[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1691] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[3655] | 17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
[1691] | 18 | ! |
---|
[2000] | 19 | !------------------------------------------------------------------------------! |
---|
[2696] | 20 | ! |
---|
[1691] | 21 | ! Current revisions: |
---|
[1747] | 22 | ! ------------------ |
---|
[1758] | 23 | ! |
---|
[3745] | 24 | ! |
---|
[1692] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: surface_layer_fluxes_mod.f90 4298 2019-11-21 15:59:16Z suehring $ |
---|
[4298] | 28 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above |
---|
| 29 | ! the first grid point. |
---|
| 30 | ! |
---|
| 31 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
[4258] | 32 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
| 33 | ! |
---|
| 34 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
[4237] | 35 | ! Added missing OpenMP directives |
---|
| 36 | ! |
---|
| 37 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4186] | 38 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
| 39 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic |
---|
| 40 | ! peaks in the heat fluxes during nighttime |
---|
| 41 | ! - Unused variable removed |
---|
| 42 | ! |
---|
| 43 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 44 | ! Corrected "Former revisions" section |
---|
| 45 | ! |
---|
| 46 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
[3987] | 47 | ! Introduce alternative switch for debug output during timestepping |
---|
| 48 | ! |
---|
| 49 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 50 | ! Changes related to global restructuring of location messages and introduction |
---|
| 51 | ! of additional debug messages |
---|
| 52 | ! |
---|
| 53 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
[3881] | 54 | ! Assure that Obukhov length does not become zero |
---|
| 55 | ! |
---|
| 56 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
[3833] | 57 | ! added USE chem_gasphase_mod |
---|
| 58 | ! |
---|
| 59 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
[3787] | 60 | ! unused variables removed |
---|
| 61 | ! |
---|
| 62 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
[3745] | 63 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, |
---|
| 64 | ! required for indoor model |
---|
| 65 | ! |
---|
| 66 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
[3685] | 67 | ! Some interface calls moved to module_interface + cleanup |
---|
| 68 | ! |
---|
| 69 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
[3668] | 70 | ! Removed methods "circular" and "lookup" |
---|
| 71 | ! |
---|
| 72 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3634] | 73 | ! OpenACC port for SPEC |
---|
[1692] | 74 | ! |
---|
[4182] | 75 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 76 | ! Initial revision |
---|
| 77 | ! |
---|
| 78 | ! |
---|
[1691] | 79 | ! Description: |
---|
| 80 | ! ------------ |
---|
| 81 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
[3668] | 82 | !> values of the variables at grid point k=1 based on Newton iteration |
---|
[1691] | 83 | !> |
---|
| 84 | !> @todo (re)move large_scale_forcing actions |
---|
[2118] | 85 | !> @todo check/optimize OpenMP directives |
---|
[2696] | 86 | !> @todo simplify if conditions (which flux need to be computed in which case) |
---|
[1691] | 87 | !------------------------------------------------------------------------------! |
---|
| 88 | MODULE surface_layer_fluxes_mod |
---|
| 89 | |
---|
| 90 | USE arrays_3d, & |
---|
[2292] | 91 | ONLY: e, kh, nc, nr, pt, q, ql, qc, qr, s, u, v, vpt, w, zu, zw, & |
---|
[3274] | 92 | drho_air_zw, rho_air_zw, d_exner |
---|
[1691] | 93 | |
---|
[3274] | 94 | USE basic_constants_and_equations_mod, & |
---|
[3361] | 95 | ONLY: g, kappa, lv_d_cp, pi, rd_d_rv |
---|
[3274] | 96 | |
---|
[3833] | 97 | USE chem_gasphase_mod, & |
---|
| 98 | ONLY: nvar |
---|
| 99 | |
---|
[2696] | 100 | USE chem_modules, & |
---|
[3834] | 101 | ONLY: constant_csflux |
---|
[2696] | 102 | |
---|
[1691] | 103 | USE cpulog |
---|
| 104 | |
---|
| 105 | USE control_parameters, & |
---|
[3274] | 106 | ONLY: air_chemistry, cloud_droplets, & |
---|
| 107 | constant_heatflux, constant_scalarflux, & |
---|
[3885] | 108 | constant_waterflux, coupling_mode, & |
---|
[3987] | 109 | debug_output_timestep, & |
---|
[3885] | 110 | do_output_at_2m, humidity, & |
---|
[4298] | 111 | ibc_e_b, ibc_pt_b, indoor_model, & |
---|
[3274] | 112 | land_surface, large_scale_forcing, lsf_surf, message_string, & |
---|
[3668] | 113 | neutral, passive_scalar, pt_surface, q_surface, & |
---|
[4298] | 114 | run_coupled, surface_pressure, simulated_time, & |
---|
[3157] | 115 | time_since_reference_point, urban_surface, & |
---|
| 116 | use_free_convection_scaling, zeta_max, zeta_min |
---|
[1691] | 117 | |
---|
[2232] | 118 | USE grid_variables, & |
---|
| 119 | ONLY: dx, dy |
---|
| 120 | |
---|
[1691] | 121 | USE indices, & |
---|
[4298] | 122 | ONLY: nzt |
---|
[1691] | 123 | |
---|
| 124 | USE kinds |
---|
| 125 | |
---|
[3274] | 126 | USE bulk_cloud_model_mod, & |
---|
| 127 | ONLY: bulk_cloud_model, microphysics_morrison, microphysics_seifert |
---|
| 128 | |
---|
[1691] | 129 | USE pegrid |
---|
| 130 | |
---|
| 131 | USE land_surface_model_mod, & |
---|
[2232] | 132 | ONLY: aero_resist_kray, skip_time_do_lsm |
---|
[2011] | 133 | |
---|
[2232] | 134 | USE surface_mod, & |
---|
| 135 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_type, & |
---|
| 136 | surf_usm_h, surf_usm_v |
---|
[2007] | 137 | |
---|
[1691] | 138 | |
---|
| 139 | IMPLICIT NONE |
---|
| 140 | |
---|
[1992] | 141 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 142 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 143 | INTEGER(iwp) :: k !< loop index z direction |
---|
[2232] | 144 | INTEGER(iwp) :: l !< loop index for surf type |
---|
[1691] | 145 | |
---|
[2232] | 146 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 147 | LOGICAL :: downward = .FALSE.!< Flag indicating downward-facing horizontal surface |
---|
| 148 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 149 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 150 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 151 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 152 | |
---|
| 153 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
| 154 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
| 155 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
| 156 | |
---|
[2232] | 157 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 158 | |
---|
[2232] | 159 | |
---|
[1691] | 160 | SAVE |
---|
| 161 | |
---|
| 162 | PRIVATE |
---|
| 163 | |
---|
[3130] | 164 | PUBLIC init_surface_layer_fluxes, phi_m, surface_layer_fluxes |
---|
[1691] | 165 | |
---|
| 166 | INTERFACE init_surface_layer_fluxes |
---|
| 167 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 168 | END INTERFACE init_surface_layer_fluxes |
---|
| 169 | |
---|
[3130] | 170 | INTERFACE phi_m |
---|
| 171 | MODULE PROCEDURE phi_m |
---|
| 172 | END INTERFACE phi_m |
---|
| 173 | |
---|
[1691] | 174 | INTERFACE surface_layer_fluxes |
---|
| 175 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 176 | END INTERFACE surface_layer_fluxes |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | CONTAINS |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | !------------------------------------------------------------------------------! |
---|
| 183 | ! Description: |
---|
| 184 | ! ------------ |
---|
| 185 | !> Main routine to compute the surface fluxes |
---|
| 186 | !------------------------------------------------------------------------------! |
---|
| 187 | SUBROUTINE surface_layer_fluxes |
---|
| 188 | |
---|
| 189 | IMPLICIT NONE |
---|
| 190 | |
---|
[3885] | 191 | |
---|
[3987] | 192 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
[3885] | 193 | |
---|
[3547] | 194 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
| 195 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
[1691] | 196 | ! |
---|
[2696] | 197 | !-- Derive potential temperature and specific humidity at first grid level |
---|
| 198 | !-- from the fields pt and q |
---|
[2232] | 199 | ! |
---|
[2696] | 200 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, |
---|
| 201 | !-- l=1 - downward facing) |
---|
| 202 | DO l = 0, 1 |
---|
| 203 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 204 | surf => surf_def_h(l) |
---|
| 205 | CALL calc_pt_q |
---|
[3146] | 206 | IF ( .NOT. neutral ) THEN |
---|
| 207 | CALL calc_pt_surface |
---|
| 208 | IF ( humidity ) THEN |
---|
[3152] | 209 | CALL calc_q_surface |
---|
[3146] | 210 | CALL calc_vpt_surface |
---|
| 211 | ENDIF |
---|
| 212 | ENDIF |
---|
[2696] | 213 | ENDIF |
---|
| 214 | ENDDO |
---|
[2232] | 215 | ! |
---|
[2696] | 216 | !-- Call for natural-type horizontal surfaces |
---|
| 217 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 218 | surf => surf_lsm_h |
---|
| 219 | CALL calc_pt_q |
---|
| 220 | ENDIF |
---|
| 221 | |
---|
| 222 | ! |
---|
| 223 | !-- Call for urban-type horizontal surfaces |
---|
| 224 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 225 | surf => surf_usm_h |
---|
| 226 | CALL calc_pt_q |
---|
| 227 | ENDIF |
---|
| 228 | |
---|
| 229 | ! |
---|
| 230 | !-- Call for natural-type vertical surfaces |
---|
| 231 | DO l = 0, 3 |
---|
| 232 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 233 | surf => surf_lsm_v(l) |
---|
[2232] | 234 | CALL calc_pt_q |
---|
| 235 | ENDIF |
---|
[2696] | 236 | |
---|
[3146] | 237 | !-- Call for urban-type vertical surfaces |
---|
[2696] | 238 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 239 | surf => surf_usm_v(l) |
---|
[2232] | 240 | CALL calc_pt_q |
---|
| 241 | ENDIF |
---|
[2696] | 242 | ENDDO |
---|
[1691] | 243 | |
---|
| 244 | ! |
---|
| 245 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
| 246 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
[3668] | 247 | !-- surface fluxes if required. Note, each routine is called for different surface types. |
---|
[2232] | 248 | !-- First call for default-type horizontal surfaces, for natural- and |
---|
| 249 | !-- urban-type surfaces. Note, at this place only upward-facing horizontal |
---|
[3668] | 250 | !-- surfaces are treated. |
---|
| 251 | |
---|
[2232] | 252 | ! |
---|
[3668] | 253 | !-- Default-type upward-facing horizontal surfaces |
---|
| 254 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 255 | surf => surf_def_h(0) |
---|
| 256 | CALL calc_uvw_abs |
---|
| 257 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 258 | CALL calc_us |
---|
| 259 | CALL calc_scaling_parameters |
---|
| 260 | CALL calc_surface_fluxes |
---|
| 261 | IF ( do_output_at_2m ) THEN |
---|
| 262 | CALL calc_pt_near_surface ( '2m' ) |
---|
[1691] | 263 | ENDIF |
---|
[3668] | 264 | ENDIF |
---|
[1691] | 265 | ! |
---|
[3668] | 266 | !-- Natural-type horizontal surfaces |
---|
| 267 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 268 | surf => surf_lsm_h |
---|
| 269 | CALL calc_uvw_abs |
---|
| 270 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 271 | CALL calc_us |
---|
| 272 | CALL calc_scaling_parameters |
---|
| 273 | CALL calc_surface_fluxes |
---|
| 274 | IF ( do_output_at_2m ) THEN |
---|
| 275 | CALL calc_pt_near_surface ( '2m' ) |
---|
[2232] | 276 | ENDIF |
---|
[3668] | 277 | ENDIF |
---|
[2232] | 278 | ! |
---|
[3668] | 279 | !-- Urban-type horizontal surfaces |
---|
| 280 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 281 | surf => surf_usm_h |
---|
| 282 | CALL calc_uvw_abs |
---|
| 283 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 284 | CALL calc_us |
---|
| 285 | CALL calc_scaling_parameters |
---|
| 286 | CALL calc_surface_fluxes |
---|
| 287 | IF ( do_output_at_2m ) THEN |
---|
| 288 | CALL calc_pt_near_surface ( '2m' ) |
---|
[2232] | 289 | ENDIF |
---|
[3744] | 290 | ! |
---|
| 291 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 292 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[3668] | 293 | ENDIF |
---|
[1691] | 294 | |
---|
[2232] | 295 | ! |
---|
| 296 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are |
---|
| 297 | !-- always default type. Stratification is not considered |
---|
| 298 | !-- in this case, hence, no further distinction between different |
---|
| 299 | !-- most_method is required. |
---|
| 300 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 301 | downward = .TRUE. |
---|
| 302 | surf => surf_def_h(1) |
---|
| 303 | CALL calc_uvw_abs |
---|
[1691] | 304 | CALL calc_us |
---|
| 305 | CALL calc_surface_fluxes |
---|
[2232] | 306 | downward = .FALSE. |
---|
[1691] | 307 | ENDIF |
---|
[2232] | 308 | ! |
---|
| 309 | !-- Calculate surfaces fluxes at vertical surfaces for momentum |
---|
| 310 | !-- and subgrid-scale TKE. |
---|
| 311 | !-- No stability is considered. Therefore, scaling parameters and Obukhov- |
---|
| 312 | !-- length do not need to be calculated and no distinction in 'circular', |
---|
| 313 | !-- 'Newton' or 'lookup' is necessary so far. |
---|
| 314 | !-- Note, this will change if stability is once considered. |
---|
| 315 | surf_vertical = .TRUE. |
---|
| 316 | ! |
---|
| 317 | !-- Calculate horizontal momentum fluxes at north- and south-facing |
---|
| 318 | !-- surfaces(usvs). |
---|
| 319 | !-- For default-type surfaces |
---|
| 320 | mom_uv = .TRUE. |
---|
| 321 | DO l = 0, 1 |
---|
| 322 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 323 | surf => surf_def_v(l) |
---|
| 324 | ! |
---|
| 325 | !-- Compute surface-parallel velocity |
---|
| 326 | CALL calc_uvw_abs_v_ugrid |
---|
| 327 | ! |
---|
| 328 | !-- Compute respective friction velocity on staggered grid |
---|
| 329 | CALL calc_us |
---|
| 330 | ! |
---|
| 331 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 332 | CALL calc_surface_fluxes |
---|
| 333 | ENDIF |
---|
| 334 | ENDDO |
---|
| 335 | ! |
---|
| 336 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 337 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 338 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 339 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 340 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 341 | IF ( .NOT. aero_resist_kray ) THEN |
---|
[3668] | 342 | DO l = 0, 1 |
---|
| 343 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 344 | surf => surf_lsm_v(l) |
---|
[2232] | 345 | ! |
---|
[3668] | 346 | !-- Compute surface-parallel velocity |
---|
| 347 | CALL calc_uvw_abs_v_ugrid |
---|
[2232] | 348 | ! |
---|
[3668] | 349 | !-- Compute Obukhov length |
---|
| 350 | IF ( .NOT. neutral ) CALL calc_ol |
---|
[2232] | 351 | ! |
---|
[3668] | 352 | !-- Compute respective friction velocity on staggered grid |
---|
| 353 | CALL calc_us |
---|
[2232] | 354 | ! |
---|
[3668] | 355 | !-- Compute scaling parameters |
---|
| 356 | CALL calc_scaling_parameters |
---|
[2232] | 357 | ! |
---|
[3668] | 358 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 359 | CALL calc_surface_fluxes |
---|
| 360 | ENDIF |
---|
| 361 | ENDDO |
---|
[2232] | 362 | ! |
---|
| 363 | !-- No ts is required, so scaling parameters and Obukhov length do not need |
---|
| 364 | !-- to be computed. |
---|
| 365 | ELSE |
---|
| 366 | DO l = 0, 1 |
---|
| 367 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 368 | surf => surf_lsm_v(l) |
---|
| 369 | ! |
---|
| 370 | !-- Compute surface-parallel velocity |
---|
| 371 | CALL calc_uvw_abs_v_ugrid |
---|
| 372 | ! |
---|
| 373 | !-- Compute respective friction velocity on staggered grid |
---|
| 374 | CALL calc_us |
---|
| 375 | ! |
---|
| 376 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 377 | CALL calc_surface_fluxes |
---|
| 378 | ENDIF |
---|
| 379 | ENDDO |
---|
| 380 | ENDIF |
---|
| 381 | ! |
---|
| 382 | !-- For urban-type surfaces |
---|
| 383 | DO l = 0, 1 |
---|
| 384 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 385 | surf => surf_usm_v(l) |
---|
| 386 | ! |
---|
| 387 | !-- Compute surface-parallel velocity |
---|
| 388 | CALL calc_uvw_abs_v_ugrid |
---|
| 389 | ! |
---|
| 390 | !-- Compute respective friction velocity on staggered grid |
---|
| 391 | CALL calc_us |
---|
| 392 | ! |
---|
| 393 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 394 | CALL calc_surface_fluxes |
---|
[3744] | 395 | ! |
---|
| 396 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 397 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[2232] | 398 | ENDIF |
---|
| 399 | ENDDO |
---|
| 400 | ! |
---|
| 401 | !-- Calculate horizontal momentum fluxes at east- and west-facing |
---|
| 402 | !-- surfaces (vsus). |
---|
| 403 | !-- For default-type surfaces |
---|
| 404 | DO l = 2, 3 |
---|
| 405 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 406 | surf => surf_def_v(l) |
---|
| 407 | ! |
---|
| 408 | !-- Compute surface-parallel velocity |
---|
| 409 | CALL calc_uvw_abs_v_vgrid |
---|
| 410 | ! |
---|
| 411 | !-- Compute respective friction velocity on staggered grid |
---|
| 412 | CALL calc_us |
---|
| 413 | ! |
---|
| 414 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 415 | CALL calc_surface_fluxes |
---|
[3744] | 416 | |
---|
[2232] | 417 | ENDIF |
---|
| 418 | ENDDO |
---|
| 419 | ! |
---|
| 420 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 421 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 422 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 423 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 424 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 425 | IF ( .NOT. aero_resist_kray ) THEN |
---|
[3668] | 426 | DO l = 2, 3 |
---|
| 427 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 428 | surf => surf_lsm_v(l) |
---|
[2232] | 429 | ! |
---|
[3668] | 430 | !-- Compute surface-parallel velocity |
---|
| 431 | CALL calc_uvw_abs_v_vgrid |
---|
[2232] | 432 | ! |
---|
[3668] | 433 | !-- Compute Obukhov length |
---|
| 434 | IF ( .NOT. neutral ) CALL calc_ol |
---|
[2232] | 435 | ! |
---|
[3668] | 436 | !-- Compute respective friction velocity on staggered grid |
---|
| 437 | CALL calc_us |
---|
[2232] | 438 | ! |
---|
[3668] | 439 | !-- Compute scaling parameters |
---|
| 440 | CALL calc_scaling_parameters |
---|
[2232] | 441 | ! |
---|
[3668] | 442 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 443 | CALL calc_surface_fluxes |
---|
| 444 | ENDIF |
---|
| 445 | ENDDO |
---|
[2232] | 446 | ELSE |
---|
| 447 | DO l = 2, 3 |
---|
| 448 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 449 | surf => surf_lsm_v(l) |
---|
| 450 | ! |
---|
| 451 | !-- Compute surface-parallel velocity |
---|
| 452 | CALL calc_uvw_abs_v_vgrid |
---|
| 453 | ! |
---|
| 454 | !-- Compute respective friction velocity on staggered grid |
---|
| 455 | CALL calc_us |
---|
| 456 | ! |
---|
| 457 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 458 | CALL calc_surface_fluxes |
---|
| 459 | ENDIF |
---|
| 460 | ENDDO |
---|
| 461 | ENDIF |
---|
| 462 | ! |
---|
| 463 | !-- For urban-type surfaces |
---|
| 464 | DO l = 2, 3 |
---|
| 465 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 466 | surf => surf_usm_v(l) |
---|
| 467 | ! |
---|
| 468 | !-- Compute surface-parallel velocity |
---|
| 469 | CALL calc_uvw_abs_v_vgrid |
---|
| 470 | ! |
---|
| 471 | !-- Compute respective friction velocity on staggered grid |
---|
| 472 | CALL calc_us |
---|
| 473 | ! |
---|
| 474 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 475 | CALL calc_surface_fluxes |
---|
[3744] | 476 | ! |
---|
| 477 | !-- Calculate 10cm temperature, required in indoor model |
---|
| 478 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
[2232] | 479 | ENDIF |
---|
| 480 | ENDDO |
---|
| 481 | mom_uv = .FALSE. |
---|
| 482 | ! |
---|
| 483 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial |
---|
| 484 | !-- surfaces. |
---|
| 485 | mom_w = .TRUE. |
---|
| 486 | ! |
---|
| 487 | !-- Default-type surfaces |
---|
| 488 | DO l = 0, 3 |
---|
| 489 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 490 | surf => surf_def_v(l) |
---|
| 491 | CALL calc_uvw_abs_v_wgrid |
---|
| 492 | CALL calc_us |
---|
| 493 | CALL calc_surface_fluxes |
---|
| 494 | ENDIF |
---|
| 495 | ENDDO |
---|
| 496 | ! |
---|
| 497 | !-- Natural-type surfaces |
---|
| 498 | DO l = 0, 3 |
---|
| 499 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 500 | surf => surf_lsm_v(l) |
---|
| 501 | CALL calc_uvw_abs_v_wgrid |
---|
| 502 | CALL calc_us |
---|
| 503 | CALL calc_surface_fluxes |
---|
| 504 | ENDIF |
---|
| 505 | ENDDO |
---|
| 506 | ! |
---|
| 507 | !-- Urban-type surfaces |
---|
| 508 | DO l = 0, 3 |
---|
| 509 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 510 | surf => surf_usm_v(l) |
---|
| 511 | CALL calc_uvw_abs_v_wgrid |
---|
| 512 | CALL calc_us |
---|
| 513 | CALL calc_surface_fluxes |
---|
| 514 | ENDIF |
---|
| 515 | ENDDO |
---|
| 516 | mom_w = .FALSE. |
---|
| 517 | ! |
---|
| 518 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical |
---|
| 519 | !-- surfaces for TKE production. Note, here, momentum fluxes are defined |
---|
| 520 | !-- at grid center and are not staggered as before. |
---|
| 521 | mom_tke = .TRUE. |
---|
| 522 | ! |
---|
| 523 | !-- Default-type surfaces |
---|
| 524 | DO l = 0, 3 |
---|
| 525 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 526 | surf => surf_def_v(l) |
---|
| 527 | CALL calc_uvw_abs_v_sgrid |
---|
| 528 | CALL calc_us |
---|
| 529 | CALL calc_surface_fluxes |
---|
| 530 | ENDIF |
---|
| 531 | ENDDO |
---|
| 532 | ! |
---|
| 533 | !-- Natural-type surfaces |
---|
| 534 | DO l = 0, 3 |
---|
| 535 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 536 | surf => surf_lsm_v(l) |
---|
| 537 | CALL calc_uvw_abs_v_sgrid |
---|
| 538 | CALL calc_us |
---|
| 539 | CALL calc_surface_fluxes |
---|
| 540 | ENDIF |
---|
| 541 | ENDDO |
---|
| 542 | ! |
---|
| 543 | !-- Urban-type surfaces |
---|
| 544 | DO l = 0, 3 |
---|
| 545 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 546 | surf => surf_usm_v(l) |
---|
| 547 | CALL calc_uvw_abs_v_sgrid |
---|
| 548 | CALL calc_us |
---|
| 549 | CALL calc_surface_fluxes |
---|
| 550 | ENDIF |
---|
| 551 | ENDDO |
---|
| 552 | mom_tke = .FALSE. |
---|
[1691] | 553 | |
---|
[3987] | 554 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
[3885] | 555 | |
---|
[1691] | 556 | END SUBROUTINE surface_layer_fluxes |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | !------------------------------------------------------------------------------! |
---|
| 560 | ! Description: |
---|
| 561 | ! ------------ |
---|
[4258] | 562 | !> Initializing actions for the surface layer routine. |
---|
[1691] | 563 | !------------------------------------------------------------------------------! |
---|
| 564 | SUBROUTINE init_surface_layer_fluxes |
---|
| 565 | |
---|
| 566 | IMPLICIT NONE |
---|
| 567 | |
---|
[4258] | 568 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
[1691] | 569 | |
---|
[3885] | 570 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
[1709] | 571 | |
---|
| 572 | ! |
---|
| 573 | !-- In case of runs with neutral statification, set Obukhov length to a |
---|
| 574 | !-- large value |
---|
[2232] | 575 | IF ( neutral ) THEN |
---|
| 576 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 577 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 578 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
[4258] | 579 | |
---|
| 580 | DO l = 0, 3 |
---|
| 581 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
| 582 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
| 583 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
| 584 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
| 585 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
| 586 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
| 587 | ENDDO |
---|
| 588 | |
---|
[2232] | 589 | ENDIF |
---|
[1709] | 590 | |
---|
[3885] | 591 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
[3685] | 592 | |
---|
[1691] | 593 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | !------------------------------------------------------------------------------! |
---|
| 597 | ! Description: |
---|
| 598 | ! ------------ |
---|
[1709] | 599 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
[2232] | 600 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
[1691] | 601 | !------------------------------------------------------------------------------! |
---|
[2232] | 602 | SUBROUTINE calc_uvw_abs |
---|
[3157] | 603 | |
---|
[1691] | 604 | IMPLICIT NONE |
---|
| 605 | |
---|
[2232] | 606 | INTEGER(iwp) :: i !< running index x direction |
---|
| 607 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 608 | INTEGER(iwp) :: j !< running index y direction |
---|
| 609 | INTEGER(iwp) :: k !< running index z direction |
---|
| 610 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1691] | 611 | |
---|
[3157] | 612 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 613 | ! |
---|
| 614 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 615 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 616 | |
---|
[4237] | 617 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
[3634] | 618 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
| 619 | !$ACC PRESENT(surf, u, v) |
---|
[2232] | 620 | DO m = 1, surf%ns |
---|
[1691] | 621 | |
---|
[2232] | 622 | i = surf%i(m) |
---|
| 623 | j = surf%j(m) |
---|
| 624 | k = surf%k(m) |
---|
[3157] | 625 | |
---|
[1691] | 626 | ! |
---|
[3157] | 627 | !-- Calculate free convection velocity scale w_lfc is |
---|
| 628 | !-- use_free_convection_scaling = .T.. This will maintain a horizontal |
---|
| 629 | !-- velocity even for very weak wind convective conditions. SIGN is used |
---|
| 630 | !-- to set w_lfc to zero under stable conditions. |
---|
| 631 | IF ( use_free_convection_scaling ) THEN |
---|
| 632 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 633 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
| 634 | ELSE |
---|
| 635 | w_lfc = 0.0_wp |
---|
| 636 | ENDIF |
---|
| 637 | |
---|
| 638 | ! |
---|
[2232] | 639 | !-- Compute the absolute value of the horizontal velocity. |
---|
| 640 | !-- (relative to the surface in case the lower surface is the ocean). |
---|
| 641 | !-- Please note, in new surface modelling concept the index values changed, |
---|
| 642 | !-- i.e. the reference grid point is not the surface-grid point itself but |
---|
| 643 | !-- the first grid point outside of the topography. |
---|
| 644 | !-- Note, in case of coupled ocean-atmosphere simulations relative velocity |
---|
| 645 | !-- with respect to the ocean surface is used, hence, (k-1,j,i) values |
---|
| 646 | !-- are used to calculate the absolute velocity. |
---|
| 647 | !-- However, this do not apply for downward-facing walls. To mask this, |
---|
| 648 | !-- use ibit, which checks for upward/downward-facing surfaces. |
---|
| 649 | surf%uvw_abs(m) = SQRT( & |
---|
| 650 | ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) & |
---|
| 651 | - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 652 | ) * ibit & |
---|
| 653 | ) & |
---|
| 654 | )**2 + & |
---|
| 655 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) & |
---|
| 656 | - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 657 | ) * ibit & |
---|
| 658 | ) & |
---|
[3157] | 659 | )**2 + w_lfc**2 & |
---|
[2232] | 660 | ) |
---|
| 661 | |
---|
[3148] | 662 | |
---|
| 663 | |
---|
[1691] | 664 | ENDDO |
---|
| 665 | |
---|
[2232] | 666 | END SUBROUTINE calc_uvw_abs |
---|
| 667 | |
---|
| 668 | |
---|
| 669 | !------------------------------------------------------------------------------! |
---|
| 670 | ! Description: |
---|
| 671 | ! ------------ |
---|
| 672 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 673 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 674 | !------------------------------------------------------------------------------! |
---|
| 675 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 676 | |
---|
| 677 | IMPLICIT NONE |
---|
| 678 | |
---|
[3547] | 679 | INTEGER(iwp) :: i !< running index x direction |
---|
| 680 | INTEGER(iwp) :: j !< running index y direction |
---|
| 681 | INTEGER(iwp) :: k !< running index z direction |
---|
| 682 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 683 | |
---|
[3547] | 684 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
| 685 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
[2232] | 686 | |
---|
| 687 | |
---|
| 688 | DO m = 1, surf%ns |
---|
| 689 | i = surf%i(m) |
---|
| 690 | j = surf%j(m) |
---|
| 691 | k = surf%k(m) |
---|
[1691] | 692 | ! |
---|
[2232] | 693 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 694 | u_i = u(k,j,i) |
---|
| 695 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + & |
---|
| 696 | w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 697 | |
---|
[2232] | 698 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
[1709] | 699 | |
---|
[2232] | 700 | ENDDO |
---|
[1709] | 701 | |
---|
[2232] | 702 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 703 | |
---|
[1709] | 704 | !------------------------------------------------------------------------------! |
---|
| 705 | ! Description: |
---|
| 706 | ! ------------ |
---|
[2232] | 707 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 708 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 709 | !------------------------------------------------------------------------------! |
---|
| 710 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 711 | |
---|
| 712 | IMPLICIT NONE |
---|
| 713 | |
---|
[3547] | 714 | INTEGER(iwp) :: i !< running index x direction |
---|
| 715 | INTEGER(iwp) :: j !< running index y direction |
---|
| 716 | INTEGER(iwp) :: k !< running index z direction |
---|
| 717 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 718 | |
---|
[3547] | 719 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
| 720 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
[2232] | 721 | |
---|
| 722 | |
---|
| 723 | DO m = 1, surf%ns |
---|
| 724 | i = surf%i(m) |
---|
| 725 | j = surf%j(m) |
---|
| 726 | k = surf%k(m) |
---|
| 727 | |
---|
| 728 | v_i = u(k,j,i) |
---|
| 729 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + & |
---|
| 730 | w(k,j-1,i) + w(k,j,i) ) |
---|
| 731 | |
---|
| 732 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 733 | |
---|
| 734 | ENDDO |
---|
| 735 | |
---|
| 736 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 737 | |
---|
| 738 | !------------------------------------------------------------------------------! |
---|
| 739 | ! Description: |
---|
| 740 | ! ------------ |
---|
| 741 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 742 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 743 | !------------------------------------------------------------------------------! |
---|
| 744 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 745 | |
---|
| 746 | IMPLICIT NONE |
---|
| 747 | |
---|
[3547] | 748 | INTEGER(iwp) :: i !< running index x direction |
---|
| 749 | INTEGER(iwp) :: j !< running index y direction |
---|
| 750 | INTEGER(iwp) :: k !< running index z direction |
---|
| 751 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 752 | |
---|
[3547] | 753 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
| 754 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
| 755 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
[2232] | 756 | ! |
---|
| 757 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 758 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 759 | DO m = 1, surf%ns |
---|
| 760 | i = surf%i(m) |
---|
| 761 | j = surf%j(m) |
---|
| 762 | k = surf%k(m) |
---|
| 763 | |
---|
| 764 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + & |
---|
| 765 | u(k,j,i+1) + u(k,j,i) ) |
---|
| 766 | v_i = 0.0_wp |
---|
| 767 | w_i = w(k,j,i) |
---|
| 768 | |
---|
| 769 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 770 | ENDDO |
---|
| 771 | ! |
---|
| 772 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 773 | ELSE |
---|
| 774 | DO m = 1, surf%ns |
---|
| 775 | i = surf%i(m) |
---|
| 776 | j = surf%j(m) |
---|
| 777 | k = surf%k(m) |
---|
| 778 | |
---|
| 779 | u_i = 0.0_wp |
---|
| 780 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + & |
---|
| 781 | v(k,j+1,i) + v(k,j,i) ) |
---|
| 782 | w_i = w(k,j,i) |
---|
| 783 | |
---|
| 784 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 785 | ENDDO |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 789 | |
---|
| 790 | !------------------------------------------------------------------------------! |
---|
| 791 | ! Description: |
---|
| 792 | ! ------------ |
---|
| 793 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 794 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 795 | !------------------------------------------------------------------------------! |
---|
| 796 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 797 | |
---|
| 798 | IMPLICIT NONE |
---|
| 799 | |
---|
[3547] | 800 | INTEGER(iwp) :: i !< running index x direction |
---|
| 801 | INTEGER(iwp) :: j !< running index y direction |
---|
| 802 | INTEGER(iwp) :: k !< running index z direction |
---|
| 803 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2232] | 804 | |
---|
[3547] | 805 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
| 806 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
| 807 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
[2232] | 808 | |
---|
| 809 | ! |
---|
| 810 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 811 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 812 | DO m = 1, surf%ns |
---|
| 813 | i = surf%i(m) |
---|
| 814 | j = surf%j(m) |
---|
| 815 | k = surf%k(m) |
---|
| 816 | |
---|
| 817 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 818 | v_i = 0.0_wp |
---|
| 819 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 820 | |
---|
| 821 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 822 | ENDDO |
---|
| 823 | ! |
---|
| 824 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 825 | ELSE |
---|
| 826 | DO m = 1, surf%ns |
---|
| 827 | i = surf%i(m) |
---|
| 828 | j = surf%j(m) |
---|
| 829 | k = surf%k(m) |
---|
| 830 | |
---|
| 831 | u_i = 0.0_wp |
---|
| 832 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 833 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 834 | |
---|
| 835 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 836 | ENDDO |
---|
| 837 | ENDIF |
---|
| 838 | |
---|
| 839 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 840 | |
---|
| 841 | |
---|
| 842 | !------------------------------------------------------------------------------! |
---|
| 843 | ! Description: |
---|
| 844 | ! ------------ |
---|
[1709] | 845 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
| 846 | !------------------------------------------------------------------------------! |
---|
| 847 | SUBROUTINE calc_ol |
---|
| 848 | |
---|
| 849 | IMPLICIT NONE |
---|
| 850 | |
---|
[2232] | 851 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 852 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 853 | |
---|
| 854 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 855 | f_d_ol, & !< Derivative of f |
---|
| 856 | ol_l, & !< Lower bound of L for Newton iteration |
---|
| 857 | ol_m, & !< Previous value of L for Newton iteration |
---|
| 858 | ol_old, & !< Previous time step value of L |
---|
| 859 | ol_u !< Upper bound of L for Newton iteration |
---|
| 860 | |
---|
[2232] | 861 | ! |
---|
[3668] | 862 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
| 863 | !-- definition based on setting of boundary conditions |
---|
| 864 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 865 | IF ( humidity ) THEN |
---|
| 866 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 867 | DO m = 1, surf%ns |
---|
[1691] | 868 | |
---|
[3668] | 869 | z_mo = surf%z_mo(m) |
---|
[2232] | 870 | |
---|
[3668] | 871 | surf%rib(m) = g * z_mo & |
---|
| 872 | * ( surf%vpt1(m) - surf%vpt_surface(m) ) & |
---|
| 873 | / ( surf%uvw_abs(m)**2 * surf%vpt1(m) & |
---|
| 874 | + 1.0E-20_wp ) |
---|
| 875 | ENDDO |
---|
| 876 | ELSE |
---|
| 877 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 878 | DO m = 1, surf%ns |
---|
[2232] | 879 | |
---|
[3668] | 880 | z_mo = surf%z_mo(m) |
---|
[2232] | 881 | |
---|
[3668] | 882 | surf%rib(m) = g * z_mo & |
---|
| 883 | * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 884 | / ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
| 885 | ENDDO |
---|
| 886 | ENDIF |
---|
| 887 | ELSE |
---|
| 888 | IF ( humidity ) THEN |
---|
| 889 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 890 | DO m = 1, surf%ns |
---|
[2232] | 891 | |
---|
[3668] | 892 | k = surf%k(m) |
---|
[2232] | 893 | |
---|
[3668] | 894 | z_mo = surf%z_mo(m) |
---|
[2232] | 895 | |
---|
[3668] | 896 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
[3146] | 897 | * surf%qv1(m) ) * surf%shf(m) + 0.61_wp & |
---|
| 898 | * surf%pt1(m) * surf%qsws(m) ) * & |
---|
[2232] | 899 | drho_air_zw(k-1) / & |
---|
[3146] | 900 | ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 901 | + 1.0E-20_wp ) |
---|
[3668] | 902 | ENDDO |
---|
| 903 | ELSE |
---|
| 904 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 905 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
| 906 | !$ACC PRESENT(surf, drho_air_zw) |
---|
| 907 | DO m = 1, surf%ns |
---|
[1691] | 908 | |
---|
[3668] | 909 | k = surf%k(m) |
---|
[2232] | 910 | |
---|
[3668] | 911 | z_mo = surf%z_mo(m) |
---|
[2232] | 912 | |
---|
[3668] | 913 | surf%rib(m) = - g * z_mo * surf%shf(m) * & |
---|
| 914 | drho_air_zw(k-1) / & |
---|
| 915 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 & |
---|
| 916 | + 1.0E-20_wp ) |
---|
| 917 | ENDDO |
---|
[2232] | 918 | ENDIF |
---|
[1691] | 919 | ENDIF |
---|
| 920 | |
---|
| 921 | ! |
---|
[3668] | 922 | !-- Calculate the Obukhov length using Newton iteration |
---|
[4237] | 923 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo) & |
---|
| 924 | !$OMP PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
[3668] | 925 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
| 926 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
| 927 | !$ACC PRESENT(surf) |
---|
| 928 | DO m = 1, surf%ns |
---|
[1691] | 929 | |
---|
[3668] | 930 | i = surf%i(m) |
---|
| 931 | j = surf%j(m) |
---|
[1691] | 932 | |
---|
[3668] | 933 | z_mo = surf%z_mo(m) |
---|
[1691] | 934 | |
---|
| 935 | ! |
---|
[3668] | 936 | !-- Store current value in case the Newton iteration fails |
---|
| 937 | ol_old = surf%ol(m) |
---|
[1691] | 938 | |
---|
| 939 | ! |
---|
[3668] | 940 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 941 | !-- length have the same sign |
---|
| 942 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. & |
---|
| 943 | ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 944 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 945 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 946 | ENDIF |
---|
[1691] | 947 | ! |
---|
[3668] | 948 | !-- Iteration to find Obukhov length |
---|
| 949 | iter = 0 |
---|
| 950 | DO |
---|
| 951 | iter = iter + 1 |
---|
[1691] | 952 | ! |
---|
[3668] | 953 | !-- In case of divergence, use the value of the previous time step |
---|
| 954 | IF ( iter > 1000 ) THEN |
---|
| 955 | surf%ol(m) = ol_old |
---|
| 956 | EXIT |
---|
| 957 | ENDIF |
---|
[1691] | 958 | |
---|
[3668] | 959 | ol_m = surf%ol(m) |
---|
| 960 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 961 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[1691] | 962 | |
---|
| 963 | |
---|
[3668] | 964 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 965 | ! |
---|
[3668] | 966 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 967 | f = surf%rib(m) - ( z_mo / ol_m ) * ( & |
---|
| 968 | LOG( z_mo / surf%z0h(m) ) & |
---|
| 969 | - psi_h( z_mo / ol_m ) & |
---|
| 970 | + psi_h( surf%z0h(m) / & |
---|
| 971 | ol_m ) & |
---|
| 972 | ) & |
---|
| 973 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 974 | - psi_m( z_mo / ol_m ) & |
---|
| 975 | + psi_m( surf%z0(m) / ol_m ) & |
---|
[2232] | 976 | )**2 |
---|
[1691] | 977 | |
---|
| 978 | ! |
---|
[3668] | 979 | !-- Calculate df/dL |
---|
| 980 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / & |
---|
| 981 | surf%z0h(m) ) & |
---|
| 982 | - psi_h( z_mo / ol_u ) & |
---|
| 983 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 984 | ) & |
---|
| 985 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 986 | - psi_m( z_mo / ol_u ) & |
---|
| 987 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 988 | )**2 & |
---|
| 989 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 990 | - psi_h( z_mo / ol_l ) & |
---|
| 991 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 992 | ) & |
---|
| 993 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 994 | - psi_m( z_mo / ol_l ) & |
---|
| 995 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 996 | )**2 & |
---|
| 997 | ) / ( ol_u - ol_l ) |
---|
| 998 | ELSE |
---|
[1691] | 999 | ! |
---|
[3668] | 1000 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1001 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
| 1002 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1003 | - psi_m( z_mo / ol_m ) & |
---|
| 1004 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1005 | )**3 |
---|
[1691] | 1006 | |
---|
| 1007 | ! |
---|
[3668] | 1008 | !-- Calculate df/dL |
---|
| 1009 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1010 | - psi_m( z_mo / ol_u ) & |
---|
| 1011 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1012 | )**3 & |
---|
[2232] | 1013 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
[3668] | 1014 | - psi_m( z_mo / ol_l ) & |
---|
| 1015 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1016 | )**3 & |
---|
| 1017 | ) / ( ol_u - ol_l ) |
---|
| 1018 | ENDIF |
---|
[1691] | 1019 | ! |
---|
[3668] | 1020 | !-- Calculate new L |
---|
| 1021 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1022 | |
---|
| 1023 | ! |
---|
[3668] | 1024 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1025 | !-- length have the same sign and ensure convergence. |
---|
| 1026 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[1691] | 1027 | ! |
---|
[3668] | 1028 | !-- If unrealistic value occurs, set L to the maximum |
---|
| 1029 | !-- value that is allowed |
---|
| 1030 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1031 | surf%ol(m) = ol_max |
---|
| 1032 | EXIT |
---|
| 1033 | ENDIF |
---|
[1691] | 1034 | ! |
---|
[4186] | 1035 | !-- Assure that Obukhov length does not become zero. If the limit is |
---|
| 1036 | !-- reached, exit the loop. |
---|
| 1037 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
| 1038 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
| 1039 | EXIT |
---|
| 1040 | ENDIF |
---|
| 1041 | ! |
---|
[3668] | 1042 | !-- Check for convergence |
---|
| 1043 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1044 | EXIT |
---|
[2232] | 1045 | ELSE |
---|
[3668] | 1046 | CYCLE |
---|
[4186] | 1047 | ENDIF |
---|
[1691] | 1048 | |
---|
| 1049 | ENDDO |
---|
[3668] | 1050 | ENDDO |
---|
[1691] | 1051 | |
---|
| 1052 | END SUBROUTINE calc_ol |
---|
| 1053 | |
---|
| 1054 | ! |
---|
| 1055 | !-- Calculate friction velocity u* |
---|
| 1056 | SUBROUTINE calc_us |
---|
| 1057 | |
---|
| 1058 | IMPLICIT NONE |
---|
| 1059 | |
---|
[2232] | 1060 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1061 | |
---|
[2232] | 1062 | ! |
---|
| 1063 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1064 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1065 | ! |
---|
| 1066 | !-- Compute u* at upward-facing surfaces |
---|
| 1067 | IF ( .NOT. downward ) THEN |
---|
[2281] | 1068 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1069 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1070 | !$ACC PRESENT(surf) |
---|
[2232] | 1071 | DO m = 1, surf%ns |
---|
[1691] | 1072 | |
---|
[2232] | 1073 | z_mo = surf%z_mo(m) |
---|
[1691] | 1074 | ! |
---|
[2232] | 1075 | !-- Compute u* at the scalars' grid points |
---|
| 1076 | surf%us(m) = kappa * surf%uvw_abs(m) / & |
---|
| 1077 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1078 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1079 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1080 | |
---|
| 1081 | ENDDO |
---|
| 1082 | ! |
---|
| 1083 | !-- Compute u* at downward-facing surfaces. This case, do not consider |
---|
| 1084 | !-- any stability. |
---|
| 1085 | ELSE |
---|
[2281] | 1086 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1087 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1088 | !$ACC PRESENT(surf) |
---|
[2232] | 1089 | DO m = 1, surf%ns |
---|
| 1090 | |
---|
| 1091 | z_mo = surf%z_mo(m) |
---|
| 1092 | ! |
---|
| 1093 | !-- Compute u* at the scalars' grid points |
---|
| 1094 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
| 1095 | |
---|
| 1096 | ENDDO |
---|
| 1097 | ENDIF |
---|
| 1098 | ! |
---|
| 1099 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1100 | !-- No stability is considered in this case. |
---|
| 1101 | ELSE |
---|
| 1102 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[3634] | 1103 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
| 1104 | !$ACC PRESENT(surf) |
---|
[2232] | 1105 | DO m = 1, surf%ns |
---|
| 1106 | z_mo = surf%z_mo(m) |
---|
| 1107 | |
---|
| 1108 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1109 | ENDDO |
---|
[2232] | 1110 | ENDIF |
---|
[1691] | 1111 | |
---|
| 1112 | END SUBROUTINE calc_us |
---|
| 1113 | |
---|
| 1114 | ! |
---|
[3146] | 1115 | !-- Calculate potential temperature, specific humidity, and virtual potential |
---|
| 1116 | !-- temperature at first grid level |
---|
[1691] | 1117 | SUBROUTINE calc_pt_q |
---|
| 1118 | |
---|
| 1119 | IMPLICIT NONE |
---|
| 1120 | |
---|
[2232] | 1121 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1122 | |
---|
| 1123 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1124 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1125 | !$ACC PRESENT(surf, pt) |
---|
[2232] | 1126 | DO m = 1, surf%ns |
---|
| 1127 | |
---|
| 1128 | i = surf%i(m) |
---|
| 1129 | j = surf%j(m) |
---|
| 1130 | k = surf%k(m) |
---|
| 1131 | |
---|
[3634] | 1132 | #ifndef _OPENACC |
---|
[3274] | 1133 | IF ( bulk_cloud_model ) THEN |
---|
| 1134 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
[2547] | 1135 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1136 | ELSEIF( cloud_droplets ) THEN |
---|
[3274] | 1137 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
[2547] | 1138 | surf%qv1(m) = q(k,j,i) |
---|
[2696] | 1139 | ELSE |
---|
[3634] | 1140 | #endif |
---|
[2696] | 1141 | surf%pt1(m) = pt(k,j,i) |
---|
[3634] | 1142 | #ifndef _OPENACC |
---|
[2696] | 1143 | IF ( humidity ) THEN |
---|
| 1144 | surf%qv1(m) = q(k,j,i) |
---|
| 1145 | ELSE |
---|
[3634] | 1146 | #endif |
---|
[2696] | 1147 | surf%qv1(m) = 0.0_wp |
---|
[3634] | 1148 | #ifndef _OPENACC |
---|
[2696] | 1149 | ENDIF |
---|
[2547] | 1150 | ENDIF |
---|
[2232] | 1151 | |
---|
[3146] | 1152 | IF ( humidity ) THEN |
---|
| 1153 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1154 | ENDIF |
---|
[3634] | 1155 | #endif |
---|
[3146] | 1156 | |
---|
[1691] | 1157 | ENDDO |
---|
| 1158 | |
---|
| 1159 | END SUBROUTINE calc_pt_q |
---|
| 1160 | |
---|
[2696] | 1161 | |
---|
[1691] | 1162 | ! |
---|
[3152] | 1163 | !-- Set potential temperature at surface grid level. |
---|
[2696] | 1164 | !-- ( only for upward-facing surfs ) |
---|
| 1165 | SUBROUTINE calc_pt_surface |
---|
| 1166 | |
---|
| 1167 | IMPLICIT NONE |
---|
| 1168 | |
---|
[3146] | 1169 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
[2696] | 1170 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1171 | |
---|
[3146] | 1172 | k_off = surf%koff |
---|
[2696] | 1173 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1174 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1175 | !$ACC PRESENT(surf, pt) |
---|
[2696] | 1176 | DO m = 1, surf%ns |
---|
| 1177 | |
---|
| 1178 | i = surf%i(m) |
---|
| 1179 | j = surf%j(m) |
---|
| 1180 | k = surf%k(m) |
---|
| 1181 | |
---|
[3146] | 1182 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
[2696] | 1183 | |
---|
| 1184 | ENDDO |
---|
| 1185 | |
---|
| 1186 | END SUBROUTINE calc_pt_surface |
---|
| 1187 | |
---|
| 1188 | ! |
---|
[3152] | 1189 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
| 1190 | SUBROUTINE calc_q_surface |
---|
| 1191 | |
---|
| 1192 | IMPLICIT NONE |
---|
| 1193 | |
---|
| 1194 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1195 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1196 | |
---|
| 1197 | k_off = surf%koff |
---|
| 1198 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1199 | DO m = 1, surf%ns |
---|
| 1200 | |
---|
| 1201 | i = surf%i(m) |
---|
| 1202 | j = surf%j(m) |
---|
| 1203 | k = surf%k(m) |
---|
| 1204 | |
---|
| 1205 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1206 | |
---|
| 1207 | ENDDO |
---|
| 1208 | |
---|
| 1209 | END SUBROUTINE calc_q_surface |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- Set virtual potential temperature at surface grid level. |
---|
[3146] | 1213 | !-- ( only for upward-facing surfs ) |
---|
| 1214 | SUBROUTINE calc_vpt_surface |
---|
| 1215 | |
---|
| 1216 | IMPLICIT NONE |
---|
| 1217 | |
---|
| 1218 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1219 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1220 | |
---|
| 1221 | k_off = surf%koff |
---|
| 1222 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1223 | DO m = 1, surf%ns |
---|
| 1224 | |
---|
| 1225 | i = surf%i(m) |
---|
| 1226 | j = surf%j(m) |
---|
| 1227 | k = surf%k(m) |
---|
| 1228 | |
---|
| 1229 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
| 1230 | |
---|
| 1231 | ENDDO |
---|
| 1232 | |
---|
| 1233 | END SUBROUTINE calc_vpt_surface |
---|
| 1234 | |
---|
| 1235 | ! |
---|
[2292] | 1236 | !-- Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
[1691] | 1237 | SUBROUTINE calc_scaling_parameters |
---|
| 1238 | |
---|
| 1239 | IMPLICIT NONE |
---|
| 1240 | |
---|
[2232] | 1241 | |
---|
| 1242 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1243 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1244 | ! |
---|
[2232] | 1245 | !-- Compute theta* at horizontal surfaces |
---|
| 1246 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1247 | ! |
---|
| 1248 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1249 | |
---|
| 1250 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
[3634] | 1251 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
| 1252 | !$ACC PRESENT(surf, drho_air_zw) |
---|
[2232] | 1253 | DO m = 1, surf%ns |
---|
| 1254 | |
---|
| 1255 | i = surf%i(m) |
---|
| 1256 | j = surf%j(m) |
---|
| 1257 | k = surf%k(m) |
---|
| 1258 | |
---|
| 1259 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1260 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1261 | |
---|
[1691] | 1262 | ! |
---|
[2232] | 1263 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1264 | !-- of us=0 when computing ol further below |
---|
| 1265 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1266 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1267 | |
---|
[1691] | 1268 | ENDDO |
---|
| 1269 | |
---|
[2232] | 1270 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1271 | ! |
---|
| 1272 | !-- For a given surface temperature: |
---|
[1788] | 1273 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1274 | |
---|
| 1275 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1276 | DO m = 1, surf%ns |
---|
| 1277 | i = surf%i(m) |
---|
| 1278 | j = surf%j(m) |
---|
| 1279 | k = surf%k(m) |
---|
| 1280 | |
---|
| 1281 | pt(k-1,j,i) = pt_surface |
---|
[1691] | 1282 | ENDDO |
---|
| 1283 | ENDIF |
---|
| 1284 | |
---|
[2696] | 1285 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1286 | DO m = 1, surf%ns |
---|
[1691] | 1287 | |
---|
[2696] | 1288 | z_mo = surf%z_mo(m) |
---|
[1691] | 1289 | |
---|
[2696] | 1290 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 1291 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1292 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1293 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[1691] | 1294 | |
---|
[2696] | 1295 | ENDDO |
---|
[2232] | 1296 | |
---|
| 1297 | ENDIF |
---|
| 1298 | ! |
---|
| 1299 | !-- Compute theta* at vertical surfaces. This is only required in case of |
---|
| 1300 | !-- land-surface model, in order to compute aerodynamical resistance. |
---|
| 1301 | IF ( surf_vertical ) THEN |
---|
[2281] | 1302 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1303 | DO m = 1, surf%ns |
---|
| 1304 | |
---|
| 1305 | i = surf%i(m) |
---|
| 1306 | j = surf%j(m) |
---|
| 1307 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1308 | ! |
---|
| 1309 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1310 | !-- of us=0 when computing ol further below |
---|
| 1311 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1312 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1313 | |
---|
[1691] | 1314 | ENDDO |
---|
| 1315 | ENDIF |
---|
| 1316 | |
---|
| 1317 | ! |
---|
[2232] | 1318 | !-- If required compute q* at horizontal surfaces |
---|
[1960] | 1319 | IF ( humidity ) THEN |
---|
[2232] | 1320 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1321 | ! |
---|
[1788] | 1322 | !-- For a given water flux in the surface layer |
---|
[2232] | 1323 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1324 | DO m = 1, surf%ns |
---|
| 1325 | |
---|
| 1326 | i = surf%i(m) |
---|
| 1327 | j = surf%j(m) |
---|
| 1328 | k = surf%k(m) |
---|
| 1329 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / & |
---|
| 1330 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1331 | |
---|
[1691] | 1332 | ENDDO |
---|
| 1333 | |
---|
[2232] | 1334 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1788] | 1335 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
[1691] | 1336 | run_coupled ) |
---|
| 1337 | |
---|
[1788] | 1338 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1339 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1340 | DO m = 1, surf%ns |
---|
| 1341 | |
---|
| 1342 | i = surf%i(m) |
---|
| 1343 | j = surf%j(m) |
---|
| 1344 | k = surf%k(m) |
---|
| 1345 | q(k-1,j,i) = q_surface |
---|
| 1346 | |
---|
[1691] | 1347 | ENDDO |
---|
| 1348 | ENDIF |
---|
| 1349 | |
---|
| 1350 | ! |
---|
[2232] | 1351 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 1352 | !-- in case of precursor runs) |
---|
| 1353 | IF ( coupled_run ) THEN |
---|
| 1354 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1355 | DO m = 1, surf%ns |
---|
| 1356 | i = surf%i(m) |
---|
| 1357 | j = surf%j(m) |
---|
| 1358 | k = surf%k(m) |
---|
| 1359 | e_s = 6.1_wp * & |
---|
| 1360 | EXP( 0.07_wp * ( MIN(pt(k-1,j,i),pt(k,j,i)) & |
---|
[1691] | 1361 | - 273.15_wp ) ) |
---|
[3361] | 1362 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
[2232] | 1363 | ENDDO |
---|
| 1364 | ENDIF |
---|
[1691] | 1365 | |
---|
[3274] | 1366 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[2232] | 1367 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1368 | DO m = 1, surf%ns |
---|
[1691] | 1369 | |
---|
[2232] | 1370 | i = surf%i(m) |
---|
| 1371 | j = surf%j(m) |
---|
| 1372 | k = surf%k(m) |
---|
| 1373 | |
---|
| 1374 | z_mo = surf%z_mo(m) |
---|
[1691] | 1375 | |
---|
[3152] | 1376 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[2232] | 1377 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1378 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1379 | + psi_h( surf%z0q(m) / & |
---|
| 1380 | surf%ol(m) ) ) |
---|
[1691] | 1381 | ENDDO |
---|
[2232] | 1382 | ELSE |
---|
| 1383 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1384 | DO m = 1, surf%ns |
---|
| 1385 | |
---|
| 1386 | i = surf%i(m) |
---|
| 1387 | j = surf%j(m) |
---|
| 1388 | k = surf%k(m) |
---|
| 1389 | |
---|
| 1390 | z_mo = surf%z_mo(m) |
---|
| 1391 | |
---|
| 1392 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
| 1393 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1394 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1395 | + psi_h( surf%z0q(m) / & |
---|
| 1396 | surf%ol(m) ) ) |
---|
| 1397 | ENDDO |
---|
| 1398 | ENDIF |
---|
| 1399 | ENDIF |
---|
| 1400 | ! |
---|
| 1401 | !-- Compute q* at vertical surfaces |
---|
| 1402 | IF ( surf_vertical ) THEN |
---|
[2281] | 1403 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1404 | DO m = 1, surf%ns |
---|
| 1405 | |
---|
| 1406 | i = surf%i(m) |
---|
| 1407 | j = surf%j(m) |
---|
| 1408 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1409 | |
---|
[1691] | 1410 | ENDDO |
---|
| 1411 | ENDIF |
---|
| 1412 | ENDIF |
---|
[1960] | 1413 | |
---|
| 1414 | ! |
---|
| 1415 | !-- If required compute s* |
---|
| 1416 | IF ( passive_scalar ) THEN |
---|
| 1417 | ! |
---|
[2232] | 1418 | !-- At horizontal surfaces |
---|
| 1419 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1420 | ! |
---|
| 1421 | !-- For a given scalar flux in the surface layer |
---|
[2281] | 1422 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1423 | DO m = 1, surf%ns |
---|
| 1424 | i = surf%i(m) |
---|
| 1425 | j = surf%j(m) |
---|
| 1426 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1427 | ENDDO |
---|
| 1428 | ENDIF |
---|
[2232] | 1429 | ! |
---|
| 1430 | !-- At vertical surfaces |
---|
| 1431 | IF ( surf_vertical ) THEN |
---|
[2281] | 1432 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1433 | DO m = 1, surf%ns |
---|
| 1434 | i = surf%i(m) |
---|
| 1435 | j = surf%j(m) |
---|
| 1436 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1437 | ENDDO |
---|
| 1438 | ENDIF |
---|
[1960] | 1439 | ENDIF |
---|
[1691] | 1440 | |
---|
[2292] | 1441 | ! |
---|
[2696] | 1442 | !-- If required compute cs* (chemical species) |
---|
| 1443 | IF ( air_chemistry ) THEN |
---|
| 1444 | ! |
---|
| 1445 | !-- At horizontal surfaces |
---|
| 1446 | DO lsp = 1, nvar |
---|
| 1447 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1448 | !-- For a given chemical species' flux in the surface layer |
---|
| 1449 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1450 | DO m = 1, surf%ns |
---|
| 1451 | i = surf%i(m) |
---|
| 1452 | j = surf%j(m) |
---|
| 1453 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1454 | ENDDO |
---|
| 1455 | ENDIF |
---|
| 1456 | ENDDO |
---|
| 1457 | ! |
---|
| 1458 | !-- At vertical surfaces |
---|
| 1459 | IF ( surf_vertical ) THEN |
---|
| 1460 | DO lsp = 1, nvar |
---|
| 1461 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1462 | DO m = 1, surf%ns |
---|
| 1463 | i = surf%i(m) |
---|
| 1464 | j = surf%j(m) |
---|
| 1465 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1466 | ENDDO |
---|
| 1467 | ENDDO |
---|
| 1468 | ENDIF |
---|
| 1469 | ENDIF |
---|
| 1470 | |
---|
| 1471 | ! |
---|
[2292] | 1472 | !-- If required compute qc* and nc* |
---|
[3274] | 1473 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
[2292] | 1474 | .NOT. surf_vertical ) THEN |
---|
| 1475 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1476 | DO m = 1, surf%ns |
---|
[1691] | 1477 | |
---|
[2292] | 1478 | i = surf%i(m) |
---|
| 1479 | j = surf%j(m) |
---|
| 1480 | k = surf%k(m) |
---|
| 1481 | |
---|
| 1482 | z_mo = surf%z_mo(m) |
---|
| 1483 | |
---|
| 1484 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
| 1485 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1486 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1487 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1488 | |
---|
| 1489 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
| 1490 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1491 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1492 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1493 | ENDDO |
---|
| 1494 | |
---|
| 1495 | ENDIF |
---|
| 1496 | |
---|
[1691] | 1497 | ! |
---|
| 1498 | !-- If required compute qr* and nr* |
---|
[3274] | 1499 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
[2232] | 1500 | .NOT. surf_vertical ) THEN |
---|
| 1501 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1502 | DO m = 1, surf%ns |
---|
[1691] | 1503 | |
---|
[2232] | 1504 | i = surf%i(m) |
---|
| 1505 | j = surf%j(m) |
---|
| 1506 | k = surf%k(m) |
---|
[1691] | 1507 | |
---|
[2232] | 1508 | z_mo = surf%z_mo(m) |
---|
[1691] | 1509 | |
---|
[2232] | 1510 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
| 1511 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1512 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1513 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1514 | |
---|
[2232] | 1515 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
| 1516 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1517 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1518 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1519 | ENDDO |
---|
| 1520 | |
---|
| 1521 | ENDIF |
---|
| 1522 | |
---|
| 1523 | END SUBROUTINE calc_scaling_parameters |
---|
| 1524 | |
---|
| 1525 | |
---|
| 1526 | |
---|
| 1527 | ! |
---|
[2292] | 1528 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
[1691] | 1529 | SUBROUTINE calc_surface_fluxes |
---|
| 1530 | |
---|
| 1531 | IMPLICIT NONE |
---|
| 1532 | |
---|
[2696] | 1533 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1534 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1535 | |
---|
[2232] | 1536 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1537 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1538 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1539 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1540 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1541 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
[1691] | 1542 | |
---|
| 1543 | ! |
---|
[2232] | 1544 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1545 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1546 | ! |
---|
| 1547 | !-- Compute u'w' for the total model domain at upward-facing surfaces. |
---|
| 1548 | !-- First compute the corresponding component of u* and square it. |
---|
| 1549 | IF ( .NOT. downward ) THEN |
---|
| 1550 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[3634] | 1551 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1552 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
[2232] | 1553 | DO m = 1, surf%ns |
---|
| 1554 | |
---|
| 1555 | i = surf%i(m) |
---|
| 1556 | j = surf%j(m) |
---|
| 1557 | k = surf%k(m) |
---|
[1691] | 1558 | |
---|
[2232] | 1559 | z_mo = surf%z_mo(m) |
---|
[1691] | 1560 | |
---|
[2232] | 1561 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
| 1562 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1563 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1564 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1565 | ! |
---|
| 1566 | !-- Please note, the computation of usws is not fully accurate. Actually |
---|
| 1567 | !-- a further interpolation of us onto the u-grid, where usws is defined, |
---|
| 1568 | !-- is required. However, this is not done as this would require several |
---|
| 1569 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1570 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1571 | !-- tests had shown. |
---|
| 1572 | !-- Same also for ol. |
---|
| 1573 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1574 | |
---|
[2232] | 1575 | ENDDO |
---|
[1691] | 1576 | ! |
---|
[2232] | 1577 | !-- At downward-facing surfaces |
---|
| 1578 | ELSE |
---|
| 1579 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1580 | DO m = 1, surf%ns |
---|
| 1581 | |
---|
| 1582 | i = surf%i(m) |
---|
| 1583 | j = surf%j(m) |
---|
| 1584 | k = surf%k(m) |
---|
[1691] | 1585 | |
---|
[2232] | 1586 | z_mo = surf%z_mo(m) |
---|
| 1587 | |
---|
| 1588 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1589 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
[1691] | 1590 | |
---|
[2232] | 1591 | ENDDO |
---|
| 1592 | ENDIF |
---|
[1691] | 1593 | |
---|
[2232] | 1594 | ! |
---|
| 1595 | !-- Compute v'w' for the total model domain. |
---|
| 1596 | !-- First compute the corresponding component of u* and square it. |
---|
| 1597 | !-- Upward-facing surfaces |
---|
| 1598 | IF ( .NOT. downward ) THEN |
---|
| 1599 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
[3634] | 1600 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
| 1601 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
[2232] | 1602 | DO m = 1, surf%ns |
---|
| 1603 | i = surf%i(m) |
---|
| 1604 | j = surf%j(m) |
---|
| 1605 | k = surf%k(m) |
---|
[1691] | 1606 | |
---|
[2232] | 1607 | z_mo = surf%z_mo(m) |
---|
[1691] | 1608 | |
---|
[2232] | 1609 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
| 1610 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1611 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1612 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1613 | ! |
---|
[2232] | 1614 | !-- Please note, the computation of vsws is not fully accurate. Actually |
---|
| 1615 | !-- a further interpolation of us onto the v-grid, where vsws is defined, |
---|
| 1616 | !-- is required. However, this is not done as this would require several |
---|
| 1617 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1618 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1619 | !-- tests had shown. |
---|
| 1620 | !-- Same also for ol. |
---|
| 1621 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1622 | ENDDO |
---|
| 1623 | ! |
---|
| 1624 | !-- Downward-facing surfaces |
---|
| 1625 | ELSE |
---|
| 1626 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1627 | DO m = 1, surf%ns |
---|
| 1628 | i = surf%i(m) |
---|
| 1629 | j = surf%j(m) |
---|
| 1630 | k = surf%k(m) |
---|
[1691] | 1631 | |
---|
[2232] | 1632 | z_mo = surf%z_mo(m) |
---|
| 1633 | |
---|
| 1634 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1635 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1636 | ENDDO |
---|
| 1637 | ENDIF |
---|
[1691] | 1638 | ! |
---|
[2232] | 1639 | !-- Compute the vertical kinematic heat flux |
---|
[2299] | 1640 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point& |
---|
| 1641 | <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) .OR. & |
---|
[2696] | 1642 | .NOT. land_surface ) .AND. .NOT. urban_surface .AND. & |
---|
[2299] | 1643 | .NOT. downward ) THEN |
---|
[2232] | 1644 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1645 | DO m = 1, surf%ns |
---|
| 1646 | i = surf%i(m) |
---|
| 1647 | j = surf%j(m) |
---|
| 1648 | k = surf%k(m) |
---|
| 1649 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1650 | ENDDO |
---|
[2232] | 1651 | ENDIF |
---|
| 1652 | ! |
---|
| 1653 | !-- Compute the vertical water flux |
---|
| 1654 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
[2299] | 1655 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. & |
---|
[2696] | 1656 | simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 1657 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[2232] | 1658 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1659 | DO m = 1, surf%ns |
---|
| 1660 | i = surf%i(m) |
---|
| 1661 | j = surf%j(m) |
---|
| 1662 | k = surf%k(m) |
---|
| 1663 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1664 | ENDDO |
---|
| 1665 | ENDIF |
---|
| 1666 | ! |
---|
| 1667 | !-- Compute the vertical scalar flux |
---|
| 1668 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. & |
---|
| 1669 | .NOT. downward ) THEN |
---|
[2281] | 1670 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1671 | DO m = 1, surf%ns |
---|
[1691] | 1672 | |
---|
[2232] | 1673 | i = surf%i(m) |
---|
| 1674 | j = surf%j(m) |
---|
| 1675 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
[1691] | 1676 | |
---|
[2232] | 1677 | ENDDO |
---|
[2292] | 1678 | ENDIF |
---|
[1691] | 1679 | ! |
---|
[2696] | 1680 | !-- Compute the vertical chemical species' flux |
---|
| 1681 | DO lsp = 1, nvar |
---|
| 1682 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. & |
---|
| 1683 | .NOT. downward ) THEN |
---|
| 1684 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1685 | DO m = 1, surf%ns |
---|
| 1686 | i = surf%i(m) |
---|
| 1687 | j = surf%j(m) |
---|
| 1688 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) |
---|
| 1689 | ENDDO |
---|
| 1690 | ENDIF |
---|
| 1691 | ENDDO |
---|
| 1692 | |
---|
| 1693 | ! |
---|
[2292] | 1694 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
[3274] | 1695 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. & |
---|
[2292] | 1696 | .NOT. downward) THEN |
---|
| 1697 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1698 | DO m = 1, surf%ns |
---|
| 1699 | |
---|
| 1700 | i = surf%i(m) |
---|
| 1701 | j = surf%j(m) |
---|
| 1702 | |
---|
| 1703 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) |
---|
| 1704 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) |
---|
| 1705 | ENDDO |
---|
| 1706 | ENDIF |
---|
| 1707 | ! |
---|
[2232] | 1708 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
[3274] | 1709 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. & |
---|
[2232] | 1710 | .NOT. downward) THEN |
---|
[2281] | 1711 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1712 | DO m = 1, surf%ns |
---|
| 1713 | |
---|
| 1714 | i = surf%i(m) |
---|
| 1715 | j = surf%j(m) |
---|
| 1716 | |
---|
| 1717 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
| 1718 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
[1691] | 1719 | ENDDO |
---|
[2232] | 1720 | ENDIF |
---|
[1691] | 1721 | |
---|
[1960] | 1722 | ! |
---|
[2232] | 1723 | !-- Bottom boundary condition for the TKE. |
---|
| 1724 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1725 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1726 | DO m = 1, surf%ns |
---|
| 1727 | |
---|
| 1728 | i = surf%i(m) |
---|
| 1729 | j = surf%j(m) |
---|
| 1730 | k = surf%k(m) |
---|
| 1731 | |
---|
| 1732 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1733 | ! |
---|
| 1734 | !-- As a test: cm = 0.4 |
---|
| 1735 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1736 | e(k-1,j,i) = e(k,j,i) |
---|
| 1737 | |
---|
[1960] | 1738 | ENDDO |
---|
[2232] | 1739 | ENDIF |
---|
| 1740 | ! |
---|
| 1741 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
| 1742 | ELSE |
---|
| 1743 | ! |
---|
| 1744 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1745 | IF ( mom_uv ) THEN |
---|
| 1746 | ! |
---|
| 1747 | !-- Generalize computation by introducing flags. At north- and south- |
---|
| 1748 | !-- facing surfaces u-component is used, at east- and west-facing |
---|
| 1749 | !-- surfaces v-component is used. |
---|
| 1750 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1751 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
| 1752 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1753 | DO m = 1, surf%ns |
---|
| 1754 | i = surf%i(m) |
---|
| 1755 | j = surf%j(m) |
---|
| 1756 | k = surf%k(m) |
---|
[1691] | 1757 | |
---|
[2232] | 1758 | z_mo = surf%z_mo(m) |
---|
[1960] | 1759 | |
---|
[2232] | 1760 | surf%mom_flux_uv(m) = kappa * & |
---|
| 1761 | ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
| 1762 | LOG( z_mo / surf%z0(m) ) |
---|
| 1763 | |
---|
| 1764 | surf%mom_flux_uv(m) = & |
---|
| 1765 | - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1766 | ENDDO |
---|
| 1767 | ENDIF |
---|
[1691] | 1768 | ! |
---|
[2232] | 1769 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1770 | IF ( mom_w ) THEN |
---|
| 1771 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1772 | DO m = 1, surf%ns |
---|
| 1773 | i = surf%i(m) |
---|
| 1774 | j = surf%j(m) |
---|
| 1775 | k = surf%k(m) |
---|
| 1776 | |
---|
| 1777 | z_mo = surf%z_mo(m) |
---|
| 1778 | |
---|
| 1779 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1780 | |
---|
| 1781 | surf%mom_flux_w(m) = & |
---|
| 1782 | - surf%mom_flux_w(m) * surf%us(m) |
---|
[1691] | 1783 | ENDDO |
---|
[2232] | 1784 | ENDIF |
---|
| 1785 | ! |
---|
| 1786 | !-- Compute momentum fluxes used for subgrid-scale TKE production at |
---|
| 1787 | !-- vertical surfaces. In constrast to the calculated momentum fluxes at |
---|
| 1788 | !-- vertical surfaces before, which are defined on the u/v/w-grid, |
---|
| 1789 | !-- respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 1790 | !-- |
---|
| 1791 | IF ( mom_tke ) THEN |
---|
| 1792 | ! |
---|
| 1793 | !-- Precalculate velocity components at scalar grid point. |
---|
| 1794 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 1795 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 1796 | ALLOCATE( w_i(1:surf%ns) ) |
---|
[1691] | 1797 | |
---|
[2232] | 1798 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1799 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1800 | DO m = 1, surf%ns |
---|
| 1801 | i = surf%i(m) |
---|
| 1802 | j = surf%j(m) |
---|
| 1803 | k = surf%k(m) |
---|
| 1804 | |
---|
| 1805 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1806 | v_i(m) = 0.0_wp |
---|
| 1807 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1808 | ENDDO |
---|
| 1809 | ELSE |
---|
| 1810 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1811 | DO m = 1, surf%ns |
---|
| 1812 | i = surf%i(m) |
---|
| 1813 | j = surf%j(m) |
---|
| 1814 | k = surf%k(m) |
---|
| 1815 | |
---|
| 1816 | u_i(m) = 0.0_wp |
---|
| 1817 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1818 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1819 | ENDDO |
---|
| 1820 | ENDIF |
---|
| 1821 | |
---|
[2281] | 1822 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
[2232] | 1823 | DO m = 1, surf%ns |
---|
| 1824 | i = surf%i(m) |
---|
| 1825 | j = surf%j(m) |
---|
| 1826 | |
---|
| 1827 | z_mo = surf%z_mo(m) |
---|
| 1828 | |
---|
| 1829 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1830 | ! |
---|
[2232] | 1831 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 1832 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 1833 | ! |
---|
[2232] | 1834 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 1835 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
| 1836 | |
---|
| 1837 | surf%mom_flux_tke(0:1,m) = & |
---|
| 1838 | - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
[1691] | 1839 | ENDDO |
---|
[2232] | 1840 | ! |
---|
| 1841 | !-- Deallocate temporary arrays |
---|
| 1842 | DEALLOCATE( u_i ) |
---|
| 1843 | DEALLOCATE( v_i ) |
---|
| 1844 | DEALLOCATE( w_i ) |
---|
| 1845 | ENDIF |
---|
[1691] | 1846 | ENDIF |
---|
| 1847 | |
---|
| 1848 | END SUBROUTINE calc_surface_fluxes |
---|
| 1849 | |
---|
[3597] | 1850 | |
---|
| 1851 | !------------------------------------------------------------------------------! |
---|
| 1852 | ! Description: |
---|
| 1853 | ! ------------ |
---|
| 1854 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m |
---|
| 1855 | !> temperature for output |
---|
| 1856 | !------------------------------------------------------------------------------! |
---|
| 1857 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
[1691] | 1858 | |
---|
[3597] | 1859 | IMPLICIT NONE |
---|
| 1860 | |
---|
[4298] | 1861 | CHARACTER (LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
| 1862 | INTEGER(iwp) :: i !< grid index x-dimension |
---|
| 1863 | INTEGER(iwp) :: j !< grid index y-dimension |
---|
| 1864 | INTEGER(iwp) :: k !< grid index z-dimension |
---|
| 1865 | INTEGER(iwp) :: kk !< running index along the z-dimension |
---|
| 1866 | INTEGER(iwp) :: m !< running index for surface elements |
---|
[3597] | 1867 | |
---|
| 1868 | |
---|
| 1869 | SELECT CASE ( z_char) |
---|
| 1870 | |
---|
| 1871 | |
---|
| 1872 | CASE ( '10cm' ) |
---|
| 1873 | |
---|
| 1874 | DO m = 1, surf%ns |
---|
| 1875 | |
---|
| 1876 | i = surf%i(m) |
---|
| 1877 | j = surf%j(m) |
---|
| 1878 | k = surf%k(m) |
---|
| 1879 | |
---|
[3744] | 1880 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
| 1881 | * ( LOG( 0.1_wp / surf%z0h(m) ) & |
---|
[4298] | 1882 | - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
[3597] | 1883 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[3744] | 1884 | |
---|
[3597] | 1885 | ENDDO |
---|
| 1886 | |
---|
[4298] | 1887 | ! |
---|
| 1888 | !-- 2-m temperature. Note, this is only calculated for output reasons at |
---|
| 1889 | !-- horizontal upward-facing surfaces. |
---|
[3597] | 1890 | CASE ( '2m' ) |
---|
| 1891 | |
---|
| 1892 | DO m = 1, surf%ns |
---|
| 1893 | |
---|
| 1894 | i = surf%i(m) |
---|
| 1895 | j = surf%j(m) |
---|
| 1896 | k = surf%k(m) |
---|
[4298] | 1897 | ! |
---|
| 1898 | !-- If 2-m level is below the first grid level, MOST is |
---|
| 1899 | !-- used for calculation of 2-m temperature. |
---|
| 1900 | IF ( surf%z_mo(m) > 2.0_wp ) THEN |
---|
| 1901 | surf%pt_2m(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
[3744] | 1902 | * ( LOG( 2.0_wp / surf%z0h(m) ) & |
---|
| 1903 | - psi_h( 2.0_wp / surf%ol(m) ) & |
---|
[3597] | 1904 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[4298] | 1905 | ! |
---|
| 1906 | !-- If 2-m level is above the first grid level, 2-m temperature |
---|
| 1907 | !-- is linearly interpolated between the two nearest vertical grid |
---|
| 1908 | !-- levels. Note, since 2-m temperature is only computed for |
---|
| 1909 | !-- horizontal upward-facing surfaces, only a vertical |
---|
| 1910 | !-- interpolation is necessary. |
---|
| 1911 | ELSE |
---|
| 1912 | ! |
---|
| 1913 | !-- zw(k-1) defines the height of the surface. |
---|
| 1914 | kk = k |
---|
| 1915 | DO WHILE ( zu(kk) - zw(k-1) < 2.0_wp .AND. kk <= nzt ) |
---|
| 1916 | kk = kk + 1 |
---|
| 1917 | ENDDO |
---|
| 1918 | ! |
---|
| 1919 | !-- kk defines the index of the first grid level >= 2m. |
---|
| 1920 | surf%pt_2m(m) = pt(kk-1,j,i) + & |
---|
| 1921 | ( zw(k-1) + 2.0_wp - zu(kk-1) ) * & |
---|
| 1922 | ( pt(kk,j,i) - pt(kk-1,j,i) ) / & |
---|
| 1923 | ( zu(kk) - zu(kk-1) ) |
---|
| 1924 | ENDIF |
---|
[3597] | 1925 | |
---|
| 1926 | ENDDO |
---|
| 1927 | |
---|
| 1928 | |
---|
| 1929 | END SELECT |
---|
| 1930 | |
---|
| 1931 | END SUBROUTINE calc_pt_near_surface |
---|
| 1932 | |
---|
| 1933 | |
---|
[1691] | 1934 | ! |
---|
| 1935 | !-- Integrated stability function for momentum |
---|
| 1936 | FUNCTION psi_m( zeta ) |
---|
[3634] | 1937 | !$ACC ROUTINE SEQ |
---|
[1691] | 1938 | |
---|
| 1939 | USE kinds |
---|
| 1940 | |
---|
| 1941 | IMPLICIT NONE |
---|
| 1942 | |
---|
| 1943 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 1944 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1945 | REAL(wp) :: x !< dummy variable |
---|
| 1946 | |
---|
| 1947 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1948 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1949 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1950 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1951 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1952 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 1953 | |
---|
| 1954 | |
---|
| 1955 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 1956 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
[1691] | 1957 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 1958 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 1959 | ELSE |
---|
| 1960 | |
---|
| 1961 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
| 1962 | - bc_d_d |
---|
| 1963 | ! |
---|
| 1964 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 1965 | !-- psi_m = - 5.0_wp * zeta |
---|
| 1966 | |
---|
| 1967 | ENDIF |
---|
| 1968 | |
---|
| 1969 | END FUNCTION psi_m |
---|
| 1970 | |
---|
| 1971 | |
---|
| 1972 | ! |
---|
| 1973 | !-- Integrated stability function for heat and moisture |
---|
| 1974 | FUNCTION psi_h( zeta ) |
---|
[3634] | 1975 | !$ACC ROUTINE SEQ |
---|
[1691] | 1976 | |
---|
| 1977 | USE kinds |
---|
| 1978 | |
---|
| 1979 | IMPLICIT NONE |
---|
| 1980 | |
---|
| 1981 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 1982 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1983 | REAL(wp) :: x !< dummy variable |
---|
| 1984 | |
---|
| 1985 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1986 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1987 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1988 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1989 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1990 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 1991 | |
---|
| 1992 | |
---|
| 1993 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 1994 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
[1691] | 1995 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 1996 | ELSE |
---|
| 1997 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 1998 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
| 1999 | + 1.0_wp |
---|
| 2000 | ! |
---|
| 2001 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2002 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2003 | ENDIF |
---|
| 2004 | |
---|
| 2005 | END FUNCTION psi_h |
---|
| 2006 | |
---|
[3130] | 2007 | |
---|
| 2008 | !------------------------------------------------------------------------------! |
---|
| 2009 | ! Description: |
---|
| 2010 | ! ------------ |
---|
| 2011 | !> Calculates stability function for momentum |
---|
| 2012 | !> |
---|
| 2013 | !> @author Hauke Wurps |
---|
| 2014 | !------------------------------------------------------------------------------! |
---|
| 2015 | FUNCTION phi_m( zeta ) |
---|
[3634] | 2016 | !$ACC ROUTINE SEQ |
---|
[3130] | 2017 | |
---|
| 2018 | IMPLICIT NONE |
---|
| 2019 | |
---|
| 2020 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2021 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2022 | |
---|
| 2023 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2024 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2025 | |
---|
| 2026 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2027 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2028 | ELSE |
---|
| 2029 | phi_m = 1.0_wp + c * zeta |
---|
| 2030 | ENDIF |
---|
| 2031 | |
---|
| 2032 | END FUNCTION phi_m |
---|
| 2033 | |
---|
[1697] | 2034 | END MODULE surface_layer_fluxes_mod |
---|