[1691] | 1 | !> @file surface_layer_fluxes.f90 |
---|
| 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
| 16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
| 17 | ! |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ----------------- |
---|
[1692] | 21 | ! |
---|
[1698] | 22 | ! |
---|
[1692] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: surface_layer_fluxes.f90 1698 2015-10-28 17:26:17Z raasch $ |
---|
| 26 | ! |
---|
[1698] | 27 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 28 | ! FORTRAN and OpenMP errors removed |
---|
| 29 | ! |
---|
[1697] | 30 | ! 1696 2015-10-27 10:03:34Z maronga |
---|
[1691] | 31 | ! Modularized and completely re-written version of prandtl_fluxes.f90. In the |
---|
| 32 | ! course of the re-writing two additional methods have been implemented. See |
---|
| 33 | ! updated description. |
---|
| 34 | ! |
---|
| 35 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
| 36 | ! Removed land surface model part. The surface fluxes are now always calculated |
---|
| 37 | ! within prandtl_fluxes, based on the given surface temperature/humidity (which |
---|
| 38 | ! is either provided by the land surface model, by large scale forcing data, or |
---|
| 39 | ! directly prescribed by the user. |
---|
| 40 | ! |
---|
| 41 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 42 | ! Adapted for land surface model |
---|
| 43 | ! |
---|
| 44 | ! 1494 2014-11-21 17:14:03Z maronga |
---|
| 45 | ! Bugfixes: qs is now calculated before calculation of Rif. calculation of |
---|
| 46 | ! buoyancy flux in Rif corrected (added missing humidity term), allow use of |
---|
| 47 | ! topography for coupled runs (not tested) |
---|
| 48 | ! |
---|
| 49 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 50 | ! Bugfix: calculation of turbulent fluxes of rain water content (qrsws) and rain |
---|
| 51 | ! drop concentration (nrsws) added |
---|
| 52 | ! |
---|
| 53 | ! 1340 2014-03-25 19:45:13Z kanani |
---|
| 54 | ! REAL constants defined as wp-kind |
---|
| 55 | ! |
---|
| 56 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
| 57 | ! ONLY-attribute added to USE-statements, |
---|
| 58 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 59 | ! kinds are defined in new module kinds, |
---|
| 60 | ! old module precision_kind is removed, |
---|
| 61 | ! revision history before 2012 removed, |
---|
| 62 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 63 | ! all variable declaration statements |
---|
| 64 | ! |
---|
| 65 | ! 1276 2014-01-15 13:40:41Z heinze |
---|
| 66 | ! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars |
---|
| 67 | ! |
---|
| 68 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 69 | ! openACC "kernels do" replaced by "kernels loop", "loop independent" added |
---|
| 70 | ! |
---|
| 71 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 72 | ! code put under GPL (PALM 3.9) |
---|
| 73 | ! |
---|
| 74 | ! 1015 2012-09-27 09:23:24Z raasch |
---|
| 75 | ! OpenACC statements added |
---|
| 76 | ! |
---|
| 77 | ! 978 2012-08-09 08:28:32Z fricke |
---|
| 78 | ! roughness length for scalar quantities z0h added |
---|
| 79 | ! |
---|
| 80 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
| 81 | ! Initial revision |
---|
| 82 | ! |
---|
| 83 | ! |
---|
| 84 | ! Description: |
---|
| 85 | ! ------------ |
---|
| 86 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the |
---|
| 87 | !> values of the variables at grid point k=1. Three different methods are |
---|
| 88 | !> available: |
---|
| 89 | !> 1) the "old" version (most_method = 'circular') which is fast, but inaccurate |
---|
| 90 | !> 2) a Newton iteration method (most_method = 'newton'), which is accurate, but |
---|
| 91 | !> slower |
---|
| 92 | !> 3) a method using a lookup table which is fast and accurate. Note, however, |
---|
| 93 | !> that this method cannot be used in case of roughness heterogeneity |
---|
| 94 | !> |
---|
[1697] | 95 | !> @todo limiting of uv_total might be required in some cases |
---|
[1691] | 96 | !> @todo (re)move large_scale_forcing actions |
---|
| 97 | !> @todo check/optimize OpenMP and OpenACC directives |
---|
| 98 | !------------------------------------------------------------------------------! |
---|
| 99 | MODULE surface_layer_fluxes_mod |
---|
| 100 | |
---|
| 101 | USE arrays_3d, & |
---|
| 102 | ONLY: e, kh, nr, nrs, nrsws, ol, pt, q, ql, qr, qrs, qrsws, qs, qsws, & |
---|
| 103 | shf, ts, u, us, usws, v, vpt, vsws, zu, zw, z0, z0h |
---|
| 104 | |
---|
| 105 | USE cloud_parameters, & |
---|
| 106 | ONLY: l_d_cp, pt_d_t |
---|
| 107 | |
---|
| 108 | USE constants, & |
---|
| 109 | ONLY: pi |
---|
| 110 | |
---|
| 111 | USE cpulog |
---|
| 112 | |
---|
| 113 | USE control_parameters, & |
---|
| 114 | ONLY: cloud_physics, constant_heatflux, constant_waterflux, & |
---|
| 115 | coupling_mode, g, humidity, ibc_e_b, ibc_pt_b, icloud_scheme, & |
---|
| 116 | initializing_actions, kappa, intermediate_timestep_count, & |
---|
| 117 | intermediate_timestep_count_max, large_scale_forcing, lsf_surf, & |
---|
| 118 | message_string, most_method, neutral, passive_scalar, & |
---|
| 119 | precipitation, pt_surface, q_surface, run_coupled, & |
---|
| 120 | surface_pressure, simulated_time, terminate_run, zeta_max, & |
---|
| 121 | zeta_min |
---|
| 122 | |
---|
| 123 | USE indices, & |
---|
| 124 | ONLY: nxl, nxlg, nxr, nxrg, nys, nysg, nyn, nyng, nzb_s_inner, & |
---|
| 125 | nzb_u_inner, nzb_v_inner |
---|
| 126 | |
---|
| 127 | USE kinds |
---|
| 128 | |
---|
| 129 | USE pegrid |
---|
| 130 | |
---|
| 131 | USE land_surface_model_mod, & |
---|
| 132 | ONLY: land_surface, skip_time_do_lsm |
---|
| 133 | |
---|
| 134 | IMPLICIT NONE |
---|
| 135 | |
---|
| 136 | INTEGER(iwp) :: i !< loop index x direction |
---|
| 137 | INTEGER(iwp) :: j !< loop index y direction |
---|
| 138 | INTEGER(iwp) :: k !< loop indey z direction |
---|
| 139 | |
---|
| 140 | INTEGER(iwp), PARAMETER :: num_steps = 15000 !< number of steps in the lookup table |
---|
| 141 | |
---|
| 142 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
| 143 | |
---|
| 144 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pt1, & !< Potential temperature at first grid level (required for cloud_physics = .T.) |
---|
| 145 | qv1, & !< Specific humidity at first grid level (required for cloud_physics = .T.) |
---|
| 146 | uv_total !< Total velocity at first grid level |
---|
| 147 | |
---|
| 148 | REAL(wp), DIMENSION(0:num_steps-1) :: rib_tab, & !< Lookup table bulk Richardson number |
---|
| 149 | ol_tab !< Lookup table values of L |
---|
| 150 | |
---|
| 151 | REAL(wp) :: e_s, & !< Saturation water vapor pressure |
---|
| 152 | l_bnd = 7500, & !< Lookup table index of the last time step |
---|
| 153 | ol_max = 1.0E6_wp, & !< Maximum Obukhov length |
---|
| 154 | rib_max, & !< Maximum Richardson number in lookup table |
---|
| 155 | rib_min, & !< Minimum Richardson number in lookup table |
---|
| 156 | z_mo !< Height of the constant flux layer where MOST is assumed |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | SAVE |
---|
| 160 | |
---|
| 161 | PRIVATE |
---|
| 162 | |
---|
| 163 | PUBLIC init_surface_layer_fluxes, surface_layer_fluxes |
---|
| 164 | |
---|
| 165 | INTERFACE init_surface_layer_fluxes |
---|
| 166 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
| 167 | END INTERFACE init_surface_layer_fluxes |
---|
| 168 | |
---|
| 169 | INTERFACE surface_layer_fluxes |
---|
| 170 | MODULE PROCEDURE surface_layer_fluxes |
---|
| 171 | END INTERFACE surface_layer_fluxes |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | CONTAINS |
---|
| 175 | |
---|
| 176 | |
---|
| 177 | !------------------------------------------------------------------------------! |
---|
| 178 | ! Description: |
---|
| 179 | ! ------------ |
---|
| 180 | !> Main routine to compute the surface fluxes |
---|
| 181 | !------------------------------------------------------------------------------! |
---|
| 182 | SUBROUTINE surface_layer_fluxes |
---|
| 183 | |
---|
| 184 | IMPLICIT NONE |
---|
| 185 | |
---|
| 186 | ! |
---|
| 187 | !-- In case cloud physics is used, it is required to derive potential |
---|
| 188 | !-- temperature and specific humidity at first grid level from the fields pt |
---|
| 189 | !-- and q |
---|
| 190 | IF ( cloud_physics ) THEN |
---|
| 191 | CALL calc_pt_q |
---|
| 192 | ENDIF |
---|
| 193 | |
---|
| 194 | ! |
---|
| 195 | !-- First, calculate the new Obukhov length, then new friction velocity, |
---|
| 196 | !-- followed by the new scaling parameters (th*, q*, etc.), and the new |
---|
| 197 | !-- surface fluxes if required. The old routine ("circular") requires a |
---|
| 198 | !-- different order of calls as the scaling parameters from the previous time |
---|
| 199 | !-- steps are used to calculate the Obukhov length |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- Depending on setting of most_method use the "old" routine |
---|
| 203 | IF ( most_method == 'circular' ) THEN |
---|
| 204 | |
---|
| 205 | CALL calc_scaling_parameters |
---|
| 206 | |
---|
| 207 | IF ( .NOT. neutral ) THEN |
---|
| 208 | CALL calc_ol |
---|
| 209 | ENDIF |
---|
| 210 | |
---|
| 211 | CALL calc_us |
---|
| 212 | |
---|
| 213 | CALL calc_surface_fluxes |
---|
| 214 | |
---|
| 215 | ! |
---|
| 216 | !-- Use either Newton iteration or a lookup table for the bulk Richardson |
---|
| 217 | !-- number to calculate the Obukhov length |
---|
| 218 | ELSEIF ( most_method == 'newton' .OR. most_method == 'lookup' ) THEN |
---|
| 219 | |
---|
| 220 | IF ( .NOT. neutral ) THEN |
---|
| 221 | CALL calc_ol |
---|
| 222 | ENDIF |
---|
| 223 | |
---|
| 224 | CALL calc_us |
---|
| 225 | |
---|
| 226 | CALL calc_scaling_parameters |
---|
| 227 | |
---|
| 228 | CALL calc_surface_fluxes |
---|
| 229 | |
---|
| 230 | ENDIF |
---|
| 231 | |
---|
| 232 | END SUBROUTINE surface_layer_fluxes |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | !------------------------------------------------------------------------------! |
---|
| 236 | ! Description: |
---|
| 237 | ! ------------ |
---|
| 238 | !> Initializing actions for the surface layer routine. Basically, this involves |
---|
| 239 | !> the preparation of a lookup table for the the bulk Richardson number vs |
---|
| 240 | !> Obukhov length L when using the lookup table method. |
---|
| 241 | !------------------------------------------------------------------------------! |
---|
| 242 | SUBROUTINE init_surface_layer_fluxes |
---|
| 243 | |
---|
| 244 | IMPLICIT NONE |
---|
| 245 | |
---|
| 246 | INTEGER(iwp) :: l, & !< Index for loop to create lookup table |
---|
| 247 | num_steps_n !< Number of non-stretched zeta steps |
---|
| 248 | |
---|
| 249 | LOGICAL :: terminate_run_l = .FALSE. !< Flag to terminate run (global) |
---|
| 250 | |
---|
| 251 | REAL(wp), PARAMETER :: zeta_stretch = -10.0_wp !< Start of stretching in the free convection limit |
---|
| 252 | |
---|
| 253 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zeta_tmp |
---|
| 254 | |
---|
| 255 | |
---|
| 256 | REAL(wp) :: zeta_step, & !< Increment of zeta |
---|
| 257 | regr = 1.01_wp, & !< Stretching factor of zeta_step in the free convection limit |
---|
| 258 | regr_old = 1.0E9_wp, & !< Stretching factor of last iteration step |
---|
| 259 | z0h_min = 0.0_wp, & !< Minimum value of z0h to create table |
---|
| 260 | z0_min = 0.0_wp !< Minimum value of z0 to create table |
---|
| 261 | ! |
---|
| 262 | !-- When cloud physics is used, arrays for storing potential temperature and |
---|
| 263 | !-- specific humidity at first grid level are required |
---|
| 264 | IF ( cloud_physics ) THEN |
---|
| 265 | ALLOCATE ( pt1(nysg:nyng,nxlg:nxrg) ) |
---|
| 266 | ALLOCATE ( qv1(nysg:nyng,nxlg:nxrg) ) |
---|
| 267 | ENDIF |
---|
| 268 | |
---|
| 269 | ! |
---|
| 270 | !-- Allocate field for storing the horizontal velocity |
---|
| 271 | ALLOCATE ( uv_total(nysg:nyng,nxlg:nxrg) ) |
---|
| 272 | |
---|
| 273 | IF ( most_method == 'lookup' ) THEN |
---|
| 274 | |
---|
| 275 | ! |
---|
| 276 | !-- Check for roughness heterogeneity. In that case terminate run and |
---|
| 277 | !-- inform user |
---|
| 278 | IF ( MINVAL( z0h ) /= MAXVAL( z0h ) .OR. & |
---|
| 279 | MINVAL( z0 ) /= MAXVAL( z0 ) ) THEN |
---|
| 280 | terminate_run_l = .TRUE. |
---|
| 281 | ENDIF |
---|
| 282 | |
---|
| 283 | #if defined( __parallel ) |
---|
| 284 | ! |
---|
| 285 | !-- Make a logical OR for all processes. Force termiation of model if result |
---|
| 286 | !-- is TRUE |
---|
| 287 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 288 | CALL MPI_ALLREDUCE( terminate_run_l, terminate_run, 1, MPI_LOGICAL, & |
---|
| 289 | MPI_LOR, comm2d, ierr ) |
---|
| 290 | #else |
---|
| 291 | terminate_run = terminate_run_l |
---|
| 292 | #endif |
---|
| 293 | |
---|
| 294 | IF ( terminate_run ) THEN |
---|
| 295 | message_string = 'most_method = "lookup" cannot be used in ' // & |
---|
| 296 | 'combination with a prescribed roughness ' // & |
---|
| 297 | 'heterogeneity' |
---|
| 298 | CALL message( 'surface_layer_fluxes', 'PA0417', 1, 2, 0, 6, 0 ) |
---|
| 299 | ENDIF |
---|
| 300 | |
---|
| 301 | ALLOCATE( zeta_tmp(0:num_steps-1) ) |
---|
| 302 | |
---|
| 303 | ! |
---|
| 304 | !-- Use the lowest possible value for z_mo |
---|
| 305 | k = MINVAL(nzb_s_inner) |
---|
| 306 | z_mo = zu(k+1) - zw(k) |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- Calculate z/L range from zeta_stretch to zeta_max using 90% of the |
---|
| 310 | !-- available steps (num_steps). The calculation is done with negative |
---|
| 311 | !-- values of zeta in order to simplify the stretching in the free |
---|
| 312 | !-- convection limit for the remaining 10% of steps. |
---|
| 313 | zeta_tmp(0) = - zeta_max |
---|
| 314 | num_steps_n = ( num_steps * 9 / 10 ) - 1 |
---|
| 315 | zeta_step = (zeta_max - zeta_stretch) / REAL(num_steps_n) |
---|
| 316 | |
---|
| 317 | DO l = 1, num_steps_n |
---|
| 318 | zeta_tmp(l) = zeta_tmp(l-1) + zeta_step |
---|
| 319 | ENDDO |
---|
| 320 | |
---|
| 321 | ! |
---|
| 322 | !-- Calculate stretching factor for the free convection range |
---|
| 323 | DO WHILE ( ABS( (regr-regr_old) / regr_old ) > 1.0E-10_wp ) |
---|
| 324 | regr_old = regr |
---|
| 325 | regr = ( 1.0_wp - ( -zeta_min / zeta_step ) * ( 1.0_wp - regr ) & |
---|
| 326 | )**( 10.0_wp / REAL(num_steps) ) |
---|
| 327 | ENDDO |
---|
| 328 | |
---|
| 329 | ! |
---|
| 330 | !-- Calculate z/L range from zeta_min to zeta_stretch |
---|
| 331 | DO l = num_steps_n+1, num_steps-1 |
---|
| 332 | zeta_tmp(l) = zeta_tmp(l-1) + zeta_step |
---|
| 333 | zeta_step = zeta_step * regr |
---|
| 334 | ENDDO |
---|
| 335 | |
---|
| 336 | ! |
---|
| 337 | !-- Invert array and switch sign, then calculate Obukhov length and bulk |
---|
| 338 | !-- Richardson number |
---|
| 339 | z0h_min = MINVAL(z0h) |
---|
| 340 | z0_min = MINVAL(z0) |
---|
| 341 | |
---|
| 342 | ! |
---|
| 343 | !-- Calculate lookup table for the Richardson number versus Obukhov length |
---|
| 344 | !-- The Richardson number (rib) is defined depending on the choice of |
---|
| 345 | !-- boundary conditions for temperature |
---|
| 346 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 347 | DO l = 0, num_steps-1 |
---|
| 348 | ol_tab(l) = - z_mo / zeta_tmp(num_steps-1-l) |
---|
| 349 | rib_tab(l) = z_mo / ol_tab(l) / ( LOG( z_mo / z0_min ) & |
---|
| 350 | - psi_m( z_mo / ol_tab(l) ) & |
---|
| 351 | + psi_m( z0_min / ol_tab(l) ) & |
---|
| 352 | )**3 |
---|
| 353 | ENDDO |
---|
| 354 | ELSE |
---|
| 355 | DO l = 0, num_steps-1 |
---|
| 356 | ol_tab(l) = - z_mo / zeta_tmp(num_steps-1-l) |
---|
| 357 | rib_tab(l) = z_mo / ol_tab(l) * ( LOG( z_mo / z0h_min ) & |
---|
| 358 | - psi_h( z_mo / ol_tab(l) ) & |
---|
| 359 | + psi_h( z0h_min / ol_tab(l) ) & |
---|
| 360 | ) & |
---|
| 361 | / ( LOG( z_mo / z0_min ) & |
---|
| 362 | - psi_m( z_mo / ol_tab(l) ) & |
---|
| 363 | + psi_m( z0_min / ol_tab(l) ) & |
---|
| 364 | )**2 |
---|
| 365 | ENDDO |
---|
| 366 | ENDIF |
---|
| 367 | |
---|
| 368 | ! |
---|
| 369 | !-- Determine minimum values of rib in the lookup table. Set upper limit |
---|
| 370 | !-- to critical Richardson number (0.25) |
---|
| 371 | rib_min = MINVAL(rib_tab) |
---|
| 372 | rib_max = 0.25 !MAXVAL(rib_tab) |
---|
| 373 | |
---|
| 374 | DEALLOCATE( zeta_tmp ) |
---|
| 375 | ENDIF |
---|
| 376 | |
---|
| 377 | END SUBROUTINE init_surface_layer_fluxes |
---|
| 378 | |
---|
| 379 | |
---|
| 380 | !------------------------------------------------------------------------------! |
---|
| 381 | ! Description: |
---|
| 382 | ! ------------ |
---|
| 383 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
| 384 | !------------------------------------------------------------------------------! |
---|
| 385 | SUBROUTINE calc_ol |
---|
| 386 | |
---|
| 387 | IMPLICIT NONE |
---|
| 388 | |
---|
| 389 | INTEGER(iwp) :: iter, & !< Newton iteration step |
---|
| 390 | l !< look index |
---|
| 391 | |
---|
[1697] | 392 | REAL(wp), DIMENSION(nysg:nyng,nxlg:nxrg) :: rib !< Bulk Richardson number |
---|
[1691] | 393 | |
---|
| 394 | REAL(wp) :: f, & !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
| 395 | f_d_ol, & !< Derivative of f |
---|
| 396 | ol_l, & !< Lower bound of L for Newton iteration |
---|
| 397 | ol_m, & !< Previous value of L for Newton iteration |
---|
| 398 | ol_old, & !< Previous time step value of L |
---|
[1697] | 399 | ol_u !< Upper bound of L for Newton iteration |
---|
[1691] | 400 | |
---|
| 401 | ! |
---|
| 402 | !-- Compute the absolute value of the horizontal velocity (relative to the |
---|
| 403 | !-- surface). This is required by all methods |
---|
| 404 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 405 | !$acc kernels loop |
---|
| 406 | DO i = nxl, nxr |
---|
| 407 | DO j = nys, nyn |
---|
| 408 | |
---|
| 409 | k = nzb_s_inner(j,i) |
---|
| 410 | |
---|
| 411 | uv_total(j,i) = SQRT( ( 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) & |
---|
| 412 | - u(k,j,i) - u(k,j,i+1) ) )**2 + & |
---|
| 413 | ( 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) & |
---|
| 414 | - v(k,j,i) - v(k,j+1,i) ) )**2 ) |
---|
| 415 | |
---|
| 416 | ! |
---|
| 417 | !-- For too small values of the local wind, MOST does not work. A |
---|
| 418 | !-- threshold value is thus set if required |
---|
| 419 | ! uv_total(j,i) = MAX(0.01_wp,uv_total(j,i)) |
---|
| 420 | |
---|
| 421 | ENDDO |
---|
| 422 | ENDDO |
---|
| 423 | |
---|
| 424 | ! |
---|
| 425 | !-- Values of uv_total need to be exchanged at the ghost boundaries |
---|
| 426 | !$acc update host( uv_total ) |
---|
| 427 | CALL exchange_horiz_2d( uv_total ) |
---|
| 428 | !$acc update device( uv_total ) |
---|
| 429 | |
---|
| 430 | IF ( TRIM( most_method ) /= 'circular' ) THEN |
---|
| 431 | |
---|
| 432 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 433 | !$acc kernels loop |
---|
| 434 | DO i = nxl, nxr |
---|
| 435 | DO j = nys, nyn |
---|
| 436 | |
---|
| 437 | k = nzb_s_inner(j,i) |
---|
| 438 | z_mo = zu(k+1) - zw(k) |
---|
| 439 | |
---|
| 440 | ! |
---|
| 441 | !-- Evaluate bulk Richardson number (calculation depends on |
---|
| 442 | !-- definition based on setting of boundary conditions |
---|
| 443 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 444 | IF ( humidity ) THEN |
---|
| 445 | rib(j,i) = g * z_mo * ( vpt(k+1,j,i) - vpt(k,j,i) ) & |
---|
| 446 | / ( uv_total(j,i)**2 * vpt(k+1,j,i) ) |
---|
| 447 | ELSE |
---|
| 448 | rib(j,i) = g * z_mo * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 449 | / ( uv_total(j,i)**2 * pt(k+1,j,i) ) |
---|
| 450 | ENDIF |
---|
| 451 | ELSE |
---|
| 452 | ! |
---|
| 453 | !-- When using Neumann boundary conditions, the buoyancy flux |
---|
| 454 | !-- is required but cannot be calculated at the surface, as pt |
---|
| 455 | !-- and q are not known at the surface. Hence the values at |
---|
| 456 | !-- first grid level are used to estimate the buoyancy flux |
---|
| 457 | IF ( humidity ) THEN |
---|
| 458 | rib(j,i) = - g * z_mo * ( ( 1.0_wp + 0.61_wp & |
---|
| 459 | * q(k+1,j,i) ) * shf(j,i) + 0.61_wp & |
---|
| 460 | * pt(k+1,j,i) * qsws(j,i) ) & |
---|
| 461 | / ( uv_total(j,i)**3 * vpt(k+1,j,i) * kappa**2 ) |
---|
| 462 | ELSE |
---|
| 463 | rib(j,i) = - g * z_mo * shf(j,i) & |
---|
| 464 | / ( uv_total(j,i)**3 * pt(k+1,j,i) * kappa**2 ) |
---|
| 465 | ENDIF |
---|
| 466 | ENDIF |
---|
| 467 | |
---|
| 468 | ENDDO |
---|
| 469 | ENDDO |
---|
| 470 | |
---|
| 471 | ENDIF |
---|
| 472 | |
---|
| 473 | ! |
---|
| 474 | !-- Calculate the Obukhov length either using a Newton iteration |
---|
| 475 | !-- method, via a lookup table, or using the old circular way |
---|
| 476 | IF ( TRIM( most_method ) == 'newton' ) THEN |
---|
| 477 | |
---|
| 478 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 479 | !$acc kernels loop |
---|
| 480 | DO i = nxl, nxr |
---|
| 481 | DO j = nys, nyn |
---|
| 482 | |
---|
| 483 | k = nzb_s_inner(j,i) |
---|
| 484 | z_mo = zu(k+1) - zw(k) |
---|
| 485 | |
---|
| 486 | ! |
---|
| 487 | !-- Store current value in case the Newton iteration fails |
---|
| 488 | ol_old = ol(j,i) |
---|
| 489 | |
---|
| 490 | ! |
---|
| 491 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 492 | !-- lengtH have the same sign |
---|
| 493 | IF ( rib(j,i) * ol(j,i) < 0.0_wp .OR. & |
---|
| 494 | ABS( ol(j,i) ) == ol_max ) THEN |
---|
| 495 | IF ( rib(j,i) > 0.0_wp ) ol(j,i) = 0.01_wp |
---|
| 496 | IF ( rib(j,i) < 0.0_wp ) ol(j,i) = -0.01_wp |
---|
| 497 | ENDIF |
---|
| 498 | ! |
---|
| 499 | !-- Iteration to find Obukhov length |
---|
| 500 | iter = 0 |
---|
| 501 | DO |
---|
| 502 | iter = iter + 1 |
---|
| 503 | ! |
---|
| 504 | !-- In case of divergence, use the value of the previous time step |
---|
| 505 | IF ( iter > 1000 ) THEN |
---|
| 506 | ol(j,i) = ol_old |
---|
| 507 | EXIT |
---|
| 508 | ENDIF |
---|
| 509 | |
---|
| 510 | ol_m = ol(j,i) |
---|
| 511 | ol_l = ol_m - 0.001_wp * ol_m |
---|
| 512 | ol_u = ol_m + 0.001_wp * ol_m |
---|
| 513 | |
---|
| 514 | |
---|
| 515 | IF ( ibc_pt_b /= 1 ) THEN |
---|
| 516 | ! |
---|
| 517 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
| 518 | f = rib(j,i) - ( z_mo / ol_m ) * ( LOG( z_mo / z0h(j,i) )& |
---|
| 519 | - psi_h( z_mo / ol_m ) & |
---|
| 520 | + psi_h( z0h(j,i) / ol_m ) & |
---|
| 521 | ) & |
---|
| 522 | / ( LOG( z_mo / z0(j,i) ) & |
---|
| 523 | - psi_m( z_mo / ol_m ) & |
---|
| 524 | + psi_m( z0(j,i) / ol_m ) & |
---|
| 525 | )**2 |
---|
| 526 | |
---|
| 527 | ! |
---|
| 528 | !-- Calculate df/dL |
---|
| 529 | f_d_ol = ( - ( z_mo / ol_u ) * ( LOG( z_mo / z0h(j,i) ) & |
---|
| 530 | - psi_h( z_mo / ol_u ) & |
---|
| 531 | + psi_h( z0h(j,i) / ol_u ) & |
---|
| 532 | ) & |
---|
| 533 | / ( LOG( z_mo / z0(j,i) ) & |
---|
| 534 | - psi_m( z_mo / ol_u ) & |
---|
| 535 | + psi_m( z0(j,i) / ol_u ) & |
---|
| 536 | )**2 & |
---|
| 537 | + ( z_mo / ol_l ) * ( LOG( z_mo / z0h(j,i) ) & |
---|
| 538 | - psi_h( z_mo / ol_l ) & |
---|
| 539 | + psi_h( z0h(j,i) / ol_l ) & |
---|
| 540 | ) & |
---|
| 541 | / ( LOG( z_mo / z0(j,i) ) & |
---|
| 542 | - psi_m( z_mo / ol_l ) & |
---|
| 543 | + psi_m( z0(j,i) / ol_l ) & |
---|
| 544 | )**2 & |
---|
| 545 | ) / ( ol_u - ol_l ) |
---|
| 546 | ELSE |
---|
| 547 | ! |
---|
| 548 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
| 549 | f = rib(j,i) - ( z_mo / ol_m ) / ( LOG( z_mo / z0(j,i) )& |
---|
| 550 | - psi_m( z_mo / ol_m ) & |
---|
| 551 | + psi_m( z0(j,i) / ol_m ) & |
---|
| 552 | )**3 |
---|
| 553 | |
---|
| 554 | ! |
---|
| 555 | !-- Calculate df/dL |
---|
| 556 | f_d_ol = ( - ( z_mo / ol_u ) / ( LOG( z_mo / z0(j,i) ) & |
---|
| 557 | - psi_m( z_mo / ol_u ) & |
---|
| 558 | + psi_m( z0(j,i) / ol_u ) & |
---|
| 559 | )**3 & |
---|
| 560 | + ( z_mo / ol_l ) / ( LOG( z_mo / z0(j,i) ) & |
---|
| 561 | - psi_m( z_mo / ol_l ) & |
---|
| 562 | + psi_m( z0(j,i) / ol_l ) & |
---|
| 563 | )**3 & |
---|
| 564 | ) / ( ol_u - ol_l ) |
---|
| 565 | ENDIF |
---|
| 566 | ! |
---|
| 567 | !-- Calculate new L |
---|
| 568 | ol(j,i) = ol_m - f / f_d_ol |
---|
| 569 | |
---|
| 570 | ! |
---|
| 571 | !-- Ensure that the bulk Richardson number and the Obukhov |
---|
| 572 | !-- length have the same sign and ensure convergence. |
---|
| 573 | IF ( ol(j,i) * ol_m < 0.0_wp ) ol(j,i) = ol_m * 0.5_wp |
---|
| 574 | |
---|
| 575 | ! |
---|
| 576 | !-- If unrealistic value occurs, set L to the maximum |
---|
| 577 | !-- value that is allowed |
---|
| 578 | IF ( ABS( ol(j,i) ) > ol_max ) THEN |
---|
| 579 | ol(j,i) = ol_max |
---|
| 580 | EXIT |
---|
| 581 | ENDIF |
---|
| 582 | ! |
---|
| 583 | !-- Check for convergence |
---|
| 584 | IF ( ABS( ( ol(j,i) - ol_m ) / ol(j,i) ) < 1.0E-4_wp ) THEN |
---|
| 585 | EXIT |
---|
| 586 | ELSE |
---|
| 587 | CYCLE |
---|
| 588 | ENDIF |
---|
| 589 | |
---|
| 590 | ENDDO |
---|
| 591 | |
---|
| 592 | ENDDO |
---|
| 593 | ENDDO |
---|
| 594 | |
---|
| 595 | ELSEIF ( TRIM( most_method ) == 'lookup' ) THEN |
---|
| 596 | |
---|
| 597 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 598 | !$acc kernels loop |
---|
| 599 | DO i = nxl, nxr |
---|
| 600 | DO j = nys, nyn |
---|
| 601 | |
---|
| 602 | k = nzb_s_inner(j,i) |
---|
| 603 | |
---|
| 604 | ! |
---|
| 605 | !-- If the bulk Richardson number is outside the range of the lookup |
---|
| 606 | !-- table, set it to the exceeding threshold value |
---|
| 607 | IF ( rib(j,i) < rib_min ) rib(j,i) = rib_min |
---|
| 608 | IF ( rib(j,i) > rib_max ) rib(j,i) = rib_max |
---|
| 609 | |
---|
| 610 | ! |
---|
| 611 | !-- Find the correct index bounds for linear interpolation. As the |
---|
| 612 | !-- Richardson number will not differ very much from time step to |
---|
| 613 | !-- time step , use the index from the last step and search in the |
---|
| 614 | !-- correct direction |
---|
| 615 | l = l_bnd |
---|
| 616 | IF ( rib_tab(l) - rib(j,i) > 0.0_wp ) THEN |
---|
| 617 | DO WHILE ( rib_tab(l-1) - rib(j,i) > 0.0_wp .AND. l > 0 ) |
---|
| 618 | l = l-1 |
---|
| 619 | ENDDO |
---|
| 620 | ELSE |
---|
| 621 | DO WHILE ( rib_tab(l) - rib(j,i) < 0.0_wp & |
---|
| 622 | .AND. l < num_steps-1 ) |
---|
| 623 | l = l+1 |
---|
| 624 | ENDDO |
---|
| 625 | ENDIF |
---|
| 626 | l_bnd = l |
---|
| 627 | |
---|
| 628 | ! |
---|
| 629 | !-- Linear interpolation to find the correct value of z/L |
---|
| 630 | ol(j,i) = ( ol_tab(l-1) + ( ol_tab(l) - ol_tab(l-1) ) & |
---|
| 631 | / ( rib_tab(l) - rib_tab(l-1) ) & |
---|
| 632 | * ( rib(j,i) - rib_tab(l-1) ) ) |
---|
| 633 | |
---|
| 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | |
---|
| 637 | ELSEIF ( TRIM( most_method ) == 'circular' ) THEN |
---|
| 638 | |
---|
| 639 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 640 | !$acc kernels loop |
---|
| 641 | DO i = nxl, nxr |
---|
| 642 | DO j = nys, nyn |
---|
| 643 | |
---|
| 644 | k = nzb_s_inner(j,i) |
---|
| 645 | z_mo = zu(k+1) - zw(k) |
---|
| 646 | |
---|
| 647 | IF ( .NOT. humidity ) THEN |
---|
| 648 | ol(j,i) = ( pt(k+1,j,i) * us(j,i)**2 ) / ( kappa * g & |
---|
| 649 | * ts(j,i) + 1E-30_wp ) |
---|
| 650 | ELSEIF ( cloud_physics ) THEN |
---|
| 651 | |
---|
| 652 | ol(j,i) = ( vpt(k+1,j,i) * us(j,i)**2 ) / ( kappa * g & |
---|
| 653 | * ( ts(j,i) + 0.61_wp * pt1(j,i) * qs(j,i) & |
---|
| 654 | + 0.61_wp * qv1(j,i) * ts(j,i) - ts(j,i) & |
---|
| 655 | * ql(k+1,j,i) ) + 1E-30_wp ) |
---|
| 656 | ELSE |
---|
| 657 | ol(j,i) = ( vpt(k+1,j,i) * us(j,i)**2 ) / ( kappa * g & |
---|
| 658 | * ( ts(j,i) + 0.61_wp * pt(k+1,j,i) * qs(j,i) & |
---|
| 659 | + 0.61_wp * q(k+1,j,i) * ts(j,i) ) + 1E-30_wp ) |
---|
| 660 | ENDIF |
---|
| 661 | ! |
---|
| 662 | !-- Limit the value range of the Obukhov length. |
---|
| 663 | !-- This is necessary for very small velocities (u,v --> 0), because |
---|
| 664 | !-- the absolute value of ol can then become very small, which in |
---|
| 665 | !-- consequence would result in very large shear stresses and very |
---|
| 666 | !-- small momentum fluxes (both are generally unrealistic). |
---|
| 667 | IF ( ( z_mo / ol(j,i) ) < zeta_min ) ol(j,i) = z_mo / zeta_min |
---|
| 668 | IF ( ( z_mo / ol(j,i) ) > zeta_max ) ol(j,i) = z_mo / zeta_max |
---|
| 669 | |
---|
| 670 | ENDDO |
---|
| 671 | ENDDO |
---|
| 672 | |
---|
| 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- Values of ol at ghost point locations are needed for the evaluation |
---|
| 677 | !-- of usws and vsws. |
---|
| 678 | !$acc update host( ol ) |
---|
| 679 | CALL exchange_horiz_2d( ol ) |
---|
| 680 | !$acc update device( ol ) |
---|
| 681 | |
---|
| 682 | END SUBROUTINE calc_ol |
---|
| 683 | |
---|
| 684 | ! |
---|
| 685 | !-- Calculate friction velocity u* |
---|
| 686 | SUBROUTINE calc_us |
---|
| 687 | |
---|
| 688 | IMPLICIT NONE |
---|
| 689 | |
---|
[1697] | 690 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
| 691 | !$acc kernels loop |
---|
[1691] | 692 | DO i = nxlg, nxrg |
---|
| 693 | DO j = nysg, nyng |
---|
| 694 | |
---|
| 695 | k = nzb_s_inner(j,i)+1 |
---|
| 696 | z_mo = zu(k+1) - zw(k) |
---|
| 697 | |
---|
| 698 | ! |
---|
| 699 | !-- Compute u* at the scalars' grid points |
---|
| 700 | us(j,i) = kappa * uv_total(j,i) / ( LOG( z_mo / z0(j,i) ) & |
---|
| 701 | - psi_m( z_mo / ol(j,i) ) & |
---|
| 702 | + psi_m( z0(j,i) / ol(j,i) ) ) |
---|
| 703 | ENDDO |
---|
| 704 | ENDDO |
---|
| 705 | |
---|
| 706 | END SUBROUTINE calc_us |
---|
| 707 | |
---|
| 708 | ! |
---|
| 709 | !-- Calculate potential temperature and specific humidity at first grid level |
---|
| 710 | SUBROUTINE calc_pt_q |
---|
| 711 | |
---|
| 712 | IMPLICIT NONE |
---|
| 713 | |
---|
| 714 | DO i = nxlg, nxrg |
---|
| 715 | DO j = nysg, nyng |
---|
| 716 | k = nzb_s_inner(j,i)+1 |
---|
| 717 | pt1(j,i) = pt(k,j,i) + l_d_cp * pt_d_t(k) * ql(k,j,i) |
---|
| 718 | qv1(j,i) = q(k,j,i) - ql(k,j,i) |
---|
| 719 | ENDDO |
---|
| 720 | ENDDO |
---|
| 721 | |
---|
| 722 | END SUBROUTINE calc_pt_q |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Calculate the other MOST scaling parameters theta*, q*, (qr*, nr*) |
---|
| 726 | SUBROUTINE calc_scaling_parameters |
---|
| 727 | |
---|
| 728 | IMPLICIT NONE |
---|
| 729 | |
---|
| 730 | ! |
---|
| 731 | !-- Data information for accelerators |
---|
| 732 | !$acc data present( e, nrsws, nzb_u_inner, nzb_v_inner, nzb_s_inner, pt ) & |
---|
| 733 | !$acc present( q, qs, qsws, qrsws, shf, ts, u, us, usws, v ) & |
---|
| 734 | !$acc present( vpt, vsws, zu, zw, z0, z0h ) |
---|
| 735 | ! |
---|
| 736 | !-- Compute theta* |
---|
| 737 | IF ( constant_heatflux ) THEN |
---|
| 738 | |
---|
| 739 | ! |
---|
| 740 | !-- For a given heat flux in the surface layer: |
---|
| 741 | !$OMP PARALLEL DO |
---|
| 742 | !$acc kernels loop |
---|
| 743 | DO i = nxlg, nxrg |
---|
| 744 | DO j = nysg, nyng |
---|
| 745 | ts(j,i) = -shf(j,i) / ( us(j,i) + 1E-30_wp ) |
---|
| 746 | ! |
---|
| 747 | !-- ts must be limited, because otherwise overflow may occur in case |
---|
| 748 | !-- of us=0 when computing ol further below |
---|
| 749 | IF ( ts(j,i) < -1.05E5_wp ) ts(j,i) = -1.0E5_wp |
---|
| 750 | IF ( ts(j,i) > 1.0E5_wp ) ts(j,i) = 1.0E5_wp |
---|
| 751 | ENDDO |
---|
| 752 | ENDDO |
---|
| 753 | |
---|
| 754 | ELSE |
---|
| 755 | ! |
---|
| 756 | !-- For a given surface temperature: |
---|
| 757 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 758 | !$OMP PARALLEL DO |
---|
| 759 | !$acc kernels loop |
---|
| 760 | DO i = nxlg, nxrg |
---|
| 761 | DO j = nysg, nyng |
---|
| 762 | k = nzb_s_inner(j,i) |
---|
| 763 | pt(k,j,i) = pt_surface |
---|
| 764 | ENDDO |
---|
| 765 | ENDDO |
---|
| 766 | ENDIF |
---|
| 767 | |
---|
[1697] | 768 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
[1691] | 769 | !$acc kernels loop |
---|
| 770 | DO i = nxlg, nxrg |
---|
| 771 | DO j = nysg, nyng |
---|
| 772 | |
---|
| 773 | k = nzb_s_inner(j,i) |
---|
| 774 | z_mo = zu(k+1) - zw(k) |
---|
| 775 | |
---|
| 776 | IF ( cloud_physics ) THEN |
---|
| 777 | ts(j,i) = kappa * ( pt1(j,i) - pt(k,j,i) ) & |
---|
| 778 | / ( LOG( z_mo / z0h(j,i) ) & |
---|
| 779 | - psi_h( z_mo / ol(j,i) ) & |
---|
| 780 | + psi_h( z0h(j,i) / ol(j,i) ) ) |
---|
| 781 | ELSE |
---|
| 782 | ts(j,i) = kappa * ( pt(k+1,j,i) - pt(k,j,i) ) & |
---|
| 783 | / ( LOG( z_mo / z0h(j,i) ) & |
---|
| 784 | - psi_h( z_mo / ol(j,i) ) & |
---|
| 785 | + psi_h( z0h(j,i) / ol(j,i) ) ) |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ENDDO |
---|
| 789 | ENDDO |
---|
| 790 | ENDIF |
---|
| 791 | |
---|
| 792 | ! |
---|
| 793 | !-- If required compute q* |
---|
| 794 | IF ( humidity .OR. passive_scalar ) THEN |
---|
| 795 | IF ( constant_waterflux ) THEN |
---|
| 796 | ! |
---|
| 797 | !-- For a given water flux in the Prandtl layer: |
---|
| 798 | !$OMP PARALLEL DO |
---|
| 799 | !$acc kernels loop |
---|
| 800 | DO i = nxlg, nxrg |
---|
| 801 | DO j = nysg, nyng |
---|
| 802 | qs(j,i) = -qsws(j,i) / ( us(j,i) + 1E-30_wp ) |
---|
| 803 | ENDDO |
---|
| 804 | ENDDO |
---|
| 805 | |
---|
| 806 | ELSE |
---|
| 807 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. & |
---|
| 808 | run_coupled ) |
---|
| 809 | |
---|
| 810 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 811 | !$OMP PARALLEL DO |
---|
| 812 | !$acc kernels loop |
---|
| 813 | DO i = nxlg, nxrg |
---|
| 814 | DO j = nysg, nyng |
---|
| 815 | k = nzb_s_inner(j,i) |
---|
| 816 | q(k,j,i) = q_surface |
---|
| 817 | ENDDO |
---|
| 818 | ENDDO |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
[1697] | 821 | !$OMP PARALLEL DO PRIVATE( e_s, k, z_mo ) |
---|
[1691] | 822 | !$acc kernels loop independent |
---|
| 823 | DO i = nxlg, nxrg |
---|
| 824 | !$acc loop independent |
---|
| 825 | DO j = nysg, nyng |
---|
| 826 | |
---|
| 827 | k = nzb_s_inner(j,i) |
---|
| 828 | z_mo = zu(k+1) - zw(k) |
---|
| 829 | |
---|
| 830 | ! |
---|
| 831 | !-- Assume saturation for atmosphere coupled to ocean (but not |
---|
| 832 | !-- in case of precursor runs) |
---|
| 833 | IF ( coupled_run ) THEN |
---|
| 834 | e_s = 6.1_wp * & |
---|
| 835 | EXP( 0.07_wp * ( MIN(pt(k,j,i),pt(k+1,j,i)) & |
---|
| 836 | - 273.15_wp ) ) |
---|
| 837 | q(k,j,i) = 0.622_wp * e_s / ( surface_pressure - e_s ) |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
| 840 | IF ( cloud_physics ) THEN |
---|
| 841 | qs(j,i) = kappa * ( qv1(j,i) - q(k,j,i) ) & |
---|
| 842 | / ( LOG( z_mo / z0h(j,i) ) & |
---|
| 843 | - psi_h( z_mo / ol(j,i) ) & |
---|
| 844 | + psi_h( z0h(j,i) / ol(j,i) ) ) |
---|
| 845 | |
---|
| 846 | ELSE |
---|
| 847 | qs(j,i) = kappa * ( q(k+1,j,i) - q(k,j,i) ) & |
---|
| 848 | / ( LOG( z_mo / z0h(j,i) ) & |
---|
| 849 | - psi_h( z_mo / ol(j,i) ) & |
---|
| 850 | + psi_h( z0h(j,i) / ol(j,i) ) ) |
---|
| 851 | ENDIF |
---|
| 852 | |
---|
| 853 | ENDDO |
---|
| 854 | ENDDO |
---|
| 855 | ENDIF |
---|
| 856 | ENDIF |
---|
| 857 | |
---|
| 858 | |
---|
| 859 | ! |
---|
| 860 | !-- If required compute qr* and nr* |
---|
| 861 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. precipitation ) THEN |
---|
| 862 | |
---|
[1697] | 863 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
[1691] | 864 | !$acc kernels loop independent |
---|
| 865 | DO i = nxlg, nxrg |
---|
| 866 | !$acc loop independent |
---|
| 867 | DO j = nysg, nyng |
---|
| 868 | |
---|
| 869 | k = nzb_s_inner(j,i) |
---|
| 870 | z_mo = zu(k+1) - zw(k) |
---|
| 871 | |
---|
| 872 | qrs(j,i) = kappa * ( qr(k+1,j,i) - qr(k,j,i) ) & |
---|
| 873 | / ( LOG( z_mo / z0h(j,i) ) & |
---|
| 874 | - psi_h( z_mo / ol(j,i) ) & |
---|
| 875 | + psi_h( z0h(j,i) / ol(j,i) ) ) |
---|
| 876 | |
---|
| 877 | nrs(j,i) = kappa * ( nr(k+1,j,i) - nr(k,j,i) ) & |
---|
| 878 | / ( LOG( z_mo / z0h(j,i) ) & |
---|
| 879 | - psi_h( z_mo / ol(j,i) ) & |
---|
| 880 | + psi_h( z0h(j,i) / ol(j,i) ) ) |
---|
| 881 | ENDDO |
---|
| 882 | ENDDO |
---|
| 883 | |
---|
| 884 | ENDIF |
---|
| 885 | |
---|
| 886 | END SUBROUTINE calc_scaling_parameters |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Calculate surface fluxes usws, vsws, shf, qsws, (qrsws, nrsws) |
---|
| 892 | SUBROUTINE calc_surface_fluxes |
---|
| 893 | |
---|
| 894 | IMPLICIT NONE |
---|
| 895 | |
---|
| 896 | REAL(wp) :: ol_mid !< Grid-interpolated L |
---|
| 897 | |
---|
| 898 | ! |
---|
| 899 | !-- Compute u'w' for the total model domain. |
---|
| 900 | !-- First compute the corresponding component of u* and square it. |
---|
| 901 | !$OMP PARALLEL DO PRIVATE( k, ol_mid, z_mo ) |
---|
| 902 | !$acc kernels loop |
---|
| 903 | DO i = nxl, nxr |
---|
| 904 | DO j = nys, nyn |
---|
| 905 | |
---|
| 906 | k = nzb_u_inner(j,i) |
---|
| 907 | z_mo = zu(k+1) - zw(k) |
---|
| 908 | ! |
---|
| 909 | !-- Compute bulk Obukhov length for this point |
---|
| 910 | ol_mid = 0.5_wp * ( ol(j,i-1) + ol(j,i) ) |
---|
| 911 | |
---|
| 912 | IF ( ol_mid == 0.0_wp ) THEN |
---|
| 913 | ol_mid = MIN(ol(j,i-1), ol(j,i)) |
---|
| 914 | ENDIF |
---|
| 915 | |
---|
| 916 | usws(j,i) = kappa * ( u(k+1,j,i) - u(k,j,i) ) & |
---|
| 917 | / ( LOG( z_mo / z0(j,i) ) & |
---|
| 918 | - psi_m( z_mo / ol_mid ) & |
---|
| 919 | + psi_m( z0(j,i) / ol_mid ) ) |
---|
| 920 | |
---|
| 921 | usws(j,i) = -usws(j,i) * 0.5_wp * ( us(j,i-1) + us(j,i) ) |
---|
| 922 | ENDDO |
---|
| 923 | ENDDO |
---|
| 924 | |
---|
| 925 | ! |
---|
| 926 | !-- Compute v'w' for the total model domain. |
---|
| 927 | !-- First compute the corresponding component of u* and square it. |
---|
| 928 | !$OMP PARALLEL DO PRIVATE( k, ol_mid, z_mo ) |
---|
| 929 | !$acc kernels loop |
---|
| 930 | DO i = nxl, nxr |
---|
| 931 | DO j = nys, nyn |
---|
| 932 | |
---|
| 933 | k = nzb_v_inner(j,i) |
---|
| 934 | z_mo = zu(k+1) - zw(k) |
---|
| 935 | ! |
---|
| 936 | !-- Compute bulk Obukhov length for this point |
---|
| 937 | ol_mid = 0.5_wp * ( ol(j-1,i) + ol(j,i) ) |
---|
| 938 | |
---|
| 939 | IF ( ol_mid == 0.0_wp ) THEN |
---|
| 940 | ol_mid = MIN(ol(j-1,i), ol(j-1,i)) |
---|
| 941 | ENDIF |
---|
| 942 | |
---|
| 943 | vsws(j,i) = kappa * ( v(k+1,j,i) - v(k,j,i) ) & |
---|
| 944 | / ( LOG( z_mo / z0(j,i) ) & |
---|
| 945 | - psi_m( z_mo / ol_mid ) & |
---|
| 946 | + psi_m( z0(j,i) / ol_mid ) ) |
---|
| 947 | |
---|
| 948 | vsws(j,i) = -vsws(j,i) * 0.5_wp * ( us(j,i-1) + us(j,i) ) |
---|
| 949 | |
---|
| 950 | ENDDO |
---|
| 951 | ENDDO |
---|
| 952 | |
---|
| 953 | ! |
---|
| 954 | !-- Exchange the boundaries for the momentum fluxes (is this still required?) |
---|
| 955 | !$acc update host( usws, vsws ) |
---|
| 956 | CALL exchange_horiz_2d( usws ) |
---|
| 957 | CALL exchange_horiz_2d( vsws ) |
---|
| 958 | !$acc update device( usws, vsws ) |
---|
| 959 | |
---|
| 960 | ! |
---|
| 961 | !-- Compute the vertical kinematic heat flux |
---|
| 962 | IF ( .NOT. constant_heatflux .AND. ( simulated_time <= & |
---|
| 963 | skip_time_do_lsm .OR. .NOT. land_surface ) ) THEN |
---|
| 964 | !$OMP PARALLEL DO |
---|
| 965 | !$acc kernels loop independent |
---|
| 966 | DO i = nxlg, nxrg |
---|
| 967 | !$acc loop independent |
---|
| 968 | DO j = nysg, nyng |
---|
| 969 | shf(j,i) = -ts(j,i) * us(j,i) |
---|
| 970 | ENDDO |
---|
| 971 | ENDDO |
---|
| 972 | |
---|
| 973 | ENDIF |
---|
| 974 | |
---|
| 975 | ! |
---|
| 976 | !-- Compute the vertical water/scalar flux |
---|
| 977 | IF ( .NOT. constant_waterflux .AND. ( humidity .OR. passive_scalar ) & |
---|
| 978 | .AND. ( simulated_time <= skip_time_do_lsm .OR. .NOT. & |
---|
| 979 | land_surface ) ) THEN |
---|
| 980 | !$OMP PARALLEL DO |
---|
| 981 | !$acc kernels loop independent |
---|
| 982 | DO i = nxlg, nxrg |
---|
| 983 | !$acc loop independent |
---|
| 984 | DO j = nysg, nyng |
---|
| 985 | qsws(j,i) = -qs(j,i) * us(j,i) |
---|
| 986 | ENDDO |
---|
| 987 | ENDDO |
---|
| 988 | |
---|
| 989 | ENDIF |
---|
| 990 | |
---|
| 991 | ! |
---|
| 992 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
| 993 | IF ( cloud_physics .AND. icloud_scheme == 0 .AND. & |
---|
| 994 | precipitation ) THEN |
---|
| 995 | !$OMP PARALLEL DO |
---|
| 996 | !$acc kernels loop independent |
---|
| 997 | DO i = nxlg, nxrg |
---|
| 998 | !$acc loop independent |
---|
| 999 | DO j = nysg, nyng |
---|
| 1000 | qrsws(j,i) = -qrs(j,i) * us(j,i) |
---|
| 1001 | nrsws(j,i) = -nrs(j,i) * us(j,i) |
---|
| 1002 | ENDDO |
---|
| 1003 | ENDDO |
---|
| 1004 | ENDIF |
---|
| 1005 | |
---|
| 1006 | ! |
---|
| 1007 | !-- Bottom boundary condition for the TKE |
---|
| 1008 | IF ( ibc_e_b == 2 ) THEN |
---|
| 1009 | !$OMP PARALLEL DO |
---|
| 1010 | !$acc kernels loop independent |
---|
| 1011 | DO i = nxlg, nxrg |
---|
| 1012 | !$acc loop independent |
---|
| 1013 | DO j = nysg, nyng |
---|
| 1014 | e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.1_wp )**2 |
---|
| 1015 | ! |
---|
| 1016 | !-- As a test: cm = 0.4 |
---|
| 1017 | ! e(nzb_s_inner(j,i)+1,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
| 1018 | e(nzb_s_inner(j,i),j,i) = e(nzb_s_inner(j,i)+1,j,i) |
---|
| 1019 | ENDDO |
---|
| 1020 | ENDDO |
---|
| 1021 | ENDIF |
---|
| 1022 | !$acc end data |
---|
| 1023 | |
---|
| 1024 | END SUBROUTINE calc_surface_fluxes |
---|
| 1025 | |
---|
| 1026 | |
---|
| 1027 | ! |
---|
| 1028 | !-- Integrated stability function for momentum |
---|
| 1029 | FUNCTION psi_m( zeta ) |
---|
| 1030 | |
---|
| 1031 | USE kinds |
---|
| 1032 | |
---|
| 1033 | IMPLICIT NONE |
---|
| 1034 | |
---|
| 1035 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
| 1036 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1037 | REAL(wp) :: x !< dummy variable |
---|
| 1038 | |
---|
| 1039 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1040 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1041 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1042 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1043 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1044 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 1045 | |
---|
| 1046 | |
---|
| 1047 | IF ( zeta < 0.0_wp ) THEN |
---|
| 1048 | x = SQRT( SQRT(1.0_wp - 16.0_wp * zeta ) ) |
---|
| 1049 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
| 1050 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
| 1051 | ELSE |
---|
| 1052 | |
---|
| 1053 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta & |
---|
| 1054 | - bc_d_d |
---|
| 1055 | ! |
---|
| 1056 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 1057 | !-- psi_m = - 5.0_wp * zeta |
---|
| 1058 | |
---|
| 1059 | ENDIF |
---|
| 1060 | |
---|
| 1061 | END FUNCTION psi_m |
---|
| 1062 | |
---|
| 1063 | |
---|
| 1064 | ! |
---|
| 1065 | !-- Integrated stability function for heat and moisture |
---|
| 1066 | FUNCTION psi_h( zeta ) |
---|
| 1067 | |
---|
| 1068 | USE kinds |
---|
| 1069 | |
---|
| 1070 | IMPLICIT NONE |
---|
| 1071 | |
---|
| 1072 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
| 1073 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
| 1074 | REAL(wp) :: x !< dummy variable |
---|
| 1075 | |
---|
| 1076 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
| 1077 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
| 1078 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
| 1079 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
| 1080 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
| 1081 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
| 1082 | |
---|
| 1083 | |
---|
| 1084 | IF ( zeta < 0.0_wp ) THEN |
---|
| 1085 | x = SQRT(1.0_wp - 16.0_wp * zeta ) |
---|
| 1086 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
| 1087 | ELSE |
---|
| 1088 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
| 1089 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d & |
---|
| 1090 | + 1.0_wp |
---|
| 1091 | ! |
---|
| 1092 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
| 1093 | !-- psi_h = - 5.0_wp * zeta |
---|
| 1094 | ENDIF |
---|
| 1095 | |
---|
| 1096 | END FUNCTION psi_h |
---|
| 1097 | |
---|
[1697] | 1098 | END MODULE surface_layer_fluxes_mod |
---|