1 | SUBROUTINE spline_z( vad_in_out, ad_v, dz_spline, spline_tri, var_char ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: spline_z.f90 4 2007-02-13 11:33:16Z raasch $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.9 2005/06/29 08:22:56 steinfeld |
---|
14 | ! Dependency of ug and vg on height considered in the determination of the |
---|
15 | ! upper boundary condition for vad |
---|
16 | ! |
---|
17 | ! Revision 1.1 1999/02/05 09:17:16 raasch |
---|
18 | ! Initial revision |
---|
19 | ! |
---|
20 | ! |
---|
21 | ! Description: |
---|
22 | ! ------------ |
---|
23 | ! Upstream-spline advection along x |
---|
24 | ! |
---|
25 | ! Input/output parameters: |
---|
26 | ! ad_v = advecting wind speed component |
---|
27 | ! dz_spline = vertical grid spacing (dzu or dzw, depending on quantity to be |
---|
28 | ! advected) |
---|
29 | ! spline_tri = grid spacing factors (spl_tri_zu or spl_tri_zw, depending on |
---|
30 | ! quantity to be advected) |
---|
31 | ! vad_in_out = quantity to be advected, excluding ghost- or cyclic boundaries |
---|
32 | ! result is given to the calling routine in this array |
---|
33 | ! var_char = string which defines the quantity to be advected |
---|
34 | ! |
---|
35 | ! Internal arrays: |
---|
36 | ! r = 2D-working array (right hand side of linear equation, buffer for |
---|
37 | ! Long filter) |
---|
38 | ! tf = tendency field (2D), used for long filter |
---|
39 | ! vad = quantity to be advected (2D), including ghost- or cyclic |
---|
40 | ! boundarys along the direction of advection |
---|
41 | ! wrk_long = working array (long coefficients) |
---|
42 | ! wrk_spline = working array (spline coefficients) |
---|
43 | !------------------------------------------------------------------------------! |
---|
44 | |
---|
45 | USE arrays_3d |
---|
46 | USE grid_variables |
---|
47 | USE indices |
---|
48 | USE statistics |
---|
49 | USE control_parameters |
---|
50 | USE transpose_indices |
---|
51 | |
---|
52 | IMPLICIT NONE |
---|
53 | |
---|
54 | CHARACTER (LEN=*) :: var_char |
---|
55 | |
---|
56 | INTEGER :: component, i, j, k, sr |
---|
57 | REAL :: dzwd, dzwu, overshoot_limit, t1, t2, t3, ups_limit |
---|
58 | REAL :: dz_spline(1:nzt+1) |
---|
59 | REAL :: spline_tri(5,nzb:nzt+1) |
---|
60 | REAL :: ad_v(nzb+1:nzta,nys:nyna,nxl:nxra) |
---|
61 | |
---|
62 | REAL, DIMENSION(:,:), ALLOCATABLE :: r, tf, vad, wrk_spline |
---|
63 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: wrk_long |
---|
64 | |
---|
65 | #if defined( __parallel ) |
---|
66 | REAL :: vad_in_out(nzb+1:nzta,nys:nyna,nxl:nxra) |
---|
67 | #else |
---|
68 | REAL :: vad_in_out(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
69 | #endif |
---|
70 | |
---|
71 | ! |
---|
72 | !-- Set criteria for switching between upstream- and upstream-spline-method |
---|
73 | IF ( var_char == 'u' ) THEN |
---|
74 | overshoot_limit = overshoot_limit_u |
---|
75 | ups_limit = ups_limit_u |
---|
76 | component = 1 |
---|
77 | ELSEIF ( var_char == 'v' ) THEN |
---|
78 | overshoot_limit = overshoot_limit_v |
---|
79 | ups_limit = ups_limit_v |
---|
80 | component = 2 |
---|
81 | ELSEIF ( var_char == 'w' ) THEN |
---|
82 | overshoot_limit = overshoot_limit_w |
---|
83 | ups_limit = ups_limit_w |
---|
84 | component = 3 |
---|
85 | ELSEIF ( var_char == 'pt' ) THEN |
---|
86 | overshoot_limit = overshoot_limit_pt |
---|
87 | ups_limit = ups_limit_pt |
---|
88 | component = 4 |
---|
89 | ELSEIF ( var_char == 'e' ) THEN |
---|
90 | overshoot_limit = overshoot_limit_e |
---|
91 | ups_limit = ups_limit_e |
---|
92 | component = 5 |
---|
93 | ENDIF |
---|
94 | |
---|
95 | ! |
---|
96 | !-- Allocate working arrays |
---|
97 | ALLOCATE( r(nzb:nzt+1,nys:nyn), vad(nzb:nzt+1,nys:nyn), & |
---|
98 | wrk_spline(nzb:nzt+1,nys:nyn) ) |
---|
99 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
100 | ALLOCATE( tf(nzb:nzt+1,nys:nyn), wrk_long(nzb+1:nzt,nys:nyn,1:3) ) |
---|
101 | ENDIF |
---|
102 | |
---|
103 | ! |
---|
104 | !-- Initialize calculation of relative upstream fraction |
---|
105 | sums_up_fraction_l(component,3,:) = 0.0 |
---|
106 | |
---|
107 | ! |
---|
108 | !-- Loop over all gridpoints along x |
---|
109 | DO i = nxl, nxr |
---|
110 | |
---|
111 | ! |
---|
112 | !-- Store array to be advected on work array |
---|
113 | vad(nzb+1:nzt,:) = vad_in_out(nzb+1:nzt,nys:nyn,i) |
---|
114 | ! |
---|
115 | !-- Add boundary conditions along z |
---|
116 | IF ( var_char == 'u' .OR. var_char == 'v' ) THEN |
---|
117 | ! |
---|
118 | !-- Bottom boundary |
---|
119 | !-- u- and v-component |
---|
120 | IF ( ibc_uv_b == 0 ) THEN |
---|
121 | vad(nzb,:) = -vad(nzb+1,:) |
---|
122 | ELSE |
---|
123 | vad(nzb,:) = vad(nzb+1,:) |
---|
124 | ENDIF |
---|
125 | ! |
---|
126 | !-- Top boundary |
---|
127 | !-- Dirichlet condition |
---|
128 | IF ( ibc_uv_t == 0 .AND. var_char == 'u' ) THEN |
---|
129 | ! |
---|
130 | !-- u-component |
---|
131 | vad(nzt+1,:) = ug(nzt+1) |
---|
132 | ELSEIF ( ibc_uv_t == 0 .AND. var_char == 'v' ) THEN |
---|
133 | ! |
---|
134 | !-- v-component |
---|
135 | vad(nzt+1,:) = vg(nzt+1) |
---|
136 | ELSE |
---|
137 | ! |
---|
138 | !-- Neumann condition |
---|
139 | vad(nzt+1,:) = vad(nzt,:) |
---|
140 | ENDIF |
---|
141 | |
---|
142 | ELSEIF ( var_char == 'w' ) THEN |
---|
143 | ! |
---|
144 | !-- Bottom and top boundary for w-component |
---|
145 | vad(nzb,:) = 0.0 |
---|
146 | vad(nzt+1,:) = 0.0 |
---|
147 | |
---|
148 | ELSEIF ( var_char == 'pt' ) THEN |
---|
149 | ! |
---|
150 | !-- Bottom boundary for temperature |
---|
151 | IF ( ibc_pt_b == 1 ) THEN |
---|
152 | vad(nzb,:) = vad(nzb+1,:) |
---|
153 | ELSE |
---|
154 | vad(nzb,:) = pt(nzb,:,i) |
---|
155 | ENDIF |
---|
156 | ! |
---|
157 | !-- Top boundary for temperature |
---|
158 | IF ( ibc_pt_t == 1 ) THEN |
---|
159 | vad(nzt,:) = vad(nzt-1,:) + bc_pt_t_val * dz_spline(nzt) |
---|
160 | vad(nzt+1,:) = vad(nzt,:) + bc_pt_t_val * dz_spline(nzt+1) |
---|
161 | ELSE |
---|
162 | vad(nzt,:) = pt(nzt,nys:nyn,i) |
---|
163 | vad(nzt+1,:) = pt(nzt+1,nys:nyn,i) |
---|
164 | ENDIF |
---|
165 | |
---|
166 | ELSEIF ( var_char == 'e' ) THEN |
---|
167 | ! |
---|
168 | !-- Boundary conditions for TKE (Neumann in any case) |
---|
169 | vad(nzb,:) = vad(nzb+1,:) |
---|
170 | vad(nzt,:) = vad(nzt-1,:) |
---|
171 | vad(nzt+1,:) = vad(nzt,:) |
---|
172 | |
---|
173 | ENDIF |
---|
174 | |
---|
175 | ! |
---|
176 | !-- Calculate right hand side |
---|
177 | DO j = nys, nyn |
---|
178 | r(nzb,j) = 3.0 * ( vad(nzb+1,j)-vad(nzb,j) ) / dz_spline(1) |
---|
179 | r(nzt+1,j) = 3.0 * ( vad(nzt+1,j)-vad(nzt,j) ) / dz_spline(nzt+1) |
---|
180 | DO k = nzb+1, nzt |
---|
181 | r(k,j) = 3.0 * ( & |
---|
182 | spline_tri(2,k) * ( vad(k,j)-vad(k-1,j) ) / dz_spline(k) & |
---|
183 | + spline_tri(3,k) * ( vad(k+1,j)-vad(k,j) ) / dz_spline(k+1) & |
---|
184 | ) |
---|
185 | ENDDO |
---|
186 | ENDDO |
---|
187 | |
---|
188 | ! |
---|
189 | !-- Forward substitution |
---|
190 | DO j = nys, nyn |
---|
191 | wrk_spline(nzb,j) = r(nzb,j) |
---|
192 | DO k = nzb+1, nzt+1 |
---|
193 | wrk_spline(k,j) = r(k,j) - spline_tri(5,k) * r(k-1,j) |
---|
194 | ENDDO |
---|
195 | ENDDO |
---|
196 | |
---|
197 | ! |
---|
198 | !-- Backward substitution |
---|
199 | DO j = nys, nyn |
---|
200 | r(nzt+1,j) = wrk_spline(nzt+1,j) / spline_tri(4,nzt+1) |
---|
201 | DO k = nzt, nzb, -1 |
---|
202 | r(k,j) = ( wrk_spline(k,j) - spline_tri(3,k) * r(k+1,j) ) / & |
---|
203 | spline_tri(4,k) |
---|
204 | ENDDO |
---|
205 | ENDDO |
---|
206 | |
---|
207 | ! |
---|
208 | !-- Calculate advection along z |
---|
209 | DO j = nys, nyn |
---|
210 | DO k = nzb+1, nzt |
---|
211 | |
---|
212 | IF ( ad_v(k,j,i) == 0.0 ) THEN |
---|
213 | |
---|
214 | vad_in_out(k,j,i) = vad(k,j) |
---|
215 | |
---|
216 | ELSEIF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
217 | |
---|
218 | IF ( ABS( vad(k,j) - vad(k-1,j) ) <= ups_limit ) THEN |
---|
219 | vad_in_out(k,j,i) = vad(k,j) - dt_3d * ad_v(k,j,i) * & |
---|
220 | ( vad(k,j) - vad(k-1,j) ) * ddzu(k) |
---|
221 | ! |
---|
222 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
223 | DO sr = 0, statistic_regions |
---|
224 | sums_up_fraction_l(component,3,sr) = & |
---|
225 | sums_up_fraction_l(component,3,sr) + 1.0 |
---|
226 | ENDDO |
---|
227 | ELSE |
---|
228 | t1 = ad_v(k,j,i) * dt_3d / dz_spline(k) |
---|
229 | t2 = 3.0 * ( vad(k-1,j) - vad(k,j) ) + & |
---|
230 | ( 2.0 * r(k,j) + r(k-1,j) ) * dz_spline(k) |
---|
231 | t3 = 2.0 * ( vad(k-1,j) - vad(k,j) ) + & |
---|
232 | ( r(k,j) + r(k-1,j) ) * dz_spline(k) |
---|
233 | vad_in_out(k,j,i) = vad(k,j) - r(k,j) * t1* dz_spline(k) + & |
---|
234 | t2 * t1**2 - t3 * t1**3 |
---|
235 | IF ( vad(k-1,j) == vad(k,j) ) THEN |
---|
236 | vad_in_out(k,j,i) = vad(k,j) |
---|
237 | ENDIF |
---|
238 | ENDIF |
---|
239 | |
---|
240 | ELSE |
---|
241 | |
---|
242 | IF( ABS( vad(k,j) - vad(k+1,j) ) <= ups_limit ) THEN |
---|
243 | vad_in_out(k,j,i) = vad(k,j) - dt_3d * ad_v(k,j,i) * & |
---|
244 | ( vad(k+1,j) - vad(k,j) ) * ddzu(k+1) |
---|
245 | ! |
---|
246 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
247 | DO sr = 0, statistic_regions |
---|
248 | sums_up_fraction_l(component,3,sr) = & |
---|
249 | sums_up_fraction_l(component,3,sr) + 1.0 |
---|
250 | ENDDO |
---|
251 | ELSE |
---|
252 | t1 = -ad_v(k,j,i) * dt_3d / dz_spline(k+1) |
---|
253 | t2 = 3.0 * ( vad(k,j) - vad(k+1,j) ) + & |
---|
254 | ( 2.0 * r(k,j) + r(k+1,j) ) * dz_spline(k+1) |
---|
255 | t3 = 2.0 * ( vad(k,j) - vad(k+1,j) ) + & |
---|
256 | ( r(k,j) + r(k+1,j) ) * dz_spline(k+1) |
---|
257 | vad_in_out(k,j,i) = vad(k,j) + r(k,j)*t1*dz_spline(k+1) - & |
---|
258 | t2 * t1**2 + t3 * t1**3 |
---|
259 | IF ( vad(k+1,j) == vad(k,j) ) THEN |
---|
260 | vad_in_out(k,j,i) = vad(k,j) |
---|
261 | ENDIF |
---|
262 | ENDIF |
---|
263 | |
---|
264 | ENDIF |
---|
265 | ENDDO |
---|
266 | ENDDO |
---|
267 | |
---|
268 | ! |
---|
269 | !-- Limit values in order to prevent overshooting |
---|
270 | IF ( cut_spline_overshoot ) THEN |
---|
271 | |
---|
272 | DO j = nys, nyn |
---|
273 | DO k = nzb+1, nzt |
---|
274 | IF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
275 | IF ( vad(k,j) > vad(k-1,j) ) THEN |
---|
276 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
277 | vad(k,j) + overshoot_limit ) |
---|
278 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
279 | vad(k-1,j) - overshoot_limit ) |
---|
280 | ELSE |
---|
281 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
282 | vad(k,j) - overshoot_limit ) |
---|
283 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
284 | vad(k-1,j) + overshoot_limit ) |
---|
285 | ENDIF |
---|
286 | ELSE |
---|
287 | IF ( vad(k,j) > vad(k+1,j) ) THEN |
---|
288 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
289 | vad(k,j) + overshoot_limit ) |
---|
290 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
291 | vad(k+1,j) - overshoot_limit ) |
---|
292 | ELSE |
---|
293 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
294 | vad(k,j) - overshoot_limit ) |
---|
295 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
296 | vad(k+1,j) + overshoot_limit ) |
---|
297 | ENDIF |
---|
298 | ENDIF |
---|
299 | ENDDO |
---|
300 | ENDDO |
---|
301 | |
---|
302 | ENDIF |
---|
303 | |
---|
304 | ! |
---|
305 | !-- Long-filter (acting on tendency only) |
---|
306 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Compute tendency |
---|
310 | DO j = nys, nyn |
---|
311 | |
---|
312 | ! |
---|
313 | !-- Depending on the quantity to be advected, the respective vertical |
---|
314 | !-- boundary conditions must be applied. |
---|
315 | IF ( var_char == 'u' .OR. var_char == 'v' ) THEN |
---|
316 | |
---|
317 | IF ( ibc_uv_b == 0 ) THEN |
---|
318 | tf(nzb,j) = - ( vad_in_out(nzb+1,j,i) - vad(nzb+1,j) ) |
---|
319 | ELSE |
---|
320 | tf(nzb,j) = vad_in_out(nzb+1,j,i) - vad(nzb+1,j) |
---|
321 | ENDIF |
---|
322 | |
---|
323 | IF ( ibc_uv_t == 0 ) THEN |
---|
324 | tf(nzt+1,j) = 0.0 |
---|
325 | ELSE |
---|
326 | tf(nzt+1,j) = vad_in_out(nzt,j,i) - vad(nzt,j) |
---|
327 | ENDIF |
---|
328 | |
---|
329 | ELSEIF ( var_char == 'w' ) THEN |
---|
330 | |
---|
331 | tf(nzb,j) = 0.0 |
---|
332 | tf(nzt+1,j) = 0.0 |
---|
333 | |
---|
334 | ELSEIF ( var_char == 'pt' ) THEN |
---|
335 | |
---|
336 | IF ( ibc_pt_b == 1 ) THEN |
---|
337 | tf(nzb,j) = vad_in_out(nzb+1,j,i) - vad(nzb+1,j) |
---|
338 | ELSE |
---|
339 | tf(nzb,j) = 0.0 |
---|
340 | ENDIF |
---|
341 | |
---|
342 | IF ( ibc_pt_t == 1 ) THEN |
---|
343 | vad_in_out(nzt,j,i) = vad_in_out(nzt-1,j,i) + bc_pt_t_val * & |
---|
344 | dz_spline(nzt) |
---|
345 | tf(nzt+1,j) = vad_in_out(nzt,j,i) + bc_pt_t_val * & |
---|
346 | dz_spline(nzt+1) - vad(nzt+1,j) |
---|
347 | ELSE |
---|
348 | vad_in_out(nzt,j,i) = pt(nzt,j,i) |
---|
349 | tf(nzt+1,j) = 0.0 |
---|
350 | ENDIF |
---|
351 | |
---|
352 | ENDIF |
---|
353 | |
---|
354 | DO k = nzb+1, nzt |
---|
355 | tf(k,j) = vad_in_out(k,j,i) - vad(k,j) |
---|
356 | ENDDO |
---|
357 | |
---|
358 | ENDDO |
---|
359 | |
---|
360 | ! |
---|
361 | !-- Apply the filter. |
---|
362 | DO j = nys, nyn |
---|
363 | |
---|
364 | dzwd = dz_spline(1) / ( dz_spline(1) + dz_spline(2) ) |
---|
365 | dzwu = dz_spline(2) / ( dz_spline(1) + dz_spline(2) ) |
---|
366 | |
---|
367 | wrk_long(nzb+1,j,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
368 | wrk_long(nzb+1,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
369 | wrk_long(nzb+1,j,1) |
---|
370 | wrk_long(nzb+1,j,3) = ( long_filter_factor * dzwu * tf(nzb,j) + & |
---|
371 | 2.0 * tf(nzb+1,j) + dzwd * tf(nzb+2,j) & |
---|
372 | ) / wrk_long(nzb+1,j,1) |
---|
373 | |
---|
374 | DO k = nzb+2, nzt-1 |
---|
375 | |
---|
376 | dzwd = dz_spline(k) / ( dz_spline(k) + dz_spline(k+1) ) |
---|
377 | dzwu = dz_spline(k+1) / ( dz_spline(k) + dz_spline(k+1) ) |
---|
378 | |
---|
379 | wrk_long(k,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
380 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
381 | wrk_long(k-1,j,2) |
---|
382 | wrk_long(k,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
383 | wrk_long(k,j,1) |
---|
384 | wrk_long(k,j,3) = ( dzwu * tf(k-1,j) + 2.0 * tf(k,j) + & |
---|
385 | dzwd * tf(k+1,j) - & |
---|
386 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
387 | wrk_long(k-1,j,3) & |
---|
388 | ) / wrk_long(k,j,1) |
---|
389 | ENDDO |
---|
390 | |
---|
391 | dzwd = dz_spline(nzt) / ( dz_spline(nzt) + dz_spline(nzt+1) ) |
---|
392 | dzwu = dz_spline(nzt+1) / ( dz_spline(nzt) + dz_spline(nzt+1) ) |
---|
393 | |
---|
394 | wrk_long(nzt,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
395 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
396 | wrk_long(nzt-1,j,2) |
---|
397 | wrk_long(nzt,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
398 | wrk_long(nzt,j,1) |
---|
399 | wrk_long(nzt,j,3) = ( dzwu * tf(nzt-1,j) + 2.0 * tf(nzt,j) + & |
---|
400 | dzwd * long_filter_factor * tf(nzt+1,j) - & |
---|
401 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
402 | wrk_long(nzt-1,j,3) & |
---|
403 | ) / wrk_long(nzt,j,1) |
---|
404 | r(nzt,j) = wrk_long(nzt,j,3) |
---|
405 | |
---|
406 | ENDDO |
---|
407 | |
---|
408 | DO j = nys, nyn |
---|
409 | DO k = nzt-1, nzb+1, -1 |
---|
410 | r(k,j) = wrk_long(k,j,3) - wrk_long(k,j,2) * r(k+1,j) |
---|
411 | ENDDO |
---|
412 | ENDDO |
---|
413 | |
---|
414 | DO j = nys, nyn |
---|
415 | DO k = nzb+1, nzt |
---|
416 | vad_in_out(k,j,i) = vad(k,j) + r(k,j) |
---|
417 | ENDDO |
---|
418 | ENDDO |
---|
419 | |
---|
420 | ENDIF ! Long filter |
---|
421 | |
---|
422 | ENDDO |
---|
423 | |
---|
424 | DEALLOCATE( r, vad, wrk_spline ) |
---|
425 | IF ( long_filter_factor /= 0.0 ) DEALLOCATE( tf, wrk_long ) |
---|
426 | |
---|
427 | END SUBROUTINE spline_z |
---|