[1850] | 1 | !> @file surface_layer_fluxes_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1691] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1691] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[1691] | 18 | ! |
---|
[2000] | 19 | !------------------------------------------------------------------------------! |
---|
[1691] | 20 | ! Current revisions: |
---|
[1747] | 21 | ! ------------------ |
---|
[1758] | 22 | ! |
---|
[2233] | 23 | ! |
---|
[1692] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: surface_layer_fluxes_mod.f90 2281 2017-06-13 11:34:50Z witha $ |
---|
[2281] | 27 | ! Clean-up unnecessary index access to surface type |
---|
| 28 | ! |
---|
| 29 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
[1692] | 30 | ! |
---|
[2233] | 31 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 32 | ! Adjustments to new surface concept |
---|
| 33 | ! OpenMP bugfix |
---|
| 34 | ! |
---|
[2119] | 35 | ! 2118 2017-01-17 16:38:49Z raasch |
---|
| 36 | ! OpenACC directives and related code removed |
---|
| 37 | ! |
---|
[2092] | 38 | ! 2091 2016-12-21 16:38:18Z suehring |
---|
| 39 | ! Bugfix in calculation of vsws ( incorrect linear interpolation of us ) |
---|
| 40 | ! |
---|
[2077] | 41 | ! 2076 2016-12-02 13:54:20Z raasch |
---|
| 42 | ! further openmp bugfix for lookup method |
---|
| 43 | ! |
---|
[2074] | 44 | ! 2073 2016-11-30 14:34:05Z raasch |
---|
| 45 | ! openmp bugfix for lookup method |
---|
| 46 | ! |
---|
[2038] | 47 | ! 2037 2016-10-26 11:15:40Z knoop |
---|
| 48 | ! Anelastic approximation implemented |
---|
| 49 | ! |
---|
[2012] | 50 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
| 51 | ! Flag urban_surface is now defined in module control_parameters. |
---|
| 52 | ! |
---|
[2008] | 53 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
| 54 | ! Account for urban surface model in computation of vertical kinematic heatflux |
---|
| 55 | ! |
---|
[2001] | 56 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 57 | ! Forced header and separation lines into 80 columns |
---|
| 58 | ! |
---|
[1993] | 59 | ! 1992 2016-08-12 15:14:59Z suehring |
---|
| 60 | ! Minor bug, declaration of look-up index as INTEGER |
---|
| 61 | ! |
---|
[1961] | 62 | ! 1960 2016-07-12 16:34:24Z suehring |
---|
| 63 | ! Treat humidity and passive scalar separately |
---|
| 64 | ! |
---|
[1930] | 65 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
| 66 | ! Bugfix: avoid segmentation fault in case one grid point is horizontally |
---|
| 67 | ! completely surrounded by topography |
---|
| 68 | ! |
---|
[1921] | 69 | ! 1920 2016-05-30 10:50:15Z suehring |
---|
| 70 | ! Avoid segmentation fault (see change in 1915) by different initialization of |
---|
| 71 | ! us instead of adding a very small number in the denominator |
---|
| 72 | ! |
---|
[1916] | 73 | ! 1915 2016-05-27 11:05:02Z suehring |
---|
| 74 | ! Bugfix: avoid segmentation fault in case of most_method = 'circular' at first |
---|
| 75 | ! timestep |
---|
| 76 | ! |
---|
[1851] | 77 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 78 | ! Module renamed |
---|
| 79 | ! |
---|
| 80 | ! |
---|
[1823] | 81 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 82 | ! icloud_scheme replaced by microphysics_* |
---|
| 83 | ! |
---|
[1789] | 84 | ! 1788 2016-03-10 11:01:04Z maronga |
---|
| 85 | ! Added parameter z0q which replaces z0h in the similarity functions for |
---|
| 86 | ! humidity. |
---|
| 87 | ! Syntax layout improved. |
---|
| 88 | ! |
---|
[1758] | 89 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
| 90 | ! Minor fixes. |
---|
| 91 | ! |
---|
[1750] | 92 | ! 1749 2016-02-09 12:19:56Z raasch |
---|
| 93 | ! further OpenACC adjustments |
---|
| 94 | ! |
---|
[1748] | 95 | ! 1747 2016-02-08 12:25:53Z raasch |
---|
| 96 | ! adjustments for OpenACC usage |
---|
| 97 | ! |
---|
[1710] | 98 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 99 | ! Bugfix: division by zero could occur when calculating rib at low wind speeds |
---|
| 100 | ! Bugfix: calculation of uv_total for neutral = .T., initial value for ol for |
---|
| 101 | ! neutral = .T. |
---|
| 102 | ! |
---|
[1706] | 103 | ! 1705 2015-11-02 14:28:56Z maronga |
---|
| 104 | ! Typo removed |
---|
| 105 | ! |
---|
[1698] | 106 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 107 | ! FORTRAN and OpenMP errors removed |
---|
| 108 | ! |
---|
[1697] | 109 | ! 1696 2015-10-27 10:03:34Z maronga |
---|
[1691] | 110 | ! Modularized and completely re-written version of prandtl_fluxes.f90. In the |
---|
| 111 | ! course of the re-writing two additional methods have been implemented. See |
---|
| 112 | ! updated description. |
---|
| 113 | ! |
---|
| 114 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
| 115 | ! Removed land surface model part. The surface fluxes are now always calculated |
---|
| 116 | ! within prandtl_fluxes, based on the given surface temperature/humidity (which |
---|
| 117 | ! is either provided by the land surface model, by large scale forcing data, or |
---|
| 118 | ! directly prescribed by the user. |
---|
| 119 | ! |
---|
| 120 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 121 | ! Adapted for land surface model |
---|
| 122 | ! |
---|
| 123 | ! 1494 2014-11-21 17:14:03Z maronga |
---|
| 124 | ! Bugfixes: qs is now calculated before calculation of Rif. calculation of |
---|
| 125 | ! buoyancy flux in Rif corrected (added missing humidity term), allow use of |
---|
| 126 | ! topography for coupled runs (not tested) |
---|
| 127 | ! |
---|
| 128 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 129 | ! Bugfix: calculation of turbulent fluxes of rain water content (qrsws) and rain |
---|
| 130 | ! drop concentration (nrsws) added |
---|
| 131 | ! |
---|
| 132 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 133 | ! REAL constants defined as wp-kind |
---|
| 134 | ! |
---|
| 135 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 136 | ! ONLY-attribute added to USE-statements, |
---|
| 137 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 138 | ! kinds are defined in new module kinds, |
---|
| 139 | ! old module precision_kind is removed, |
---|
| 140 | ! revision history before 2012 removed, |
---|
| 141 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 142 | ! all variable declaration statements |
---|
| 143 | ! |
---|
| 144 | ! 1276 2014-01-15 13:40:41Z heinze |
---|
| 145 | ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars |
---|
| 146 | ! |
---|
| 147 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 148 | ! openACC "kernels do" replaced by "kernels loop", "loop independent" added |
---|
| 149 | ! |
---|
| 150 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 151 | ! code put under GPL (PALM 3.9) |
---|
| 152 | ! |
---|
| 153 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 154 | ! OpenACC statements added |
---|
| 155 | ! |
---|
| 156 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 157 | ! roughness length for scalar quantities z0h added |
---|
| 158 | ! |
---|
| 159 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 160 | ! Initial revision |
---|
| 161 | ! |
---|
| 162 | ! |
---|
| 163 | ! Description: |
---|
| 164 | ! ------------ |
---|
| 165 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
| 166 | !> values of the variables at grid point k=1. Three different methods are |
---|
| 167 | !> available: |
---|
| 168 | !> 1) the "old" version (most_method = 'circular') which is fast, but inaccurate |
---|
| 169 | !> 2) a Newton iteration method (most_method = 'newton'), which is accurate, but |
---|
| 170 | !> slower |
---|
| 171 | !> 3) a method using a lookup table which is fast and accurate. Note, however, |
---|
| 172 | !> that this method cannot be used in case of roughness heterogeneity |
---|
| 173 | !> |
---|
| 174 | !> @todo (re)move large_scale_forcing actions |
---|
[2118] | 175 | !> @todo check/optimize OpenMP directives |
---|
[1691] | 176 | !------------------------------------------------------------------------------! |
---|
| 177 | MODULE surface_layer_fluxes_mod |
---|
| 178 | |
---|
| 179 | USE arrays_3d, & |
---|
[2232] | 180 | ONLY: e, kh, nr, pt, q, ql, qr, s, u, v, vpt, w, zu, zw, drho_air_zw, & |
---|
| 181 | rho_air_zw |
---|
[1691] | 182 | |
---|
| 183 | USE cloud_parameters, & |
---|
| 184 | ONLY: l_d_cp, pt_d_t |
---|
| 185 | |
---|
| 186 | USE constants, & |
---|
| 187 | ONLY: pi |
---|
| 188 | |
---|
| 189 | USE cpulog |
---|
| 190 | |
---|
| 191 | USE control_parameters, & |
---|
[1960] | 192 | ONLY: cloud_physics, constant_heatflux, constant_scalarflux, & |
---|
| 193 | constant_waterflux, coupling_mode, g, humidity, ibc_e_b, & |
---|
| 194 | ibc_pt_b, initializing_actions, kappa, & |
---|
[2232] | 195 | intermediate_timestep_count, intermediate_timestep_count_max, & |
---|
| 196 | land_surface, large_scale_forcing, lsf_surf, & |
---|
[1822] | 197 | message_string, microphysics_seifert, most_method, neutral, & |
---|
| 198 | passive_scalar, pt_surface, q_surface, run_coupled, & |
---|
[2011] | 199 | surface_pressure, simulated_time, terminate_run, & |
---|
[2232] | 200 | urban_surface, zeta_max, zeta_min |
---|
[1691] | 201 | |
---|
[2232] | 202 | USE grid_variables, & |
---|
| 203 | ONLY: dx, dy |
---|
| 204 | |
---|
[1691] | 205 | USE indices, & |
---|
[2232] | 206 | ONLY: nxl, nxr, nys, nyn, nzb |
---|
[1691] | 207 | |
---|
| 208 | USE kinds |
---|
| 209 | |
---|
| 210 | USE pegrid |
---|
| 211 | |
---|
| 212 | USE land_surface_model_mod, & |
---|
[2232] | 213 | ONLY: aero_resist_kray, skip_time_do_lsm |
---|
[2011] | 214 | |
---|
[2232] | 215 | USE surface_mod, & |
---|
| 216 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_type, & |
---|
| 217 | surf_usm_h, surf_usm_v |
---|
[2007] | 218 | |
---|
[1691] | 219 | |
---|
| 220 | IMPLICIT NONE |
---|
| 221 | |
---|
[1992] | 222 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 223 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 224 | INTEGER(iwp) :: k !< loop index z direction |
---|
[2232] | 225 | INTEGER(iwp) :: l !< loop index for surf type |
---|
| 226 | INTEGER(iwp) :: li_bnd = 7500 !< Lookup table index of the last time step |
---|
[1691] | 227 | |
---|
[2232] | 228 | INTEGER(iwp), PARAMETER :: num_steps = 15000 !< number of steps in the lookup table |
---|
[1691] | 229 | |
---|
[2232] | 230 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 231 | LOGICAL :: downward = .FALSE.!< Flag indicating downward-facing horizontal surface |
---|
| 232 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
| 233 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
| 234 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
| 235 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
[1691] | 236 | |
---|
| 237 | REAL(wp), DIMENSION(0:num_steps-1) :: rib_tab, & !< Lookup table bulk Richardson number |
---|
| 238 | ol_tab !< Lookup table values of L |
---|
| 239 | |
---|
| 240 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
| 241 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
| 242 | rib_max, & !< Maximum Richardson number in lookup table |
---|
| 243 | rib_min, & !< Minimum Richardson number in lookup table |
---|
| 244 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
| 245 | |
---|
[2232] | 246 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
[1691] | 247 | |
---|
[2232] | 248 | |
---|
[1691] | 249 | SAVE |
---|
| 250 | |
---|
| 251 | PRIVATE |
---|
| 252 | |
---|
[2232] | 253 | PUBLIC init_surface_layer_fluxes, surface_layer_fluxes |
---|
[1691] | 254 | |
---|
| 255 | INTERFACE init_surface_layer_fluxes |
---|
| 256 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 257 | END INTERFACE init_surface_layer_fluxes |
---|
| 258 | |
---|
| 259 | INTERFACE surface_layer_fluxes |
---|
| 260 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 261 | END INTERFACE surface_layer_fluxes |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | CONTAINS |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | !------------------------------------------------------------------------------! |
---|
| 268 | ! Description: |
---|
| 269 | ! ------------ |
---|
| 270 | !> Main routine to compute the surface fluxes |
---|
| 271 | !------------------------------------------------------------------------------! |
---|
| 272 | SUBROUTINE surface_layer_fluxes |
---|
| 273 | |
---|
| 274 | IMPLICIT NONE |
---|
| 275 | |
---|
[2232] | 276 | surf_vertical = .FALSE. |
---|
| 277 | downward = .FALSE. |
---|
[1691] | 278 | ! |
---|
| 279 | !-- In case cloud physics is used, it is required to derive potential |
---|
| 280 | !-- temperature and specific humidity at first grid level from the fields pt |
---|
| 281 | !-- and q |
---|
| 282 | IF ( cloud_physics ) THEN |
---|
[2232] | 283 | ! |
---|
| 284 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, |
---|
| 285 | !-- l=1 - downward facing) |
---|
| 286 | DO l = 0, 1 |
---|
| 287 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
| 288 | surf => surf_def_h(l) |
---|
| 289 | CALL calc_pt_q |
---|
| 290 | ENDIF |
---|
| 291 | ENDDO |
---|
| 292 | ! |
---|
| 293 | !-- Call for natural-type surfaces |
---|
| 294 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 295 | surf => surf_lsm_h |
---|
| 296 | CALL calc_pt_q |
---|
| 297 | ENDIF |
---|
| 298 | ! |
---|
| 299 | !-- Call for urban-type surfaces |
---|
| 300 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 301 | surf => surf_usm_h |
---|
| 302 | CALL calc_pt_q |
---|
| 303 | ENDIF |
---|
[1691] | 304 | ENDIF |
---|
| 305 | |
---|
| 306 | ! |
---|
| 307 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
| 308 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
| 309 | !-- surface fluxes if required. The old routine ("circular") requires a |
---|
| 310 | !-- different order of calls as the scaling parameters from the previous time |
---|
| 311 | !-- steps are used to calculate the Obukhov length |
---|
| 312 | |
---|
| 313 | ! |
---|
| 314 | !-- Depending on setting of most_method use the "old" routine |
---|
[2232] | 315 | !-- Note, each routine is called for different surface types. |
---|
| 316 | !-- First call for default-type horizontal surfaces, for natural- and |
---|
| 317 | !-- urban-type surfaces. Note, at this place only upward-facing horizontal |
---|
| 318 | !-- surfaces are treted. |
---|
[1691] | 319 | IF ( most_method == 'circular' ) THEN |
---|
[2232] | 320 | ! |
---|
| 321 | !-- Default-type upward-facing horizontal surfaces |
---|
| 322 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 323 | surf => surf_def_h(0) |
---|
| 324 | CALL calc_scaling_parameters |
---|
| 325 | CALL calc_uvw_abs |
---|
| 326 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 327 | CALL calc_us |
---|
| 328 | CALL calc_surface_fluxes |
---|
[1691] | 329 | ENDIF |
---|
| 330 | ! |
---|
[2232] | 331 | !-- Natural-type horizontal surfaces |
---|
| 332 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 333 | surf => surf_lsm_h |
---|
| 334 | CALL calc_scaling_parameters |
---|
| 335 | CALL calc_uvw_abs |
---|
| 336 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 337 | CALL calc_us |
---|
| 338 | CALL calc_surface_fluxes |
---|
| 339 | ENDIF |
---|
| 340 | ! |
---|
| 341 | !-- Urban-type horizontal surfaces |
---|
| 342 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 343 | surf => surf_usm_h |
---|
| 344 | CALL calc_scaling_parameters |
---|
| 345 | CALL calc_uvw_abs |
---|
| 346 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 347 | CALL calc_us |
---|
| 348 | CALL calc_surface_fluxes |
---|
| 349 | ENDIF |
---|
| 350 | ! |
---|
[1691] | 351 | !-- Use either Newton iteration or a lookup table for the bulk Richardson |
---|
| 352 | !-- number to calculate the Obukhov length |
---|
[1788] | 353 | ELSEIF ( most_method == 'newton' .OR. most_method == 'lookup' ) THEN |
---|
[2232] | 354 | ! |
---|
| 355 | !-- Default-type upward-facing horizontal surfaces |
---|
| 356 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 357 | surf => surf_def_h(0) |
---|
| 358 | CALL calc_uvw_abs |
---|
| 359 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 360 | CALL calc_us |
---|
| 361 | CALL calc_scaling_parameters |
---|
| 362 | CALL calc_surface_fluxes |
---|
[1691] | 363 | ENDIF |
---|
[2232] | 364 | ! |
---|
| 365 | !-- Natural-type horizontal surfaces |
---|
| 366 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 367 | surf => surf_lsm_h |
---|
| 368 | CALL calc_uvw_abs |
---|
| 369 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 370 | CALL calc_us |
---|
| 371 | CALL calc_scaling_parameters |
---|
| 372 | CALL calc_surface_fluxes |
---|
| 373 | ENDIF |
---|
| 374 | ! |
---|
| 375 | !-- Urban-type horizontal surfaces |
---|
| 376 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 377 | surf => surf_usm_h |
---|
| 378 | CALL calc_uvw_abs |
---|
| 379 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 380 | CALL calc_us |
---|
| 381 | CALL calc_scaling_parameters |
---|
| 382 | CALL calc_surface_fluxes |
---|
| 383 | ENDIF |
---|
[1691] | 384 | |
---|
[2232] | 385 | ENDIF |
---|
| 386 | ! |
---|
| 387 | !-- Treat downward-facing horizontal surfaces. Note, so far, these are |
---|
| 388 | !-- always default type. Stratification is not considered |
---|
| 389 | !-- in this case, hence, no further distinction between different |
---|
| 390 | !-- most_method is required. |
---|
| 391 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
| 392 | downward = .TRUE. |
---|
| 393 | surf => surf_def_h(1) |
---|
| 394 | CALL calc_uvw_abs |
---|
[1691] | 395 | CALL calc_us |
---|
| 396 | CALL calc_surface_fluxes |
---|
[2232] | 397 | downward = .FALSE. |
---|
[1691] | 398 | ENDIF |
---|
[2232] | 399 | ! |
---|
| 400 | !-- Calculate surfaces fluxes at vertical surfaces for momentum |
---|
| 401 | !-- and subgrid-scale TKE. |
---|
| 402 | !-- No stability is considered. Therefore, scaling parameters and Obukhov- |
---|
| 403 | !-- length do not need to be calculated and no distinction in 'circular', |
---|
| 404 | !-- 'Newton' or 'lookup' is necessary so far. |
---|
| 405 | !-- Note, this will change if stability is once considered. |
---|
| 406 | surf_vertical = .TRUE. |
---|
| 407 | ! |
---|
| 408 | !-- Calculate horizontal momentum fluxes at north- and south-facing |
---|
| 409 | !-- surfaces(usvs). |
---|
| 410 | !-- For default-type surfaces |
---|
| 411 | mom_uv = .TRUE. |
---|
| 412 | DO l = 0, 1 |
---|
| 413 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 414 | surf => surf_def_v(l) |
---|
| 415 | ! |
---|
| 416 | !-- Compute surface-parallel velocity |
---|
| 417 | CALL calc_uvw_abs_v_ugrid |
---|
| 418 | ! |
---|
| 419 | !-- Compute respective friction velocity on staggered grid |
---|
| 420 | CALL calc_us |
---|
| 421 | ! |
---|
| 422 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 423 | CALL calc_surface_fluxes |
---|
| 424 | ENDIF |
---|
| 425 | ENDDO |
---|
| 426 | ! |
---|
| 427 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 428 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 429 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 430 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 431 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 432 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 433 | IF ( most_method == 'circular' ) THEN |
---|
| 434 | DO l = 0, 1 |
---|
| 435 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 436 | surf => surf_lsm_v(l) |
---|
| 437 | ! |
---|
| 438 | !-- Compute scaling parameters |
---|
| 439 | CALL calc_scaling_parameters |
---|
| 440 | ! |
---|
| 441 | !-- Compute surface-parallel velocity |
---|
| 442 | CALL calc_uvw_abs_v_ugrid |
---|
| 443 | ! |
---|
| 444 | !-- Compute Obukhov length |
---|
| 445 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 446 | ! |
---|
| 447 | !-- Compute respective friction velocity on staggered grid |
---|
| 448 | CALL calc_us |
---|
| 449 | ! |
---|
| 450 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 451 | CALL calc_surface_fluxes |
---|
| 452 | ENDIF |
---|
| 453 | ENDDO |
---|
| 454 | ELSE |
---|
| 455 | DO l = 0, 1 |
---|
| 456 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 457 | surf => surf_lsm_v(l) |
---|
| 458 | ! |
---|
| 459 | !-- Compute surface-parallel velocity |
---|
| 460 | CALL calc_uvw_abs_v_ugrid |
---|
| 461 | ! |
---|
| 462 | !-- Compute Obukhov length |
---|
| 463 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 464 | ! |
---|
| 465 | !-- Compute respective friction velocity on staggered grid |
---|
| 466 | CALL calc_us |
---|
| 467 | ! |
---|
| 468 | !-- Compute scaling parameters |
---|
| 469 | CALL calc_scaling_parameters |
---|
| 470 | ! |
---|
| 471 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 472 | CALL calc_surface_fluxes |
---|
| 473 | ENDIF |
---|
| 474 | ENDDO |
---|
| 475 | ENDIF |
---|
| 476 | ! |
---|
| 477 | !-- No ts is required, so scaling parameters and Obukhov length do not need |
---|
| 478 | !-- to be computed. |
---|
| 479 | ELSE |
---|
| 480 | DO l = 0, 1 |
---|
| 481 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 482 | surf => surf_lsm_v(l) |
---|
| 483 | ! |
---|
| 484 | !-- Compute surface-parallel velocity |
---|
| 485 | CALL calc_uvw_abs_v_ugrid |
---|
| 486 | ! |
---|
| 487 | !-- Compute respective friction velocity on staggered grid |
---|
| 488 | CALL calc_us |
---|
| 489 | ! |
---|
| 490 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 491 | CALL calc_surface_fluxes |
---|
| 492 | ENDIF |
---|
| 493 | ENDDO |
---|
| 494 | ENDIF |
---|
| 495 | ! |
---|
| 496 | !-- For urban-type surfaces |
---|
| 497 | DO l = 0, 1 |
---|
| 498 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 499 | surf => surf_usm_v(l) |
---|
| 500 | ! |
---|
| 501 | !-- Compute surface-parallel velocity |
---|
| 502 | CALL calc_uvw_abs_v_ugrid |
---|
| 503 | ! |
---|
| 504 | !-- Compute respective friction velocity on staggered grid |
---|
| 505 | CALL calc_us |
---|
| 506 | ! |
---|
| 507 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 508 | CALL calc_surface_fluxes |
---|
| 509 | ENDIF |
---|
| 510 | ENDDO |
---|
| 511 | ! |
---|
| 512 | !-- Calculate horizontal momentum fluxes at east- and west-facing |
---|
| 513 | !-- surfaces (vsus). |
---|
| 514 | !-- For default-type surfaces |
---|
| 515 | DO l = 2, 3 |
---|
| 516 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 517 | surf => surf_def_v(l) |
---|
| 518 | ! |
---|
| 519 | !-- Compute surface-parallel velocity |
---|
| 520 | CALL calc_uvw_abs_v_vgrid |
---|
| 521 | ! |
---|
| 522 | !-- Compute respective friction velocity on staggered grid |
---|
| 523 | CALL calc_us |
---|
| 524 | ! |
---|
| 525 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 526 | CALL calc_surface_fluxes |
---|
| 527 | ENDIF |
---|
| 528 | ENDDO |
---|
| 529 | ! |
---|
| 530 | !-- For natural-type surfaces. Please note, even though stability is not |
---|
| 531 | !-- considered for the calculation of momentum fluxes at vertical surfaces, |
---|
| 532 | !-- scaling parameters and Obukov length are calculated nevertheless in this |
---|
| 533 | !-- case. This is due to the requirement of ts in parameterization of heat |
---|
| 534 | !-- flux in land-surface model in case of aero_resist_kray is not true. |
---|
| 535 | IF ( .NOT. aero_resist_kray ) THEN |
---|
| 536 | IF ( most_method == 'circular' ) THEN |
---|
| 537 | DO l = 2, 3 |
---|
| 538 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 539 | surf => surf_lsm_v(l) |
---|
| 540 | ! |
---|
| 541 | !-- Compute scaling parameters |
---|
| 542 | CALL calc_scaling_parameters |
---|
| 543 | ! |
---|
| 544 | !-- Compute surface-parallel velocity |
---|
| 545 | CALL calc_uvw_abs_v_vgrid |
---|
| 546 | ! |
---|
| 547 | !-- Compute Obukhov length |
---|
| 548 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 549 | ! |
---|
| 550 | !-- Compute respective friction velocity on staggered grid |
---|
| 551 | CALL calc_us |
---|
| 552 | ! |
---|
| 553 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 554 | CALL calc_surface_fluxes |
---|
| 555 | ENDIF |
---|
| 556 | ENDDO |
---|
| 557 | ELSE |
---|
| 558 | DO l = 2, 3 |
---|
| 559 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 560 | surf => surf_lsm_v(l) |
---|
| 561 | ! |
---|
| 562 | !-- Compute surface-parallel velocity |
---|
| 563 | CALL calc_uvw_abs_v_vgrid |
---|
| 564 | ! |
---|
| 565 | !-- Compute Obukhov length |
---|
| 566 | IF ( .NOT. neutral ) CALL calc_ol |
---|
| 567 | ! |
---|
| 568 | !-- Compute respective friction velocity on staggered grid |
---|
| 569 | CALL calc_us |
---|
| 570 | ! |
---|
| 571 | !-- Compute scaling parameters |
---|
| 572 | CALL calc_scaling_parameters |
---|
| 573 | ! |
---|
| 574 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 575 | CALL calc_surface_fluxes |
---|
| 576 | ENDIF |
---|
| 577 | ENDDO |
---|
| 578 | ENDIF |
---|
| 579 | ELSE |
---|
| 580 | DO l = 2, 3 |
---|
| 581 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 582 | surf => surf_lsm_v(l) |
---|
| 583 | ! |
---|
| 584 | !-- Compute surface-parallel velocity |
---|
| 585 | CALL calc_uvw_abs_v_vgrid |
---|
| 586 | ! |
---|
| 587 | !-- Compute respective friction velocity on staggered grid |
---|
| 588 | CALL calc_us |
---|
| 589 | ! |
---|
| 590 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 591 | CALL calc_surface_fluxes |
---|
| 592 | ENDIF |
---|
| 593 | ENDDO |
---|
| 594 | ENDIF |
---|
| 595 | ! |
---|
| 596 | !-- For urban-type surfaces |
---|
| 597 | DO l = 2, 3 |
---|
| 598 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 599 | surf => surf_usm_v(l) |
---|
| 600 | ! |
---|
| 601 | !-- Compute surface-parallel velocity |
---|
| 602 | CALL calc_uvw_abs_v_vgrid |
---|
| 603 | ! |
---|
| 604 | !-- Compute respective friction velocity on staggered grid |
---|
| 605 | CALL calc_us |
---|
| 606 | ! |
---|
| 607 | !-- Compute respective surface fluxes for momentum and TKE |
---|
| 608 | CALL calc_surface_fluxes |
---|
| 609 | ENDIF |
---|
| 610 | ENDDO |
---|
| 611 | mom_uv = .FALSE. |
---|
| 612 | ! |
---|
| 613 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial |
---|
| 614 | !-- surfaces. |
---|
| 615 | mom_w = .TRUE. |
---|
| 616 | ! |
---|
| 617 | !-- Default-type surfaces |
---|
| 618 | DO l = 0, 3 |
---|
| 619 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 620 | surf => surf_def_v(l) |
---|
| 621 | CALL calc_uvw_abs_v_wgrid |
---|
| 622 | CALL calc_us |
---|
| 623 | CALL calc_surface_fluxes |
---|
| 624 | ENDIF |
---|
| 625 | ENDDO |
---|
| 626 | ! |
---|
| 627 | !-- Natural-type surfaces |
---|
| 628 | DO l = 0, 3 |
---|
| 629 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 630 | surf => surf_lsm_v(l) |
---|
| 631 | CALL calc_uvw_abs_v_wgrid |
---|
| 632 | CALL calc_us |
---|
| 633 | CALL calc_surface_fluxes |
---|
| 634 | ENDIF |
---|
| 635 | ENDDO |
---|
| 636 | ! |
---|
| 637 | !-- Urban-type surfaces |
---|
| 638 | DO l = 0, 3 |
---|
| 639 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 640 | surf => surf_usm_v(l) |
---|
| 641 | CALL calc_uvw_abs_v_wgrid |
---|
| 642 | CALL calc_us |
---|
| 643 | CALL calc_surface_fluxes |
---|
| 644 | ENDIF |
---|
| 645 | ENDDO |
---|
| 646 | mom_w = .FALSE. |
---|
| 647 | ! |
---|
| 648 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical |
---|
| 649 | !-- surfaces for TKE production. Note, here, momentum fluxes are defined |
---|
| 650 | !-- at grid center and are not staggered as before. |
---|
| 651 | mom_tke = .TRUE. |
---|
| 652 | ! |
---|
| 653 | !-- Default-type surfaces |
---|
| 654 | DO l = 0, 3 |
---|
| 655 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
| 656 | surf => surf_def_v(l) |
---|
| 657 | CALL calc_uvw_abs_v_sgrid |
---|
| 658 | CALL calc_us |
---|
| 659 | CALL calc_surface_fluxes |
---|
| 660 | ENDIF |
---|
| 661 | ENDDO |
---|
| 662 | ! |
---|
| 663 | !-- Natural-type surfaces |
---|
| 664 | DO l = 0, 3 |
---|
| 665 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
| 666 | surf => surf_lsm_v(l) |
---|
| 667 | CALL calc_uvw_abs_v_sgrid |
---|
| 668 | CALL calc_us |
---|
| 669 | CALL calc_surface_fluxes |
---|
| 670 | ENDIF |
---|
| 671 | ENDDO |
---|
| 672 | ! |
---|
| 673 | !-- Urban-type surfaces |
---|
| 674 | DO l = 0, 3 |
---|
| 675 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
| 676 | surf => surf_usm_v(l) |
---|
| 677 | CALL calc_uvw_abs_v_sgrid |
---|
| 678 | CALL calc_us |
---|
| 679 | CALL calc_surface_fluxes |
---|
| 680 | ENDIF |
---|
| 681 | ENDDO |
---|
| 682 | mom_tke = .FALSE. |
---|
| 683 | |
---|
[1691] | 684 | |
---|
| 685 | END SUBROUTINE surface_layer_fluxes |
---|
| 686 | |
---|
| 687 | |
---|
| 688 | !------------------------------------------------------------------------------! |
---|
| 689 | ! Description: |
---|
| 690 | ! ------------ |
---|
| 691 | !> Initializing actions for the surface layer routine. Basically, this involves |
---|
| 692 | !> the preparation of a lookup table for the the bulk Richardson number vs |
---|
| 693 | !> Obukhov length L when using the lookup table method. |
---|
| 694 | !------------------------------------------------------------------------------! |
---|
| 695 | SUBROUTINE init_surface_layer_fluxes |
---|
| 696 | |
---|
| 697 | IMPLICIT NONE |
---|
| 698 | |
---|
[2232] | 699 | INTEGER(iwp) :: li, & !< Index for loop to create lookup table |
---|
[1691] | 700 | num_steps_n !< Number of non-stretched zeta steps |
---|
| 701 | |
---|
| 702 | LOGICAL :: terminate_run_l = .FALSE. !< Flag to terminate run (global) |
---|
| 703 | |
---|
| 704 | REAL(wp), PARAMETER :: zeta_stretch = -10.0_wp !< Start of stretching in the free convection limit |
---|
| 705 | |
---|
| 706 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zeta_tmp |
---|
| 707 | |
---|
| 708 | |
---|
| 709 | REAL(wp) :: zeta_step, & !< Increment of zeta |
---|
| 710 | regr = 1.01_wp, & !< Stretching factor of zeta_step in the free convection limit |
---|
| 711 | regr_old = 1.0E9_wp, & !< Stretching factor of last iteration step |
---|
| 712 | z0h_min = 0.0_wp, & !< Minimum value of z0h to create table |
---|
| 713 | z0_min = 0.0_wp !< Minimum value of z0 to create table |
---|
| 714 | |
---|
| 715 | |
---|
[1709] | 716 | |
---|
[2232] | 717 | |
---|
[1709] | 718 | ! |
---|
| 719 | !-- In case of runs with neutral statification, set Obukhov length to a |
---|
| 720 | !-- large value |
---|
[2232] | 721 | IF ( neutral ) THEN |
---|
| 722 | IF ( surf_def_h(0)%ns >= 1 ) surf_def_h(0)%ol = 1.0E10_wp |
---|
| 723 | IF ( surf_lsm_h%ns >= 1 ) surf_lsm_h%ol = 1.0E10_wp |
---|
| 724 | IF ( surf_usm_h%ns >= 1 ) surf_usm_h%ol = 1.0E10_wp |
---|
| 725 | ENDIF |
---|
[1709] | 726 | |
---|
[1691] | 727 | IF ( most_method == 'lookup' ) THEN |
---|
| 728 | |
---|
| 729 | ! |
---|
| 730 | !-- Check for roughness heterogeneity. In that case terminate run and |
---|
[2232] | 731 | !-- inform user. Check for both, natural and non-natural walls. |
---|
| 732 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 733 | IF ( MINVAL( surf_def_h(0)%z0h ) /= MAXVAL( surf_def_h(0)%z0h ) .OR. & |
---|
| 734 | MINVAL( surf_def_h(0)%z0 ) /= MAXVAL( surf_def_h(0)%z0 ) ) THEN |
---|
| 735 | terminate_run_l = .TRUE. |
---|
| 736 | ENDIF |
---|
[1691] | 737 | ENDIF |
---|
[2232] | 738 | IF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 739 | IF ( MINVAL( surf_lsm_h%z0h ) /= MAXVAL( surf_lsm_h%z0h ) .OR. & |
---|
| 740 | MINVAL( surf_lsm_h%z0 ) /= MAXVAL( surf_lsm_h%z0 ) ) THEN |
---|
| 741 | terminate_run_l = .TRUE. |
---|
| 742 | ENDIF |
---|
| 743 | ENDIF |
---|
| 744 | IF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 745 | IF ( MINVAL( surf_usm_h%z0h ) /= MAXVAL( surf_usm_h%z0h ) .OR. & |
---|
| 746 | MINVAL( surf_usm_h%z0 ) /= MAXVAL( surf_usm_h%z0 ) ) THEN |
---|
| 747 | terminate_run_l = .TRUE. |
---|
| 748 | ENDIF |
---|
| 749 | ENDIF |
---|
| 750 | ! |
---|
| 751 | !-- Check roughness homogeneity between differt surface types. |
---|
| 752 | IF ( surf_lsm_h%ns >= 1 .AND. surf_def_h(0)%ns >= 1 ) THEN |
---|
| 753 | IF ( MINVAL( surf_lsm_h%z0h ) /= MAXVAL( surf_def_h(0)%z0h ) .OR. & |
---|
| 754 | MINVAL( surf_lsm_h%z0 ) /= MAXVAL( surf_def_h(0)%z0 ) ) THEN |
---|
| 755 | terminate_run_l = .TRUE. |
---|
| 756 | ENDIF |
---|
| 757 | ENDIF |
---|
| 758 | IF ( surf_usm_h%ns >= 1 .AND. surf_def_h(0)%ns >= 1 ) THEN |
---|
| 759 | IF ( MINVAL( surf_usm_h%z0h ) /= MAXVAL( surf_def_h(0)%z0h ) .OR. & |
---|
| 760 | MINVAL( surf_usm_h%z0 ) /= MAXVAL( surf_def_h(0)%z0 ) ) THEN |
---|
| 761 | terminate_run_l = .TRUE. |
---|
| 762 | ENDIF |
---|
| 763 | ENDIF |
---|
| 764 | IF ( surf_usm_h%ns >= 1 .AND. surf_lsm_h%ns >= 1 ) THEN |
---|
| 765 | IF ( MINVAL( surf_usm_h%z0h ) /= MAXVAL( surf_lsm_h%z0h ) .OR. & |
---|
| 766 | MINVAL( surf_usm_h%z0 ) /= MAXVAL( surf_lsm_h%z0 ) ) THEN |
---|
| 767 | terminate_run_l = .TRUE. |
---|
| 768 | ENDIF |
---|
| 769 | ENDIF |
---|
[1691] | 770 | |
---|
[2232] | 771 | |
---|
[1691] | 772 | #if defined( __parallel ) |
---|
| 773 | ! |
---|
| 774 | !-- Make a logical OR for all processes. Force termiation of model if result |
---|
| 775 | !-- is TRUE |
---|
| 776 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 777 | CALL MPI_ALLREDUCE( terminate_run_l, terminate_run, 1, MPI_LOGICAL, & |
---|
| 778 | MPI_LOR, comm2d, ierr ) |
---|
| 779 | #else |
---|
| 780 | terminate_run = terminate_run_l |
---|
| 781 | #endif |
---|
| 782 | |
---|
| 783 | IF ( terminate_run ) THEN |
---|
| 784 | message_string = 'most_method = "lookup" cannot be used in ' // & |
---|
| 785 | 'combination with a prescribed roughness ' // & |
---|
| 786 | 'heterogeneity' |
---|
| 787 | CALL message( 'surface_layer_fluxes', 'PA0417', 1, 2, 0, 6, 0 ) |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
| 790 | ALLOCATE( zeta_tmp(0:num_steps-1) ) |
---|
| 791 | |
---|
| 792 | ! |
---|
| 793 | !-- Use the lowest possible value for z_mo |
---|
[2232] | 794 | k = nzb |
---|
[1691] | 795 | z_mo = zu(k+1) - zw(k) |
---|
| 796 | |
---|
| 797 | ! |
---|
| 798 | !-- Calculate z/L range from zeta_stretch to zeta_max using 90% of the |
---|
| 799 | !-- available steps (num_steps). The calculation is done with negative |
---|
| 800 | !-- values of zeta in order to simplify the stretching in the free |
---|
| 801 | !-- convection limit for the remaining 10% of steps. |
---|
| 802 | zeta_tmp(0) = - zeta_max |
---|
| 803 | num_steps_n = ( num_steps * 9 / 10 ) - 1 |
---|
| 804 | zeta_step = (zeta_max - zeta_stretch) / REAL(num_steps_n) |
---|
| 805 | |
---|
[2232] | 806 | DO li = 1, num_steps_n |
---|
| 807 | zeta_tmp(li) = zeta_tmp(li-1) + zeta_step |
---|
[1691] | 808 | ENDDO |
---|
| 809 | |
---|
| 810 | ! |
---|
| 811 | !-- Calculate stretching factor for the free convection range |
---|
[1788] | 812 | DO WHILE ( ABS( (regr-regr_old) / regr_old ) > 1.0E-10_wp ) |
---|
[1691] | 813 | regr_old = regr |
---|
| 814 | regr = ( 1.0_wp - ( -zeta_min / zeta_step ) * ( 1.0_wp - regr ) & |
---|
| 815 | )**( 10.0_wp / REAL(num_steps) ) |
---|
| 816 | ENDDO |
---|
| 817 | |
---|
| 818 | ! |
---|
| 819 | !-- Calculate z/L range from zeta_min to zeta_stretch |
---|
[2232] | 820 | DO li = num_steps_n+1, num_steps-1 |
---|
| 821 | zeta_tmp(li) = zeta_tmp(li-1) + zeta_step |
---|
[1691] | 822 | zeta_step = zeta_step * regr |
---|
| 823 | ENDDO |
---|
| 824 | |
---|
| 825 | ! |
---|
[1757] | 826 | !-- Save roughness lengths to temporary variables |
---|
[2232] | 827 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
| 828 | z0h_min = surf_def_h(0)%z0h(1) |
---|
| 829 | z0_min = surf_def_h(0)%z0(1) |
---|
| 830 | ELSEIF ( surf_lsm_h%ns >= 1 ) THEN |
---|
| 831 | z0h_min = surf_lsm_h%z0h(1) |
---|
| 832 | z0_min = surf_lsm_h%z0(1) |
---|
| 833 | ELSEIF ( surf_usm_h%ns >= 1 ) THEN |
---|
| 834 | z0h_min = surf_usm_h%z0h(1) |
---|
| 835 | z0_min = surf_usm_h%z0(1) |
---|
| 836 | ENDIF |
---|
[1691] | 837 | ! |
---|
| 838 | !-- Calculate lookup table for the Richardson number versus Obukhov length |
---|
| 839 | !-- The Richardson number (rib) is defined depending on the choice of |
---|
| 840 | !-- boundary conditions for temperature |
---|
| 841 | IF ( ibc_pt_b == 1 ) THEN |
---|
[2232] | 842 | DO li = 0, num_steps-1 |
---|
| 843 | ol_tab(li) = - z_mo / zeta_tmp(num_steps-1-li) |
---|
| 844 | rib_tab(li) = z_mo / ol_tab(li) / ( LOG( z_mo / z0_min ) & |
---|
| 845 | - psi_m( z_mo / ol_tab(li) ) & |
---|
| 846 | + psi_m( z0_min / ol_tab(li) ) & |
---|
[1691] | 847 | )**3 |
---|
| 848 | ENDDO |
---|
| 849 | ELSE |
---|
[2232] | 850 | DO li = 0, num_steps-1 |
---|
| 851 | ol_tab(li) = - z_mo / zeta_tmp(num_steps-1-li) |
---|
| 852 | rib_tab(li) = z_mo / ol_tab(li) * ( LOG( z_mo / z0h_min ) & |
---|
| 853 | - psi_h( z_mo / ol_tab(li) ) & |
---|
| 854 | + psi_h( z0h_min / ol_tab(li) ) & |
---|
[1691] | 855 | ) & |
---|
| 856 | / ( LOG( z_mo / z0_min ) & |
---|
[2232] | 857 | - psi_m( z_mo / ol_tab(li) ) & |
---|
| 858 | + psi_m( z0_min / ol_tab(li) ) & |
---|
[1691] | 859 | )**2 |
---|
| 860 | ENDDO |
---|
| 861 | ENDIF |
---|
| 862 | |
---|
| 863 | ! |
---|
| 864 | !-- Determine minimum values of rib in the lookup table. Set upper limit |
---|
| 865 | !-- to critical Richardson number (0.25) |
---|
| 866 | rib_min = MINVAL(rib_tab) |
---|
| 867 | rib_max = 0.25 !MAXVAL(rib_tab) |
---|
| 868 | |
---|
| 869 | DEALLOCATE( zeta_tmp ) |
---|
| 870 | ENDIF |
---|
| 871 | |
---|
| 872 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 873 | |
---|
| 874 | |
---|
| 875 | !------------------------------------------------------------------------------! |
---|
| 876 | ! Description: |
---|
| 877 | ! ------------ |
---|
[1709] | 878 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
[2232] | 879 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
[1691] | 880 | !------------------------------------------------------------------------------! |
---|
[2232] | 881 | SUBROUTINE calc_uvw_abs |
---|
[1691] | 882 | |
---|
| 883 | IMPLICIT NONE |
---|
| 884 | |
---|
[2232] | 885 | INTEGER(iwp) :: i !< running index x direction |
---|
| 886 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
| 887 | INTEGER(iwp) :: j !< running index y direction |
---|
| 888 | INTEGER(iwp) :: k !< running index z direction |
---|
| 889 | INTEGER(iwp) :: m !< running index surface elements |
---|
[1691] | 890 | |
---|
[2232] | 891 | ! |
---|
| 892 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
| 893 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
[1691] | 894 | |
---|
[2232] | 895 | DO m = 1, surf%ns |
---|
[1691] | 896 | |
---|
[2232] | 897 | i = surf%i(m) |
---|
| 898 | j = surf%j(m) |
---|
| 899 | k = surf%k(m) |
---|
[1691] | 900 | ! |
---|
[2232] | 901 | !-- Compute the absolute value of the horizontal velocity. |
---|
| 902 | !-- (relative to the surface in case the lower surface is the ocean). |
---|
| 903 | !-- Please note, in new surface modelling concept the index values changed, |
---|
| 904 | !-- i.e. the reference grid point is not the surface-grid point itself but |
---|
| 905 | !-- the first grid point outside of the topography. |
---|
| 906 | !-- Note, in case of coupled ocean-atmosphere simulations relative velocity |
---|
| 907 | !-- with respect to the ocean surface is used, hence, (k-1,j,i) values |
---|
| 908 | !-- are used to calculate the absolute velocity. |
---|
| 909 | !-- However, this do not apply for downward-facing walls. To mask this, |
---|
| 910 | !-- use ibit, which checks for upward/downward-facing surfaces. |
---|
[1691] | 911 | |
---|
[2232] | 912 | surf%uvw_abs(m) = SQRT( & |
---|
| 913 | ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) & |
---|
| 914 | - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
| 915 | ) * ibit & |
---|
| 916 | ) & |
---|
| 917 | )**2 + & |
---|
| 918 | ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) & |
---|
| 919 | - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
| 920 | ) * ibit & |
---|
| 921 | ) & |
---|
| 922 | )**2 & |
---|
| 923 | ) |
---|
| 924 | |
---|
[1691] | 925 | ENDDO |
---|
| 926 | |
---|
[2232] | 927 | END SUBROUTINE calc_uvw_abs |
---|
| 928 | |
---|
| 929 | |
---|
| 930 | !------------------------------------------------------------------------------! |
---|
| 931 | ! Description: |
---|
| 932 | ! ------------ |
---|
| 933 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 934 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 935 | !------------------------------------------------------------------------------! |
---|
| 936 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 937 | |
---|
| 938 | IMPLICIT NONE |
---|
| 939 | |
---|
| 940 | INTEGER(iwp) :: i !< running index x direction |
---|
| 941 | INTEGER(iwp) :: j !< running index y direction |
---|
| 942 | INTEGER(iwp) :: k !< running index z direction |
---|
| 943 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 944 | |
---|
| 945 | REAL(wp) :: u_i |
---|
| 946 | REAL(wp) :: w_i |
---|
| 947 | |
---|
| 948 | |
---|
| 949 | DO m = 1, surf%ns |
---|
| 950 | i = surf%i(m) |
---|
| 951 | j = surf%j(m) |
---|
| 952 | k = surf%k(m) |
---|
[1691] | 953 | ! |
---|
[2232] | 954 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
| 955 | u_i = u(k,j,i) |
---|
| 956 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + & |
---|
| 957 | w(k,j,i-1) + w(k,j,i) ) |
---|
[1691] | 958 | |
---|
[2232] | 959 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
[1709] | 960 | |
---|
[2232] | 961 | ENDDO |
---|
[1709] | 962 | |
---|
[2232] | 963 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
| 964 | |
---|
[1709] | 965 | !------------------------------------------------------------------------------! |
---|
| 966 | ! Description: |
---|
| 967 | ! ------------ |
---|
[2232] | 968 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 969 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 970 | !------------------------------------------------------------------------------! |
---|
| 971 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 972 | |
---|
| 973 | IMPLICIT NONE |
---|
| 974 | |
---|
| 975 | INTEGER(iwp) :: i !< running index x direction |
---|
| 976 | INTEGER(iwp) :: j !< running index y direction |
---|
| 977 | INTEGER(iwp) :: k !< running index z direction |
---|
| 978 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 979 | |
---|
| 980 | REAL(wp) :: v_i |
---|
| 981 | REAL(wp) :: w_i |
---|
| 982 | |
---|
| 983 | |
---|
| 984 | DO m = 1, surf%ns |
---|
| 985 | i = surf%i(m) |
---|
| 986 | j = surf%j(m) |
---|
| 987 | k = surf%k(m) |
---|
| 988 | |
---|
| 989 | v_i = u(k,j,i) |
---|
| 990 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + & |
---|
| 991 | w(k,j-1,i) + w(k,j,i) ) |
---|
| 992 | |
---|
| 993 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
| 994 | |
---|
| 995 | ENDDO |
---|
| 996 | |
---|
| 997 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
| 998 | |
---|
| 999 | !------------------------------------------------------------------------------! |
---|
| 1000 | ! Description: |
---|
| 1001 | ! ------------ |
---|
| 1002 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 1003 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 1004 | !------------------------------------------------------------------------------! |
---|
| 1005 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 1006 | |
---|
| 1007 | IMPLICIT NONE |
---|
| 1008 | |
---|
| 1009 | INTEGER(iwp) :: i !< running index x direction |
---|
| 1010 | INTEGER(iwp) :: j !< running index y direction |
---|
| 1011 | INTEGER(iwp) :: k !< running index z direction |
---|
| 1012 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 1013 | |
---|
| 1014 | REAL(wp) :: u_i |
---|
| 1015 | REAL(wp) :: v_i |
---|
| 1016 | REAL(wp) :: w_i |
---|
| 1017 | ! |
---|
| 1018 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
| 1019 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1020 | DO m = 1, surf%ns |
---|
| 1021 | i = surf%i(m) |
---|
| 1022 | j = surf%j(m) |
---|
| 1023 | k = surf%k(m) |
---|
| 1024 | |
---|
| 1025 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + & |
---|
| 1026 | u(k,j,i+1) + u(k,j,i) ) |
---|
| 1027 | v_i = 0.0_wp |
---|
| 1028 | w_i = w(k,j,i) |
---|
| 1029 | |
---|
| 1030 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1031 | ENDDO |
---|
| 1032 | ! |
---|
| 1033 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
| 1034 | ELSE |
---|
| 1035 | DO m = 1, surf%ns |
---|
| 1036 | i = surf%i(m) |
---|
| 1037 | j = surf%j(m) |
---|
| 1038 | k = surf%k(m) |
---|
| 1039 | |
---|
| 1040 | u_i = 0.0_wp |
---|
| 1041 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + & |
---|
| 1042 | v(k,j+1,i) + v(k,j,i) ) |
---|
| 1043 | w_i = w(k,j,i) |
---|
| 1044 | |
---|
| 1045 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1046 | ENDDO |
---|
| 1047 | ENDIF |
---|
| 1048 | |
---|
| 1049 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
| 1050 | |
---|
| 1051 | !------------------------------------------------------------------------------! |
---|
| 1052 | ! Description: |
---|
| 1053 | ! ------------ |
---|
| 1054 | !> Compute the absolute value of the horizontal velocity (relative to the |
---|
| 1055 | !> surface) for horizontal surface elements. This is required by all methods. |
---|
| 1056 | !------------------------------------------------------------------------------! |
---|
| 1057 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 1058 | |
---|
| 1059 | IMPLICIT NONE |
---|
| 1060 | |
---|
| 1061 | INTEGER(iwp) :: i !< running index x direction |
---|
| 1062 | INTEGER(iwp) :: j !< running index y direction |
---|
| 1063 | INTEGER(iwp) :: k !< running index z direction |
---|
| 1064 | INTEGER(iwp) :: m !< running index surface elements |
---|
| 1065 | |
---|
| 1066 | REAL(wp) :: u_i |
---|
| 1067 | REAL(wp) :: v_i |
---|
| 1068 | REAL(wp) :: w_i |
---|
| 1069 | |
---|
| 1070 | ! |
---|
| 1071 | !-- North- (l=0) and south-facing (l=1) walls |
---|
| 1072 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 1073 | DO m = 1, surf%ns |
---|
| 1074 | i = surf%i(m) |
---|
| 1075 | j = surf%j(m) |
---|
| 1076 | k = surf%k(m) |
---|
| 1077 | |
---|
| 1078 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 1079 | v_i = 0.0_wp |
---|
| 1080 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1081 | |
---|
| 1082 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1083 | ENDDO |
---|
| 1084 | ! |
---|
| 1085 | !-- East- (l=2) and west-facing (l=3) walls |
---|
| 1086 | ELSE |
---|
| 1087 | DO m = 1, surf%ns |
---|
| 1088 | i = surf%i(m) |
---|
| 1089 | j = surf%j(m) |
---|
| 1090 | k = surf%k(m) |
---|
| 1091 | |
---|
| 1092 | u_i = 0.0_wp |
---|
| 1093 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 1094 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 1095 | |
---|
| 1096 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
| 1097 | ENDDO |
---|
| 1098 | ENDIF |
---|
| 1099 | |
---|
| 1100 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
| 1101 | |
---|
| 1102 | |
---|
| 1103 | !------------------------------------------------------------------------------! |
---|
| 1104 | ! Description: |
---|
| 1105 | ! ------------ |
---|
[1709] | 1106 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
| 1107 | !------------------------------------------------------------------------------! |
---|
| 1108 | SUBROUTINE calc_ol |
---|
| 1109 | |
---|
| 1110 | IMPLICIT NONE |
---|
| 1111 | |
---|
[2232] | 1112 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
| 1113 | INTEGER(iwp) :: li !< look index |
---|
| 1114 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
[1709] | 1115 | |
---|
| 1116 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 1117 | f_d_ol, & !< Derivative of f |
---|
| 1118 | ol_l, & !< Lower bound of L for Newton iteration |
---|
| 1119 | ol_m, & !< Previous value of L for Newton iteration |
---|
| 1120 | ol_old, & !< Previous time step value of L |
---|
| 1121 | ol_u !< Upper bound of L for Newton iteration |
---|
| 1122 | |
---|
[1691] | 1123 | IF ( TRIM( most_method ) /= 'circular' ) THEN |
---|
[2232] | 1124 | ! |
---|
| 1125 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
| 1126 | !-- definition based on setting of boundary conditions |
---|
| 1127 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 1128 | IF ( humidity ) THEN |
---|
| 1129 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1130 | DO m = 1, surf%ns |
---|
[1691] | 1131 | |
---|
[2232] | 1132 | i = surf%i(m) |
---|
| 1133 | j = surf%j(m) |
---|
| 1134 | k = surf%k(m) |
---|
[1691] | 1135 | |
---|
[2232] | 1136 | z_mo = surf%z_mo(m) |
---|
| 1137 | |
---|
| 1138 | surf%rib(m) = g * z_mo * & |
---|
| 1139 | ( vpt(k,j,i) - vpt(k-1,j,i) ) / & |
---|
| 1140 | ( surf%uvw_abs(m)**2 * vpt(k,j,i) + 1.0E-20_wp ) |
---|
| 1141 | ENDDO |
---|
| 1142 | ELSE |
---|
| 1143 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1144 | DO m = 1, surf%ns |
---|
| 1145 | |
---|
| 1146 | i = surf%i(m) |
---|
| 1147 | j = surf%j(m) |
---|
| 1148 | k = surf%k(m) |
---|
| 1149 | |
---|
| 1150 | z_mo = surf%z_mo(m) |
---|
| 1151 | |
---|
| 1152 | surf%rib(m) = g * z_mo * & |
---|
| 1153 | ( pt(k,j,i) - pt(k-1,j,i) ) / & |
---|
| 1154 | ( surf%uvw_abs(m)**2 * pt(k,j,i) + 1.0E-20_wp ) |
---|
| 1155 | ENDDO |
---|
| 1156 | ENDIF |
---|
| 1157 | ELSE |
---|
| 1158 | IF ( humidity ) THEN |
---|
| 1159 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1160 | DO m = 1, surf%ns |
---|
| 1161 | |
---|
| 1162 | i = surf%i(m) |
---|
| 1163 | j = surf%j(m) |
---|
| 1164 | k = surf%k(m) |
---|
| 1165 | |
---|
| 1166 | z_mo = surf%z_mo(m) |
---|
| 1167 | |
---|
| 1168 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
| 1169 | * q(k,j,i) ) * surf%shf(m) + 0.61_wp & |
---|
| 1170 | * pt(k,j,i) * surf%qsws(m) ) * & |
---|
| 1171 | drho_air_zw(k-1) / & |
---|
| 1172 | ( surf%uvw_abs(m)**3 * vpt(k,j,i) * kappa**2 & |
---|
[1709] | 1173 | + 1.0E-20_wp ) |
---|
[2232] | 1174 | ENDDO |
---|
| 1175 | ELSE |
---|
| 1176 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1177 | DO m = 1, surf%ns |
---|
[1691] | 1178 | |
---|
[2232] | 1179 | i = surf%i(m) |
---|
| 1180 | j = surf%j(m) |
---|
| 1181 | k = surf%k(m) |
---|
| 1182 | |
---|
| 1183 | z_mo = surf%z_mo(m) |
---|
| 1184 | |
---|
| 1185 | surf%rib(m) = - g * z_mo * surf%shf(m) * & |
---|
| 1186 | drho_air_zw(k-1) / & |
---|
| 1187 | ( surf%uvw_abs(m)**3 * pt(k,j,i) * kappa**2 & |
---|
| 1188 | + 1.0E-20_wp ) |
---|
| 1189 | ENDDO |
---|
| 1190 | ENDIF |
---|
| 1191 | ENDIF |
---|
| 1192 | |
---|
[1691] | 1193 | ENDIF |
---|
| 1194 | |
---|
[2232] | 1195 | |
---|
[1691] | 1196 | ! |
---|
| 1197 | !-- Calculate the Obukhov length either using a Newton iteration |
---|
| 1198 | !-- method, via a lookup table, or using the old circular way |
---|
| 1199 | IF ( TRIM( most_method ) == 'newton' ) THEN |
---|
| 1200 | |
---|
[2232] | 1201 | DO m = 1, surf%ns |
---|
[1691] | 1202 | |
---|
[2232] | 1203 | i = surf%i(m) |
---|
| 1204 | j = surf%j(m) |
---|
[1691] | 1205 | |
---|
[2232] | 1206 | z_mo = surf%z_mo(m) |
---|
| 1207 | |
---|
[1691] | 1208 | ! |
---|
[2232] | 1209 | !-- Store current value in case the Newton iteration fails |
---|
| 1210 | ol_old = surf%ol(m) |
---|
[1691] | 1211 | |
---|
| 1212 | ! |
---|
[2232] | 1213 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1214 | !-- length have the same sign |
---|
| 1215 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. & |
---|
| 1216 | ABS( surf%ol(m) ) == ol_max ) THEN |
---|
| 1217 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
| 1218 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
| 1219 | ENDIF |
---|
[1691] | 1220 | ! |
---|
[2232] | 1221 | !-- Iteration to find Obukhov length |
---|
| 1222 | iter = 0 |
---|
| 1223 | DO |
---|
| 1224 | iter = iter + 1 |
---|
[1691] | 1225 | ! |
---|
[2232] | 1226 | !-- In case of divergence, use the value of the previous time step |
---|
| 1227 | IF ( iter > 1000 ) THEN |
---|
| 1228 | surf%ol(m) = ol_old |
---|
| 1229 | EXIT |
---|
| 1230 | ENDIF |
---|
[1691] | 1231 | |
---|
[2232] | 1232 | ol_m = surf%ol(m) |
---|
| 1233 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 1234 | ol_u = ol_m + 0.001_wp * ol_m |
---|
[1691] | 1235 | |
---|
| 1236 | |
---|
[2232] | 1237 | IF ( ibc_pt_b /= 1 ) THEN |
---|
[1691] | 1238 | ! |
---|
[2232] | 1239 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 1240 | f = surf%rib(m) - ( z_mo / ol_m ) * ( & |
---|
| 1241 | LOG( z_mo / surf%z0h(m) ) & |
---|
| 1242 | - psi_h( z_mo / ol_m ) & |
---|
| 1243 | + psi_h( surf%z0h(m) / & |
---|
| 1244 | ol_m ) & |
---|
| 1245 | ) & |
---|
| 1246 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1247 | - psi_m( z_mo / ol_m ) & |
---|
| 1248 | + psi_m( surf%z0(m) / & |
---|
| 1249 | ol_m ) & |
---|
| 1250 | )**2 |
---|
[1691] | 1251 | |
---|
| 1252 | ! |
---|
[2232] | 1253 | !-- Calculate df/dL |
---|
| 1254 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / & |
---|
| 1255 | surf%z0h(m) ) & |
---|
| 1256 | - psi_h( z_mo / ol_u ) & |
---|
| 1257 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
| 1258 | ) & |
---|
| 1259 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1260 | - psi_m( z_mo / ol_u ) & |
---|
| 1261 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1262 | )**2 & |
---|
| 1263 | + ( z_mo / ol_l ) * ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1264 | - psi_h( z_mo / ol_l ) & |
---|
| 1265 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
| 1266 | ) & |
---|
| 1267 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1268 | - psi_m( z_mo / ol_l ) & |
---|
| 1269 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1270 | )**2 & |
---|
| 1271 | ) / ( ol_u - ol_l ) |
---|
| 1272 | ELSE |
---|
[1691] | 1273 | ! |
---|
[2232] | 1274 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 1275 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
| 1276 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1277 | - psi_m( z_mo / ol_m ) & |
---|
| 1278 | + psi_m( surf%z0(m) / ol_m ) & |
---|
| 1279 | )**3 |
---|
[1691] | 1280 | |
---|
| 1281 | ! |
---|
[2232] | 1282 | !-- Calculate df/dL |
---|
| 1283 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / & |
---|
| 1284 | surf%z0(m) ) & |
---|
| 1285 | - psi_m( z_mo / ol_u ) & |
---|
| 1286 | + psi_m( surf%z0(m) / ol_u ) & |
---|
| 1287 | )**3 & |
---|
| 1288 | + ( z_mo / ol_l ) / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1289 | - psi_m( z_mo / ol_l ) & |
---|
| 1290 | + psi_m( surf%z0(m) / ol_l ) & |
---|
| 1291 | )**3 & |
---|
| 1292 | ) / ( ol_u - ol_l ) |
---|
| 1293 | ENDIF |
---|
[1691] | 1294 | ! |
---|
[2232] | 1295 | !-- Calculate new L |
---|
| 1296 | surf%ol(m) = ol_m - f / f_d_ol |
---|
[1691] | 1297 | |
---|
| 1298 | ! |
---|
[2232] | 1299 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 1300 | !-- length have the same sign and ensure convergence. |
---|
| 1301 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
[1691] | 1302 | ! |
---|
[2232] | 1303 | !-- If unrealistic value occurs, set L to the maximum |
---|
| 1304 | !-- value that is allowed |
---|
| 1305 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
| 1306 | surf%ol(m) = ol_max |
---|
| 1307 | EXIT |
---|
| 1308 | ENDIF |
---|
[1691] | 1309 | ! |
---|
[2232] | 1310 | !-- Check for convergence |
---|
| 1311 | IF ( ABS( ( surf%ol(m) - ol_m ) / & |
---|
| 1312 | surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
| 1313 | EXIT |
---|
| 1314 | ELSE |
---|
| 1315 | CYCLE |
---|
| 1316 | ENDIF |
---|
[1691] | 1317 | |
---|
| 1318 | ENDDO |
---|
| 1319 | ENDDO |
---|
| 1320 | |
---|
| 1321 | ELSEIF ( TRIM( most_method ) == 'lookup' ) THEN |
---|
| 1322 | |
---|
[2281] | 1323 | !$OMP PARALLEL DO PRIVATE( i, j, z_mo, li ) FIRSTPRIVATE( li_bnd ) LASTPRIVATE( li_bnd ) |
---|
[2232] | 1324 | DO m = 1, surf%ns |
---|
[1691] | 1325 | |
---|
[2232] | 1326 | i = surf%i(m) |
---|
| 1327 | j = surf%j(m) |
---|
[1691] | 1328 | ! |
---|
[2232] | 1329 | !-- If the bulk Richardson number is outside the range of the lookup |
---|
| 1330 | !-- table, set it to the exceeding threshold value |
---|
| 1331 | IF ( surf%rib(m) < rib_min ) surf%rib(m) = rib_min |
---|
| 1332 | IF ( surf%rib(m) > rib_max ) surf%rib(m) = rib_max |
---|
[1691] | 1333 | |
---|
| 1334 | ! |
---|
[2232] | 1335 | !-- Find the correct index bounds for linear interpolation. As the |
---|
| 1336 | !-- Richardson number will not differ very much from time step to |
---|
| 1337 | !-- time step , use the index from the last step and search in the |
---|
| 1338 | !-- correct direction |
---|
| 1339 | li = li_bnd |
---|
| 1340 | IF ( rib_tab(li) - surf%rib(m) > 1.0_wp ) THEN |
---|
| 1341 | DO WHILE ( rib_tab(li-1) - surf%rib(m) > 1.0_wp .AND. li > 1 ) |
---|
| 1342 | li = li-1 |
---|
| 1343 | ENDDO |
---|
| 1344 | ELSE |
---|
| 1345 | DO WHILE ( rib_tab(li) - surf%rib(m) < 0.0_wp & |
---|
| 1346 | .AND. li < num_steps-1 ) |
---|
| 1347 | li = li+1 |
---|
| 1348 | ENDDO |
---|
| 1349 | ENDIF |
---|
| 1350 | li_bnd = li |
---|
[1691] | 1351 | |
---|
| 1352 | ! |
---|
[2232] | 1353 | !-- Linear interpolation to find the correct value of z/L |
---|
| 1354 | surf%ol(m) = ( ol_tab(li-1) + ( ol_tab(li) - ol_tab(li-1) ) & |
---|
| 1355 | / ( rib_tab(li) - rib_tab(li-1) ) & |
---|
| 1356 | * ( surf%rib(m) - rib_tab(li-1) ) ) |
---|
[1691] | 1357 | |
---|
| 1358 | ENDDO |
---|
| 1359 | |
---|
| 1360 | ELSEIF ( TRIM( most_method ) == 'circular' ) THEN |
---|
| 1361 | |
---|
[2232] | 1362 | IF ( .NOT. humidity ) THEN |
---|
| 1363 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1364 | DO m = 1, surf%ns |
---|
[1691] | 1365 | |
---|
[2232] | 1366 | i = surf%i(m) |
---|
| 1367 | j = surf%j(m) |
---|
| 1368 | k = surf%k(m) |
---|
[1691] | 1369 | |
---|
[2232] | 1370 | z_mo = surf%z_mo(m) |
---|
[1691] | 1371 | |
---|
[2232] | 1372 | surf%ol(m) = ( pt(k,j,i) * surf%us(m)**2 ) / & |
---|
| 1373 | ( kappa * g * & |
---|
| 1374 | surf%ts(m) + 1E-30_wp ) |
---|
[1691] | 1375 | ! |
---|
| 1376 | !-- Limit the value range of the Obukhov length. |
---|
[2232] | 1377 | !-- This is necessary for very small velocities (u,v --> 1), because |
---|
[1691] | 1378 | !-- the absolute value of ol can then become very small, which in |
---|
| 1379 | !-- consequence would result in very large shear stresses and very |
---|
| 1380 | !-- small momentum fluxes (both are generally unrealistic). |
---|
[2232] | 1381 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) < zeta_min ) & |
---|
| 1382 | surf%ol(m) = z_mo / zeta_min |
---|
| 1383 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) > zeta_max ) & |
---|
| 1384 | surf%ol(m) = z_mo / zeta_max |
---|
| 1385 | |
---|
[1691] | 1386 | ENDDO |
---|
[2232] | 1387 | ELSEIF ( cloud_physics ) THEN |
---|
| 1388 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1389 | DO m = 1, surf%ns |
---|
[1691] | 1390 | |
---|
[2232] | 1391 | i = surf%i(m) |
---|
| 1392 | j = surf%j(m) |
---|
| 1393 | k = surf%k(m) |
---|
[1691] | 1394 | |
---|
[2232] | 1395 | z_mo = surf%z_mo(m) |
---|
| 1396 | |
---|
| 1397 | |
---|
| 1398 | surf%ol(m) = ( vpt(k,j,i) * surf%us(m)**2 ) / & |
---|
| 1399 | ( kappa * g * ( surf%ts(m) + & |
---|
| 1400 | 0.61_wp * surf%pt1(m) * surf%us(m) & |
---|
| 1401 | + 0.61_wp * surf%qv1(m) * surf%ts(m) - & |
---|
| 1402 | surf%ts(m) * ql(k,j,i) ) + 1E-30_wp ) |
---|
[1691] | 1403 | ! |
---|
[2232] | 1404 | !-- Limit the value range of the Obukhov length. |
---|
| 1405 | !-- This is necessary for very small velocities (u,v --> 1), because |
---|
| 1406 | !-- the absolute value of ol can then become very small, which in |
---|
| 1407 | !-- consequence would result in very large shear stresses and very |
---|
| 1408 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 1409 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) < zeta_min ) & |
---|
| 1410 | surf%ol(m) = z_mo / zeta_min |
---|
| 1411 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) > zeta_max ) & |
---|
| 1412 | surf%ol(m) = z_mo / zeta_max |
---|
[1691] | 1413 | |
---|
[2232] | 1414 | ENDDO |
---|
| 1415 | ELSE |
---|
| 1416 | |
---|
| 1417 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1418 | DO m = 1, surf%ns |
---|
| 1419 | |
---|
| 1420 | i = surf%i(m) |
---|
| 1421 | j = surf%j(m) |
---|
| 1422 | k = surf%k(m) |
---|
| 1423 | |
---|
| 1424 | z_mo = surf%z_mo(m) |
---|
| 1425 | |
---|
| 1426 | surf%ol(m) = ( vpt(k,j,i) * surf%us(m)**2 ) / & |
---|
| 1427 | ( kappa * g * ( surf%ts(m) + 0.61_wp * pt(k,j,i) * & |
---|
| 1428 | surf%qs(m) + 0.61_wp * q(k,j,i) * & |
---|
| 1429 | surf%ts(m) ) + 1E-30_wp ) |
---|
| 1430 | |
---|
| 1431 | ! |
---|
| 1432 | !-- Limit the value range of the Obukhov length. |
---|
| 1433 | !-- This is necessary for very small velocities (u,v --> 1), because |
---|
| 1434 | !-- the absolute value of ol can then become very small, which in |
---|
| 1435 | !-- consequence would result in very large shear stresses and very |
---|
| 1436 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 1437 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) < zeta_min ) & |
---|
| 1438 | surf%ol(m) = z_mo / zeta_min |
---|
| 1439 | IF ( ( z_mo / ( surf%ol(m) + 1E-30_wp ) ) > zeta_max ) & |
---|
| 1440 | surf%ol(m) = z_mo / zeta_max |
---|
| 1441 | |
---|
| 1442 | ENDDO |
---|
| 1443 | |
---|
| 1444 | ENDIF |
---|
| 1445 | |
---|
| 1446 | ENDIF |
---|
| 1447 | |
---|
[1691] | 1448 | END SUBROUTINE calc_ol |
---|
| 1449 | |
---|
| 1450 | ! |
---|
| 1451 | !-- Calculate friction velocity u* |
---|
| 1452 | SUBROUTINE calc_us |
---|
| 1453 | |
---|
| 1454 | IMPLICIT NONE |
---|
| 1455 | |
---|
[2232] | 1456 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1457 | |
---|
[2232] | 1458 | ! |
---|
| 1459 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
| 1460 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1461 | ! |
---|
| 1462 | !-- Compute u* at upward-facing surfaces |
---|
| 1463 | IF ( .NOT. downward ) THEN |
---|
[2281] | 1464 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1465 | DO m = 1, surf%ns |
---|
[1691] | 1466 | |
---|
[2232] | 1467 | z_mo = surf%z_mo(m) |
---|
[1691] | 1468 | ! |
---|
[2232] | 1469 | !-- Compute u* at the scalars' grid points |
---|
| 1470 | surf%us(m) = kappa * surf%uvw_abs(m) / & |
---|
| 1471 | ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1472 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1473 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1474 | |
---|
| 1475 | ENDDO |
---|
| 1476 | ! |
---|
| 1477 | !-- Compute u* at downward-facing surfaces. This case, do not consider |
---|
| 1478 | !-- any stability. |
---|
| 1479 | ELSE |
---|
[2281] | 1480 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
[2232] | 1481 | DO m = 1, surf%ns |
---|
| 1482 | |
---|
| 1483 | z_mo = surf%z_mo(m) |
---|
| 1484 | ! |
---|
| 1485 | !-- Compute u* at the scalars' grid points |
---|
| 1486 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
| 1487 | |
---|
| 1488 | ENDDO |
---|
| 1489 | ENDIF |
---|
| 1490 | ! |
---|
| 1491 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
| 1492 | !-- No stability is considered in this case. |
---|
| 1493 | ELSE |
---|
| 1494 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
| 1495 | DO m = 1, surf%ns |
---|
| 1496 | z_mo = surf%z_mo(m) |
---|
| 1497 | |
---|
| 1498 | surf%us(m) = kappa * surf%uvw_abs(m) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1499 | ENDDO |
---|
[2232] | 1500 | ENDIF |
---|
[1691] | 1501 | |
---|
| 1502 | END SUBROUTINE calc_us |
---|
| 1503 | |
---|
| 1504 | ! |
---|
| 1505 | !-- Calculate potential temperature and specific humidity at first grid level |
---|
[2232] | 1506 | !-- ( only for upward-facing surfs ) |
---|
[1691] | 1507 | SUBROUTINE calc_pt_q |
---|
| 1508 | |
---|
| 1509 | IMPLICIT NONE |
---|
| 1510 | |
---|
[2232] | 1511 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1512 | |
---|
| 1513 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1514 | DO m = 1, surf%ns |
---|
| 1515 | |
---|
| 1516 | i = surf%i(m) |
---|
| 1517 | j = surf%j(m) |
---|
| 1518 | k = surf%k(m) |
---|
| 1519 | |
---|
| 1520 | surf%pt1(m) = pt(k,j,i) + l_d_cp * pt_d_t(k) * ql(k,j,i) |
---|
| 1521 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
| 1522 | |
---|
[1691] | 1523 | ENDDO |
---|
| 1524 | |
---|
| 1525 | END SUBROUTINE calc_pt_q |
---|
| 1526 | |
---|
| 1527 | ! |
---|
| 1528 | !-- Calculate the other MOST scaling parameters theta*, q*, (qr*, nr*) |
---|
| 1529 | SUBROUTINE calc_scaling_parameters |
---|
| 1530 | |
---|
| 1531 | IMPLICIT NONE |
---|
| 1532 | |
---|
[2232] | 1533 | |
---|
| 1534 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
| 1535 | |
---|
[1691] | 1536 | ! |
---|
[2232] | 1537 | !-- Compute theta* at horizontal surfaces |
---|
| 1538 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1539 | ! |
---|
| 1540 | !-- For a given heat flux in the surface layer: |
---|
[2232] | 1541 | |
---|
| 1542 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1543 | DO m = 1, surf%ns |
---|
| 1544 | |
---|
| 1545 | i = surf%i(m) |
---|
| 1546 | j = surf%j(m) |
---|
| 1547 | k = surf%k(m) |
---|
| 1548 | |
---|
| 1549 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / & |
---|
| 1550 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1551 | |
---|
[1691] | 1552 | ! |
---|
[2232] | 1553 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1554 | !-- of us=0 when computing ol further below |
---|
| 1555 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1556 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1557 | |
---|
[1691] | 1558 | ENDDO |
---|
| 1559 | |
---|
[2232] | 1560 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1691] | 1561 | ! |
---|
| 1562 | !-- For a given surface temperature: |
---|
[1788] | 1563 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1564 | |
---|
| 1565 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1566 | DO m = 1, surf%ns |
---|
| 1567 | i = surf%i(m) |
---|
| 1568 | j = surf%j(m) |
---|
| 1569 | k = surf%k(m) |
---|
| 1570 | |
---|
| 1571 | pt(k-1,j,i) = pt_surface |
---|
[1691] | 1572 | ENDDO |
---|
| 1573 | ENDIF |
---|
| 1574 | |
---|
[2232] | 1575 | IF ( cloud_physics ) THEN |
---|
| 1576 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1577 | DO m = 1, surf%ns |
---|
[1691] | 1578 | |
---|
[2232] | 1579 | i = surf%i(m) |
---|
| 1580 | j = surf%j(m) |
---|
| 1581 | k = surf%k(m) |
---|
[1691] | 1582 | |
---|
[2232] | 1583 | z_mo = surf%z_mo(m) |
---|
[1691] | 1584 | |
---|
[2232] | 1585 | surf%ts(m) = kappa * ( surf%pt1(m) - pt(k-1,j,i) ) & |
---|
| 1586 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1587 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1588 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 1589 | |
---|
[1691] | 1590 | ENDDO |
---|
[2232] | 1591 | ELSE |
---|
| 1592 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1593 | DO m = 1, surf%ns |
---|
| 1594 | |
---|
| 1595 | i = surf%i(m) |
---|
| 1596 | j = surf%j(m) |
---|
| 1597 | k = surf%k(m) |
---|
| 1598 | |
---|
| 1599 | z_mo = surf%z_mo(m) |
---|
| 1600 | |
---|
| 1601 | surf%ts(m) = kappa * ( pt(k,j,i) - pt(k-1,j,i) ) & |
---|
| 1602 | / ( LOG( z_mo / surf%z0h(m) ) & |
---|
| 1603 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1604 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDIF |
---|
| 1607 | ENDIF |
---|
| 1608 | ! |
---|
| 1609 | !-- Compute theta* at vertical surfaces. This is only required in case of |
---|
| 1610 | !-- land-surface model, in order to compute aerodynamical resistance. |
---|
| 1611 | IF ( surf_vertical ) THEN |
---|
[2281] | 1612 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1613 | DO m = 1, surf%ns |
---|
| 1614 | |
---|
| 1615 | i = surf%i(m) |
---|
| 1616 | j = surf%j(m) |
---|
| 1617 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1618 | ! |
---|
| 1619 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 1620 | !-- of us=0 when computing ol further below |
---|
| 1621 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
| 1622 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
| 1623 | |
---|
[1691] | 1624 | ENDDO |
---|
| 1625 | ENDIF |
---|
| 1626 | |
---|
| 1627 | ! |
---|
[2232] | 1628 | !-- If required compute q* at horizontal surfaces |
---|
[1960] | 1629 | IF ( humidity ) THEN |
---|
[2232] | 1630 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
[1691] | 1631 | ! |
---|
[1788] | 1632 | !-- For a given water flux in the surface layer |
---|
[2232] | 1633 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1634 | DO m = 1, surf%ns |
---|
| 1635 | |
---|
| 1636 | i = surf%i(m) |
---|
| 1637 | j = surf%j(m) |
---|
| 1638 | k = surf%k(m) |
---|
| 1639 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / & |
---|
| 1640 | ( surf%us(m) + 1E-30_wp ) |
---|
| 1641 | |
---|
[1691] | 1642 | ENDDO |
---|
| 1643 | |
---|
[2232] | 1644 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
[1788] | 1645 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
[1691] | 1646 | run_coupled ) |
---|
| 1647 | |
---|
[1788] | 1648 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[2232] | 1649 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1650 | DO m = 1, surf%ns |
---|
| 1651 | |
---|
| 1652 | i = surf%i(m) |
---|
| 1653 | j = surf%j(m) |
---|
| 1654 | k = surf%k(m) |
---|
| 1655 | q(k-1,j,i) = q_surface |
---|
| 1656 | |
---|
[1691] | 1657 | ENDDO |
---|
| 1658 | ENDIF |
---|
| 1659 | |
---|
| 1660 | ! |
---|
[2232] | 1661 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 1662 | !-- in case of precursor runs) |
---|
| 1663 | IF ( coupled_run ) THEN |
---|
| 1664 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
| 1665 | DO m = 1, surf%ns |
---|
| 1666 | i = surf%i(m) |
---|
| 1667 | j = surf%j(m) |
---|
| 1668 | k = surf%k(m) |
---|
| 1669 | e_s = 6.1_wp * & |
---|
| 1670 | EXP( 0.07_wp * ( MIN(pt(k-1,j,i),pt(k,j,i)) & |
---|
[1691] | 1671 | - 273.15_wp ) ) |
---|
[2232] | 1672 | q(k-1,j,i) = 0.622_wp * e_s / ( surface_pressure - e_s ) |
---|
| 1673 | ENDDO |
---|
| 1674 | ENDIF |
---|
[1691] | 1675 | |
---|
[2232] | 1676 | IF ( cloud_physics ) THEN |
---|
| 1677 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1678 | DO m = 1, surf%ns |
---|
[1691] | 1679 | |
---|
[2232] | 1680 | i = surf%i(m) |
---|
| 1681 | j = surf%j(m) |
---|
| 1682 | k = surf%k(m) |
---|
| 1683 | |
---|
| 1684 | z_mo = surf%z_mo(m) |
---|
[1691] | 1685 | |
---|
[2232] | 1686 | surf%qs(m) = kappa * ( surf%qv1(m) - q(k-1,j,i) ) & |
---|
| 1687 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1688 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1689 | + psi_h( surf%z0q(m) / & |
---|
| 1690 | surf%ol(m) ) ) |
---|
[1691] | 1691 | ENDDO |
---|
[2232] | 1692 | ELSE |
---|
| 1693 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1694 | DO m = 1, surf%ns |
---|
| 1695 | |
---|
| 1696 | i = surf%i(m) |
---|
| 1697 | j = surf%j(m) |
---|
| 1698 | k = surf%k(m) |
---|
| 1699 | |
---|
| 1700 | z_mo = surf%z_mo(m) |
---|
| 1701 | |
---|
| 1702 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
| 1703 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1704 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1705 | + psi_h( surf%z0q(m) / & |
---|
| 1706 | surf%ol(m) ) ) |
---|
| 1707 | ENDDO |
---|
| 1708 | ENDIF |
---|
| 1709 | ENDIF |
---|
| 1710 | ! |
---|
| 1711 | !-- Compute q* at vertical surfaces |
---|
| 1712 | IF ( surf_vertical ) THEN |
---|
[2281] | 1713 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1714 | DO m = 1, surf%ns |
---|
| 1715 | |
---|
| 1716 | i = surf%i(m) |
---|
| 1717 | j = surf%j(m) |
---|
| 1718 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1719 | |
---|
[1691] | 1720 | ENDDO |
---|
| 1721 | ENDIF |
---|
| 1722 | ENDIF |
---|
[1960] | 1723 | |
---|
| 1724 | ! |
---|
| 1725 | !-- If required compute s* |
---|
| 1726 | IF ( passive_scalar ) THEN |
---|
| 1727 | ! |
---|
[2232] | 1728 | !-- At horizontal surfaces |
---|
| 1729 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
| 1730 | ! |
---|
| 1731 | !-- For a given scalar flux in the surface layer |
---|
[2281] | 1732 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1733 | DO m = 1, surf%ns |
---|
| 1734 | i = surf%i(m) |
---|
| 1735 | j = surf%j(m) |
---|
| 1736 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
[1960] | 1737 | ENDDO |
---|
| 1738 | ENDIF |
---|
[2232] | 1739 | ! |
---|
| 1740 | !-- At vertical surfaces |
---|
| 1741 | IF ( surf_vertical ) THEN |
---|
[2281] | 1742 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1743 | DO m = 1, surf%ns |
---|
| 1744 | i = surf%i(m) |
---|
| 1745 | j = surf%j(m) |
---|
| 1746 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
| 1747 | ENDDO |
---|
| 1748 | ENDIF |
---|
[1960] | 1749 | ENDIF |
---|
[1691] | 1750 | |
---|
| 1751 | |
---|
| 1752 | ! |
---|
| 1753 | !-- If required compute qr* and nr* |
---|
[2232] | 1754 | IF ( cloud_physics .AND. microphysics_seifert .AND. & |
---|
| 1755 | .NOT. surf_vertical ) THEN |
---|
| 1756 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1757 | DO m = 1, surf%ns |
---|
[1691] | 1758 | |
---|
[2232] | 1759 | i = surf%i(m) |
---|
| 1760 | j = surf%j(m) |
---|
| 1761 | k = surf%k(m) |
---|
[1691] | 1762 | |
---|
[2232] | 1763 | z_mo = surf%z_mo(m) |
---|
[1691] | 1764 | |
---|
[2232] | 1765 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
| 1766 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1767 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1768 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1769 | |
---|
[2232] | 1770 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
| 1771 | / ( LOG( z_mo / surf%z0q(m) ) & |
---|
| 1772 | - psi_h( z_mo / surf%ol(m) ) & |
---|
| 1773 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
[1691] | 1774 | ENDDO |
---|
| 1775 | |
---|
| 1776 | ENDIF |
---|
| 1777 | |
---|
| 1778 | END SUBROUTINE calc_scaling_parameters |
---|
| 1779 | |
---|
| 1780 | |
---|
| 1781 | |
---|
| 1782 | ! |
---|
| 1783 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qrsws, nrsws) |
---|
| 1784 | SUBROUTINE calc_surface_fluxes |
---|
| 1785 | |
---|
| 1786 | IMPLICIT NONE |
---|
| 1787 | |
---|
[2232] | 1788 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
[1691] | 1789 | |
---|
[2232] | 1790 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
| 1791 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1792 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
| 1793 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1794 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
| 1795 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes at vertical surfaces |
---|
[1691] | 1796 | |
---|
| 1797 | ! |
---|
[2232] | 1798 | !-- Calcuate surface fluxes at horizontal walls |
---|
| 1799 | IF ( .NOT. surf_vertical ) THEN |
---|
| 1800 | ! |
---|
| 1801 | !-- Compute u'w' for the total model domain at upward-facing surfaces. |
---|
| 1802 | !-- First compute the corresponding component of u* and square it. |
---|
| 1803 | IF ( .NOT. downward ) THEN |
---|
| 1804 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1805 | DO m = 1, surf%ns |
---|
| 1806 | |
---|
| 1807 | i = surf%i(m) |
---|
| 1808 | j = surf%j(m) |
---|
| 1809 | k = surf%k(m) |
---|
[1691] | 1810 | |
---|
[2232] | 1811 | z_mo = surf%z_mo(m) |
---|
[1691] | 1812 | |
---|
[2232] | 1813 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
| 1814 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1815 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1816 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
| 1817 | ! |
---|
| 1818 | !-- Please note, the computation of usws is not fully accurate. Actually |
---|
| 1819 | !-- a further interpolation of us onto the u-grid, where usws is defined, |
---|
| 1820 | !-- is required. However, this is not done as this would require several |
---|
| 1821 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1822 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1823 | !-- tests had shown. |
---|
| 1824 | !-- Same also for ol. |
---|
| 1825 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1826 | |
---|
[2232] | 1827 | ENDDO |
---|
[1691] | 1828 | ! |
---|
[2232] | 1829 | !-- At downward-facing surfaces |
---|
| 1830 | ELSE |
---|
| 1831 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1832 | DO m = 1, surf%ns |
---|
| 1833 | |
---|
| 1834 | i = surf%i(m) |
---|
| 1835 | j = surf%j(m) |
---|
| 1836 | k = surf%k(m) |
---|
[1691] | 1837 | |
---|
[2232] | 1838 | z_mo = surf%z_mo(m) |
---|
| 1839 | |
---|
| 1840 | surf%usws(m) = kappa * u(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 1841 | ! |
---|
[2232] | 1842 | !-- To Do: Is the sign correct??? |
---|
| 1843 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
[1691] | 1844 | |
---|
[2232] | 1845 | ENDDO |
---|
| 1846 | ENDIF |
---|
[1691] | 1847 | |
---|
[2232] | 1848 | ! |
---|
| 1849 | !-- Compute v'w' for the total model domain. |
---|
| 1850 | !-- First compute the corresponding component of u* and square it. |
---|
| 1851 | !-- Upward-facing surfaces |
---|
| 1852 | IF ( .NOT. downward ) THEN |
---|
| 1853 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1854 | DO m = 1, surf%ns |
---|
| 1855 | i = surf%i(m) |
---|
| 1856 | j = surf%j(m) |
---|
| 1857 | k = surf%k(m) |
---|
[1691] | 1858 | |
---|
[2232] | 1859 | z_mo = surf%z_mo(m) |
---|
[1691] | 1860 | |
---|
[2232] | 1861 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
| 1862 | / ( LOG( z_mo / surf%z0(m) ) & |
---|
| 1863 | - psi_m( z_mo / surf%ol(m) ) & |
---|
| 1864 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
[1691] | 1865 | ! |
---|
[2232] | 1866 | !-- Please note, the computation of vsws is not fully accurate. Actually |
---|
| 1867 | !-- a further interpolation of us onto the v-grid, where vsws is defined, |
---|
| 1868 | !-- is required. However, this is not done as this would require several |
---|
| 1869 | !-- data transfers between 2D-grid and the surf-type. |
---|
| 1870 | !-- The impact of the missing interpolation is negligible as several |
---|
| 1871 | !-- tests had shown. |
---|
| 1872 | !-- Same also for ol. |
---|
| 1873 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1874 | ENDDO |
---|
| 1875 | ! |
---|
| 1876 | !-- Downward-facing surfaces |
---|
| 1877 | ELSE |
---|
| 1878 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1879 | DO m = 1, surf%ns |
---|
| 1880 | i = surf%i(m) |
---|
| 1881 | j = surf%j(m) |
---|
| 1882 | k = surf%k(m) |
---|
[1691] | 1883 | |
---|
[2232] | 1884 | z_mo = surf%z_mo(m) |
---|
| 1885 | |
---|
| 1886 | surf%vsws(m) = kappa * v(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 1887 | |
---|
| 1888 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
| 1889 | ENDDO |
---|
| 1890 | ENDIF |
---|
[1691] | 1891 | ! |
---|
[2232] | 1892 | !-- Compute the vertical kinematic heat flux |
---|
| 1893 | IF ( .NOT. constant_heatflux .AND. ( simulated_time <= & |
---|
| 1894 | skip_time_do_lsm .OR. .NOT. land_surface ) .AND. & |
---|
| 1895 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
| 1896 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1897 | DO m = 1, surf%ns |
---|
| 1898 | i = surf%i(m) |
---|
| 1899 | j = surf%j(m) |
---|
| 1900 | k = surf%k(m) |
---|
| 1901 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
[1691] | 1902 | ENDDO |
---|
[2232] | 1903 | ENDIF |
---|
| 1904 | ! |
---|
| 1905 | !-- Compute the vertical water flux |
---|
| 1906 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
| 1907 | ( simulated_time <= skip_time_do_lsm & |
---|
| 1908 | .OR. .NOT. land_surface ) .AND. .NOT. downward ) THEN |
---|
| 1909 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1910 | DO m = 1, surf%ns |
---|
| 1911 | i = surf%i(m) |
---|
| 1912 | j = surf%j(m) |
---|
| 1913 | k = surf%k(m) |
---|
| 1914 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
| 1915 | ENDDO |
---|
| 1916 | ENDIF |
---|
| 1917 | ! |
---|
| 1918 | !-- Compute the vertical scalar flux |
---|
| 1919 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. & |
---|
| 1920 | .NOT. downward ) THEN |
---|
[2281] | 1921 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1922 | DO m = 1, surf%ns |
---|
[1691] | 1923 | |
---|
[2232] | 1924 | i = surf%i(m) |
---|
| 1925 | j = surf%j(m) |
---|
| 1926 | surf%ssws(m) = -surf%ss(m) * surf%us(m) |
---|
[1691] | 1927 | |
---|
[2232] | 1928 | ENDDO |
---|
| 1929 | ENDIF |
---|
[1691] | 1930 | ! |
---|
[2232] | 1931 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
| 1932 | IF ( cloud_physics .AND. microphysics_seifert .AND. & |
---|
| 1933 | .NOT. downward) THEN |
---|
[2281] | 1934 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
[2232] | 1935 | DO m = 1, surf%ns |
---|
| 1936 | |
---|
| 1937 | i = surf%i(m) |
---|
| 1938 | j = surf%j(m) |
---|
| 1939 | |
---|
| 1940 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) |
---|
| 1941 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) |
---|
[1691] | 1942 | ENDDO |
---|
[2232] | 1943 | ENDIF |
---|
[1691] | 1944 | |
---|
[1960] | 1945 | ! |
---|
[2232] | 1946 | !-- Bottom boundary condition for the TKE. |
---|
| 1947 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1948 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 1949 | DO m = 1, surf%ns |
---|
| 1950 | |
---|
| 1951 | i = surf%i(m) |
---|
| 1952 | j = surf%j(m) |
---|
| 1953 | k = surf%k(m) |
---|
| 1954 | |
---|
| 1955 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
| 1956 | ! |
---|
| 1957 | !-- As a test: cm = 0.4 |
---|
| 1958 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1959 | e(k-1,j,i) = e(k,j,i) |
---|
| 1960 | |
---|
[1960] | 1961 | ENDDO |
---|
[2232] | 1962 | ENDIF |
---|
| 1963 | ! |
---|
| 1964 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
| 1965 | ELSE |
---|
| 1966 | ! |
---|
| 1967 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
| 1968 | IF ( mom_uv ) THEN |
---|
| 1969 | ! |
---|
| 1970 | !-- Generalize computation by introducing flags. At north- and south- |
---|
| 1971 | !-- facing surfaces u-component is used, at east- and west-facing |
---|
| 1972 | !-- surfaces v-component is used. |
---|
| 1973 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
| 1974 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
| 1975 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1976 | DO m = 1, surf%ns |
---|
| 1977 | i = surf%i(m) |
---|
| 1978 | j = surf%j(m) |
---|
| 1979 | k = surf%k(m) |
---|
[1691] | 1980 | |
---|
[2232] | 1981 | z_mo = surf%z_mo(m) |
---|
[1960] | 1982 | |
---|
[2232] | 1983 | surf%mom_flux_uv(m) = kappa * & |
---|
| 1984 | ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
| 1985 | LOG( z_mo / surf%z0(m) ) |
---|
| 1986 | |
---|
| 1987 | surf%mom_flux_uv(m) = & |
---|
| 1988 | - surf%mom_flux_uv(m) * surf%us(m) |
---|
| 1989 | ENDDO |
---|
| 1990 | ENDIF |
---|
[1691] | 1991 | ! |
---|
[2232] | 1992 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
| 1993 | IF ( mom_w ) THEN |
---|
| 1994 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
| 1995 | DO m = 1, surf%ns |
---|
| 1996 | i = surf%i(m) |
---|
| 1997 | j = surf%j(m) |
---|
| 1998 | k = surf%k(m) |
---|
| 1999 | |
---|
| 2000 | z_mo = surf%z_mo(m) |
---|
| 2001 | |
---|
| 2002 | surf%mom_flux_w(m) = kappa * w(k,j,i) / LOG( z_mo / surf%z0(m) ) |
---|
| 2003 | |
---|
| 2004 | surf%mom_flux_w(m) = & |
---|
| 2005 | - surf%mom_flux_w(m) * surf%us(m) |
---|
[1691] | 2006 | ENDDO |
---|
[2232] | 2007 | ENDIF |
---|
| 2008 | ! |
---|
| 2009 | !-- Compute momentum fluxes used for subgrid-scale TKE production at |
---|
| 2010 | !-- vertical surfaces. In constrast to the calculated momentum fluxes at |
---|
| 2011 | !-- vertical surfaces before, which are defined on the u/v/w-grid, |
---|
| 2012 | !-- respectively), the TKE fluxes are defined at the scalar grid. |
---|
| 2013 | !-- |
---|
| 2014 | IF ( mom_tke ) THEN |
---|
| 2015 | ! |
---|
| 2016 | !-- Precalculate velocity components at scalar grid point. |
---|
| 2017 | ALLOCATE( u_i(1:surf%ns) ) |
---|
| 2018 | ALLOCATE( v_i(1:surf%ns) ) |
---|
| 2019 | ALLOCATE( w_i(1:surf%ns) ) |
---|
[1691] | 2020 | |
---|
[2232] | 2021 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
| 2022 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2023 | DO m = 1, surf%ns |
---|
| 2024 | i = surf%i(m) |
---|
| 2025 | j = surf%j(m) |
---|
| 2026 | k = surf%k(m) |
---|
| 2027 | |
---|
| 2028 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
| 2029 | v_i(m) = 0.0_wp |
---|
| 2030 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 2031 | ENDDO |
---|
| 2032 | ELSE |
---|
| 2033 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
| 2034 | DO m = 1, surf%ns |
---|
| 2035 | i = surf%i(m) |
---|
| 2036 | j = surf%j(m) |
---|
| 2037 | k = surf%k(m) |
---|
| 2038 | |
---|
| 2039 | u_i(m) = 0.0_wp |
---|
| 2040 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
| 2041 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
| 2042 | ENDDO |
---|
| 2043 | ENDIF |
---|
| 2044 | |
---|
[2281] | 2045 | !$OMP PARALLEL DO PRIVATE( i, j, dum, z_mo ) |
---|
[2232] | 2046 | DO m = 1, surf%ns |
---|
| 2047 | i = surf%i(m) |
---|
| 2048 | j = surf%j(m) |
---|
| 2049 | |
---|
| 2050 | z_mo = surf%z_mo(m) |
---|
| 2051 | |
---|
| 2052 | dum = kappa / LOG( z_mo / surf%z0(m) ) |
---|
[1691] | 2053 | ! |
---|
[2232] | 2054 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
| 2055 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
[1691] | 2056 | ! |
---|
[2232] | 2057 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
| 2058 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
| 2059 | |
---|
| 2060 | surf%mom_flux_tke(0:1,m) = & |
---|
| 2061 | - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
[1691] | 2062 | ENDDO |
---|
[2232] | 2063 | ! |
---|
| 2064 | !-- Deallocate temporary arrays |
---|
| 2065 | DEALLOCATE( u_i ) |
---|
| 2066 | DEALLOCATE( v_i ) |
---|
| 2067 | DEALLOCATE( w_i ) |
---|
| 2068 | ENDIF |
---|
[1691] | 2069 | ENDIF |
---|
| 2070 | |
---|
| 2071 | END SUBROUTINE calc_surface_fluxes |
---|
| 2072 | |
---|
| 2073 | |
---|
| 2074 | ! |
---|
| 2075 | !-- Integrated stability function for momentum |
---|
| 2076 | FUNCTION psi_m( zeta ) |
---|
| 2077 | |
---|
| 2078 | USE kinds |
---|
| 2079 | |
---|
| 2080 | IMPLICIT NONE |
---|
| 2081 | |
---|
| 2082 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 2083 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2084 | REAL(wp) :: x !< dummy variable |
---|
| 2085 | |
---|
| 2086 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2087 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2088 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2089 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2090 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2091 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2092 | |
---|
| 2093 | |
---|
| 2094 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 2095 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
[1691] | 2096 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 2097 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 2098 | ELSE |
---|
| 2099 | |
---|
| 2100 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
| 2101 | - bc_d_d |
---|
| 2102 | ! |
---|
| 2103 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2104 | !-- psi_m = - 5.0_wp * zeta |
---|
| 2105 | |
---|
| 2106 | ENDIF |
---|
| 2107 | |
---|
| 2108 | END FUNCTION psi_m |
---|
| 2109 | |
---|
| 2110 | |
---|
| 2111 | ! |
---|
| 2112 | !-- Integrated stability function for heat and moisture |
---|
| 2113 | FUNCTION psi_h( zeta ) |
---|
| 2114 | |
---|
| 2115 | USE kinds |
---|
| 2116 | |
---|
| 2117 | IMPLICIT NONE |
---|
| 2118 | |
---|
| 2119 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 2120 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 2121 | REAL(wp) :: x !< dummy variable |
---|
| 2122 | |
---|
| 2123 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 2124 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 2125 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 2126 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 2127 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 2128 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 2129 | |
---|
| 2130 | |
---|
| 2131 | IF ( zeta < 0.0_wp ) THEN |
---|
[1788] | 2132 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
[1691] | 2133 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 2134 | ELSE |
---|
| 2135 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 2136 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
| 2137 | + 1.0_wp |
---|
| 2138 | ! |
---|
| 2139 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 2140 | !-- psi_h = - 5.0_wp * zeta |
---|
| 2141 | ENDIF |
---|
| 2142 | |
---|
| 2143 | END FUNCTION psi_h |
---|
| 2144 | |
---|
[1697] | 2145 | END MODULE surface_layer_fluxes_mod |
---|