1 | SUBROUTINE spline_z( vad_in_out, ad_v, dz_spline, spline_tri, var_char ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: spline_z.f90 484 2010-02-05 07:36:54Z weinreis $ |
---|
11 | ! |
---|
12 | ! 19 2007-02-23 04:53:48Z raasch |
---|
13 | ! Boundary condition for pt at top adjusted |
---|
14 | ! |
---|
15 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
16 | ! |
---|
17 | ! Revision 1.9 2005/06/29 08:22:56 steinfeld |
---|
18 | ! Dependency of ug and vg on height considered in the determination of the |
---|
19 | ! upper boundary condition for vad |
---|
20 | ! |
---|
21 | ! Revision 1.1 1999/02/05 09:17:16 raasch |
---|
22 | ! Initial revision |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Description: |
---|
26 | ! ------------ |
---|
27 | ! Upstream-spline advection along x |
---|
28 | ! |
---|
29 | ! Input/output parameters: |
---|
30 | ! ad_v = advecting wind speed component |
---|
31 | ! dz_spline = vertical grid spacing (dzu or dzw, depending on quantity to be |
---|
32 | ! advected) |
---|
33 | ! spline_tri = grid spacing factors (spl_tri_zu or spl_tri_zw, depending on |
---|
34 | ! quantity to be advected) |
---|
35 | ! vad_in_out = quantity to be advected, excluding ghost- or cyclic boundaries |
---|
36 | ! result is given to the calling routine in this array |
---|
37 | ! var_char = string which defines the quantity to be advected |
---|
38 | ! |
---|
39 | ! Internal arrays: |
---|
40 | ! r = 2D-working array (right hand side of linear equation, buffer for |
---|
41 | ! Long filter) |
---|
42 | ! tf = tendency field (2D), used for long filter |
---|
43 | ! vad = quantity to be advected (2D), including ghost- or cyclic |
---|
44 | ! boundarys along the direction of advection |
---|
45 | ! wrk_long = working array (long coefficients) |
---|
46 | ! wrk_spline = working array (spline coefficients) |
---|
47 | !------------------------------------------------------------------------------! |
---|
48 | |
---|
49 | USE arrays_3d |
---|
50 | USE grid_variables |
---|
51 | USE indices |
---|
52 | USE statistics |
---|
53 | USE control_parameters |
---|
54 | USE transpose_indices |
---|
55 | |
---|
56 | IMPLICIT NONE |
---|
57 | |
---|
58 | CHARACTER (LEN=*) :: var_char |
---|
59 | |
---|
60 | INTEGER :: component, i, j, k, sr |
---|
61 | REAL :: dzwd, dzwu, overshoot_limit, t1, t2, t3, ups_limit |
---|
62 | REAL :: dz_spline(1:nzt+1) |
---|
63 | REAL :: spline_tri(5,nzb:nzt+1) |
---|
64 | REAL :: ad_v(nzb+1:nzta,nys:nyna,nxl:nxra) |
---|
65 | |
---|
66 | REAL, DIMENSION(:,:), ALLOCATABLE :: r, tf, vad, wrk_spline |
---|
67 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: wrk_long |
---|
68 | |
---|
69 | #if defined( __parallel ) |
---|
70 | REAL :: vad_in_out(nzb+1:nzta,nys:nyna,nxl:nxra) |
---|
71 | #else |
---|
72 | REAL :: vad_in_out(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
73 | #endif |
---|
74 | |
---|
75 | ! |
---|
76 | !-- Set criteria for switching between upstream- and upstream-spline-method |
---|
77 | IF ( var_char == 'u' ) THEN |
---|
78 | overshoot_limit = overshoot_limit_u |
---|
79 | ups_limit = ups_limit_u |
---|
80 | component = 1 |
---|
81 | ELSEIF ( var_char == 'v' ) THEN |
---|
82 | overshoot_limit = overshoot_limit_v |
---|
83 | ups_limit = ups_limit_v |
---|
84 | component = 2 |
---|
85 | ELSEIF ( var_char == 'w' ) THEN |
---|
86 | overshoot_limit = overshoot_limit_w |
---|
87 | ups_limit = ups_limit_w |
---|
88 | component = 3 |
---|
89 | ELSEIF ( var_char == 'pt' ) THEN |
---|
90 | overshoot_limit = overshoot_limit_pt |
---|
91 | ups_limit = ups_limit_pt |
---|
92 | component = 4 |
---|
93 | ELSEIF ( var_char == 'e' ) THEN |
---|
94 | overshoot_limit = overshoot_limit_e |
---|
95 | ups_limit = ups_limit_e |
---|
96 | component = 5 |
---|
97 | ENDIF |
---|
98 | |
---|
99 | ! |
---|
100 | !-- Allocate working arrays |
---|
101 | ALLOCATE( r(nzb:nzt+1,nys:nyn), vad(nzb:nzt+1,nys:nyn), & |
---|
102 | wrk_spline(nzb:nzt+1,nys:nyn) ) |
---|
103 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
104 | ALLOCATE( tf(nzb:nzt+1,nys:nyn), wrk_long(nzb+1:nzt,nys:nyn,1:3) ) |
---|
105 | ENDIF |
---|
106 | |
---|
107 | ! |
---|
108 | !-- Initialize calculation of relative upstream fraction |
---|
109 | sums_up_fraction_l(component,3,:) = 0.0 |
---|
110 | |
---|
111 | ! |
---|
112 | !-- Loop over all gridpoints along x |
---|
113 | DO i = nxl, nxr |
---|
114 | |
---|
115 | ! |
---|
116 | !-- Store array to be advected on work array |
---|
117 | vad(nzb+1:nzt,:) = vad_in_out(nzb+1:nzt,nys:nyn,i) |
---|
118 | ! |
---|
119 | !-- Add boundary conditions along z |
---|
120 | IF ( var_char == 'u' .OR. var_char == 'v' ) THEN |
---|
121 | ! |
---|
122 | !-- Bottom boundary |
---|
123 | !-- u- and v-component |
---|
124 | IF ( ibc_uv_b == 0 ) THEN |
---|
125 | vad(nzb,:) = -vad(nzb+1,:) |
---|
126 | ELSE |
---|
127 | vad(nzb,:) = vad(nzb+1,:) |
---|
128 | ENDIF |
---|
129 | ! |
---|
130 | !-- Top boundary |
---|
131 | !-- Dirichlet condition |
---|
132 | IF ( ibc_uv_t == 0 .AND. var_char == 'u' ) THEN |
---|
133 | ! |
---|
134 | !-- u-component |
---|
135 | vad(nzt+1,:) = ug(nzt+1) |
---|
136 | ELSEIF ( ibc_uv_t == 0 .AND. var_char == 'v' ) THEN |
---|
137 | ! |
---|
138 | !-- v-component |
---|
139 | vad(nzt+1,:) = vg(nzt+1) |
---|
140 | ELSE |
---|
141 | ! |
---|
142 | !-- Neumann condition |
---|
143 | vad(nzt+1,:) = vad(nzt,:) |
---|
144 | ENDIF |
---|
145 | |
---|
146 | ELSEIF ( var_char == 'w' ) THEN |
---|
147 | ! |
---|
148 | !-- Bottom and top boundary for w-component |
---|
149 | vad(nzb,:) = 0.0 |
---|
150 | vad(nzt+1,:) = 0.0 |
---|
151 | |
---|
152 | ELSEIF ( var_char == 'pt' ) THEN |
---|
153 | ! |
---|
154 | !-- Bottom boundary for temperature |
---|
155 | IF ( ibc_pt_b == 1 ) THEN |
---|
156 | vad(nzb,:) = vad(nzb+1,:) |
---|
157 | ELSE |
---|
158 | vad(nzb,:) = pt(nzb,:,i) |
---|
159 | ENDIF |
---|
160 | ! |
---|
161 | !-- Top boundary for temperature |
---|
162 | IF ( ibc_pt_t == 0 ) THEN |
---|
163 | vad(nzt+1,:) = pt(nzt+1,nys:nyn,i) |
---|
164 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
165 | vad(nzt+1,:) = vad(nzt,:) |
---|
166 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
167 | vad(nzt+1,:) = vad(nzt,:) + bc_pt_t_val * dz_spline(nzt+1) |
---|
168 | ENDIF |
---|
169 | |
---|
170 | ELSEIF ( var_char == 'e' ) THEN |
---|
171 | ! |
---|
172 | !-- Boundary conditions for TKE (Neumann in any case) |
---|
173 | vad(nzb,:) = vad(nzb+1,:) |
---|
174 | vad(nzt,:) = vad(nzt-1,:) |
---|
175 | vad(nzt+1,:) = vad(nzt,:) |
---|
176 | |
---|
177 | ENDIF |
---|
178 | |
---|
179 | ! |
---|
180 | !-- Calculate right hand side |
---|
181 | DO j = nys, nyn |
---|
182 | r(nzb,j) = 3.0 * ( vad(nzb+1,j)-vad(nzb,j) ) / dz_spline(1) |
---|
183 | r(nzt+1,j) = 3.0 * ( vad(nzt+1,j)-vad(nzt,j) ) / dz_spline(nzt+1) |
---|
184 | DO k = nzb+1, nzt |
---|
185 | r(k,j) = 3.0 * ( & |
---|
186 | spline_tri(2,k) * ( vad(k,j)-vad(k-1,j) ) / dz_spline(k) & |
---|
187 | + spline_tri(3,k) * ( vad(k+1,j)-vad(k,j) ) / dz_spline(k+1) & |
---|
188 | ) |
---|
189 | ENDDO |
---|
190 | ENDDO |
---|
191 | |
---|
192 | ! |
---|
193 | !-- Forward substitution |
---|
194 | DO j = nys, nyn |
---|
195 | wrk_spline(nzb,j) = r(nzb,j) |
---|
196 | DO k = nzb+1, nzt+1 |
---|
197 | wrk_spline(k,j) = r(k,j) - spline_tri(5,k) * r(k-1,j) |
---|
198 | ENDDO |
---|
199 | ENDDO |
---|
200 | |
---|
201 | ! |
---|
202 | !-- Backward substitution |
---|
203 | DO j = nys, nyn |
---|
204 | r(nzt+1,j) = wrk_spline(nzt+1,j) / spline_tri(4,nzt+1) |
---|
205 | DO k = nzt, nzb, -1 |
---|
206 | r(k,j) = ( wrk_spline(k,j) - spline_tri(3,k) * r(k+1,j) ) / & |
---|
207 | spline_tri(4,k) |
---|
208 | ENDDO |
---|
209 | ENDDO |
---|
210 | |
---|
211 | ! |
---|
212 | !-- Calculate advection along z |
---|
213 | DO j = nys, nyn |
---|
214 | DO k = nzb+1, nzt |
---|
215 | |
---|
216 | IF ( ad_v(k,j,i) == 0.0 ) THEN |
---|
217 | |
---|
218 | vad_in_out(k,j,i) = vad(k,j) |
---|
219 | |
---|
220 | ELSEIF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
221 | |
---|
222 | IF ( ABS( vad(k,j) - vad(k-1,j) ) <= ups_limit ) THEN |
---|
223 | vad_in_out(k,j,i) = vad(k,j) - dt_3d * ad_v(k,j,i) * & |
---|
224 | ( vad(k,j) - vad(k-1,j) ) * ddzu(k) |
---|
225 | ! |
---|
226 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
227 | DO sr = 0, statistic_regions |
---|
228 | sums_up_fraction_l(component,3,sr) = & |
---|
229 | sums_up_fraction_l(component,3,sr) + 1.0 |
---|
230 | ENDDO |
---|
231 | ELSE |
---|
232 | t1 = ad_v(k,j,i) * dt_3d / dz_spline(k) |
---|
233 | t2 = 3.0 * ( vad(k-1,j) - vad(k,j) ) + & |
---|
234 | ( 2.0 * r(k,j) + r(k-1,j) ) * dz_spline(k) |
---|
235 | t3 = 2.0 * ( vad(k-1,j) - vad(k,j) ) + & |
---|
236 | ( r(k,j) + r(k-1,j) ) * dz_spline(k) |
---|
237 | vad_in_out(k,j,i) = vad(k,j) - r(k,j) * t1* dz_spline(k) + & |
---|
238 | t2 * t1**2 - t3 * t1**3 |
---|
239 | IF ( vad(k-1,j) == vad(k,j) ) THEN |
---|
240 | vad_in_out(k,j,i) = vad(k,j) |
---|
241 | ENDIF |
---|
242 | ENDIF |
---|
243 | |
---|
244 | ELSE |
---|
245 | |
---|
246 | IF( ABS( vad(k,j) - vad(k+1,j) ) <= ups_limit ) THEN |
---|
247 | vad_in_out(k,j,i) = vad(k,j) - dt_3d * ad_v(k,j,i) * & |
---|
248 | ( vad(k+1,j) - vad(k,j) ) * ddzu(k+1) |
---|
249 | ! |
---|
250 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
251 | DO sr = 0, statistic_regions |
---|
252 | sums_up_fraction_l(component,3,sr) = & |
---|
253 | sums_up_fraction_l(component,3,sr) + 1.0 |
---|
254 | ENDDO |
---|
255 | ELSE |
---|
256 | t1 = -ad_v(k,j,i) * dt_3d / dz_spline(k+1) |
---|
257 | t2 = 3.0 * ( vad(k,j) - vad(k+1,j) ) + & |
---|
258 | ( 2.0 * r(k,j) + r(k+1,j) ) * dz_spline(k+1) |
---|
259 | t3 = 2.0 * ( vad(k,j) - vad(k+1,j) ) + & |
---|
260 | ( r(k,j) + r(k+1,j) ) * dz_spline(k+1) |
---|
261 | vad_in_out(k,j,i) = vad(k,j) + r(k,j)*t1*dz_spline(k+1) - & |
---|
262 | t2 * t1**2 + t3 * t1**3 |
---|
263 | IF ( vad(k+1,j) == vad(k,j) ) THEN |
---|
264 | vad_in_out(k,j,i) = vad(k,j) |
---|
265 | ENDIF |
---|
266 | ENDIF |
---|
267 | |
---|
268 | ENDIF |
---|
269 | ENDDO |
---|
270 | ENDDO |
---|
271 | |
---|
272 | ! |
---|
273 | !-- Limit values in order to prevent overshooting |
---|
274 | IF ( cut_spline_overshoot ) THEN |
---|
275 | |
---|
276 | DO j = nys, nyn |
---|
277 | DO k = nzb+1, nzt |
---|
278 | IF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
279 | IF ( vad(k,j) > vad(k-1,j) ) THEN |
---|
280 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
281 | vad(k,j) + overshoot_limit ) |
---|
282 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
283 | vad(k-1,j) - overshoot_limit ) |
---|
284 | ELSE |
---|
285 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
286 | vad(k,j) - overshoot_limit ) |
---|
287 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
288 | vad(k-1,j) + overshoot_limit ) |
---|
289 | ENDIF |
---|
290 | ELSE |
---|
291 | IF ( vad(k,j) > vad(k+1,j) ) THEN |
---|
292 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
293 | vad(k,j) + overshoot_limit ) |
---|
294 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
295 | vad(k+1,j) - overshoot_limit ) |
---|
296 | ELSE |
---|
297 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
298 | vad(k,j) - overshoot_limit ) |
---|
299 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
300 | vad(k+1,j) + overshoot_limit ) |
---|
301 | ENDIF |
---|
302 | ENDIF |
---|
303 | ENDDO |
---|
304 | ENDDO |
---|
305 | |
---|
306 | ENDIF |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Long-filter (acting on tendency only) |
---|
310 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
311 | |
---|
312 | ! |
---|
313 | !-- Compute tendency |
---|
314 | DO j = nys, nyn |
---|
315 | |
---|
316 | ! |
---|
317 | !-- Depending on the quantity to be advected, the respective vertical |
---|
318 | !-- boundary conditions must be applied. |
---|
319 | IF ( var_char == 'u' .OR. var_char == 'v' ) THEN |
---|
320 | |
---|
321 | IF ( ibc_uv_b == 0 ) THEN |
---|
322 | tf(nzb,j) = - ( vad_in_out(nzb+1,j,i) - vad(nzb+1,j) ) |
---|
323 | ELSE |
---|
324 | tf(nzb,j) = vad_in_out(nzb+1,j,i) - vad(nzb+1,j) |
---|
325 | ENDIF |
---|
326 | |
---|
327 | IF ( ibc_uv_t == 0 ) THEN |
---|
328 | tf(nzt+1,j) = 0.0 |
---|
329 | ELSE |
---|
330 | tf(nzt+1,j) = vad_in_out(nzt,j,i) - vad(nzt,j) |
---|
331 | ENDIF |
---|
332 | |
---|
333 | ELSEIF ( var_char == 'w' ) THEN |
---|
334 | |
---|
335 | tf(nzb,j) = 0.0 |
---|
336 | tf(nzt+1,j) = 0.0 |
---|
337 | |
---|
338 | ELSEIF ( var_char == 'pt' ) THEN |
---|
339 | |
---|
340 | IF ( ibc_pt_b == 1 ) THEN |
---|
341 | tf(nzb,j) = vad_in_out(nzb+1,j,i) - vad(nzb+1,j) |
---|
342 | ELSE |
---|
343 | tf(nzb,j) = 0.0 |
---|
344 | ENDIF |
---|
345 | |
---|
346 | IF ( ibc_pt_t == 1 ) THEN |
---|
347 | vad_in_out(nzt,j,i) = vad_in_out(nzt-1,j,i) + bc_pt_t_val * & |
---|
348 | dz_spline(nzt) |
---|
349 | tf(nzt+1,j) = vad_in_out(nzt,j,i) + bc_pt_t_val * & |
---|
350 | dz_spline(nzt+1) - vad(nzt+1,j) |
---|
351 | ELSE |
---|
352 | vad_in_out(nzt,j,i) = pt(nzt,j,i) |
---|
353 | tf(nzt+1,j) = 0.0 |
---|
354 | ENDIF |
---|
355 | |
---|
356 | ENDIF |
---|
357 | |
---|
358 | DO k = nzb+1, nzt |
---|
359 | tf(k,j) = vad_in_out(k,j,i) - vad(k,j) |
---|
360 | ENDDO |
---|
361 | |
---|
362 | ENDDO |
---|
363 | |
---|
364 | ! |
---|
365 | !-- Apply the filter. |
---|
366 | DO j = nys, nyn |
---|
367 | |
---|
368 | dzwd = dz_spline(1) / ( dz_spline(1) + dz_spline(2) ) |
---|
369 | dzwu = dz_spline(2) / ( dz_spline(1) + dz_spline(2) ) |
---|
370 | |
---|
371 | wrk_long(nzb+1,j,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
372 | wrk_long(nzb+1,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
373 | wrk_long(nzb+1,j,1) |
---|
374 | wrk_long(nzb+1,j,3) = ( long_filter_factor * dzwu * tf(nzb,j) + & |
---|
375 | 2.0 * tf(nzb+1,j) + dzwd * tf(nzb+2,j) & |
---|
376 | ) / wrk_long(nzb+1,j,1) |
---|
377 | |
---|
378 | DO k = nzb+2, nzt-1 |
---|
379 | |
---|
380 | dzwd = dz_spline(k) / ( dz_spline(k) + dz_spline(k+1) ) |
---|
381 | dzwu = dz_spline(k+1) / ( dz_spline(k) + dz_spline(k+1) ) |
---|
382 | |
---|
383 | wrk_long(k,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
384 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
385 | wrk_long(k-1,j,2) |
---|
386 | wrk_long(k,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
387 | wrk_long(k,j,1) |
---|
388 | wrk_long(k,j,3) = ( dzwu * tf(k-1,j) + 2.0 * tf(k,j) + & |
---|
389 | dzwd * tf(k+1,j) - & |
---|
390 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
391 | wrk_long(k-1,j,3) & |
---|
392 | ) / wrk_long(k,j,1) |
---|
393 | ENDDO |
---|
394 | |
---|
395 | dzwd = dz_spline(nzt) / ( dz_spline(nzt) + dz_spline(nzt+1) ) |
---|
396 | dzwu = dz_spline(nzt+1) / ( dz_spline(nzt) + dz_spline(nzt+1) ) |
---|
397 | |
---|
398 | wrk_long(nzt,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
399 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
400 | wrk_long(nzt-1,j,2) |
---|
401 | wrk_long(nzt,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
402 | wrk_long(nzt,j,1) |
---|
403 | wrk_long(nzt,j,3) = ( dzwu * tf(nzt-1,j) + 2.0 * tf(nzt,j) + & |
---|
404 | dzwd * long_filter_factor * tf(nzt+1,j) - & |
---|
405 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
406 | wrk_long(nzt-1,j,3) & |
---|
407 | ) / wrk_long(nzt,j,1) |
---|
408 | r(nzt,j) = wrk_long(nzt,j,3) |
---|
409 | |
---|
410 | ENDDO |
---|
411 | |
---|
412 | DO j = nys, nyn |
---|
413 | DO k = nzt-1, nzb+1, -1 |
---|
414 | r(k,j) = wrk_long(k,j,3) - wrk_long(k,j,2) * r(k+1,j) |
---|
415 | ENDDO |
---|
416 | ENDDO |
---|
417 | |
---|
418 | DO j = nys, nyn |
---|
419 | DO k = nzb+1, nzt |
---|
420 | vad_in_out(k,j,i) = vad(k,j) + r(k,j) |
---|
421 | ENDDO |
---|
422 | ENDDO |
---|
423 | |
---|
424 | ENDIF ! Long filter |
---|
425 | |
---|
426 | ENDDO |
---|
427 | |
---|
428 | DEALLOCATE( r, vad, wrk_spline ) |
---|
429 | IF ( long_filter_factor /= 0.0 ) DEALLOCATE( tf, wrk_long ) |
---|
430 | |
---|
431 | END SUBROUTINE spline_z |
---|