | |
---|
[2696] | 1297 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 1298 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1299 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1300 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[1691] | 1301 | |
---|
[2696] | 1302 | ENDDO |
---|
[2232] | 1303 | |
---|
| 1304 | ENDIF |
---|
| 1305 | ! |
---|
| 1306 | !-- Compute theta* at vertical surfaces. This is only required in case of |
---|
| 1307 | !-- land-surface model, in order to compute aerodynamical resistance. |
---|
| 1308 | IF ( surf_vertical ) THEN |
---|
[2281] | 1309 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1310 | DO m = 1, surf%ns |
---|
| 1311 | |
---|
| 1312 | i = surf%i(m) |
---|
| 1313 | j = surf%j(m) |
---|
| 1314 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1315 | ! |
---|
| 1316 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1317 | !-- of us=0 when computing ol further below |
---|
| 1318 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1319 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1320 | |
---|
[1691] | 1321 | ENDDO |
---|
| 1322 | ENDIF |
---|
| 1323 | |
---|
| 1324 | ! |
---|
[2232] | 1325 | !-- If required compute q* at horizontal surfaces |
---|
[1960] | 1326 | IF ( humidity ) THEN |
---|
[2232] | 1327 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1328 | ! |
---|
[1788] | 1329 | !-- For a given water flux in the surface layer |
---|
[2232] | 1330 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1331 | DO m = 1, surf%ns |
---|
| 1332 | |
---|
| 1333 | i = surf%i(m) |
---|
| 1334 | j = surf%j(m) |
---|
| 1335 | k = surf%k(m) |
---|
| 1336 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / & |
---|
| 1337 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1338 | |
---|
[1691] | 1339 | ENDDO |
---|
| 1340 | |
---|
[2232] | 1341 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1788] | 1342 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
[1691] | 1343 | run_coupled ) |
---|
| 1344 | |
---|
[1788] | 1345 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1346 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1347 | DO m = 1, surf%ns |
---|
| 1348 | |
---|
| 1349 | i = surf%i(m) |
---|
| 1350 | j = surf%j(m) |
---|
| 1351 | k = surf%k(m) |
---|
| 1352 | q(k-1,j,i) = q_surface |
---|
| 1353 | |
---|
[1691] | 1354 | ENDDO |
---|
| 1355 | ENDIF |
---|
| 1356 | |
---|
| 1357 | ! |
---|
[2232] | 1358 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 1359 | !-- in case of precursor runs) |
---|
| 1360 | IF ( coupled_run ) THEN |
---|
| 1361 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1362 | DO m = 1, surf%ns |
---|
| 1363 | i = surf%i(m) |
---|
| 1364 | j = surf%j(m) |
---|
| 1365 | k = surf%k(m) |
---|
| 1366 | e_s = 6.1_wp * & |
---|
| 1367 | EXP( 0.07_wp * ( MIN(pt(k-1,j,i),pt(k,j,i)) & |
---|
[1691] | 1368 | - 273.15_wp ) ) |
---|
[3361] | 1369 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
[2232] | 1370 | ENDDO |
---|
| 1371 | ENDIF |
---|
[1691] | 1372 | |
---|
[3274] | 1373 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[2232] | 1374 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1375 | DO m = 1, surf%ns |
---|
[1691] | 1376 | |
---|
[2232] | 1377 | i = surf%i(m) |
---|
| 1378 | j = surf%j(m) |
---|
| 1379 | k = surf%k(m) |
---|
| 1380 | |
---|
| 1381 | z_mo = surf%z_mo(m) |
---|
[1691] | 1382 | |
---|
[3152] | 1383 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[2232] | 1384 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1385 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1386 | + psi_h( surf%z0q(m) / & |
---|
| 1387 | surf%ol(m) ) ) |
---|
[1691] | 1388 | ENDDO |
---|
[2232] | 1389 | ELSE |
---|
| 1390 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1391 | DO m = 1, surf%ns |
---|
| 1392 | |
---|
| 1393 | i = surf%i(m) |
---|
| 1394 | j = surf%j(m) |
---|
| 1395 | k = surf%k(m) |
---|
| 1396 | |
---|
| 1397 | z_mo = surf%z_mo(m) |
---|
| 1398 | |
---|
| 1399 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
| 1400 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1401 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1402 | + psi_h( surf%z0q(m) / & |
---|
| 1403 | surf%ol(m) ) ) |
---|
| 1404 | ENDDO |
---|
| 1405 | ENDIF |
---|
| 1406 | ENDIF |
---|
| 1407 | ! |
---|
| 1408 | !-- Compute q* at vertical surfaces |
---|
| 1409 | IF ( surf_vertical ) THEN |
---|
[2281] | 1410 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1411 | DO m = 1, surf%ns |
---|
| 1412 | |
---|
| 1413 | i = surf%i(m) |
---|
| 1414 | j = surf%j(m) |
---|
| 1415 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1416 | |
---|
[1691] | 1417 | ENDDO |
---|
| 1418 | ENDIF |
---|
| 1419 | ENDIF |
---|
[1960] | 1420 | |
---|
| 1421 | ! |
---|
| 1422 | !-- If required compute s* |
---|
| 1423 | IF ( passive_scalar ) THEN |
---|
| 1424 | ! |
---|
[2232] | 1425 | !-- At horizontal surfaces |
---|
| 1426 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1427 | ! |
---|
| 1428 | !-- For a given scalar flux in the surface layer |
---|
[2281] | 1429 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1430 | DO m = 1, surf%ns |
---|
| 1431 | i = surf%i(m) |
---|
| 1432 | j = surf%j(m) |
---|
| 1433 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1434 | ENDDO |
---|
| 1435 | ENDIF |
---|
[2232] | 1436 | ! |
---|
| 1437 | !-- At vertical surfaces |
---|
| 1438 | IF ( surf_vertical ) THEN |
---|
[2281] | 1439 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1440 | DO m = 1, surf%ns |
---|
| 1441 | i = surf%i(m) |
---|
| 1442 | j = surf%j(m) |
---|
| 1443 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1444 | ENDDO |
---|
| 1445 | ENDIF |
---|
[1960] | 1446 | ENDIF |
---|
[1691] | 1447 | |
---|
[2292] | 1448 | ! |
---|
[2696] | 1449 | !-- If required compute cs* (chemical species) |
---|
| 1450 | IF ( air_chemistry ) THEN |
---|
| 1451 | ! |
---|
| 1452 | !-- At horizontal surfaces |
---|
| 1453 | DO lsp = 1, nvar |
---|
| 1454 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1455 | !-- For a given chemical species' flux in the surface layer |
---|
| 1456 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1457 | DO m = 1, surf%ns |
---|
| 1458 | i = surf%i(m) |
---|
| 1459 | j = surf%j(m) |
---|
| 1460 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1461 | ENDDO |
---|
| 1462 | ENDIF |
---|
| 1463 | ENDDO |
---|
| 1464 | ! |
---|
| 1465 | !-- At vertical surfaces |
---|
| 1466 | IF ( surf_vertical ) THEN |
---|
| 1467 | DO lsp = 1, nvar |
---|
| 1468 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1469 | DO m = 1, surf%ns |
---|
| 1470 | i = surf%i(m) |
---|
| 1471 | j = surf%j(m) |
---|
| 1472 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1473 | ENDDO |
---|
| 1474 | ENDDO |
---|
| 1475 | ENDIF |
---|
| 1476 | ENDIF |
---|
| 1477 | |
---|
| 1478 | ! |
---|
[2292] | 1479 | !-- If required compute qc* and nc* |
---|
[3274] | 1480 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
[2292] | 1481 | .NOT. surf_vertical ) THEN |
---|
| 1482 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1483 | DO m = 1, surf%ns |
---|
[1691] | 1484 | |
---|
[2292] | 1485 | i = surf%i(m) |
---|
| 1486 | j = surf%j(m) |
---|
| 1487 | k = surf%k(m) |
---|
| 1488 | |
---|
| 1489 | z_mo = surf%z_mo(m) |
---|
| 1490 | |
---|
| 1491 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
| 1492 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1493 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1494 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1495 | |
---|
| 1496 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
| 1497 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1498 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1499 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1500 | ENDDO |
---|
| 1501 | |
---|
| 1502 | ENDIF |
---|
| 1503 | |
---|
[1691] | 1504 | ! |
---|
| 1505 | !-- If required compute qr* and nr* |
---|
[3274] | 1506 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
[2232] | 1507 | .NOT. surf_vertical ) THEN |
---|
| 1508 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1509 | DO m = 1, surf%ns |
---|
[1691] | 1510 | |
---|
[2232] | 1511 | i = surf%i(m) |
---|
| 1512 | j = surf%j(m) |
---|
| 1513 | k = surf%k(m) |
---|
[1691] | 1514 | |
---|
[2232] | 1515 | z_mo = surf%z_mo(m) |
---|
[1691] | 1516 | |
---|
[2232] | 1517 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
| 1518 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1519 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1520 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1521 | |
---|
[2232] | 1522 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
| 1523 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1524 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1525 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1526 | ENDDO |
---|
| 1527 | |
---|
| 1528 | ENDIF |
---|
| 1529 | |
---|
| 1530 | END SUBROUTINE calc_scaling_parameters |
---|
| 1531 | |
---|
| 1532 | |
---|
| 1533 | |
---|
| 1534 | ! |
---|
[2292] | 1535 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
[1691] | 1536 | SUBROUTINE calc_surface_fluxes |
---|
| 1537 | |
---|
| 1538 | IMPLICIT NONE |
---|
| 1539 | |
---|
[2696] | 1540 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1541 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1542 | |
---|
[2232] | 1543 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1544 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1545 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1546 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1547 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1548 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
[1691] | 1549 | |
---|
| 1550 | ! |
---|
[2232] | 1551 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1552 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1553 | ! |
---|
| 1554 | !-- Compute u'w' for the total model domain at upward-facing surfaces. |
---|
| 1555 | !-- First compute the corresponding component of u* and square it. |
---|
| 1556 | IF ( .NOT. downward ) THEN |
---|
| 1557 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[3634] | 1558 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1559 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
[2232] | 1560 | DO m = 1, surf%ns |
---|
| 1561 | |
---|
| 1562 | i = surf%i(m) |
---|
| 1563 | j = surf%j(m) |
---|
| 1564 | k = surf%k(m) |
---|
[1691] | 1565 | |
---|
[2232] | 1566 | z_mo = surf%z_mo(m) |
---|
[1691] | 1567 | |
---|
[2232] | 1568 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
| 1569 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1570 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1571 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1572 | ! |
---|
| 1573 | !-- Please note, the computation of usws is not fully accurate. Actually |
---|
| 1574 | !-- a further interpolation of us onto the u-grid, where usws is defined, |
---|
| 1575 | !-- is required. However, this is not done as this would require several |
---|
| 1576 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1577 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1578 | !-- tests had shown. |
---|
| 1579 | !-- Same also for ol. |
---|
| 1580 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1581 | |
---|
[2232] | 1582 | ENDDO |
---|
[1691] | 1583 | ! |
---|
[2232] | 1584 | !-- At downward-facing surfaces |
---|
| 1585 | ELSE |
---|
| 1586 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1587 | DO m = 1, surf%ns |
---|
| 1588 | |
---|
| 1589 | i = surf%i(m) |
---|
| 1590 | j = surf%j(m) |
---|
| 1591 | k = surf%k(m) |
---|
[1691] | 1592 | |
---|
[2232] | 1593 | z_mo = surf%z_mo(m) |
---|
| 1594 | |
---|
| 1595 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1596 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
[1691] | 1597 | |
---|
[2232] | 1598 | ENDDO |
---|
| 1599 | ENDIF |
---|
[1691] | 1600 | |
---|
[2232] | 1601 | ! |
---|
| 1602 | !-- Compute v'w' for the total model domain. |
---|
| 1603 | !-- First compute the corresponding component of u* and square it. |
---|
| 1604 | !-- Upward-facing surfaces |
---|
| 1605 | IF ( .NOT. downward ) THEN |
---|
| 1606 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[3634] | 1607 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1608 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
[2232] | 1609 | DO m = 1, surf%ns |
---|
| 1610 | i = surf%i(m) |
---|
| 1611 | j = surf%j(m) |
---|
| 1612 | k = surf%k(m) |
---|
[1691] | 1613 | |
---|
[2232] | 1614 | z_mo = surf%z_mo(m) |
---|
[1691] | 1615 | |
---|
[2232] | 1616 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
| 1617 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1618 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1619 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1620 | ! |
---|
[2232] | 1621 | !-- Please note, the computation of vsws is not fully accurate. Actually |
---|
| 1622 | !-- a further interpolation of us onto the v-grid, where vsws is defined, |
---|
| 1623 | !-- is required. However, this is not done as this would require several |
---|
| 1624 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1625 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1626 | !-- tests had shown. |
---|
| 1627 | !-- Same also for ol. |
---|
| 1628 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1629 | ENDDO |
---|
| 1630 | ! |
---|
| 1631 | !-- Downward-facing surfaces |
---|
| 1632 | ELSE |
---|
| 1633 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1634 | DO m = 1, surf%ns |
---|
| 1635 | i = surf%i(m) |
---|
| 1636 | j = surf%j(m) |
---|
| 1637 | k = surf%k(m) |
---|
[1691] | 1638 | |
---|
[2232] | 1639 | z_mo = surf%z_mo(m) |
---|
| 1640 | |
---|
| 1641 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1642 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1643 | ENDDO |
---|
| 1644 | ENDIF |
---|
[1691] | 1645 | ! |
---|
[2232] | 1646 | !-- Compute the vertical kinematic heat flux |
---|
[2299] | 1647 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point& |
---|
| 1648 | <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) .OR. & |
---|
[2696] | 1649 | .NOT. land_surface ) .AND. .NOT. urban_surface .AND. & |
---|
[2299] | 1650 | .NOT. downward ) THEN |
---|
[2232] | 1651 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1652 | DO m = 1, surf%ns |
---|
| 1653 | i = surf%i(m) |
---|
| 1654 | j = surf%j(m) |
---|
| 1655 | k = surf%k(m) |
---|
| 1656 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1657 | ENDDO |
---|
[2232] | 1658 | ENDIF |
---|
| 1659 | ! |
---|
| 1660 | !-- Compute the vertical water flux |
---|
| 1661 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
[2299] | 1662 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. & |
---|
[2696] | 1663 | simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1664 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[2232] | 1665 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1666 | DO m = 1, surf%ns |
---|
| 1667 | i = surf%i(m) |
---|
| 1668 | j = surf%j(m) |
---|
| 1669 | k = surf%k(m) |
---|
| 1670 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1671 | ENDDO |
---|
| 1672 | ENDIF |
---|
| 1673 | ! |
---|
| 1674 | !-- Compute the vertical scalar flux |
---|
| 1675 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. & |
---|
| 1676 | .NOT. downward ) THEN |
---|
[2281] | 1677 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1678 | DO m = 1, surf%ns |
---|
[1691] | 1679 | |
---|
[2232] | 1680 | i = surf%i(m) |
---|
| 1681 | j = surf%j(m) |
---|
| 1682 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
[1691] | 1683 | |
---|
[2232] | 1684 | ENDDO |
---|
[2292] | 1685 | ENDIF |
---|
[1691] | 1686 | ! |
---|
[2696] | 1687 | !-- Compute the vertical chemical species' flux |
---|
| 1688 | DO lsp = 1, nvar |
---|
| 1689 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. & |
---|
| 1690 | .NOT. downward ) THEN |
---|
| 1691 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1692 | DO m = 1, surf%ns |
---|
| 1693 | i = surf%i(m) |
---|
| 1694 | j = surf%j(m) |
---|
| 1695 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) |
---|
| 1696 | ENDDO |
---|
| 1697 | ENDIF |
---|
| 1698 | ENDDO |
---|
| 1699 | |
---|
| 1700 | ! |
---|
[2292] | 1701 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
[3274] | 1702 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
[2292] | 1703 | .NOT. downward) THEN |
---|
| 1704 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1705 | DO m = 1, surf%ns |
---|
| 1706 | |
---|
| 1707 | i = surf%i(m) |
---|
| 1708 | j = surf%j(m) |
---|
| 1709 | |
---|
| 1710 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) |
---|
| 1711 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) |
---|
| 1712 | ENDDO |
---|
| 1713 | ENDIF |
---|
| 1714 | ! |
---|
[2232] | 1715 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
[3274] | 1716 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
[2232] | 1717 | .NOT. downward) THEN |
---|
[2281] | 1718 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1719 | DO m = 1, surf%ns |
---|
| 1720 | |
---|
| 1721 | i = surf%i(m) |
---|
| 1722 | j = surf%j(m) |
---|
| 1723 | |
---|
| 1724 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
| 1725 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
[1691] | 1726 | ENDDO |
---|
[2232] | 1727 | ENDIF |
---|
[1691] | 1728 | |
---|
[1960] | 1729 | ! |
---|
[2232] | 1730 | !-- Bottom boundary condition for the TKE. |
---|
| 1731 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1732 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1733 | DO m = 1, surf%ns |
---|
| 1734 | |
---|
| 1735 | i = surf%i(m) |
---|
| 1736 | j = surf%j(m) |
---|
| 1737 | k = surf%k(m) |
---|
| 1738 | |
---|
| 1739 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1740 | ! |
---|
| 1741 | !-- As a test: cm = 0.4 |
---|
| 1742 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1743 | e(k-1,j,i) = e(k,j,i) |
---|
| 1744 | |
---|
[1960] | 1745 | ENDDO |
---|
[2232] | 1746 | ENDIF |
---|
| 1747 | ! |
---|
| 1748 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
| 1749 | ELSE |
---|
| 1750 | ! |
---|
| 1751 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1752 | IF ( mom_uv ) THEN |
---|
| 1753 | ! |
---|
| 1754 | !-- Generalize computation by introducing flags. At north- and south- |
---|
| 1755 | !-- facing surfaces u-component is used, at east- and west-facing |
---|
| 1756 | !-- surfaces v-component is used. |
---|
| 1757 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1758 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
| 1759 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1760 | DO m = 1, surf%ns |
---|
| 1761 | i = surf%i(m) |
---|
| 1762 | j = surf%j(m) |
---|
| 1763 | k = surf%k(m) |
---|
[1691] | 1764 | |
---|
[2232] | 1765 | z_mo = surf%z_mo(m) |
---|
[1960] | 1766 | |
---|
[2232] | 1767 | surf%mom_flux_uv(m) = kappa * & |
---|
| 1768 | ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
| 1769 | LOG( z_mo / surf%z0(m) ) |
---|
| 1770 | |
---|
| 1771 | surf%mom_flux_uv(m) = & |
---|
| 1772 | - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1773 | ENDDO |
---|
| 1774 | ENDIF |
---|
[1691] | 1775 | ! |
---|
[2232] | 1776 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1777 | IF ( mom_w ) THEN |
---|
| 1778 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1779 | DO m = 1, surf%ns |
---|
| 1780 | i = surf%i(m) |
---|
| 1781 | j = surf%j(m) |
---|
| 1782 | k = surf%k(m) |
---|
| 1783 | |
---|
| 1784 | z_mo = surf%z_mo(m) |
---|
| 1785 | |
---|
| 1786 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1787 | |
---|
| 1788 | surf%mom_flux_w(m) = & |
---|
| 1789 | - surf%mom_flux_w(m) * surf%us(m) |
---|
[1691] | 1790 | ENDDO |
---|
[2232] | 1791 | ENDIF |
---|
| 1792 | ! |
---|
| 1793 | !-- Compute momentum fluxes used for subgrid-scale TKE production at |
---|
| 1794 | !-- vertical surfaces. In constrast to the calculated momentum fluxes at |
---|
| 1795 | !-- vertical surfaces before, which are defined on the u/v/w-grid, |
---|
| 1796 | !-- respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1797 | !-- |
---|
| 1798 | IF ( mom_tke ) THEN |
---|
| 1799 | ! |
---|
| 1800 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1801 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1802 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1803 | ALLOCATE( w_i(1:surf%ns) ) |
---|
[1691] | 1804 | |
---|
[2232] | 1805 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1806 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1807 | DO m = 1, surf%ns |
---|
| 1808 | i = surf%i(m) |
---|
| 1809 | j = surf%j(m) |
---|
| 1810 | k = surf%k(m) |
---|
| 1811 | |
---|
| 1812 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1813 | v_i(m) = 0.0_wp |
---|
| 1814 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1815 | ENDDO |
---|
| 1816 | ELSE |
---|
| 1817 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1818 | DO m = 1, surf%ns |
---|
| 1819 | i = surf%i(m) |
---|
| 1820 | j = surf%j(m) |
---|
| 1821 | k = surf%k(m) |
---|
| 1822 | |
---|
| 1823 | u_i(m) = 0.0_wp |
---|
| 1824 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1825 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1826 | ENDDO |
---|
| 1827 | ENDIF |
---|
| 1828 | |
---|
[2281] | 1829 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
[2232] | 1830 | DO m = 1, surf%ns |
---|
| 1831 | i = surf%i(m) |
---|
| 1832 | j = surf%j(m) |
---|
| 1833 | |
---|
| 1834 | z_mo = surf%z_mo(m) |
---|
| 1835 | |
---|
| 1836 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1837 | ! |
---|
[2232] | 1838 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 1839 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 1840 | ! |
---|
[2232] | 1841 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 1842 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
| 1843 | |
---|
| 1844 | surf%mom_flux_tke(0:1,m) = & |
---|
| 1845 | - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
[1691] | 1846 | ENDDO |
---|
[2232] | 1847 | ! |
---|
| 1848 | !-- Deallocate temporary arrays |
---|
| 1849 | DEALLOCATE( u_i ) |
---|
| 1850 | DEALLOCATE( v_i ) |
---|
| 1851 | DEALLOCATE( w_i ) |
---|
| 1852 | ENDIF |
---|
[1691] | 1853 | ENDIF |
---|
| 1854 | |
---|
| 1855 | END SUBROUTINE calc_surface_fluxes |
---|
| 1856 | |
---|
[3597] | 1857 | |
---|
| 1858 | !------------------------------------------------------------------------------! |
---|
| 1859 | ! Description: |
---|
| 1860 | ! ------------ |
---|
| 1861 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m |
---|
| 1862 | !> temperature for output |
---|
| 1863 | !------------------------------------------------------------------------------! |
---|
| 1864 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 1865 | |
---|
[3597] | 1866 | IMPLICIT NONE |
---|
| 1867 | |
---|
[4298] | 1868 | CHARACTER (LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
| 1869 | INTEGER(iwp) :: i !< grid index x-dimension |
---|
| 1870 | INTEGER(iwp) :: j !< grid index y-dimension |
---|
| 1871 | INTEGER(iwp) :: k !< grid index z-dimension |
---|
| 1872 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 1873 | |
---|
| 1874 | |
---|
| 1875 | SELECT CASE ( z_char) |
---|
| 1876 | |
---|
| 1877 | |
---|
| 1878 | CASE ( '10cm' ) |
---|
| 1879 | |
---|
| 1880 | DO m = 1, surf%ns |
---|
| 1881 | |
---|
| 1882 | i = surf%i(m) |
---|
| 1883 | j = surf%j(m) |
---|
| 1884 | k = surf%k(m) |
---|
| 1885 | |
---|
[3744] | 1886 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
| 1887 | * ( LOG( 0.1_wp / surf%z0h(m) ) & |
---|
[4298] | 1888 | - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
[3597] | 1889 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4331] | 1890 | |
---|
[3597] | 1891 | ENDDO |
---|
| 1892 | |
---|
| 1893 | END SELECT |
---|
| 1894 | |
---|
| 1895 | END SUBROUTINE calc_pt_near_surface |
---|
| 1896 | |
---|
| 1897 | |
---|
[1691] | 1898 | ! |
---|
| 1899 | !-- Integrated stability function for momentum |
---|
| 1900 | FUNCTION psi_m( zeta ) |
---|
[3634] | 1901 | !$ACC ROUTINE SEQ |
---|
[1691] | 1902 | |
---|
| 1903 | USE kinds |
---|
| 1904 | |
---|
| 1905 | IMPLICIT NONE |
---|
| 1906 | |
---|
| 1907 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 1908 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1909 | REAL(wp) :: x !< dummy variable |
---|
| 1910 | |
---|
| 1911 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1912 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1913 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1914 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1915 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1916 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 1917 | |
---|
| 1918 | |
---|
| 1919 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 1920 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
[1691] | 1921 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 1922 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 1923 | ELSE |
---|
| 1924 | |
---|
| 1925 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
| 1926 | - bc_d_d |
---|
| 1927 | ! |
---|
| 1928 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 1929 | !-- psi_m = - 5.0_wp * zeta |
---|
| 1930 | |
---|
| 1931 | ENDIF |
---|
| 1932 | |
---|
| 1933 | END FUNCTION psi_m |
---|
| 1934 | |
---|
| 1935 | |
---|
| 1936 | ! |
---|
| 1937 | !-- Integrated stability function for heat and moisture |
---|
| 1938 | FUNCTION psi_h( zeta ) |
---|
[3634] | 1939 | !$ACC ROUTINE SEQ |
---|
[1691] | 1940 | |
---|
| 1941 | USE kinds |
---|
| 1942 | |
---|
| 1943 | IMPLICIT NONE |
---|
| 1944 | |
---|
| 1945 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 1946 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1947 | REAL(wp) :: x !< dummy variable |
---|
| 1948 | |
---|
| 1949 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1950 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1951 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1952 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1953 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1954 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 1955 | |
---|
| 1956 | |
---|
| 1957 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 1958 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
[1691] | 1959 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 1960 | ELSE |
---|
| 1961 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 1962 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
| 1963 | + 1.0_wp |
---|
| 1964 | ! |
---|
| 1965 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 1966 | !-- psi_h = - 5.0_wp * zeta |
---|
| 1967 | ENDIF |
---|
| 1968 | |
---|
| 1969 | END FUNCTION psi_h |
---|
| 1970 | |
---|
[3130] | 1971 | |
---|
| 1972 | !------------------------------------------------------------------------------! |
---|
| 1973 | ! Description: |
---|
| 1974 | ! ------------ |
---|
| 1975 | !> Calculates stability function for momentum |
---|
| 1976 | !> |
---|
| 1977 | !> @author Hauke Wurps |
---|
| 1978 | !------------------------------------------------------------------------------! |
---|
| 1979 | FUNCTION phi_m( zeta ) |
---|
[3634] | 1980 | !$ACC ROUTINE SEQ |
---|
[3130] | 1981 | |
---|
| 1982 | IMPLICIT NONE |
---|
| 1983 | |
---|
| 1984 | REAL(wp) :: phi_m !< Value of the function |
---|
| 1985 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1986 | |
---|
| 1987 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 1988 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1989 | |
---|
| 1990 | IF ( zeta < 0.0_wp ) THEN |
---|
| 1991 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 1992 | ELSE |
---|
| 1993 | phi_m = 1.0_wp + c * zeta |
---|
| 1994 | ENDIF |
---|
| 1995 | |
---|
| 1996 | END FUNCTION phi_m |
---|
| 1997 | |
---|
[1697] | 1998 | END MODULE surface_layer_fluxes_mod |
---|