[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1691] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1691] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[1691] | 18 | ! |
---|
[2000] | 19 | !------------------------------------------------------------------------------! |
---|
[2696] | 20 | ! |
---|
[1691] | 21 | ! Current revisions: |
---|
[1747] | 22 | ! ------------------ |
---|
[1758] | 23 | ! |
---|
[3147] | 24 | ! |
---|
[1692] | 25 | ! Former revisions: |
---|
| 26 | ! ----------------- |
---|
| 27 | ! $Id: surface_layer_fluxes_mod.f90 3157 2018-07-19 21:08:49Z witha $ |
---|
[3157] | 28 | ! Added local free convection velocity scale w_lfc in calculation of uvw_abs. |
---|
| 29 | ! This can be switche on/off by the user via the flag namelist parameter |
---|
| 30 | ! use_free_convection_scaling |
---|
| 31 | ! |
---|
| 32 | ! 3152 2018-07-19 13:26:52Z suehring |
---|
[3152] | 33 | ! q_surface is now part of surface structure |
---|
| 34 | ! |
---|
| 35 | ! 3149 2018-07-19 05:48:09Z maronga |
---|
[3149] | 36 | ! Correct accidental last commit |
---|
| 37 | ! |
---|
| 38 | ! 3148 2018-07-19 05:45:25Z maronga |
---|
[3147] | 39 | ! Major bugfix in calculation of Obukhov length |
---|
| 40 | ! |
---|
| 41 | ! 3146 2018-07-18 22:36:19Z maronga |
---|
[3130] | 42 | ! move phi_m from turbulence_closure_mod |
---|
| 43 | ! |
---|
| 44 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 45 | ! Error message revised |
---|
| 46 | ! |
---|
| 47 | ! 2766 2018-01-22 17:17:47Z kanani |
---|
[2766] | 48 | ! Removed preprocessor directive __chem |
---|
| 49 | ! |
---|
| 50 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 51 | ! Corrected "Former revisions" section |
---|
| 52 | ! |
---|
| 53 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 54 | ! - Change in file header (GPL part) |
---|
[2696] | 55 | ! - Implementation of chemistry module (FK) |
---|
| 56 | ! - Added calculation of pt1 and qv1 for all surface types. Added calculation of |
---|
| 57 | ! pt_surface for default-type surfaces (BM) |
---|
| 58 | ! - Add flag to disable computation of qsws in case of urban surface (MS) |
---|
| 59 | ! |
---|
| 60 | ! 2547 2017-10-16 12:41:56Z schwenkel |
---|
[2547] | 61 | ! extended by cloud_droplets option |
---|
| 62 | ! |
---|
| 63 | ! 2321 2017-07-24 15:57:07Z schwenkel |
---|
[2321] | 64 | ! Bugfix: Correct index in lookup table for Obukhov length |
---|
| 65 | ! |
---|
| 66 | ! 2299 2017-06-29 10:14:38Z suehring |
---|
[2299] | 67 | ! Adjusted for allow separate spinups of LSM and atmosphere code |
---|
| 68 | ! |
---|
| 69 | ! 2292 2017-06-20 09:51:42Z schwenkel |
---|
[2292] | 70 | ! Implementation of new microphysic scheme: cloud_scheme = 'morrison' |
---|
| 71 | ! includes two more prognostic equations for cloud drop concentration (nc) |
---|
| 72 | ! and cloud water content (qc). |
---|
| 73 | ! |
---|
| 74 | ! 2281 2017-06-13 11:34:50Z suehring |
---|
[2281] | 75 | ! Clean-up unnecessary index access to surface type |
---|
| 76 | ! |
---|
| 77 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1692] | 78 | ! |
---|
[2233] | 79 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 80 | ! Adjustments to new surface concept |
---|
| 81 | ! OpenMP bugfix |
---|
| 82 | ! |
---|
[2119] | 83 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 84 | ! OpenACC directives and related code removed |
---|
| 85 | ! |
---|
[2092] | 86 | ! 2091 2016-12-21 16:38:18Z suehring |
---|
| 87 | ! Bugfix in calculation of vsws ( incorrect linear interpolation of us ) |
---|
| 88 | ! |
---|
[2077] | 89 | ! 2076 2016-12-02 13:54:20Z raasch |
---|
| 90 | ! further openmp bugfix for lookup method |
---|
| 91 | ! |
---|
[2074] | 92 | ! 2073 2016-11-30 14:34:05Z raasch |
---|
| 93 | ! openmp bugfix for lookup method |
---|
| 94 | ! |
---|
[2038] | 95 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
| 96 | ! Anelastic approximation implemented |
---|
| 97 | ! |
---|
[2012] | 98 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
| 99 | ! Flag urban_surface is now defined in module control_parameters. |
---|
| 100 | ! |
---|
[2008] | 101 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
| 102 | ! Account for urban surface model in computation of vertical kinematic heatflux |
---|
| 103 | ! |
---|
[2001] | 104 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 105 | ! Forced header and separation lines into 80 columns |
---|
| 106 | ! |
---|
[1993] | 107 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 108 | ! Minor bug, declaration of look-up index as INTEGER |
---|
| 109 | ! |
---|
[1961] | 110 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 111 | ! Treat humidity and passive scalar separately |
---|
| 112 | ! |
---|
[1930] | 113 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
| 114 | ! Bugfix: avoid segmentation fault in case one grid point is horizontally |
---|
| 115 | ! completely surrounded by topography |
---|
| 116 | ! |
---|
[1921] | 117 | ! 1920 2016-05-30 10:50:15Z suehring |
---|
| 118 | ! Avoid segmentation fault (see change in 1915) by different initialization of |
---|
| 119 | ! us instead of adding a very small number in the denominator |
---|
| 120 | ! |
---|
[1916] | 121 | ! 1915 2016-05-27 11:05:02Z suehring |
---|
| 122 | ! Bugfix: avoid segmentation fault in case of most_method = 'circular' at first |
---|
| 123 | ! timestep |
---|
| 124 | ! |
---|
[1851] | 125 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 126 | ! Module renamed |
---|
| 127 | ! |
---|
| 128 | ! |
---|
[1823] | 129 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 130 | ! icloud_scheme replaced by microphysics_* |
---|
| 131 | ! |
---|
[1789] | 132 | ! 1788 2016-03-10 11:01:04Z maronga |
---|
| 133 | ! Added parameter z0q which replaces z0h in the similarity functions for |
---|
| 134 | ! humidity. |
---|
| 135 | ! Syntax layout improved. |
---|
| 136 | ! |
---|
[1758] | 137 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
| 138 | ! Minor fixes. |
---|
| 139 | ! |
---|
[1750] | 140 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
| 141 | ! further OpenACC adjustments |
---|
| 142 | ! |
---|
[1748] | 143 | ! 1747 2016-02-08 12:25:53Z raasch |
---|
| 144 | ! adjustments for OpenACC usage |
---|
| 145 | ! |
---|
[1710] | 146 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 147 | ! Bugfix: division by zero could occur when calculating rib at low wind speeds |
---|
| 148 | ! Bugfix: calculation of uv_total for neutral = .T., initial value for ol for |
---|
| 149 | ! neutral = .T. |
---|
| 150 | ! |
---|
[1706] | 151 | ! 1705 2015-11-02 14:28:56Z maronga |
---|
| 152 | ! Typo removed |
---|
| 153 | ! |
---|
[1698] | 154 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 155 | ! FORTRAN and OpenMP errors removed |
---|
| 156 | ! |
---|
[1697] | 157 | ! 1696 2015-10-27 10:03:34Z maronga |
---|
[1691] | 158 | ! Modularized and completely re-written version of prandtl_fluxes.f90. In the |
---|
| 159 | ! course of the re-writing two additional methods have been implemented. See |
---|
| 160 | ! updated description. |
---|
| 161 | ! |
---|
| 162 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
| 163 | ! Removed land surface model part. The surface fluxes are now always calculated |
---|
| 164 | ! within prandtl_fluxes, based on the given surface temperature/humidity (which |
---|
| 165 | ! is either provided by the land surface model, by large scale forcing data, or |
---|
| 166 | ! directly prescribed by the user. |
---|
| 167 | ! |
---|
| 168 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 169 | ! Adapted for land surface model |
---|
| 170 | ! |
---|
| 171 | ! 1494 2014-11-21 17:14:03Z maronga |
---|
| 172 | ! Bugfixes: qs is now calculated before calculation of Rif. calculation of |
---|
| 173 | ! buoyancy flux in Rif corrected (added missing humidity term), allow use of |
---|
| 174 | ! topography for coupled runs (not tested) |
---|
| 175 | ! |
---|
| 176 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 177 | ! Bugfix: calculation of turbulent fluxes of rain water content (qrsws) and rain |
---|
| 178 | ! drop concentration (nrsws) added |
---|
| 179 | ! |
---|
| 180 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 181 | ! REAL constants defined as wp-kind |
---|
| 182 | ! |
---|
| 183 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 184 | ! ONLY-attribute added to USE-statements, |
---|
| 185 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 186 | ! kinds are defined in new module kinds, |
---|
| 187 | ! old module precision_kind is removed, |
---|
| 188 | ! revision history before 2012 removed, |
---|
| 189 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 190 | ! all variable declaration statements |
---|
| 191 | ! |
---|
| 192 | ! 1276 2014-01-15 13:40:41Z heinze |
---|
| 193 | ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars |
---|
| 194 | ! |
---|
| 195 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 196 | ! openACC "kernels do" replaced by "kernels loop", "loop independent" added |
---|
| 197 | ! |
---|
| 198 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 199 | ! code put under GPL (PALM 3.9) |
---|
| 200 | ! |
---|
| 201 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 202 | ! OpenACC statements added |
---|
| 203 | ! |
---|
| 204 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 205 | ! roughness length for scalar quantities z0h added |
---|
| 206 | ! |
---|
| 207 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 208 | ! Initial revision |
---|
| 209 | ! |
---|
| 210 | ! |
---|
| 211 | ! Description: |
---|
| 212 | ! ------------ |
---|
| 213 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
| 214 | !> values of the variables at grid point k=1. Three different methods are |
---|
| 215 | !> available: |
---|
| 216 | !> 1) the "old" version (most_method = 'circular') which is fast, but inaccurate |
---|
| 217 | !> 2) a Newton iteration method (most_method = 'newton'), which is accurate, but |
---|
| 218 | !> slower |
---|
| 219 | !> 3) a method using a lookup table which is fast and accurate. Note, however, |
---|
| 220 | !> that this method cannot be used in case of roughness heterogeneity |
---|
| 221 | !> |
---|
| 222 | !> @todo (re)move large_scale_forcing actions |
---|
[2118] | 223 | !> @todo check/optimize OpenMP directives |
---|
[2696] | 224 | !> @todo simplify if conditions (which flux need to be computed in which case) |
---|
[1691] | 225 | !------------------------------------------------------------------------------! |
---|
| 226 | MODULE surface_layer_fluxes_mod |
---|
| 227 | |
---|
| 228 | USE arrays_3d, & |
---|
[2292] | 229 | ONLY: e, kh, nc, nr, pt, q, ql, qc, qr, s, u, v, vpt, w, zu, zw, & |
---|
| 230 | drho_air_zw, rho_air_zw |
---|
[1691] | 231 | |
---|
[2696] | 232 | USE chem_modules, & |
---|
| 233 | ONLY: constant_csflux, nvar |
---|
| 234 | |
---|
[1691] | 235 | USE cloud_parameters, & |
---|
| 236 | ONLY: l_d_cp, pt_d_t |
---|
| 237 | |
---|
| 238 | USE constants, & |
---|
| 239 | ONLY: pi |
---|
| 240 | |
---|
| 241 | USE cpulog |
---|
| 242 | |
---|
| 243 | USE control_parameters, & |
---|
[2696] | 244 | ONLY: air_chemistry, cloud_droplets, cloud_physics, & |
---|
| 245 | constant_heatflux, constant_scalarflux, & |
---|
| 246 | constant_waterflux, coupling_mode, g, humidity, ibc_e_b, & |
---|
| 247 | ibc_pt_b, initializing_actions, kappa, & |
---|
[2232] | 248 | intermediate_timestep_count, intermediate_timestep_count_max, & |
---|
| 249 | land_surface, large_scale_forcing, lsf_surf, & |
---|
[2292] | 250 | message_string, microphysics_morrison, microphysics_seifert, & |
---|
| 251 | most_method, neutral, passive_scalar, pt_surface, q_surface, & |
---|
| 252 | run_coupled, surface_pressure, simulated_time, terminate_run, & |
---|
[3157] | 253 | time_since_reference_point, urban_surface, & |
---|
| 254 | use_free_convection_scaling, zeta_max, zeta_min |
---|
[1691] | 255 | |
---|
[2232] | 256 | USE grid_variables, & |
---|
| 257 | ONLY: dx, dy |
---|
| 258 | |
---|
[1691] | 259 | USE indices, & |
---|
[2232] | 260 | ONLY: nxl, nxr, nys, nyn, nzb |
---|
[1691] | 261 | |
---|
| 262 | USE kinds |
---|
| 263 | |
---|
| 264 | USE pegrid |
---|
| 265 | |
---|
| 266 | USE land_surface_model_mod, & |
---|
[2232] | 267 | ONLY: aero_resist_kray, skip_time_do_lsm |
---|
[2011] | 268 | |
---|
[2232] | 269 | USE surface_mod, & |
---|
| 270 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_type, & |
---|
| 271 | surf_usm_h, surf_usm_v |
---|
[2007] | 272 | |
---|
[1691] | 273 | |
---|
| 274 | IMPLICIT NONE |
---|
| 275 | |
---|
[1992] | 276 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 277 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 278 | INTEGER(iwp) :: k !< loop index z direction |
---|
[2232] | 279 | INTEGER(iwp) :: l !< loop index for surf type |
---|
| 280 | INTEGER(iwp) :: li_bnd = 7500 !< Lookup table index of the last time step |
---|
[1691] | 281 | |
---|
[2232] | 282 | INTEGER(iwp), PARAMETER :: num_steps = 15000 !< number of steps in the lookup table |
---|
[1691] | 283 | |
---|
[2232] | 284 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 285 | LOGICAL :: downward = .FALSE.!< Flag indicating downward-facing horizontal surface |
---|
| 286 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 287 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 288 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 289 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 290 | |
---|
| 291 | REAL(wp), DIMENSION(0:num_steps-1) :: rib_tab, & !< Lookup table bulk Richardson number |
---|
| 292 | ol_tab !< Lookup table values of L |
---|
| 293 | |
---|
| 294 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
| 295 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
| 296 | rib_max, & !< Maximum Richardson number in lookup table |
---|
| 297 | rib_min, & !< Minimum Richardson number in lookup table |
---|
| 298 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
| 299 | |
---|
[2232] | 300 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 301 | |
---|
[2232] | 302 | |
---|
[1691] | 303 | SAVE |
---|
| 304 | |
---|
| 305 | PRIVATE |
---|
| 306 | |
---|
[3130] | 307 | PUBLIC init_surface_layer_fluxes, phi_m, surface_layer_fluxes |
---|
[1691] | 308 | |
---|
| 309 | INTERFACE init_surface_layer_fluxes |
---|
| 310 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 311 | END INTERFACE init_surface_layer_fluxes |
---|
| 312 | |
---|
[3130] | 313 | INTERFACE phi_m |
---|
| 314 | MODULE PROCEDURE phi_m |
---|
| 315 | END INTERFACE phi_m |
---|
| 316 | |
---|
[1691] | 317 | INTERFACE surface_layer_fluxes |
---|
| 318 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 319 | END INTERFACE surface_layer_fluxes |
---|
| 320 | |
---|
| 321 | |
---|
| 322 | CONTAINS |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | !------------------------------------------------------------------------------! |
---|
| 326 | ! Description: |
---|
| 327 | ! ------------ |
---|
| 328 | !> Main routine to compute the surface fluxes |
---|
| 329 | !------------------------------------------------------------------------------! |
---|
| 330 | SUBROUTINE surface_layer_fluxes |
---|
| 331 | |
---|
| 332 | IMPLICIT NONE |
---|
| 333 | |
---|
[2232] | 334 | surf_vertical = .FALSE. |
---|
| 335 | downward = .FALSE. |
---|
[1691] | 336 | ! |
---|
[2696] | 337 | !-- Derive potential temperature and specific humidity at first grid level |
---|
| 338 | !-- from the fields pt and q |
---|
[2232] | 339 | ! |
---|
[2696] | 340 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, |
---|
| 341 | !-- l=1 - downward facing) |
---|
| 342 | DO l = 0, 1 |
---|
| 343 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 344 | surf => surf_def_h(l) |
---|
| 345 | CALL calc_pt_q |
---|
[3146] | 346 | IF ( .NOT. neutral ) THEN |
---|
| 347 | CALL calc_pt_surface |
---|
| 348 | IF ( humidity ) THEN |
---|
[3152] | 349 | CALL calc_q_surface |
---|
[3146] | 350 | CALL calc_vpt_surface |
---|
| 351 | ENDIF |
---|
| 352 | ENDIF |
---|
[2696] | 353 | ENDIF |
---|
| 354 | ENDDO |
---|
[2232] | 355 | ! |
---|
[2696] | 356 | !-- Call for natural-type horizontal surfaces |
---|
| 357 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 358 | surf => surf_lsm_h |
---|
| 359 | CALL calc_pt_q |
---|
| 360 | ENDIF |
---|
| 361 | |
---|
| 362 | ! |
---|
| 363 | !-- Call for urban-type horizontal surfaces |
---|
| 364 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 365 | surf => surf_usm_h |
---|
| 366 | CALL calc_pt_q |
---|
| 367 | ENDIF |
---|
| 368 | |
---|
| 369 | ! |
---|
| 370 | !-- Call for natural-type vertical surfaces |
---|
| 371 | DO l = 0, 3 |
---|
| 372 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 373 | surf => surf_lsm_v(l) |
---|
[2232] | 374 | CALL calc_pt_q |
---|
| 375 | ENDIF |
---|
[2696] | 376 | |
---|
[3146] | 377 | !-- Call for urban-type vertical surfaces |
---|
[2696] | 378 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 379 | surf => surf_usm_v(l) |
---|
[2232] | 380 | CALL calc_pt_q |
---|
| 381 | ENDIF |
---|
[2696] | 382 | ENDDO |
---|
[1691] | 383 | |
---|
| 384 | ! |
---|
| 385 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
| 386 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
| 387 | !-- surface fluxes if required. The old routine ("circular") requires a |
---|
| 388 | !-- different order of calls as the scaling parameters from the previous time |
---|
| 389 | !-- steps are used to calculate the Obukhov length |
---|
| 390 | |
---|
| 391 | ! |
---|
| 392 | !-- Depending on setting of most_method use the "old" routine |
---|
[2232] | 393 | !-- Note, each routine is called for different surface types. |
---|
| 394 | !-- First call for default-type horizontal surfaces, for natural- and |
---|
| 395 | !-- urban-type surfaces. Note, at this place only upward-facing horizontal |
---|
| 396 | !-- surfaces are treted. |
---|
[1691] | 397 | IF ( most_method == 'circular' ) THEN |
---|
[2232] | 398 | ! |
---|
| 399 | !-- Default-type upward-facing horizontal surfaces |
---|
| 400 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 401 | surf => surf_def_h(0) |
---|
| 402 | CALL calc_scaling_parameters |
---|
| 403 | CALL calc_uvw_abs |
---|
| 404 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 405 | CALL calc_us |
---|
| 406 | CALL calc_surface_fluxes |
---|
[1691] | 407 | ENDIF |
---|
| 408 | ! |
---|
[2232] | 409 | !-- Natural-type horizontal surfaces |
---|
| 410 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 411 | surf => surf_lsm_h |
---|
| 412 | CALL calc_scaling_parameters |
---|
| 413 | CALL calc_uvw_abs |
---|
| 414 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 415 | CALL calc_us |
---|
| 416 | CALL calc_surface_fluxes |
---|
| 417 | ENDIF |
---|
| 418 | ! |
---|
| 419 | !-- Urban-type horizontal surfaces |
---|
| 420 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 421 | surf => surf_usm_h |
---|
| 422 | CALL calc_scaling_parameters |
---|
| 423 | CALL calc_uvw_abs |
---|
| 424 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 425 | CALL calc_us |
---|
| 426 | CALL calc_surface_fluxes |
---|
| 427 | ENDIF |
---|
| 428 | ! |
---|
[1691] | 429 | !-- Use either Newton iteration or a lookup table for the bulk Richardson |
---|
| 430 | !-- number to calculate the Obukhov length |
---|
[1788] | 431 | ELSEIF ( most_method == 'newton' .OR. most_method == 'lookup' ) THEN |
---|
[2232] | 432 | ! |
---|
| 433 | !-- Default-type upward-facing horizontal surfaces |
---|
| 434 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 435 | surf => surf_def_h(0) |
---|
| 436 | CALL calc_uvw_abs |
---|
| 437 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 438 | CALL calc_us |
---|
| 439 | CALL calc_scaling_parameters |
---|
| 440 | CALL calc_surface_fluxes |
---|
[1691] | 441 | ENDIF |
---|
[2232] | 442 | ! |
---|
| 443 | !-- Natural-type horizontal surfaces |
---|
| 444 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 445 | surf => surf_lsm_h |
---|
| 446 | CALL calc_uvw_abs |
---|
| 447 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 448 | CALL calc_us |
---|
| 449 | CALL calc_scaling_parameters |
---|
| 450 | CALL calc_surface_fluxes |
---|
| 451 | ENDIF |
---|
| 452 | ! |
---|
| 453 | !-- Urban-type horizontal surfaces |
---|
| 454 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 455 | surf => surf_usm_h |
---|
| 456 | CALL calc_uvw_abs |
---|
| 457 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 458 | CALL calc_us |
---|
| 459 | CALL calc_scaling_parameters |
---|
| 460 | CALL calc_surface_fluxes |
---|
| 461 | ENDIF |
---|
[1691] | 462 | |
---|
[2232] | 463 | ENDIF |
---|
| 464 | ! |
---|
| 465 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are |
---|
| 466 | !-- always default type. Stratification is not considered |
---|
| 467 | !-- in this case, hence, no further distinction between different |
---|
| 468 | !-- most_method is required. |
---|
| 469 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 470 | downward = .TRUE. |
---|
| 471 | surf => surf_def_h(1) |
---|
| 472 | CALL calc_uvw_abs |
---|
[1691] | 473 | CALL calc_us |
---|
| 474 | CALL calc_surface_fluxes |
---|
[2232] | 475 | downward = .FALSE. |
---|
[1691] | 476 | ENDIF |
---|
[2232] | 477 | ! |
---|
| 478 | !-- Calculate surfaces fluxes at vertical surfaces for momentum |
---|
| 479 | !-- and subgrid-scale TKE. |
---|
| 480 | !-- No stability is considered. Therefore, scaling parameters and Obukhov- |
---|
| 481 | !-- length do not need to be calculated and no distinction in 'circular', |
---|
| 482 | !-- 'Newton' or 'lookup' is necessary so far. |
---|
| 483 | !-- Note, this will change if stability is once considered. |
---|
| 484 | surf_vertical = .TRUE. |
---|
| 485 | ! |
---|
| 486 | !-- Calculate horizontal momentum fluxes at north- and south-facing |
---|
| 487 | !-- surfaces(usvs). |
---|
| 488 | !-- For default-type surfaces |
---|
| 489 | mom_uv = .TRUE. |
---|
| 490 | DO l = 0, 1 |
---|
| 491 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 492 | surf => surf_def_v(l) |
---|
| 493 | ! |
---|
| 494 | !-- Compute surface-parallel velocity |
---|
| 495 | CALL calc_uvw_abs_v_ugrid |
---|
| 496 | ! |
---|
| 497 | !-- Compute respective friction velocity on staggered grid |
---|
| 498 | CALL calc_us |
---|
| 499 | ! |
---|
| 500 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 501 | CALL calc_surface_fluxes |
---|
| 502 | ENDIF |
---|
| 503 | ENDDO |
---|
| 504 | ! |
---|
| 505 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 506 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 507 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 508 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 509 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 510 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 511 | IF ( most_method == 'circular' ) THEN |
---|
| 512 | DO l = 0, 1 |
---|
| 513 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 514 | surf => surf_lsm_v(l) |
---|
| 515 | ! |
---|
| 516 | !-- Compute scaling parameters |
---|
| 517 | CALL calc_scaling_parameters |
---|
| 518 | ! |
---|
| 519 | !-- Compute surface-parallel velocity |
---|
| 520 | CALL calc_uvw_abs_v_ugrid |
---|
| 521 | ! |
---|
| 522 | !-- Compute Obukhov length |
---|
| 523 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 524 | ! |
---|
| 525 | !-- Compute respective friction velocity on staggered grid |
---|
| 526 | CALL calc_us |
---|
| 527 | ! |
---|
| 528 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 529 | CALL calc_surface_fluxes |
---|
| 530 | ENDIF |
---|
| 531 | ENDDO |
---|
| 532 | ELSE |
---|
| 533 | DO l = 0, 1 |
---|
| 534 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 535 | surf => surf_lsm_v(l) |
---|
| 536 | ! |
---|
| 537 | !-- Compute surface-parallel velocity |
---|
| 538 | CALL calc_uvw_abs_v_ugrid |
---|
| 539 | ! |
---|
| 540 | !-- Compute Obukhov length |
---|
| 541 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 542 | ! |
---|
| 543 | !-- Compute respective friction velocity on staggered grid |
---|
| 544 | CALL calc_us |
---|
| 545 | ! |
---|
| 546 | !-- Compute scaling parameters |
---|
| 547 | CALL calc_scaling_parameters |
---|
| 548 | ! |
---|
| 549 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 550 | CALL calc_surface_fluxes |
---|
| 551 | ENDIF |
---|
| 552 | ENDDO |
---|
| 553 | ENDIF |
---|
| 554 | ! |
---|
| 555 | !-- No ts is required, so scaling parameters and Obukhov length do not need |
---|
| 556 | !-- to be computed. |
---|
| 557 | ELSE |
---|
| 558 | DO l = 0, 1 |
---|
| 559 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 560 | surf => surf_lsm_v(l) |
---|
| 561 | ! |
---|
| 562 | !-- Compute surface-parallel velocity |
---|
| 563 | CALL calc_uvw_abs_v_ugrid |
---|
| 564 | ! |
---|
| 565 | !-- Compute respective friction velocity on staggered grid |
---|
| 566 | CALL calc_us |
---|
| 567 | ! |
---|
| 568 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 569 | CALL calc_surface_fluxes |
---|
| 570 | ENDIF |
---|
| 571 | ENDDO |
---|
| 572 | ENDIF |
---|
| 573 | ! |
---|
| 574 | !-- For urban-type surfaces |
---|
| 575 | DO l = 0, 1 |
---|
| 576 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 577 | surf => surf_usm_v(l) |
---|
| 578 | ! |
---|
| 579 | !-- Compute surface-parallel velocity |
---|
| 580 | CALL calc_uvw_abs_v_ugrid |
---|
| 581 | ! |
---|
| 582 | !-- Compute respective friction velocity on staggered grid |
---|
| 583 | CALL calc_us |
---|
| 584 | ! |
---|
| 585 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 586 | CALL calc_surface_fluxes |
---|
| 587 | ENDIF |
---|
| 588 | ENDDO |
---|
| 589 | ! |
---|
| 590 | !-- Calculate horizontal momentum fluxes at east- and west-facing |
---|
| 591 | !-- surfaces (vsus). |
---|
| 592 | !-- For default-type surfaces |
---|
| 593 | DO l = 2, 3 |
---|
| 594 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 595 | surf => surf_def_v(l) |
---|
| 596 | ! |
---|
| 597 | !-- Compute surface-parallel velocity |
---|
| 598 | CALL calc_uvw_abs_v_vgrid |
---|
| 599 | ! |
---|
| 600 | !-- Compute respective friction velocity on staggered grid |
---|
| 601 | CALL calc_us |
---|
| 602 | ! |
---|
| 603 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 604 | CALL calc_surface_fluxes |
---|
| 605 | ENDIF |
---|
| 606 | ENDDO |
---|
| 607 | ! |
---|
| 608 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 609 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 610 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 611 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 612 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 613 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 614 | IF ( most_method == 'circular' ) THEN |
---|
| 615 | DO l = 2, 3 |
---|
| 616 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 617 | surf => surf_lsm_v(l) |
---|
| 618 | ! |
---|
| 619 | !-- Compute scaling parameters |
---|
| 620 | CALL calc_scaling_parameters |
---|
| 621 | ! |
---|
| 622 | !-- Compute surface-parallel velocity |
---|
| 623 | CALL calc_uvw_abs_v_vgrid |
---|
| 624 | ! |
---|
| 625 | !-- Compute Obukhov length |
---|
| 626 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 627 | ! |
---|
| 628 | !-- Compute respective friction velocity on staggered grid |
---|
| 629 | CALL calc_us |
---|
| 630 | ! |
---|
| 631 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 632 | CALL calc_surface_fluxes |
---|
| 633 | ENDIF |
---|
| 634 | ENDDO |
---|
| 635 | ELSE |
---|
| 636 | DO l = 2, 3 |
---|
| 637 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 638 | surf => surf_lsm_v(l) |
---|
| 639 | ! |
---|
| 640 | !-- Compute surface-parallel velocity |
---|
| 641 | CALL calc_uvw_abs_v_vgrid |
---|
| 642 | ! |
---|
| 643 | !-- Compute Obukhov length |
---|
| 644 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 645 | ! |
---|
| 646 | !-- Compute respective friction velocity on staggered grid |
---|
| 647 | CALL calc_us |
---|
| 648 | ! |
---|
| 649 | !-- Compute scaling parameters |
---|
| 650 | CALL calc_scaling_parameters |
---|
| 651 | ! |
---|
| 652 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 653 | CALL calc_surface_fluxes |
---|
| 654 | ENDIF |
---|
| 655 | ENDDO |
---|
| 656 | ENDIF |
---|
| 657 | ELSE |
---|
| 658 | DO l = 2, 3 |
---|
| 659 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 660 | surf => surf_lsm_v(l) |
---|
| 661 | ! |
---|
| 662 | !-- Compute surface-parallel velocity |
---|
| 663 | CALL calc_uvw_abs_v_vgrid |
---|
| 664 | ! |
---|
| 665 | !-- Compute respective friction velocity on staggered grid |
---|
| 666 | CALL calc_us |
---|
| 667 | ! |
---|
| 668 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 669 | CALL calc_surface_fluxes |
---|
| 670 | ENDIF |
---|
| 671 | ENDDO |
---|
| 672 | ENDIF |
---|
| 673 | ! |
---|
| 674 | !-- For urban-type surfaces |
---|
| 675 | DO l = 2, 3 |
---|
| 676 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 677 | surf => surf_usm_v(l) |
---|
| 678 | ! |
---|
| 679 | !-- Compute surface-parallel velocity |
---|
| 680 | CALL calc_uvw_abs_v_vgrid |
---|
| 681 | ! |
---|
| 682 | !-- Compute respective friction velocity on staggered grid |
---|
| 683 | CALL calc_us |
---|
| 684 | ! |
---|
| 685 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 686 | CALL calc_surface_fluxes |
---|
| 687 | ENDIF |
---|
| 688 | ENDDO |
---|
| 689 | mom_uv = .FALSE. |
---|
| 690 | ! |
---|
| 691 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial |
---|
| 692 | !-- surfaces. |
---|
| 693 | mom_w = .TRUE. |
---|
| 694 | ! |
---|
| 695 | !-- Default-type surfaces |
---|
| 696 | DO l = 0, 3 |
---|
| 697 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 698 | surf => surf_def_v(l) |
---|
| 699 | CALL calc_uvw_abs_v_wgrid |
---|
| 700 | CALL calc_us |
---|
| 701 | CALL calc_surface_fluxes |
---|
| 702 | ENDIF |
---|
| 703 | ENDDO |
---|
| 704 | ! |
---|
| 705 | !-- Natural-type surfaces |
---|
| 706 | DO l = 0, 3 |
---|
| 707 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 708 | surf => surf_lsm_v(l) |
---|
| 709 | CALL calc_uvw_abs_v_wgrid |
---|
| 710 | CALL calc_us |
---|
| 711 | CALL calc_surface_fluxes |
---|
| 712 | ENDIF |
---|
| 713 | ENDDO |
---|
| 714 | ! |
---|
| 715 | !-- Urban-type surfaces |
---|
| 716 | DO l = 0, 3 |
---|
| 717 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 718 | surf => surf_usm_v(l) |
---|
| 719 | CALL calc_uvw_abs_v_wgrid |
---|
| 720 | CALL calc_us |
---|
| 721 | CALL calc_surface_fluxes |
---|
| 722 | ENDIF |
---|
| 723 | ENDDO |
---|
| 724 | mom_w = .FALSE. |
---|
| 725 | ! |
---|
| 726 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical |
---|
| 727 | !-- surfaces for TKE production. Note, here, momentum fluxes are defined |
---|
| 728 | !-- at grid center and are not staggered as before. |
---|
| 729 | mom_tke = .TRUE. |
---|
| 730 | ! |
---|
| 731 | !-- Default-type surfaces |
---|
| 732 | DO l = 0, 3 |
---|
| 733 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 734 | surf => surf_def_v(l) |
---|
| 735 | CALL calc_uvw_abs_v_sgrid |
---|
| 736 | CALL calc_us |
---|
| 737 | CALL calc_surface_fluxes |
---|
| 738 | ENDIF |
---|
| 739 | ENDDO |
---|
| 740 | ! |
---|
| 741 | !-- Natural-type surfaces |
---|
| 742 | DO l = 0, 3 |
---|
| 743 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 744 | surf => surf_lsm_v(l) |
---|
| 745 | CALL calc_uvw_abs_v_sgrid |
---|
| 746 | CALL calc_us |
---|
| 747 | CALL calc_surface_fluxes |
---|
| 748 | ENDIF |
---|
| 749 | ENDDO |
---|
| 750 | ! |
---|
| 751 | !-- Urban-type surfaces |
---|
| 752 | DO l = 0, 3 |
---|
| 753 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 754 | surf => surf_usm_v(l) |
---|
| 755 | CALL calc_uvw_abs_v_sgrid |
---|
| 756 | CALL calc_us |
---|
| 757 | CALL calc_surface_fluxes |
---|
| 758 | ENDIF |
---|
| 759 | ENDDO |
---|
| 760 | mom_tke = .FALSE. |
---|
| 761 | |
---|
[1691] | 762 | |
---|
| 763 | END SUBROUTINE surface_layer_fluxes |
---|
| 764 | |
---|
| 765 | |
---|
| 766 | !------------------------------------------------------------------------------! |
---|
| 767 | ! Description: |
---|
| 768 | ! ------------ |
---|
| 769 | !> Initializing actions for the surface layer routine. Basically, this involves |
---|
| 770 | !> the preparation of a lookup table for the the bulk Richardson number vs |
---|
| 771 | !> Obukhov length L when using the lookup table method. |
---|
| 772 | !------------------------------------------------------------------------------! |
---|
| 773 | SUBROUTINE init_surface_layer_fluxes |
---|
| 774 | |
---|
| 775 | IMPLICIT NONE |
---|
| 776 | |
---|
[2232] | 777 | INTEGER(iwp) :: li, & !< Index for loop to create lookup table |
---|
[1691] | 778 | num_steps_n !< Number of non-stretched zeta steps |
---|
| 779 | |
---|
| 780 | LOGICAL :: terminate_run_l = .FALSE. !< Flag to terminate run (global) |
---|
| 781 | |
---|
| 782 | REAL(wp), PARAMETER :: zeta_stretch = -10.0_wp !< Start of stretching in the free convection limit |
---|
| 783 | |
---|
| 784 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zeta_tmp |
---|
| 785 | |
---|
| 786 | |
---|
| 787 | REAL(wp) :: zeta_step, & !< Increment of zeta |
---|
| 788 | regr = 1.01_wp, & !< Stretching factor of zeta_step in the free convection limit |
---|
| 789 | regr_old = 1.0E9_wp, & !< Stretching factor of last iteration step |
---|
| 790 | z0h_min = 0.0_wp, & !< Minimum value of z0h to create table |
---|
| 791 | z0_min = 0.0_wp !< Minimum value of z0 to create table |
---|
| 792 | |
---|
| 793 | |
---|
[1709] | 794 | |
---|
[2232] | 795 | |
---|
[1709] | 796 | ! |
---|
| 797 | !-- In case of runs with neutral statification, set Obukhov length to a |
---|
| 798 | !-- large value |
---|
[2232] | 799 | IF ( neutral ) THEN |
---|
| 800 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 801 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 802 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
| 803 | ENDIF |
---|
[1709] | 804 | |
---|
[1691] | 805 | IF ( most_method == 'lookup' ) THEN |
---|
| 806 | |
---|
| 807 | ! |
---|
| 808 | !-- Check for roughness heterogeneity. In that case terminate run and |
---|
[2232] | 809 | !-- inform user. Check for both, natural and non-natural walls. |
---|
| 810 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 811 | IF ( MINVAL( surf_def_h(0)%z0h ) /= MAXVAL( surf_def_h(0)%z0h ) .OR. & |
---|
| 812 | MINVAL( surf_def_h(0)%z0 ) /= MAXVAL( surf_def_h(0)%z0 ) ) THEN |
---|
| 813 | terminate_run_l = .TRUE. |
---|
| 814 | ENDIF |
---|
[1691] | 815 | ENDIF |
---|
[2232] | 816 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 817 | IF ( MINVAL( surf_lsm_h%z0h ) /= MAXVAL( surf_lsm_h%z0h ) .OR. & |
---|
| 818 | MINVAL( surf_lsm_h%z0 ) /= MAXVAL( surf_lsm_h%z0 ) ) THEN |
---|
| 819 | terminate_run_l = .TRUE. |
---|
| 820 | ENDIF |
---|
| 821 | ENDIF |
---|
| 822 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 823 | IF ( MINVAL( surf_usm_h%z0h ) /= MAXVAL( surf_usm_h%z0h ) .OR. & |
---|
| 824 | MINVAL( surf_usm_h%z0 ) /= MAXVAL( surf_usm_h%z0 ) ) THEN |
---|
| 825 | terminate_run_l = .TRUE. |
---|
| 826 | ENDIF |
---|
| 827 | ENDIF |
---|
| 828 | ! |
---|
| 829 | !-- Check roughness homogeneity between differt surface types. |
---|
| 830 | IF ( surf_lsm_h%ns >= 1 .AND. surf_def_h(0)%ns >= 1 ) THEN |
---|
| 831 | IF ( MINVAL( surf_lsm_h%z0h ) /= MAXVAL( surf_def_h(0)%z0h ) .OR. & |
---|
| 832 | MINVAL( surf_lsm_h%z0 ) /= MAXVAL( surf_def_h(0)%z0 ) ) THEN |
---|
| 833 | terminate_run_l = .TRUE. |
---|
| 834 | ENDIF |
---|
| 835 | ENDIF |
---|
| 836 | IF ( surf_usm_h%ns >= 1 .AND. surf_def_h(0)%ns >= 1 ) THEN |
---|
| 837 | IF ( MINVAL( surf_usm_h%z0h ) /= MAXVAL( surf_def_h(0)%z0h ) .OR. & |
---|
| 838 | MINVAL( surf_usm_h%z0 ) /= MAXVAL( surf_def_h(0)%z0 ) ) THEN |
---|
| 839 | terminate_run_l = .TRUE. |
---|
| 840 | ENDIF |
---|
| 841 | ENDIF |
---|
| 842 | IF ( surf_usm_h%ns >= 1 .AND. surf_lsm_h%ns >= 1 ) THEN |
---|
| 843 | IF ( MINVAL( surf_usm_h%z0h ) /= MAXVAL( surf_lsm_h%z0h ) .OR. & |
---|
| 844 | MINVAL( surf_usm_h%z0 ) /= MAXVAL( surf_lsm_h%z0 ) ) THEN |
---|
| 845 | terminate_run_l = .TRUE. |
---|
| 846 | ENDIF |
---|
| 847 | ENDIF |
---|
[1691] | 848 | |
---|
[2232] | 849 | |
---|
[1691] | 850 | #if defined( __parallel ) |
---|
| 851 | ! |
---|
| 852 | !-- Make a logical OR for all processes. Force termiation of model if result |
---|
| 853 | !-- is TRUE |
---|
| 854 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 855 | CALL MPI_ALLREDUCE( terminate_run_l, terminate_run, 1, MPI_LOGICAL, & |
---|
| 856 | MPI_LOR, comm2d, ierr ) |
---|
| 857 | #else |
---|
| 858 | terminate_run = terminate_run_l |
---|
| 859 | #endif |
---|
| 860 | |
---|
| 861 | IF ( terminate_run ) THEN |
---|
| 862 | message_string = 'most_method = "lookup" cannot be used in ' // & |
---|
| 863 | 'combination with a prescribed roughness ' // & |
---|
| 864 | 'heterogeneity' |
---|
[3045] | 865 | CALL message( 'surface_layer_fluxes', 'PA0116', 1, 2, 0, 6, 0 ) |
---|
[1691] | 866 | ENDIF |
---|
| 867 | |
---|
| 868 | ALLOCATE( zeta_tmp(0:num_steps-1) ) |
---|
| 869 | |
---|
| 870 | ! |
---|
| 871 | !-- Use the lowest possible value for z_mo |
---|
[2232] | 872 | k = nzb |
---|
[1691] | 873 | z_mo = zu(k+1) - zw(k) |
---|
| 874 | |
---|
| 875 | ! |
---|
| 876 | !-- Calculate z/L range from zeta_stretch to zeta_max using 90% of the |
---|
| 877 | !-- available steps (num_steps). The calculation is done with negative |
---|
| 878 | !-- values of zeta in order to simplify the stretching in the free |
---|
| 879 | !-- convection limit for the remaining 10% of steps. |
---|
| 880 | zeta_tmp(0) = - zeta_max |
---|
| 881 | num_steps_n = ( num_steps * 9 / 10 ) - 1 |
---|
| 882 | zeta_step = (zeta_max - zeta_stretch) / REAL(num_steps_n) |
---|
| 883 | |
---|
[2232] | 884 | DO li = 1, num_steps_n |
---|
| 885 | zeta_tmp(li) = zeta_tmp(li-1) + zeta_step |
---|
[1691] | 886 | ENDDO |
---|
| 887 | |
---|
| 888 | ! |
---|
| 889 | !-- Calculate stretching factor for the free convection range |
---|
[1788] | 890 | DO WHILE ( ABS( (regr-regr_old) / regr_old ) > 1.0E-10_wp ) |
---|
[1691] | 891 | regr_old = regr |
---|
| 892 | regr = ( 1.0_wp - ( -zeta_min / zeta_step ) * ( 1.0_wp - regr ) & |
---|
| 893 | )**( 10.0_wp / REAL(num_steps) ) |
---|
| 894 | ENDDO |
---|
| 895 | |
---|
| 896 | ! |
---|
| 897 | !-- Calculate z/L range from zeta_min to zeta_stretch |
---|
[2232] | 898 | DO li = num_steps_n+1, num_steps-1 |
---|
| 899 | zeta_tmp(li) = zeta_tmp(li-1) + zeta_step |
---|
[1691] | 900 | zeta_step = zeta_step * regr |
---|
| 901 | ENDDO |
---|
| 902 | |
---|
| 903 | ! |
---|
[1757] | 904 | !-- Save roughness lengths to temporary variables |
---|
[2232] | 905 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 906 | z0h_min = surf_def_h(0)%z0h(1) |
---|
| 907 | z0_min = surf_def_h(0)%z0(1) |
---|
| 908 | ELSEIF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 909 | z0h_min = surf_lsm_h%z0h(1) |
---|
| 910 | z0_min = surf_lsm_h%z0(1) |
---|
| 911 | ELSEIF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 912 | z0h_min = surf_usm_h%z0h(1) |
---|
| 913 | z0_min = surf_usm_h%z0(1) |
---|
| 914 | ENDIF |
---|
[1691] | 915 | ! |
---|
| 916 | !-- Calculate lookup table for the Richardson number versus Obukhov length |
---|
| 917 | !-- The Richardson number (rib) is defined depending on the choice of |
---|
| 918 | !-- boundary conditions for temperature |
---|
| 919 | IF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 920 | DO li = 0, num_steps-1 |
---|
| 921 | ol_tab(li) = - z_mo / zeta_tmp(num_steps-1-li) |
---|
| 922 | rib_tab(li) = z_mo / ol_tab(li) / ( LOG( z_mo / z0_min ) & |
---|
| 923 | - psi_m( z_mo / ol_tab(li) ) & |
---|
| 924 | + psi_m( z0_min / ol_tab(li) ) & |
---|
[1691] | 925 | )**3 |
---|
| 926 | ENDDO |
---|
| 927 | ELSE |
---|
[2232] | 928 | DO li = 0, num_steps-1 |
---|
| 929 | ol_tab(li) = - z_mo / zeta_tmp(num_steps-1-li) |
---|
| 930 | rib_tab(li) = z_mo / ol_tab(li) * ( LOG( z_mo / z0h_min ) & |
---|
| 931 | - psi_h( z_mo / ol_tab(li) ) & |
---|
| 932 | + psi_h( z0h_min / ol_tab(li) ) & |
---|
[1691] | 933 | ) & |
---|
| 934 | / ( LOG( z_mo / z0_min ) & |
---|
[2232] | 935 | - psi_m( z_mo / ol_tab(li) ) & |
---|
| 936 | + psi_m( z0_min / ol_tab(li) ) & |
---|
[1691] | 937 | )**2 |
---|
| 938 | ENDDO |
---|
| 939 | ENDIF |
---|
| 940 | |
---|
| 941 | ! |
---|
| 942 | !-- Determine minimum values of rib in the lookup table. Set upper limit |
---|
| 943 | !-- to critical Richardson number (0.25) |
---|
| 944 | rib_min = MINVAL(rib_tab) |
---|
| 945 | rib_max = 0.25 !MAXVAL(rib_tab) |
---|
| 946 | |
---|
| 947 | DEALLOCATE( zeta_tmp ) |
---|
| 948 | ENDIF |
---|
| 949 | |
---|
| 950 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 951 | |
---|
| 952 | |
---|
| 953 | !------------------------------------------------------------------------------! |
---|
| 954 | ! Description: |
---|
| 955 | ! ------------ |
---|
[1709] | 956 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
[2232] | 957 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
[1691] | 958 | !------------------------------------------------------------------------------! |
---|
[2232] | 959 | SUBROUTINE calc_uvw_abs |
---|
[3157] | 960 | |
---|
[1691] | 961 | IMPLICIT NONE |
---|
| 962 | |
---|
[2232] | 963 | INTEGER(iwp) :: i !< running index x direction |
---|
| 964 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 965 | INTEGER(iwp) :: j !< running index y direction |
---|
| 966 | INTEGER(iwp) :: k !< running index z direction |
---|
| 967 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1691] | 968 | |
---|
[3157] | 969 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
[2232] | 970 | ! |
---|
| 971 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 972 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 973 | |
---|
[2232] | 974 | DO m = 1, surf%ns |
---|
[1691] | 975 | |
---|
[2232] | 976 | i = surf%i(m) |
---|
| 977 | j = surf%j(m) |
---|
| 978 | k = surf%k(m) |
---|
[3157] | 979 | |
---|
[1691] | 980 | ! |
---|
[3157] | 981 | !-- Calculate free convection velocity scale w_lfc is |
---|
| 982 | !-- use_free_convection_scaling = .T.. This will maintain a horizontal |
---|
| 983 | !-- velocity even for very weak wind convective conditions. SIGN is used |
---|
| 984 | !-- to set w_lfc to zero under stable conditions. |
---|
| 985 | IF ( use_free_convection_scaling ) THEN |
---|
| 986 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
| 987 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
| 988 | ELSE |
---|
| 989 | w_lfc = 0.0_wp |
---|
| 990 | ENDIF |
---|
| 991 | |
---|
| 992 | ! |
---|
[2232] | 993 | !-- Compute the absolute value of the horizontal velocity. |
---|
| 994 | !-- (relative to the surface in case the lower surface is the ocean). |
---|
| 995 | !-- Please note, in new surface modelling concept the index values changed, |
---|
| 996 | !-- i.e. the reference grid point is not the surface-grid point itself but |
---|
| 997 | !-- the first grid point outside of the topography. |
---|
| 998 | !-- Note, in case of coupled ocean-atmosphere simulations relative velocity |
---|
| 999 | !-- with respect to the ocean surface is used, hence, (k-1,j,i) values |
---|
| 1000 | !-- are used to calculate the absolute velocity. |
---|
| 1001 | !-- However, this do not apply for downward-facing walls. To mask this, |
---|
| 1002 | !-- use ibit, which checks for upward/downward-facing surfaces. |
---|
| 1003 | surf%uvw_abs(m) = SQRT( & |
---|
| 1004 | ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) & |
---|
| 1005 | - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 1006 | ) * ibit & |
---|
| 1007 | ) & |
---|
| 1008 | )**2 + & |
---|
| 1009 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) & |
---|
| 1010 | - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 1011 | ) * ibit & |
---|
| 1012 | ) & |
---|
[3157] | 1013 | )**2 + w_lfc**2 & |
---|
[2232] | 1014 | ) |
---|
| 1015 | |
---|
[3148] | 1016 | |
---|
| 1017 | |
---|
[1691] | 1018 | ENDDO |
---|
| 1019 | |
---|
[2232] | 1020 | END SUBROUTINE calc_uvw_abs |
---|
| 1021 | |
---|
| 1022 | |
---|
| 1023 | !------------------------------------------------------------------------------! |
---|
| 1024 | ! Description: |
---|
| 1025 | ! ------------ |
---|
| 1026 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 1027 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 1028 | !------------------------------------------------------------------------------! |
---|
| 1029 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 1030 | |
---|
| 1031 | IMPLICIT NONE |
---|
| 1032 | |
---|
| 1033 | INTEGER(iwp) :: i !< running index x direction |
---|
| 1034 | INTEGER(iwp) :: j !< running index y direction |
---|
| 1035 | INTEGER(iwp) :: k !< running index z direction |
---|
| 1036 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 1037 | |
---|
| 1038 | REAL(wp) :: u_i |
---|
| 1039 | REAL(wp) :: w_i |
---|
| 1040 | |
---|
| 1041 | |
---|
| 1042 | DO m = 1, surf%ns |
---|
| 1043 | i = surf%i(m) |
---|
| 1044 | j = surf%j(m) |
---|
| 1045 | k = surf%k(m) |
---|
[1691] | 1046 | ! |
---|
[2232] | 1047 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 1048 | u_i = u(k,j,i) |
---|
| 1049 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + & |
---|
| 1050 | w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 1051 | |
---|
[2232] | 1052 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
[1709] | 1053 | |
---|
[2232] | 1054 | ENDDO |
---|
[1709] | 1055 | |
---|
[2232] | 1056 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 1057 | |
---|
[1709] | 1058 | !------------------------------------------------------------------------------! |
---|
| 1059 | ! Description: |
---|
| 1060 | ! ------------ |
---|
[2232] | 1061 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 1062 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 1063 | !------------------------------------------------------------------------------! |
---|
| 1064 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 1065 | |
---|
| 1066 | IMPLICIT NONE |
---|
| 1067 | |
---|
| 1068 | INTEGER(iwp) :: i !< running index x direction |
---|
| 1069 | INTEGER(iwp) :: j !< running index y direction |
---|
| 1070 | INTEGER(iwp) :: k !< running index z direction |
---|
| 1071 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 1072 | |
---|
| 1073 | REAL(wp) :: v_i |
---|
| 1074 | REAL(wp) :: w_i |
---|
| 1075 | |
---|
| 1076 | |
---|
| 1077 | DO m = 1, surf%ns |
---|
| 1078 | i = surf%i(m) |
---|
| 1079 | j = surf%j(m) |
---|
| 1080 | k = surf%k(m) |
---|
| 1081 | |
---|
| 1082 | v_i = u(k,j,i) |
---|
| 1083 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + & |
---|
| 1084 | w(k,j-1,i) + w(k,j,i) ) |
---|
| 1085 | |
---|
| 1086 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 1087 | |
---|
| 1088 | ENDDO |
---|
| 1089 | |
---|
| 1090 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 1091 | |
---|
| 1092 | !------------------------------------------------------------------------------! |
---|
| 1093 | ! Description: |
---|
| 1094 | ! ------------ |
---|
| 1095 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 1096 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 1097 | !------------------------------------------------------------------------------! |
---|
| 1098 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 1099 | |
---|
| 1100 | IMPLICIT NONE |
---|
| 1101 | |
---|
| 1102 | INTEGER(iwp) :: i !< running index x direction |
---|
| 1103 | INTEGER(iwp) :: j !< running index y direction |
---|
| 1104 | INTEGER(iwp) :: k !< running index z direction |
---|
| 1105 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 1106 | |
---|
| 1107 | REAL(wp) :: u_i |
---|
| 1108 | REAL(wp) :: v_i |
---|
| 1109 | REAL(wp) :: w_i |
---|
| 1110 | ! |
---|
| 1111 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 1112 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1113 | DO m = 1, surf%ns |
---|
| 1114 | i = surf%i(m) |
---|
| 1115 | j = surf%j(m) |
---|
| 1116 | k = surf%k(m) |
---|
| 1117 | |
---|
| 1118 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + & |
---|
| 1119 | u(k,j,i+1) + u(k,j,i) ) |
---|
| 1120 | v_i = 0.0_wp |
---|
| 1121 | w_i = w(k,j,i) |
---|
| 1122 | |
---|
| 1123 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1124 | ENDDO |
---|
| 1125 | ! |
---|
| 1126 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 1127 | ELSE |
---|
| 1128 | DO m = 1, surf%ns |
---|
| 1129 | i = surf%i(m) |
---|
| 1130 | j = surf%j(m) |
---|
| 1131 | k = surf%k(m) |
---|
| 1132 | |
---|
| 1133 | u_i = 0.0_wp |
---|
| 1134 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + & |
---|
| 1135 | v(k,j+1,i) + v(k,j,i) ) |
---|
| 1136 | w_i = w(k,j,i) |
---|
| 1137 | |
---|
| 1138 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1139 | ENDDO |
---|
| 1140 | ENDIF |
---|
| 1141 | |
---|
| 1142 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 1143 | |
---|
| 1144 | !------------------------------------------------------------------------------! |
---|
| 1145 | ! Description: |
---|
| 1146 | ! ------------ |
---|
| 1147 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 1148 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 1149 | !------------------------------------------------------------------------------! |
---|
| 1150 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 1151 | |
---|
| 1152 | IMPLICIT NONE |
---|
| 1153 | |
---|
| 1154 | INTEGER(iwp) :: i !< running index x direction |
---|
| 1155 | INTEGER(iwp) :: j !< running index y direction |
---|
| 1156 | INTEGER(iwp) :: k !< running index z direction |
---|
| 1157 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 1158 | |
---|
| 1159 | REAL(wp) :: u_i |
---|
| 1160 | REAL(wp) :: v_i |
---|
| 1161 | REAL(wp) :: w_i |
---|
| 1162 | |
---|
| 1163 | ! |
---|
| 1164 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 1165 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1166 | DO m = 1, surf%ns |
---|
| 1167 | i = surf%i(m) |
---|
| 1168 | j = surf%j(m) |
---|
| 1169 | k = surf%k(m) |
---|
| 1170 | |
---|
| 1171 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1172 | v_i = 0.0_wp |
---|
| 1173 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1174 | |
---|
| 1175 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1176 | ENDDO |
---|
| 1177 | ! |
---|
| 1178 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 1179 | ELSE |
---|
| 1180 | DO m = 1, surf%ns |
---|
| 1181 | i = surf%i(m) |
---|
| 1182 | j = surf%j(m) |
---|
| 1183 | k = surf%k(m) |
---|
| 1184 | |
---|
| 1185 | u_i = 0.0_wp |
---|
| 1186 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1187 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1188 | |
---|
| 1189 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1190 | ENDDO |
---|
| 1191 | ENDIF |
---|
| 1192 | |
---|
| 1193 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 1194 | |
---|
| 1195 | |
---|
| 1196 | !------------------------------------------------------------------------------! |
---|
| 1197 | ! Description: |
---|
| 1198 | ! ------------ |
---|
[1709] | 1199 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
| 1200 | !------------------------------------------------------------------------------! |
---|
| 1201 | SUBROUTINE calc_ol |
---|
| 1202 | |
---|
| 1203 | IMPLICIT NONE |
---|
| 1204 | |
---|
[2232] | 1205 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 1206 | INTEGER(iwp) :: li !< look index |
---|
| 1207 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 1208 | |
---|
| 1209 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 1210 | f_d_ol, & !< Derivative of f |
---|
| 1211 | ol_l, & !< Lower bound of L for Newton iteration |
---|
| 1212 | ol_m, & !< Previous value of L for Newton iteration |
---|
| 1213 | ol_old, & !< Previous time step value of L |
---|
| 1214 | ol_u !< Upper bound of L for Newton iteration |
---|
| 1215 | |
---|
[1691] | 1216 | IF ( TRIM( most_method ) /= 'circular' ) THEN |
---|
[2232] | 1217 | ! |
---|
| 1218 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
| 1219 | !-- definition based on setting of boundary conditions |
---|
| 1220 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 1221 | IF ( humidity ) THEN |
---|
[3146] | 1222 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1223 | DO m = 1, surf%ns |
---|
[1691] | 1224 | |
---|
[2232] | 1225 | z_mo = surf%z_mo(m) |
---|
| 1226 | |
---|
[3146] | 1227 | surf%rib(m) = g * z_mo & |
---|
| 1228 | * ( surf%vpt1(m) - surf%vpt_surface(m) ) & |
---|
| 1229 | / ( surf%uvw_abs(m)**2 * surf%vpt1(m) & |
---|
| 1230 | + 1.0E-20_wp ) |
---|
[2232] | 1231 | ENDDO |
---|
| 1232 | ELSE |
---|
[3146] | 1233 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1234 | DO m = 1, surf%ns |
---|
| 1235 | |
---|
| 1236 | z_mo = surf%z_mo(m) |
---|
| 1237 | |
---|
[3146] | 1238 | surf%rib(m) = g * z_mo & |
---|
| 1239 | * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 1240 | / ( surf%uvw_abs(m)**2 * surf%pt1(m) & |
---|
| 1241 | + 1.0E-20_wp ) |
---|
[2232] | 1242 | ENDDO |
---|
| 1243 | ENDIF |
---|
| 1244 | ELSE |
---|
| 1245 | IF ( humidity ) THEN |
---|
[3146] | 1246 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
[2232] | 1247 | DO m = 1, surf%ns |
---|
| 1248 | |
---|
| 1249 | k = surf%k(m) |
---|
| 1250 | |
---|
| 1251 | z_mo = surf%z_mo(m) |
---|
| 1252 | |
---|
| 1253 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
[3146] | 1254 | * surf%qv1(m) ) * surf%shf(m) + 0.61_wp & |
---|
| 1255 | * surf%pt1(m) * surf%qsws(m) ) * & |
---|
[2232] | 1256 | drho_air_zw(k-1) / & |
---|
[3146] | 1257 | ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
[1709] | 1258 | + 1.0E-20_wp ) |
---|
[2232] | 1259 | ENDDO |
---|
| 1260 | ELSE |
---|
[3146] | 1261 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
[2232] | 1262 | DO m = 1, surf%ns |
---|
[1691] | 1263 | |
---|
[2232] | 1264 | k = surf%k(m) |
---|
| 1265 | |
---|
| 1266 | z_mo = surf%z_mo(m) |
---|
| 1267 | |
---|
| 1268 | surf%rib(m) = - g * z_mo * surf%shf(m) * & |
---|
| 1269 | drho_air_zw(k-1) / & |
---|
[3146] | 1270 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 & |
---|
[2232] | 1271 | + 1.0E-20_wp ) |
---|
| 1272 | ENDDO |
---|
| 1273 | ENDIF |
---|
| 1274 | ENDIF |
---|
| 1275 | |
---|
[1691] | 1276 | ENDIF |
---|
| 1277 | |
---|
[2232] | 1278 | |
---|
[1691] | 1279 | ! |
---|
| 1280 | !-- Calculate the Obukhov length either using a Newton iteration |
---|
| 1281 | !-- method, via a lookup table, or using the old circular way |
---|
| 1282 | IF ( TRIM( most_method ) == 'newton' ) THEN |
---|
| 1283 | |
---|
[2232] | 1284 | DO m = 1, surf%ns |
---|
[1691] | 1285 | |
---|
[2232] | 1286 | i = surf%i(m) |
---|
| 1287 | j = surf%j(m) |
---|
[1691] | 1288 | |
---|
[2232] | 1289 | z_mo = surf%z_mo(m) |
---|
| 1290 | |
---|
[1691] | 1291 | ! |
---|
[2232] | 1292 | !-- Store current value in case the Newton iteration fails |
---|
| 1293 | ol_old = surf%ol(m) |
---|
[1691] | 1294 | |
---|
| 1295 | ! |
---|
[2232] | 1296 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1297 | !-- length have the same sign |
---|
| 1298 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. & |
---|
| 1299 | ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1300 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1301 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1302 | ENDIF |
---|
[1691] | 1303 | ! |
---|
[2232] | 1304 | !-- Iteration to find Obukhov length |
---|
| 1305 | iter = 0 |
---|
| 1306 | DO |
---|
| 1307 | iter = iter + 1 |
---|
[1691] | 1308 | ! |
---|
[2232] | 1309 | !-- In case of divergence, use the value of the previous time step |
---|
| 1310 | IF ( iter > 1000 ) THEN |
---|
| 1311 | surf%ol(m) = ol_old |
---|
| 1312 | EXIT |
---|
| 1313 | ENDIF |
---|
[1691] | 1314 | |
---|
[2232] | 1315 | ol_m = surf%ol(m) |
---|
| 1316 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1317 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[1691] | 1318 | |
---|
| 1319 | |
---|
[2232] | 1320 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1321 | ! |
---|
[2232] | 1322 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 1323 | f = surf%rib(m) - ( z_mo / ol_m ) * ( & |
---|
| 1324 | LOG( z_mo / surf%z0h(m) ) & |
---|
| 1325 | - psi_h( z_mo / ol_m ) & |
---|
| 1326 | + psi_h( surf%z0h(m) / & |
---|
| 1327 | ol_m ) & |
---|
| 1328 | ) & |
---|
| 1329 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1330 | - psi_m( z_mo / ol_m ) & |
---|
| 1331 | + psi_m( surf%z0(m) / & |
---|
| 1332 | ol_m ) & |
---|
| 1333 | )**2 |
---|
[1691] | 1334 | |
---|
| 1335 | ! |
---|
[2232] | 1336 | !-- Calculate df/dL |
---|
| 1337 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / & |
---|
| 1338 | surf%z0h(m) ) & |
---|
| 1339 | - psi_h( z_mo / ol_u ) & |
---|
| 1340 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1341 | ) & |
---|
| 1342 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1343 | - psi_m( z_mo / ol_u ) & |
---|
| 1344 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1345 | )**2 & |
---|
| 1346 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1347 | - psi_h( z_mo / ol_l ) & |
---|
| 1348 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1349 | ) & |
---|
| 1350 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1351 | - psi_m( z_mo / ol_l ) & |
---|
| 1352 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1353 | )**2 & |
---|
| 1354 | ) / ( ol_u - ol_l ) |
---|
| 1355 | ELSE |
---|
[1691] | 1356 | ! |
---|
[2232] | 1357 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1358 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
| 1359 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1360 | - psi_m( z_mo / ol_m ) & |
---|
| 1361 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1362 | )**3 |
---|
[1691] | 1363 | |
---|
| 1364 | ! |
---|
[2232] | 1365 | !-- Calculate df/dL |
---|
| 1366 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / & |
---|
| 1367 | surf%z0(m) ) & |
---|
| 1368 | - psi_m( z_mo / ol_u ) & |
---|
| 1369 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1370 | )**3 & |
---|
| 1371 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1372 | - psi_m( z_mo / ol_l ) & |
---|
| 1373 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1374 | )**3 & |
---|
| 1375 | ) / ( ol_u - ol_l ) |
---|
| 1376 | ENDIF |
---|
[1691] | 1377 | ! |
---|
[2232] | 1378 | !-- Calculate new L |
---|
| 1379 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1380 | |
---|
| 1381 | ! |
---|
[2232] | 1382 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1383 | !-- length have the same sign and ensure convergence. |
---|
| 1384 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[1691] | 1385 | ! |
---|
[2232] | 1386 | !-- If unrealistic value occurs, set L to the maximum |
---|
| 1387 | !-- value that is allowed |
---|
| 1388 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1389 | surf%ol(m) = ol_max |
---|
| 1390 | EXIT |
---|
| 1391 | ENDIF |
---|
[1691] | 1392 | ! |
---|
[2232] | 1393 | !-- Check for convergence |
---|
| 1394 | IF ( ABS( ( surf%ol(m) - ol_m ) / & |
---|
| 1395 | surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1396 | EXIT |
---|
| 1397 | ELSE |
---|
| 1398 | CYCLE |
---|
| 1399 | ENDIF |
---|
[1691] | 1400 | |
---|
| 1401 | ENDDO |
---|
| 1402 | ENDDO |
---|
| 1403 | |
---|
| 1404 | ELSEIF ( TRIM( most_method ) == 'lookup' ) THEN |
---|
| 1405 | |
---|
[2281] | 1406 | !$OMP PARALLEL DO PRIVATE( i, j, z_mo, li ) FIRSTPRIVATE( li_bnd ) LASTPRIVATE( li_bnd ) |
---|
[2232] | 1407 | DO m = 1, surf%ns |
---|
[1691] | 1408 | |
---|
[2232] | 1409 | i = surf%i(m) |
---|
| 1410 | j = surf%j(m) |
---|
[1691] | 1411 | ! |
---|
[2232] | 1412 | !-- If the bulk Richardson number is outside the range of the lookup |
---|
| 1413 | !-- table, set it to the exceeding threshold value |
---|
| 1414 | IF ( surf%rib(m) < rib_min ) surf%rib(m) = rib_min |
---|
| 1415 | IF ( surf%rib(m) > rib_max ) surf%rib(m) = rib_max |
---|
[1691] | 1416 | |
---|
| 1417 | ! |
---|
[2232] | 1418 | !-- Find the correct index bounds for linear interpolation. As the |
---|
| 1419 | !-- Richardson number will not differ very much from time step to |
---|
| 1420 | !-- time step , use the index from the last step and search in the |
---|
| 1421 | !-- correct direction |
---|
| 1422 | li = li_bnd |
---|
[2321] | 1423 | IF ( rib_tab(li) - surf%rib(m) > 0.0_wp ) THEN |
---|
| 1424 | DO WHILE ( rib_tab(li-1) - surf%rib(m) > 0.0_wp .AND. li > 0 ) |
---|
[2232] | 1425 | li = li-1 |
---|
| 1426 | ENDDO |
---|
| 1427 | ELSE |
---|
| 1428 | DO WHILE ( rib_tab(li) - surf%rib(m) < 0.0_wp & |
---|
| 1429 | .AND. li < num_steps-1 ) |
---|
| 1430 | li = li+1 |
---|
| 1431 | ENDDO |
---|
| 1432 | ENDIF |
---|
| 1433 | li_bnd = li |
---|
[1691] | 1434 | |
---|
| 1435 | ! |
---|
[2232] | 1436 | !-- Linear interpolation to find the correct value of z/L |
---|
| 1437 | surf%ol(m) = ( ol_tab(li-1) + ( ol_tab(li) - ol_tab(li-1) ) & |
---|
| 1438 | / ( rib_tab(li) - rib_tab(li-1) ) & |
---|
| 1439 | * ( surf%rib(m) - rib_tab(li-1) ) ) |
---|
[1691] | 1440 | |
---|
| 1441 | ENDDO |
---|
| 1442 | |
---|
| 1443 | ELSEIF ( TRIM( most_method ) == 'circular' ) THEN |
---|
| 1444 | |
---|
[2232] | 1445 | IF ( .NOT. humidity ) THEN |
---|
[3146] | 1446 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1447 | DO m = 1, surf%ns |
---|
[1691] | 1448 | |
---|
[2232] | 1449 | z_mo = surf%z_mo(m) |
---|
[1691] | 1450 | |
---|
[3146] | 1451 | surf%ol(m) = ( surf%pt1(m) * surf%us(m)**2 ) / & |
---|
[2232] | 1452 | ( kappa * g * & |
---|
| 1453 | surf%ts(m) + 1E-30_wp ) |
---|
[1691] | 1454 | ! |
---|
| 1455 | !-- Limit the value range of the Obukhov length. |
---|
[2232] | 1456 | !-- This is necessary for very small velocities (u,v --> 1), because |
---|
[1691] | 1457 | !-- the absolute value of ol can then become very small, which in |
---|
| 1458 | !-- consequence would result in very large shear stresses and very |
---|
| 1459 | !-- small momentum fluxes (both are generally unrealistic). |
---|
[2232] | 1460 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) < zeta_min ) & |
---|
| 1461 | surf%ol(m) = z_mo / zeta_min |
---|
| 1462 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) > zeta_max ) & |
---|
| 1463 | surf%ol(m) = z_mo / zeta_max |
---|
| 1464 | |
---|
[1691] | 1465 | ENDDO |
---|
[2547] | 1466 | ELSEIF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
[2232] | 1467 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1468 | DO m = 1, surf%ns |
---|
[1691] | 1469 | |
---|
[2232] | 1470 | i = surf%i(m) |
---|
| 1471 | j = surf%j(m) |
---|
| 1472 | k = surf%k(m) |
---|
[1691] | 1473 | |
---|
[2232] | 1474 | z_mo = surf%z_mo(m) |
---|
| 1475 | |
---|
| 1476 | |
---|
[3146] | 1477 | surf%ol(m) = ( surf%vpt1(m) * surf%us(m)**2 ) / & |
---|
[2232] | 1478 | ( kappa * g * ( surf%ts(m) + & |
---|
| 1479 | 0.61_wp * surf%pt1(m) * surf%us(m) & |
---|
| 1480 | + 0.61_wp * surf%qv1(m) * surf%ts(m) - & |
---|
| 1481 | surf%ts(m) * ql(k,j,i) ) + 1E-30_wp ) |
---|
[1691] | 1482 | ! |
---|
[2232] | 1483 | !-- Limit the value range of the Obukhov length. |
---|
| 1484 | !-- This is necessary for very small velocities (u,v --> 1), because |
---|
| 1485 | !-- the absolute value of ol can then become very small, which in |
---|
| 1486 | !-- consequence would result in very large shear stresses and very |
---|
| 1487 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 1488 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) < zeta_min ) & |
---|
| 1489 | surf%ol(m) = z_mo / zeta_min |
---|
| 1490 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) > zeta_max ) & |
---|
| 1491 | surf%ol(m) = z_mo / zeta_max |
---|
[1691] | 1492 | |
---|
[2232] | 1493 | ENDDO |
---|
| 1494 | ELSE |
---|
| 1495 | |
---|
[3146] | 1496 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1497 | DO m = 1, surf%ns |
---|
| 1498 | |
---|
| 1499 | z_mo = surf%z_mo(m) |
---|
| 1500 | |
---|
[3146] | 1501 | surf%ol(m) = ( surf%vpt1(m) * surf%us(m)**2 ) / & |
---|
| 1502 | ( kappa * g * ( surf%ts(m) + 0.61_wp * surf%pt1(m) * & |
---|
| 1503 | surf%qs(m) + 0.61_wp * surf%qv1(m) * & |
---|
[2232] | 1504 | surf%ts(m) ) + 1E-30_wp ) |
---|
| 1505 | |
---|
| 1506 | ! |
---|
| 1507 | !-- Limit the value range of the Obukhov length. |
---|
| 1508 | !-- This is necessary for very small velocities (u,v --> 1), because |
---|
| 1509 | !-- the absolute value of ol can then become very small, which in |
---|
| 1510 | !-- consequence would result in very large shear stresses and very |
---|
| 1511 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 1512 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) < zeta_min ) & |
---|
| 1513 | surf%ol(m) = z_mo / zeta_min |
---|
| 1514 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) > zeta_max ) & |
---|
| 1515 | surf%ol(m) = z_mo / zeta_max |
---|
| 1516 | |
---|
| 1517 | ENDDO |
---|
| 1518 | |
---|
| 1519 | ENDIF |
---|
| 1520 | |
---|
| 1521 | ENDIF |
---|
| 1522 | |
---|
[1691] | 1523 | END SUBROUTINE calc_ol |
---|
| 1524 | |
---|
| 1525 | ! |
---|
| 1526 | !-- Calculate friction velocity u* |
---|
| 1527 | SUBROUTINE calc_us |
---|
| 1528 | |
---|
| 1529 | IMPLICIT NONE |
---|
| 1530 | |
---|
[2232] | 1531 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1532 | |
---|
[2232] | 1533 | ! |
---|
| 1534 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1535 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1536 | ! |
---|
| 1537 | !-- Compute u* at upward-facing surfaces |
---|
| 1538 | IF ( .NOT. downward ) THEN |
---|
[2281] | 1539 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1540 | DO m = 1, surf%ns |
---|
[1691] | 1541 | |
---|
[2232] | 1542 | z_mo = surf%z_mo(m) |
---|
[1691] | 1543 | ! |
---|
[2232] | 1544 | !-- Compute u* at the scalars' grid points |
---|
| 1545 | surf%us(m) = kappa * surf%uvw_abs(m) / & |
---|
| 1546 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1547 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1548 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1549 | |
---|
| 1550 | ENDDO |
---|
| 1551 | ! |
---|
| 1552 | !-- Compute u* at downward-facing surfaces. This case, do not consider |
---|
| 1553 | !-- any stability. |
---|
| 1554 | ELSE |
---|
[2281] | 1555 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1556 | DO m = 1, surf%ns |
---|
| 1557 | |
---|
| 1558 | z_mo = surf%z_mo(m) |
---|
| 1559 | ! |
---|
| 1560 | !-- Compute u* at the scalars' grid points |
---|
| 1561 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
| 1562 | |
---|
| 1563 | ENDDO |
---|
| 1564 | ENDIF |
---|
| 1565 | ! |
---|
| 1566 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1567 | !-- No stability is considered in this case. |
---|
| 1568 | ELSE |
---|
| 1569 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1570 | DO m = 1, surf%ns |
---|
| 1571 | z_mo = surf%z_mo(m) |
---|
| 1572 | |
---|
| 1573 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1574 | ENDDO |
---|
[2232] | 1575 | ENDIF |
---|
[1691] | 1576 | |
---|
| 1577 | END SUBROUTINE calc_us |
---|
| 1578 | |
---|
| 1579 | ! |
---|
[3146] | 1580 | !-- Calculate potential temperature, specific humidity, and virtual potential |
---|
| 1581 | !-- temperature at first grid level |
---|
[2232] | 1582 | !-- ( only for upward-facing surfs ) |
---|
[1691] | 1583 | SUBROUTINE calc_pt_q |
---|
| 1584 | |
---|
| 1585 | IMPLICIT NONE |
---|
| 1586 | |
---|
[2232] | 1587 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1588 | |
---|
| 1589 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1590 | DO m = 1, surf%ns |
---|
| 1591 | |
---|
| 1592 | i = surf%i(m) |
---|
| 1593 | j = surf%j(m) |
---|
| 1594 | k = surf%k(m) |
---|
| 1595 | |
---|
[2547] | 1596 | IF ( cloud_physics ) THEN |
---|
| 1597 | surf%pt1(m) = pt(k,j,i) + l_d_cp * pt_d_t(k) * ql(k,j,i) |
---|
| 1598 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1599 | ELSEIF( cloud_droplets ) THEN |
---|
| 1600 | surf%pt1(m) = pt(k,j,i) + l_d_cp * pt_d_t(k) * ql(k,j,i) |
---|
| 1601 | surf%qv1(m) = q(k,j,i) |
---|
[2696] | 1602 | ELSE |
---|
| 1603 | surf%pt1(m) = pt(k,j,i) |
---|
| 1604 | IF ( humidity ) THEN |
---|
| 1605 | surf%qv1(m) = q(k,j,i) |
---|
| 1606 | ELSE |
---|
| 1607 | surf%qv1(m) = 0.0_wp |
---|
| 1608 | ENDIF |
---|
[2547] | 1609 | ENDIF |
---|
[2232] | 1610 | |
---|
[3146] | 1611 | IF ( humidity ) THEN |
---|
| 1612 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1613 | ENDIF |
---|
| 1614 | |
---|
[1691] | 1615 | ENDDO |
---|
| 1616 | |
---|
| 1617 | END SUBROUTINE calc_pt_q |
---|
| 1618 | |
---|
[2696] | 1619 | |
---|
[1691] | 1620 | ! |
---|
[3152] | 1621 | !-- Set potential temperature at surface grid level. |
---|
[2696] | 1622 | !-- ( only for upward-facing surfs ) |
---|
| 1623 | SUBROUTINE calc_pt_surface |
---|
| 1624 | |
---|
| 1625 | IMPLICIT NONE |
---|
| 1626 | |
---|
[3146] | 1627 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
[2696] | 1628 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1629 | |
---|
[3146] | 1630 | k_off = surf%koff |
---|
[2696] | 1631 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1632 | DO m = 1, surf%ns |
---|
| 1633 | |
---|
| 1634 | i = surf%i(m) |
---|
| 1635 | j = surf%j(m) |
---|
| 1636 | k = surf%k(m) |
---|
| 1637 | |
---|
[3146] | 1638 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
[2696] | 1639 | |
---|
| 1640 | ENDDO |
---|
| 1641 | |
---|
| 1642 | END SUBROUTINE calc_pt_surface |
---|
| 1643 | |
---|
| 1644 | ! |
---|
[3152] | 1645 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
| 1646 | SUBROUTINE calc_q_surface |
---|
| 1647 | |
---|
| 1648 | IMPLICIT NONE |
---|
| 1649 | |
---|
| 1650 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1651 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1652 | |
---|
| 1653 | k_off = surf%koff |
---|
| 1654 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1655 | DO m = 1, surf%ns |
---|
| 1656 | |
---|
| 1657 | i = surf%i(m) |
---|
| 1658 | j = surf%j(m) |
---|
| 1659 | k = surf%k(m) |
---|
| 1660 | |
---|
| 1661 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
| 1662 | |
---|
| 1663 | ENDDO |
---|
| 1664 | |
---|
| 1665 | END SUBROUTINE calc_q_surface |
---|
| 1666 | |
---|
| 1667 | ! |
---|
| 1668 | !-- Set virtual potential temperature at surface grid level. |
---|
[3146] | 1669 | !-- ( only for upward-facing surfs ) |
---|
| 1670 | SUBROUTINE calc_vpt_surface |
---|
| 1671 | |
---|
| 1672 | IMPLICIT NONE |
---|
| 1673 | |
---|
| 1674 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
| 1675 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1676 | |
---|
| 1677 | k_off = surf%koff |
---|
| 1678 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1679 | DO m = 1, surf%ns |
---|
| 1680 | |
---|
| 1681 | i = surf%i(m) |
---|
| 1682 | j = surf%j(m) |
---|
| 1683 | k = surf%k(m) |
---|
| 1684 | |
---|
| 1685 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
| 1686 | |
---|
| 1687 | ENDDO |
---|
| 1688 | |
---|
| 1689 | END SUBROUTINE calc_vpt_surface |
---|
| 1690 | |
---|
| 1691 | ! |
---|
[2292] | 1692 | !-- Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
[1691] | 1693 | SUBROUTINE calc_scaling_parameters |
---|
| 1694 | |
---|
| 1695 | IMPLICIT NONE |
---|
| 1696 | |
---|
[2232] | 1697 | |
---|
| 1698 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[2696] | 1699 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1700 | ! |
---|
[2232] | 1701 | !-- Compute theta* at horizontal surfaces |
---|
| 1702 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1703 | ! |
---|
| 1704 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1705 | |
---|
| 1706 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1707 | DO m = 1, surf%ns |
---|
| 1708 | |
---|
| 1709 | i = surf%i(m) |
---|
| 1710 | j = surf%j(m) |
---|
| 1711 | k = surf%k(m) |
---|
| 1712 | |
---|
| 1713 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1714 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1715 | |
---|
[1691] | 1716 | ! |
---|
[2232] | 1717 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1718 | !-- of us=0 when computing ol further below |
---|
| 1719 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1720 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1721 | |
---|
[1691] | 1722 | ENDDO |
---|
| 1723 | |
---|
[2232] | 1724 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1725 | ! |
---|
| 1726 | !-- For a given surface temperature: |
---|
[1788] | 1727 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1728 | |
---|
| 1729 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1730 | DO m = 1, surf%ns |
---|
| 1731 | i = surf%i(m) |
---|
| 1732 | j = surf%j(m) |
---|
| 1733 | k = surf%k(m) |
---|
| 1734 | |
---|
| 1735 | pt(k-1,j,i) = pt_surface |
---|
[1691] | 1736 | ENDDO |
---|
| 1737 | ENDIF |
---|
| 1738 | |
---|
[2696] | 1739 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1740 | DO m = 1, surf%ns |
---|
[1691] | 1741 | |
---|
[2696] | 1742 | z_mo = surf%z_mo(m) |
---|
[1691] | 1743 | |
---|
[2696] | 1744 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
| 1745 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1746 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1747 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
[1691] | 1748 | |
---|
[2696] | 1749 | ENDDO |
---|
[2232] | 1750 | |
---|
| 1751 | ENDIF |
---|
| 1752 | ! |
---|
| 1753 | !-- Compute theta* at vertical surfaces. This is only required in case of |
---|
| 1754 | !-- land-surface model, in order to compute aerodynamical resistance. |
---|
| 1755 | IF ( surf_vertical ) THEN |
---|
[2281] | 1756 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1757 | DO m = 1, surf%ns |
---|
| 1758 | |
---|
| 1759 | i = surf%i(m) |
---|
| 1760 | j = surf%j(m) |
---|
| 1761 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1762 | ! |
---|
| 1763 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1764 | !-- of us=0 when computing ol further below |
---|
| 1765 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1766 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1767 | |
---|
[1691] | 1768 | ENDDO |
---|
| 1769 | ENDIF |
---|
| 1770 | |
---|
| 1771 | ! |
---|
[2232] | 1772 | !-- If required compute q* at horizontal surfaces |
---|
[1960] | 1773 | IF ( humidity ) THEN |
---|
[2232] | 1774 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1775 | ! |
---|
[1788] | 1776 | !-- For a given water flux in the surface layer |
---|
[2232] | 1777 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1778 | DO m = 1, surf%ns |
---|
| 1779 | |
---|
| 1780 | i = surf%i(m) |
---|
| 1781 | j = surf%j(m) |
---|
| 1782 | k = surf%k(m) |
---|
| 1783 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / & |
---|
| 1784 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1785 | |
---|
[1691] | 1786 | ENDDO |
---|
| 1787 | |
---|
[2232] | 1788 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1788] | 1789 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
[1691] | 1790 | run_coupled ) |
---|
| 1791 | |
---|
[1788] | 1792 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1793 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1794 | DO m = 1, surf%ns |
---|
| 1795 | |
---|
| 1796 | i = surf%i(m) |
---|
| 1797 | j = surf%j(m) |
---|
| 1798 | k = surf%k(m) |
---|
| 1799 | q(k-1,j,i) = q_surface |
---|
| 1800 | |
---|
[1691] | 1801 | ENDDO |
---|
| 1802 | ENDIF |
---|
| 1803 | |
---|
| 1804 | ! |
---|
[2232] | 1805 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 1806 | !-- in case of precursor runs) |
---|
| 1807 | IF ( coupled_run ) THEN |
---|
| 1808 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1809 | DO m = 1, surf%ns |
---|
| 1810 | i = surf%i(m) |
---|
| 1811 | j = surf%j(m) |
---|
| 1812 | k = surf%k(m) |
---|
| 1813 | e_s = 6.1_wp * & |
---|
| 1814 | EXP( 0.07_wp * ( MIN(pt(k-1,j,i),pt(k,j,i)) & |
---|
[1691] | 1815 | - 273.15_wp ) ) |
---|
[2232] | 1816 | q(k-1,j,i) = 0.622_wp * e_s / ( surface_pressure - e_s ) |
---|
| 1817 | ENDDO |
---|
| 1818 | ENDIF |
---|
[1691] | 1819 | |
---|
[2547] | 1820 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
[2232] | 1821 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1822 | DO m = 1, surf%ns |
---|
[1691] | 1823 | |
---|
[2232] | 1824 | i = surf%i(m) |
---|
| 1825 | j = surf%j(m) |
---|
| 1826 | k = surf%k(m) |
---|
| 1827 | |
---|
| 1828 | z_mo = surf%z_mo(m) |
---|
[1691] | 1829 | |
---|
[3152] | 1830 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
[2232] | 1831 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1832 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1833 | + psi_h( surf%z0q(m) / & |
---|
| 1834 | surf%ol(m) ) ) |
---|
[1691] | 1835 | ENDDO |
---|
[2232] | 1836 | ELSE |
---|
| 1837 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1838 | DO m = 1, surf%ns |
---|
| 1839 | |
---|
| 1840 | i = surf%i(m) |
---|
| 1841 | j = surf%j(m) |
---|
| 1842 | k = surf%k(m) |
---|
| 1843 | |
---|
| 1844 | z_mo = surf%z_mo(m) |
---|
| 1845 | |
---|
| 1846 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
| 1847 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1848 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1849 | + psi_h( surf%z0q(m) / & |
---|
| 1850 | surf%ol(m) ) ) |
---|
| 1851 | ENDDO |
---|
| 1852 | ENDIF |
---|
| 1853 | ENDIF |
---|
| 1854 | ! |
---|
| 1855 | !-- Compute q* at vertical surfaces |
---|
| 1856 | IF ( surf_vertical ) THEN |
---|
[2281] | 1857 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1858 | DO m = 1, surf%ns |
---|
| 1859 | |
---|
| 1860 | i = surf%i(m) |
---|
| 1861 | j = surf%j(m) |
---|
| 1862 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1863 | |
---|
[1691] | 1864 | ENDDO |
---|
| 1865 | ENDIF |
---|
| 1866 | ENDIF |
---|
[1960] | 1867 | |
---|
| 1868 | ! |
---|
| 1869 | !-- If required compute s* |
---|
| 1870 | IF ( passive_scalar ) THEN |
---|
| 1871 | ! |
---|
[2232] | 1872 | !-- At horizontal surfaces |
---|
| 1873 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1874 | ! |
---|
| 1875 | !-- For a given scalar flux in the surface layer |
---|
[2281] | 1876 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1877 | DO m = 1, surf%ns |
---|
| 1878 | i = surf%i(m) |
---|
| 1879 | j = surf%j(m) |
---|
| 1880 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1881 | ENDDO |
---|
| 1882 | ENDIF |
---|
[2232] | 1883 | ! |
---|
| 1884 | !-- At vertical surfaces |
---|
| 1885 | IF ( surf_vertical ) THEN |
---|
[2281] | 1886 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1887 | DO m = 1, surf%ns |
---|
| 1888 | i = surf%i(m) |
---|
| 1889 | j = surf%j(m) |
---|
| 1890 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1891 | ENDDO |
---|
| 1892 | ENDIF |
---|
[1960] | 1893 | ENDIF |
---|
[1691] | 1894 | |
---|
[2292] | 1895 | ! |
---|
[2696] | 1896 | !-- If required compute cs* (chemical species) |
---|
| 1897 | IF ( air_chemistry ) THEN |
---|
| 1898 | ! |
---|
| 1899 | !-- At horizontal surfaces |
---|
| 1900 | DO lsp = 1, nvar |
---|
| 1901 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
| 1902 | !-- For a given chemical species' flux in the surface layer |
---|
| 1903 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1904 | DO m = 1, surf%ns |
---|
| 1905 | i = surf%i(m) |
---|
| 1906 | j = surf%j(m) |
---|
| 1907 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1908 | ENDDO |
---|
| 1909 | ENDIF |
---|
| 1910 | ENDDO |
---|
| 1911 | ! |
---|
| 1912 | !-- At vertical surfaces |
---|
| 1913 | IF ( surf_vertical ) THEN |
---|
| 1914 | DO lsp = 1, nvar |
---|
| 1915 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 1916 | DO m = 1, surf%ns |
---|
| 1917 | i = surf%i(m) |
---|
| 1918 | j = surf%j(m) |
---|
| 1919 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1920 | ENDDO |
---|
| 1921 | ENDDO |
---|
| 1922 | ENDIF |
---|
| 1923 | ENDIF |
---|
| 1924 | |
---|
| 1925 | ! |
---|
[2292] | 1926 | !-- If required compute qc* and nc* |
---|
| 1927 | IF ( cloud_physics .AND. microphysics_morrison .AND. & |
---|
| 1928 | .NOT. surf_vertical ) THEN |
---|
| 1929 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1930 | DO m = 1, surf%ns |
---|
[1691] | 1931 | |
---|
[2292] | 1932 | i = surf%i(m) |
---|
| 1933 | j = surf%j(m) |
---|
| 1934 | k = surf%k(m) |
---|
| 1935 | |
---|
| 1936 | z_mo = surf%z_mo(m) |
---|
| 1937 | |
---|
| 1938 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
| 1939 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1940 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1941 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1942 | |
---|
| 1943 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
| 1944 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1945 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1946 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
| 1947 | ENDDO |
---|
| 1948 | |
---|
| 1949 | ENDIF |
---|
| 1950 | |
---|
[1691] | 1951 | ! |
---|
| 1952 | !-- If required compute qr* and nr* |
---|
[2232] | 1953 | IF ( cloud_physics .AND. microphysics_seifert .AND. & |
---|
| 1954 | .NOT. surf_vertical ) THEN |
---|
| 1955 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1956 | DO m = 1, surf%ns |
---|
[1691] | 1957 | |
---|
[2232] | 1958 | i = surf%i(m) |
---|
| 1959 | j = surf%j(m) |
---|
| 1960 | k = surf%k(m) |
---|
[1691] | 1961 | |
---|
[2232] | 1962 | z_mo = surf%z_mo(m) |
---|
[1691] | 1963 | |
---|
[2232] | 1964 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
| 1965 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1966 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1967 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1968 | |
---|
[2232] | 1969 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
| 1970 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1971 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1972 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1973 | ENDDO |
---|
| 1974 | |
---|
| 1975 | ENDIF |
---|
| 1976 | |
---|
| 1977 | END SUBROUTINE calc_scaling_parameters |
---|
| 1978 | |
---|
| 1979 | |
---|
| 1980 | |
---|
| 1981 | ! |
---|
[2292] | 1982 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
[1691] | 1983 | SUBROUTINE calc_surface_fluxes |
---|
| 1984 | |
---|
| 1985 | IMPLICIT NONE |
---|
| 1986 | |
---|
[2696] | 1987 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1988 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
[1691] | 1989 | |
---|
[2232] | 1990 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1991 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1992 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1993 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1994 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1995 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
[1691] | 1996 | |
---|
| 1997 | ! |
---|
[2232] | 1998 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1999 | IF ( .NOT. surf_vertical ) THEN |
---|
| 2000 | ! |
---|
| 2001 | !-- Compute u'w' for the total model domain at upward-facing surfaces. |
---|
| 2002 | !-- First compute the corresponding component of u* and square it. |
---|
| 2003 | IF ( .NOT. downward ) THEN |
---|
| 2004 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 2005 | DO m = 1, surf%ns |
---|
| 2006 | |
---|
| 2007 | i = surf%i(m) |
---|
| 2008 | j = surf%j(m) |
---|
| 2009 | k = surf%k(m) |
---|
[1691] | 2010 | |
---|
[2232] | 2011 | z_mo = surf%z_mo(m) |
---|
[1691] | 2012 | |
---|
[2232] | 2013 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
| 2014 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 2015 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 2016 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 2017 | ! |
---|
| 2018 | !-- Please note, the computation of usws is not fully accurate. Actually |
---|
| 2019 | !-- a further interpolation of us onto the u-grid, where usws is defined, |
---|
| 2020 | !-- is required. However, this is not done as this would require several |
---|
| 2021 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 2022 | !-- The impact of the missing interpolation is negligible as several |
---|
| 2023 | !-- tests had shown. |
---|
| 2024 | !-- Same also for ol. |
---|
| 2025 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 2026 | |
---|
[2232] | 2027 | ENDDO |
---|
[1691] | 2028 | ! |
---|
[2232] | 2029 | !-- At downward-facing surfaces |
---|
| 2030 | ELSE |
---|
| 2031 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 2032 | DO m = 1, surf%ns |
---|
| 2033 | |
---|
| 2034 | i = surf%i(m) |
---|
| 2035 | j = surf%j(m) |
---|
| 2036 | k = surf%k(m) |
---|
[1691] | 2037 | |
---|
[2232] | 2038 | z_mo = surf%z_mo(m) |
---|
| 2039 | |
---|
| 2040 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 2041 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
[1691] | 2042 | |
---|
[2232] | 2043 | ENDDO |
---|
| 2044 | ENDIF |
---|
[1691] | 2045 | |
---|
[2232] | 2046 | ! |
---|
| 2047 | !-- Compute v'w' for the total model domain. |
---|
| 2048 | !-- First compute the corresponding component of u* and square it. |
---|
| 2049 | !-- Upward-facing surfaces |
---|
| 2050 | IF ( .NOT. downward ) THEN |
---|
| 2051 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 2052 | DO m = 1, surf%ns |
---|
| 2053 | i = surf%i(m) |
---|
| 2054 | j = surf%j(m) |
---|
| 2055 | k = surf%k(m) |
---|
[1691] | 2056 | |
---|
[2232] | 2057 | z_mo = surf%z_mo(m) |
---|
[1691] | 2058 | |
---|
[2232] | 2059 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
| 2060 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 2061 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 2062 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 2063 | ! |
---|
[2232] | 2064 | !-- Please note, the computation of vsws is not fully accurate. Actually |
---|
| 2065 | !-- a further interpolation of us onto the v-grid, where vsws is defined, |
---|
| 2066 | !-- is required. However, this is not done as this would require several |
---|
| 2067 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 2068 | !-- The impact of the missing interpolation is negligible as several |
---|
| 2069 | !-- tests had shown. |
---|
| 2070 | !-- Same also for ol. |
---|
| 2071 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 2072 | ENDDO |
---|
| 2073 | ! |
---|
| 2074 | !-- Downward-facing surfaces |
---|
| 2075 | ELSE |
---|
| 2076 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 2077 | DO m = 1, surf%ns |
---|
| 2078 | i = surf%i(m) |
---|
| 2079 | j = surf%j(m) |
---|
| 2080 | k = surf%k(m) |
---|
[1691] | 2081 | |
---|
[2232] | 2082 | z_mo = surf%z_mo(m) |
---|
| 2083 | |
---|
| 2084 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 2085 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 2086 | ENDDO |
---|
| 2087 | ENDIF |
---|
[1691] | 2088 | ! |
---|
[2232] | 2089 | !-- Compute the vertical kinematic heat flux |
---|
[2299] | 2090 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point& |
---|
| 2091 | <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) .OR. & |
---|
[2696] | 2092 | .NOT. land_surface ) .AND. .NOT. urban_surface .AND. & |
---|
[2299] | 2093 | .NOT. downward ) THEN |
---|
[2232] | 2094 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2095 | DO m = 1, surf%ns |
---|
| 2096 | i = surf%i(m) |
---|
| 2097 | j = surf%j(m) |
---|
| 2098 | k = surf%k(m) |
---|
| 2099 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 2100 | ENDDO |
---|
[2232] | 2101 | ENDIF |
---|
| 2102 | ! |
---|
| 2103 | !-- Compute the vertical water flux |
---|
| 2104 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
[2299] | 2105 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. & |
---|
[2696] | 2106 | simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
| 2107 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
[2232] | 2108 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2109 | DO m = 1, surf%ns |
---|
| 2110 | i = surf%i(m) |
---|
| 2111 | j = surf%j(m) |
---|
| 2112 | k = surf%k(m) |
---|
| 2113 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 2114 | ENDDO |
---|
| 2115 | ENDIF |
---|
| 2116 | ! |
---|
| 2117 | !-- Compute the vertical scalar flux |
---|
| 2118 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. & |
---|
| 2119 | .NOT. downward ) THEN |
---|
[2281] | 2120 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 2121 | DO m = 1, surf%ns |
---|
[1691] | 2122 | |
---|
[2232] | 2123 | i = surf%i(m) |
---|
| 2124 | j = surf%j(m) |
---|
| 2125 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
[1691] | 2126 | |
---|
[2232] | 2127 | ENDDO |
---|
[2292] | 2128 | ENDIF |
---|
[1691] | 2129 | ! |
---|
[2696] | 2130 | !-- Compute the vertical chemical species' flux |
---|
| 2131 | DO lsp = 1, nvar |
---|
| 2132 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. & |
---|
| 2133 | .NOT. downward ) THEN |
---|
| 2134 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 2135 | DO m = 1, surf%ns |
---|
| 2136 | i = surf%i(m) |
---|
| 2137 | j = surf%j(m) |
---|
| 2138 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) |
---|
| 2139 | ENDDO |
---|
| 2140 | ENDIF |
---|
| 2141 | ENDDO |
---|
| 2142 | |
---|
| 2143 | ! |
---|
[2292] | 2144 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
| 2145 | IF ( cloud_physics .AND. microphysics_morrison .AND. & |
---|
| 2146 | .NOT. downward) THEN |
---|
| 2147 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
| 2148 | DO m = 1, surf%ns |
---|
| 2149 | |
---|
| 2150 | i = surf%i(m) |
---|
| 2151 | j = surf%j(m) |
---|
| 2152 | |
---|
| 2153 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) |
---|
| 2154 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) |
---|
| 2155 | ENDDO |
---|
| 2156 | ENDIF |
---|
| 2157 | ! |
---|
[2232] | 2158 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
[2292] | 2159 | IF ( cloud_physics .AND. microphysics_seifert .AND. & |
---|
[2232] | 2160 | .NOT. downward) THEN |
---|
[2281] | 2161 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 2162 | DO m = 1, surf%ns |
---|
| 2163 | |
---|
| 2164 | i = surf%i(m) |
---|
| 2165 | j = surf%j(m) |
---|
| 2166 | |
---|
| 2167 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
| 2168 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
[1691] | 2169 | ENDDO |
---|
[2232] | 2170 | ENDIF |
---|
[1691] | 2171 | |
---|
[1960] | 2172 | ! |
---|
[2232] | 2173 | !-- Bottom boundary condition for the TKE. |
---|
| 2174 | IF ( ibc_e_b == 2 ) THEN |
---|
| 2175 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2176 | DO m = 1, surf%ns |
---|
| 2177 | |
---|
| 2178 | i = surf%i(m) |
---|
| 2179 | j = surf%j(m) |
---|
| 2180 | k = surf%k(m) |
---|
| 2181 | |
---|
| 2182 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 2183 | ! |
---|
| 2184 | !-- As a test: cm = 0.4 |
---|
| 2185 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 2186 | e(k-1,j,i) = e(k,j,i) |
---|
| 2187 | |
---|
[1960] | 2188 | ENDDO |
---|
[2232] | 2189 | ENDIF |
---|
| 2190 | ! |
---|
| 2191 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
| 2192 | ELSE |
---|
| 2193 | ! |
---|
| 2194 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 2195 | IF ( mom_uv ) THEN |
---|
| 2196 | ! |
---|
| 2197 | !-- Generalize computation by introducing flags. At north- and south- |
---|
| 2198 | !-- facing surfaces u-component is used, at east- and west-facing |
---|
| 2199 | !-- surfaces v-component is used. |
---|
| 2200 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 2201 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
| 2202 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 2203 | DO m = 1, surf%ns |
---|
| 2204 | i = surf%i(m) |
---|
| 2205 | j = surf%j(m) |
---|
| 2206 | k = surf%k(m) |
---|
[1691] | 2207 | |
---|
[2232] | 2208 | z_mo = surf%z_mo(m) |
---|
[1960] | 2209 | |
---|
[2232] | 2210 | surf%mom_flux_uv(m) = kappa * & |
---|
| 2211 | ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
| 2212 | LOG( z_mo / surf%z0(m) ) |
---|
| 2213 | |
---|
| 2214 | surf%mom_flux_uv(m) = & |
---|
| 2215 | - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 2216 | ENDDO |
---|
| 2217 | ENDIF |
---|
[1691] | 2218 | ! |
---|
[2232] | 2219 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 2220 | IF ( mom_w ) THEN |
---|
| 2221 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 2222 | DO m = 1, surf%ns |
---|
| 2223 | i = surf%i(m) |
---|
| 2224 | j = surf%j(m) |
---|
| 2225 | k = surf%k(m) |
---|
| 2226 | |
---|
| 2227 | z_mo = surf%z_mo(m) |
---|
| 2228 | |
---|
| 2229 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 2230 | |
---|
| 2231 | surf%mom_flux_w(m) = & |
---|
| 2232 | - surf%mom_flux_w(m) * surf%us(m) |
---|
[1691] | 2233 | ENDDO |
---|
[2232] | 2234 | ENDIF |
---|
| 2235 | ! |
---|
| 2236 | !-- Compute momentum fluxes used for subgrid-scale TKE production at |
---|
| 2237 | !-- vertical surfaces. In constrast to the calculated momentum fluxes at |
---|
| 2238 | !-- vertical surfaces before, which are defined on the u/v/w-grid, |
---|
| 2239 | !-- respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 2240 | !-- |
---|
| 2241 | IF ( mom_tke ) THEN |
---|
| 2242 | ! |
---|
| 2243 | !-- Precalculate velocity components at scalar grid point. |
---|
| 2244 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 2245 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 2246 | ALLOCATE( w_i(1:surf%ns) ) |
---|
[1691] | 2247 | |
---|
[2232] | 2248 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 2249 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2250 | DO m = 1, surf%ns |
---|
| 2251 | i = surf%i(m) |
---|
| 2252 | j = surf%j(m) |
---|
| 2253 | k = surf%k(m) |
---|
| 2254 | |
---|
| 2255 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 2256 | v_i(m) = 0.0_wp |
---|
| 2257 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 2258 | ENDDO |
---|
| 2259 | ELSE |
---|
| 2260 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2261 | DO m = 1, surf%ns |
---|
| 2262 | i = surf%i(m) |
---|
| 2263 | j = surf%j(m) |
---|
| 2264 | k = surf%k(m) |
---|
| 2265 | |
---|
| 2266 | u_i(m) = 0.0_wp |
---|
| 2267 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 2268 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 2269 | ENDDO |
---|
| 2270 | ENDIF |
---|
| 2271 | |
---|
[2281] | 2272 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
[2232] | 2273 | DO m = 1, surf%ns |
---|
| 2274 | i = surf%i(m) |
---|
| 2275 | j = surf%j(m) |
---|
| 2276 | |
---|
| 2277 | z_mo = surf%z_mo(m) |
---|
| 2278 | |
---|
| 2279 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 2280 | ! |
---|
[2232] | 2281 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 2282 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 2283 | ! |
---|
[2232] | 2284 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 2285 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
| 2286 | |
---|
| 2287 | surf%mom_flux_tke(0:1,m) = & |
---|
| 2288 | - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
[1691] | 2289 | ENDDO |
---|
[2232] | 2290 | ! |
---|
| 2291 | !-- Deallocate temporary arrays |
---|
| 2292 | DEALLOCATE( u_i ) |
---|
| 2293 | DEALLOCATE( v_i ) |
---|
| 2294 | DEALLOCATE( w_i ) |
---|
| 2295 | ENDIF |
---|
[1691] | 2296 | ENDIF |
---|
| 2297 | |
---|
| 2298 | END SUBROUTINE calc_surface_fluxes |
---|
| 2299 | |
---|
| 2300 | |
---|
| 2301 | ! |
---|
| 2302 | !-- Integrated stability function for momentum |
---|
| 2303 | FUNCTION psi_m( zeta ) |
---|
| 2304 | |
---|
| 2305 | USE kinds |
---|
| 2306 | |
---|
| 2307 | IMPLICIT NONE |
---|
| 2308 | |
---|
| 2309 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 2310 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2311 | REAL(wp) :: x !< dummy variable |
---|
| 2312 | |
---|
| 2313 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2314 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2315 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2316 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2317 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2318 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2319 | |
---|
| 2320 | |
---|
| 2321 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 2322 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
[1691] | 2323 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2324 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2325 | ELSE |
---|
| 2326 | |
---|
| 2327 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
| 2328 | - bc_d_d |
---|
| 2329 | ! |
---|
| 2330 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2331 | !-- psi_m = - 5.0_wp * zeta |
---|
| 2332 | |
---|
| 2333 | ENDIF |
---|
| 2334 | |
---|
| 2335 | END FUNCTION psi_m |
---|
| 2336 | |
---|
| 2337 | |
---|
| 2338 | ! |
---|
| 2339 | !-- Integrated stability function for heat and moisture |
---|
| 2340 | FUNCTION psi_h( zeta ) |
---|
| 2341 | |
---|
| 2342 | USE kinds |
---|
| 2343 | |
---|
| 2344 | IMPLICIT NONE |
---|
| 2345 | |
---|
| 2346 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2347 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2348 | REAL(wp) :: x !< dummy variable |
---|
| 2349 | |
---|
| 2350 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2351 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2352 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2353 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2354 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2355 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2356 | |
---|
| 2357 | |
---|
| 2358 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 2359 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
[1691] | 2360 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2361 | ELSE |
---|
| 2362 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2363 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
| 2364 | + 1.0_wp |
---|
| 2365 | ! |
---|
| 2366 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2367 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2368 | ENDIF |
---|
| 2369 | |
---|
| 2370 | END FUNCTION psi_h |
---|
| 2371 | |
---|
[3130] | 2372 | |
---|
| 2373 | !------------------------------------------------------------------------------! |
---|
| 2374 | ! Description: |
---|
| 2375 | ! ------------ |
---|
| 2376 | !> Calculates stability function for momentum |
---|
| 2377 | !> |
---|
| 2378 | !> @author Hauke Wurps |
---|
| 2379 | !------------------------------------------------------------------------------! |
---|
| 2380 | FUNCTION phi_m( zeta ) |
---|
| 2381 | |
---|
| 2382 | IMPLICIT NONE |
---|
| 2383 | |
---|
| 2384 | REAL(wp) :: phi_m !< Value of the function |
---|
| 2385 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2386 | |
---|
| 2387 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
| 2388 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2389 | |
---|
| 2390 | IF ( zeta < 0.0_wp ) THEN |
---|
| 2391 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
| 2392 | ELSE |
---|
| 2393 | phi_m = 1.0_wp + c * zeta |
---|
| 2394 | ENDIF |
---|
| 2395 | |
---|
| 2396 | END FUNCTION phi_m |
---|
| 2397 | |
---|
[1697] | 2398 | END MODULE surface_layer_fluxes_mod |
---|