source: palm/trunk/SOURCE/subsidence.f90 @ 667

Last change on this file since 667 was 667, checked in by suehring, 13 years ago

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

  • Property svn:keywords set to Id
File size: 7.6 KB
Line 
1 MODULE subsidence_mod
2
3!-----------------------------------------------------------------------------!
4! Current revisions:
5! -----------------
6! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
7!
8! Former revisions:
9! -----------------
10! $Id: subsidence.f90 667 2010-12-23 12:06:00Z suehring $
11!
12! 580 2010-10-05 13:59:11Z heinze
13! Renaming of ws_vertical_gradient to subs_vertical_gradient,
14! ws_vertical_gradient_level to subs_vertical_gradient_level and
15! ws_vertical_gradient_level_ind to subs_vertical_gradient_level_i
16!
17! Revision 3.7 2009-12-11 14:15:58Z heinze
18! Initial revision
19!
20! Description:
21! ------------
22! Impact of large-scale subsidence or ascent as tendency term for use
23! in the prognostic equation of potential temperature. This enables the
24! construction of a constant boundary layer height z_i with time.
25!-----------------------------------------------------------------------------!
26
27
28    IMPLICIT NONE
29
30    PRIVATE
31    PUBLIC  init_w_subsidence, subsidence
32
33    INTERFACE init_w_subsidence
34       MODULE PROCEDURE init_w_subsidence
35    END INTERFACE init_w_subsidence
36
37    INTERFACE subsidence
38       MODULE PROCEDURE subsidence
39       MODULE PROCEDURE subsidence_ij
40    END INTERFACE subsidence
41
42 CONTAINS
43
44    SUBROUTINE init_w_subsidence 
45
46       USE arrays_3d
47       USE control_parameters
48       USE grid_variables
49       USE indices
50       USE pegrid
51       USE statistics 
52
53       IMPLICIT NONE
54
55       INTEGER :: i, k
56       REAL    :: gradient, ws_surface
57
58       IF ( .NOT. ALLOCATED( w_subs )) THEN
59          ALLOCATE( w_subs(nzb:nzt+1) )
60          w_subs = 0.0
61       ENDIF
62
63      IF ( ocean )  THEN
64          message_string = 'Applying large scale vertical motion is not ' // &
65                           'allowed for ocean runs'
66          CALL message( 'init_w_subsidence', 'PA0324', 2, 2, 0, 6, 0 )
67       ENDIF
68
69!
70!--   Compute the profile of the subsidence/ascent velocity
71!--   using the given gradients
72      i = 1
73      gradient = 0.0
74      ws_surface = 0.0
75     
76
77      subs_vertical_gradient_level_i(1) = 0
78      DO  k = 1, nzt+1
79         IF ( i < 11 ) THEN
80            IF ( subs_vertical_gradient_level(i) < zu(k)  .AND. &
81                 subs_vertical_gradient_level(i) >= 0.0 )  THEN
82               gradient = subs_vertical_gradient(i) / 100.0
83               subs_vertical_gradient_level_i(i) = k - 1
84               i = i + 1
85            ENDIF
86         ENDIF
87         IF ( gradient /= 0.0 )  THEN
88            IF ( k /= 1 )  THEN
89               w_subs(k) = w_subs(k-1) + dzu(k) * gradient
90            ELSE
91               w_subs(k) = ws_surface   + 0.5 * dzu(k) * gradient
92            ENDIF
93         ELSE
94            w_subs(k) = w_subs(k-1)
95         ENDIF
96      ENDDO
97
98!
99!--   In case of no given gradients for the subsidence/ascent velocity,
100!--   choose zero gradient
101      IF ( subs_vertical_gradient_level(1) == -9999999.9 )  THEN
102         subs_vertical_gradient_level(1) = 0.0
103      ENDIF
104
105    END SUBROUTINE init_w_subsidence
106
107
108    SUBROUTINE subsidence( tendency, var, var_init ) 
109
110       USE arrays_3d
111       USE control_parameters
112       USE grid_variables
113       USE indices
114       USE pegrid
115       USE statistics 
116
117       IMPLICIT NONE
118 
119       INTEGER :: i, j, k
120
121       REAL :: tmp_grad
122   
123       REAL, DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: var, tendency
124       REAL, DIMENSION(nzb:nzt+1) :: var_init, var_mod
125
126       var_mod = var_init
127
128!
129!--    Influence of w_subsidence on the current tendency term
130       DO  i = nxl, nxr
131          DO  j = nys, nyn
132             DO  k = nzb_s_inner(j,i)+1, nzt 
133                IF ( w_subs(k) < 0.0 ) THEN    ! large-scale subsidence
134                   tendency(k,j,i) = tendency(k,j,i) - w_subs(k) *  &
135                                     ( var(k+1,j,i) - var(k,j,i) ) * ddzu(k+1)
136                ELSE                           ! large-scale ascent
137                   tendency(k,j,i) = tendency(k,j,i) - w_subs(k) *  &
138                                     ( var(k,j,i) - var(k-1,j,i) ) * ddzu(k)
139                ENDIF
140             ENDDO
141          ENDDO
142       ENDDO
143
144!
145!--    Shifting of the initial profile is especially necessary with Rayleigh
146!--    damping switched on
147
148       DO  k = nzb, nzt
149          IF ( w_subs(k) < 0.0 ) THEN      ! large-scale subsidence
150             var_mod(k) = var_init(k) - dt_3d * w_subs(k) *  &
151                               ( var_init(k+1) - var_init(k) ) * ddzu(k+1)
152          ENDIF
153       ENDDO
154!
155!--   At the upper boundary, the initial profile is shifted with aid of
156!--   the gradient tmp_grad. (This is ok if the gradients are linear.)
157      IF ( w_subs(nzt) < 0.0 ) THEN
158         tmp_grad = ( var_init(nzt+1) - var_init(nzt) ) * ddzu(nzt+1)
159         var_mod(nzt+1) = var_init(nzt+1) -  &
160                              dt_3d * w_subs(nzt+1) * tmp_grad
161      ENDIF
162       
163
164      DO  k = nzt+1, nzb+1, -1
165         IF ( w_subs(k) >= 0.0 ) THEN  ! large-scale ascent
166            var_mod(k) = var_init(k) - dt_3d * w_subs(k) *  &
167                               ( var_init(k) - var_init(k-1) ) * ddzu(k+1) 
168         ENDIF
169      ENDDO
170!
171!--   At the lower boundary shifting is not necessary because the
172!--   subsidence velocity w_subs(nzb) vanishes.
173
174
175      IF ( w_subs(nzb+1) >= 0.0 ) THEN
176         var_mod(nzb) = var_init(nzb)
177      ENDIF
178
179      var_init = var_mod
180
181
182 END SUBROUTINE subsidence
183
184 SUBROUTINE subsidence_ij( i, j, tendency, var, var_init ) 
185
186       USE arrays_3d
187       USE control_parameters
188       USE grid_variables
189       USE indices
190       USE pegrid
191       USE statistics 
192
193       IMPLICIT NONE
194 
195       INTEGER :: i, j, k
196
197       REAL :: tmp_grad
198   
199       REAL, DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: var, tendency
200       REAL, DIMENSION(nzb:nzt+1) :: var_init, var_mod
201
202       var_mod = var_init
203
204!
205!--    Influence of w_subsidence on the current tendency term
206       DO  k = nzb_s_inner(j,i)+1, nzt 
207          IF ( w_subs(k) < 0.0 ) THEN      ! large-scale subsidence
208             tendency(k,j,i) = tendency(k,j,i) - w_subs(k) *  &
209                               ( var(k+1,j,i) - var(k,j,i) ) * ddzu(k+1)
210          ELSE                             ! large-scale ascent
211             tendency(k,j,i) = tendency(k,j,i) - w_subs(k) *  &
212                               ( var(k,j,i) - var(k-1,j,i) ) * ddzu(k)
213          ENDIF
214       ENDDO
215
216
217!
218!--    Shifting of the initial profile is especially necessary with Rayleigh
219!--    damping switched on
220       IF ( i == nxl .AND. j == nys ) THEN ! shifting only once per PE
221
222          DO  k = nzb, nzt
223             IF ( w_subs(k) < 0.0 ) THEN      ! large-scale subsidence
224                var_mod(k) = var_init(k) - dt_3d * w_subs(k) *  &
225                                  ( var_init(k+1) - var_init(k) ) * ddzu(k+1)
226             ENDIF
227          ENDDO
228!
229!--       At the upper boundary, the initial profile is shifted with aid of
230!--       the gradient tmp_grad. (This is ok if the gradients are linear.)
231          IF ( w_subs(nzt) < 0.0 ) THEN
232             tmp_grad = ( var_init(nzt+1) - var_init(nzt) ) * ddzu(nzt+1)
233             var_mod(nzt+1) = var_init(nzt+1) -  &
234                                  dt_3d * w_subs(nzt+1) * tmp_grad
235          ENDIF
236       
237
238          DO  k = nzt+1, nzb+1, -1
239             IF ( w_subs(k) >= 0.0 ) THEN  ! large-scale ascent
240                var_mod(k) = var_init(k) - dt_3d * w_subs(k) *  &
241                                   ( var_init(k) - var_init(k-1) ) * ddzu(k+1)
242             ENDIF
243          ENDDO
244!
245!--       At the lower boundary shifting is not necessary because the
246!--       subsidence velocity w_subs(nzb) vanishes.
247
248
249          IF ( w_subs(nzb+1) >= 0.0 ) THEN
250             var_mod(nzb) = var_init(nzb)
251          ENDIF
252
253          var_init = var_mod 
254
255       ENDIF
256
257 END SUBROUTINE subsidence_ij
258
259
260 END MODULE subsidence_mod
Note: See TracBrowser for help on using the repository browser.