[1] | 1 | SUBROUTINE spline_z( vad_in_out, ad_v, dz_spline, spline_tri, var_char ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Actual revisions: |
---|
| 5 | ! ----------------- |
---|
[39] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: spline_z.f90 39 2007-03-01 12:46:59Z steinfeld $ |
---|
[39] | 11 | ! |
---|
| 12 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 13 | ! Boundary condition for pt at top adjusted |
---|
| 14 | ! |
---|
[3] | 15 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 16 | ! |
---|
[1] | 17 | ! Revision 1.9 2005/06/29 08:22:56 steinfeld |
---|
| 18 | ! Dependency of ug and vg on height considered in the determination of the |
---|
| 19 | ! upper boundary condition for vad |
---|
| 20 | ! |
---|
| 21 | ! Revision 1.1 1999/02/05 09:17:16 raasch |
---|
| 22 | ! Initial revision |
---|
| 23 | ! |
---|
| 24 | ! |
---|
| 25 | ! Description: |
---|
| 26 | ! ------------ |
---|
| 27 | ! Upstream-spline advection along x |
---|
| 28 | ! |
---|
| 29 | ! Input/output parameters: |
---|
| 30 | ! ad_v = advecting wind speed component |
---|
| 31 | ! dz_spline = vertical grid spacing (dzu or dzw, depending on quantity to be |
---|
| 32 | ! advected) |
---|
| 33 | ! spline_tri = grid spacing factors (spl_tri_zu or spl_tri_zw, depending on |
---|
| 34 | ! quantity to be advected) |
---|
| 35 | ! vad_in_out = quantity to be advected, excluding ghost- or cyclic boundaries |
---|
| 36 | ! result is given to the calling routine in this array |
---|
| 37 | ! var_char = string which defines the quantity to be advected |
---|
| 38 | ! |
---|
| 39 | ! Internal arrays: |
---|
| 40 | ! r = 2D-working array (right hand side of linear equation, buffer for |
---|
| 41 | ! Long filter) |
---|
| 42 | ! tf = tendency field (2D), used for long filter |
---|
| 43 | ! vad = quantity to be advected (2D), including ghost- or cyclic |
---|
| 44 | ! boundarys along the direction of advection |
---|
| 45 | ! wrk_long = working array (long coefficients) |
---|
| 46 | ! wrk_spline = working array (spline coefficients) |
---|
| 47 | !------------------------------------------------------------------------------! |
---|
| 48 | |
---|
| 49 | USE arrays_3d |
---|
| 50 | USE grid_variables |
---|
| 51 | USE indices |
---|
| 52 | USE statistics |
---|
| 53 | USE control_parameters |
---|
| 54 | USE transpose_indices |
---|
| 55 | |
---|
| 56 | IMPLICIT NONE |
---|
| 57 | |
---|
| 58 | CHARACTER (LEN=*) :: var_char |
---|
| 59 | |
---|
| 60 | INTEGER :: component, i, j, k, sr |
---|
| 61 | REAL :: dzwd, dzwu, overshoot_limit, t1, t2, t3, ups_limit |
---|
| 62 | REAL :: dz_spline(1:nzt+1) |
---|
| 63 | REAL :: spline_tri(5,nzb:nzt+1) |
---|
| 64 | REAL :: ad_v(nzb+1:nzta,nys:nyna,nxl:nxra) |
---|
| 65 | |
---|
| 66 | REAL, DIMENSION(:,:), ALLOCATABLE :: r, tf, vad, wrk_spline |
---|
| 67 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: wrk_long |
---|
| 68 | |
---|
| 69 | #if defined( __parallel ) |
---|
| 70 | REAL :: vad_in_out(nzb+1:nzta,nys:nyna,nxl:nxra) |
---|
| 71 | #else |
---|
| 72 | REAL :: vad_in_out(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
| 73 | #endif |
---|
| 74 | |
---|
| 75 | ! |
---|
| 76 | !-- Set criteria for switching between upstream- and upstream-spline-method |
---|
| 77 | IF ( var_char == 'u' ) THEN |
---|
| 78 | overshoot_limit = overshoot_limit_u |
---|
| 79 | ups_limit = ups_limit_u |
---|
| 80 | component = 1 |
---|
| 81 | ELSEIF ( var_char == 'v' ) THEN |
---|
| 82 | overshoot_limit = overshoot_limit_v |
---|
| 83 | ups_limit = ups_limit_v |
---|
| 84 | component = 2 |
---|
| 85 | ELSEIF ( var_char == 'w' ) THEN |
---|
| 86 | overshoot_limit = overshoot_limit_w |
---|
| 87 | ups_limit = ups_limit_w |
---|
| 88 | component = 3 |
---|
| 89 | ELSEIF ( var_char == 'pt' ) THEN |
---|
| 90 | overshoot_limit = overshoot_limit_pt |
---|
| 91 | ups_limit = ups_limit_pt |
---|
| 92 | component = 4 |
---|
| 93 | ELSEIF ( var_char == 'e' ) THEN |
---|
| 94 | overshoot_limit = overshoot_limit_e |
---|
| 95 | ups_limit = ups_limit_e |
---|
| 96 | component = 5 |
---|
| 97 | ENDIF |
---|
| 98 | |
---|
| 99 | ! |
---|
| 100 | !-- Allocate working arrays |
---|
| 101 | ALLOCATE( r(nzb:nzt+1,nys:nyn), vad(nzb:nzt+1,nys:nyn), & |
---|
| 102 | wrk_spline(nzb:nzt+1,nys:nyn) ) |
---|
| 103 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
| 104 | ALLOCATE( tf(nzb:nzt+1,nys:nyn), wrk_long(nzb+1:nzt,nys:nyn,1:3) ) |
---|
| 105 | ENDIF |
---|
| 106 | |
---|
| 107 | ! |
---|
| 108 | !-- Initialize calculation of relative upstream fraction |
---|
| 109 | sums_up_fraction_l(component,3,:) = 0.0 |
---|
| 110 | |
---|
| 111 | ! |
---|
| 112 | !-- Loop over all gridpoints along x |
---|
| 113 | DO i = nxl, nxr |
---|
| 114 | |
---|
| 115 | ! |
---|
| 116 | !-- Store array to be advected on work array |
---|
| 117 | vad(nzb+1:nzt,:) = vad_in_out(nzb+1:nzt,nys:nyn,i) |
---|
| 118 | ! |
---|
| 119 | !-- Add boundary conditions along z |
---|
| 120 | IF ( var_char == 'u' .OR. var_char == 'v' ) THEN |
---|
| 121 | ! |
---|
| 122 | !-- Bottom boundary |
---|
| 123 | !-- u- and v-component |
---|
| 124 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 125 | vad(nzb,:) = -vad(nzb+1,:) |
---|
| 126 | ELSE |
---|
| 127 | vad(nzb,:) = vad(nzb+1,:) |
---|
| 128 | ENDIF |
---|
| 129 | ! |
---|
| 130 | !-- Top boundary |
---|
| 131 | !-- Dirichlet condition |
---|
| 132 | IF ( ibc_uv_t == 0 .AND. var_char == 'u' ) THEN |
---|
| 133 | ! |
---|
| 134 | !-- u-component |
---|
| 135 | vad(nzt+1,:) = ug(nzt+1) |
---|
| 136 | ELSEIF ( ibc_uv_t == 0 .AND. var_char == 'v' ) THEN |
---|
| 137 | ! |
---|
| 138 | !-- v-component |
---|
| 139 | vad(nzt+1,:) = vg(nzt+1) |
---|
| 140 | ELSE |
---|
| 141 | ! |
---|
| 142 | !-- Neumann condition |
---|
| 143 | vad(nzt+1,:) = vad(nzt,:) |
---|
| 144 | ENDIF |
---|
| 145 | |
---|
| 146 | ELSEIF ( var_char == 'w' ) THEN |
---|
| 147 | ! |
---|
| 148 | !-- Bottom and top boundary for w-component |
---|
| 149 | vad(nzb,:) = 0.0 |
---|
| 150 | vad(nzt+1,:) = 0.0 |
---|
| 151 | |
---|
| 152 | ELSEIF ( var_char == 'pt' ) THEN |
---|
| 153 | ! |
---|
| 154 | !-- Bottom boundary for temperature |
---|
| 155 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 156 | vad(nzb,:) = vad(nzb+1,:) |
---|
| 157 | ELSE |
---|
| 158 | vad(nzb,:) = pt(nzb,:,i) |
---|
| 159 | ENDIF |
---|
| 160 | ! |
---|
| 161 | !-- Top boundary for temperature |
---|
[19] | 162 | IF ( ibc_pt_t == 0 ) THEN |
---|
| 163 | vad(nzt+1,:) = pt(nzt+1,nys:nyn,i) |
---|
| 164 | ELSEIF ( ibc_pt_t == 1 ) THEN |
---|
| 165 | vad(nzt+1,:) = vad(nzt,:) |
---|
| 166 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
[1] | 167 | vad(nzt+1,:) = vad(nzt,:) + bc_pt_t_val * dz_spline(nzt+1) |
---|
| 168 | ENDIF |
---|
| 169 | |
---|
| 170 | ELSEIF ( var_char == 'e' ) THEN |
---|
| 171 | ! |
---|
| 172 | !-- Boundary conditions for TKE (Neumann in any case) |
---|
| 173 | vad(nzb,:) = vad(nzb+1,:) |
---|
| 174 | vad(nzt,:) = vad(nzt-1,:) |
---|
| 175 | vad(nzt+1,:) = vad(nzt,:) |
---|
| 176 | |
---|
| 177 | ENDIF |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- Calculate right hand side |
---|
| 181 | DO j = nys, nyn |
---|
| 182 | r(nzb,j) = 3.0 * ( vad(nzb+1,j)-vad(nzb,j) ) / dz_spline(1) |
---|
| 183 | r(nzt+1,j) = 3.0 * ( vad(nzt+1,j)-vad(nzt,j) ) / dz_spline(nzt+1) |
---|
| 184 | DO k = nzb+1, nzt |
---|
| 185 | r(k,j) = 3.0 * ( & |
---|
| 186 | spline_tri(2,k) * ( vad(k,j)-vad(k-1,j) ) / dz_spline(k) & |
---|
| 187 | + spline_tri(3,k) * ( vad(k+1,j)-vad(k,j) ) / dz_spline(k+1) & |
---|
| 188 | ) |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | |
---|
| 192 | ! |
---|
| 193 | !-- Forward substitution |
---|
| 194 | DO j = nys, nyn |
---|
| 195 | wrk_spline(nzb,j) = r(nzb,j) |
---|
| 196 | DO k = nzb+1, nzt+1 |
---|
| 197 | wrk_spline(k,j) = r(k,j) - spline_tri(5,k) * r(k-1,j) |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | ! |
---|
| 202 | !-- Backward substitution |
---|
| 203 | DO j = nys, nyn |
---|
| 204 | r(nzt+1,j) = wrk_spline(nzt+1,j) / spline_tri(4,nzt+1) |
---|
| 205 | DO k = nzt, nzb, -1 |
---|
| 206 | r(k,j) = ( wrk_spline(k,j) - spline_tri(3,k) * r(k+1,j) ) / & |
---|
| 207 | spline_tri(4,k) |
---|
| 208 | ENDDO |
---|
| 209 | ENDDO |
---|
| 210 | |
---|
| 211 | ! |
---|
| 212 | !-- Calculate advection along z |
---|
| 213 | DO j = nys, nyn |
---|
| 214 | DO k = nzb+1, nzt |
---|
| 215 | |
---|
| 216 | IF ( ad_v(k,j,i) == 0.0 ) THEN |
---|
| 217 | |
---|
| 218 | vad_in_out(k,j,i) = vad(k,j) |
---|
| 219 | |
---|
| 220 | ELSEIF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
| 221 | |
---|
| 222 | IF ( ABS( vad(k,j) - vad(k-1,j) ) <= ups_limit ) THEN |
---|
| 223 | vad_in_out(k,j,i) = vad(k,j) - dt_3d * ad_v(k,j,i) * & |
---|
| 224 | ( vad(k,j) - vad(k-1,j) ) * ddzu(k) |
---|
| 225 | ! |
---|
| 226 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
| 227 | DO sr = 0, statistic_regions |
---|
| 228 | sums_up_fraction_l(component,3,sr) = & |
---|
| 229 | sums_up_fraction_l(component,3,sr) + 1.0 |
---|
| 230 | ENDDO |
---|
| 231 | ELSE |
---|
| 232 | t1 = ad_v(k,j,i) * dt_3d / dz_spline(k) |
---|
| 233 | t2 = 3.0 * ( vad(k-1,j) - vad(k,j) ) + & |
---|
| 234 | ( 2.0 * r(k,j) + r(k-1,j) ) * dz_spline(k) |
---|
| 235 | t3 = 2.0 * ( vad(k-1,j) - vad(k,j) ) + & |
---|
| 236 | ( r(k,j) + r(k-1,j) ) * dz_spline(k) |
---|
| 237 | vad_in_out(k,j,i) = vad(k,j) - r(k,j) * t1* dz_spline(k) + & |
---|
| 238 | t2 * t1**2 - t3 * t1**3 |
---|
| 239 | IF ( vad(k-1,j) == vad(k,j) ) THEN |
---|
| 240 | vad_in_out(k,j,i) = vad(k,j) |
---|
| 241 | ENDIF |
---|
| 242 | ENDIF |
---|
| 243 | |
---|
| 244 | ELSE |
---|
| 245 | |
---|
| 246 | IF( ABS( vad(k,j) - vad(k+1,j) ) <= ups_limit ) THEN |
---|
| 247 | vad_in_out(k,j,i) = vad(k,j) - dt_3d * ad_v(k,j,i) * & |
---|
| 248 | ( vad(k+1,j) - vad(k,j) ) * ddzu(k+1) |
---|
| 249 | ! |
---|
| 250 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
| 251 | DO sr = 0, statistic_regions |
---|
| 252 | sums_up_fraction_l(component,3,sr) = & |
---|
| 253 | sums_up_fraction_l(component,3,sr) + 1.0 |
---|
| 254 | ENDDO |
---|
| 255 | ELSE |
---|
| 256 | t1 = -ad_v(k,j,i) * dt_3d / dz_spline(k+1) |
---|
| 257 | t2 = 3.0 * ( vad(k,j) - vad(k+1,j) ) + & |
---|
| 258 | ( 2.0 * r(k,j) + r(k+1,j) ) * dz_spline(k+1) |
---|
| 259 | t3 = 2.0 * ( vad(k,j) - vad(k+1,j) ) + & |
---|
| 260 | ( r(k,j) + r(k+1,j) ) * dz_spline(k+1) |
---|
| 261 | vad_in_out(k,j,i) = vad(k,j) + r(k,j)*t1*dz_spline(k+1) - & |
---|
| 262 | t2 * t1**2 + t3 * t1**3 |
---|
| 263 | IF ( vad(k+1,j) == vad(k,j) ) THEN |
---|
| 264 | vad_in_out(k,j,i) = vad(k,j) |
---|
| 265 | ENDIF |
---|
| 266 | ENDIF |
---|
| 267 | |
---|
| 268 | ENDIF |
---|
| 269 | ENDDO |
---|
| 270 | ENDDO |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Limit values in order to prevent overshooting |
---|
| 274 | IF ( cut_spline_overshoot ) THEN |
---|
| 275 | |
---|
| 276 | DO j = nys, nyn |
---|
| 277 | DO k = nzb+1, nzt |
---|
| 278 | IF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
| 279 | IF ( vad(k,j) > vad(k-1,j) ) THEN |
---|
| 280 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 281 | vad(k,j) + overshoot_limit ) |
---|
| 282 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 283 | vad(k-1,j) - overshoot_limit ) |
---|
| 284 | ELSE |
---|
| 285 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 286 | vad(k,j) - overshoot_limit ) |
---|
| 287 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 288 | vad(k-1,j) + overshoot_limit ) |
---|
| 289 | ENDIF |
---|
| 290 | ELSE |
---|
| 291 | IF ( vad(k,j) > vad(k+1,j) ) THEN |
---|
| 292 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 293 | vad(k,j) + overshoot_limit ) |
---|
| 294 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 295 | vad(k+1,j) - overshoot_limit ) |
---|
| 296 | ELSE |
---|
| 297 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 298 | vad(k,j) - overshoot_limit ) |
---|
| 299 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 300 | vad(k+1,j) + overshoot_limit ) |
---|
| 301 | ENDIF |
---|
| 302 | ENDIF |
---|
| 303 | ENDDO |
---|
| 304 | ENDDO |
---|
| 305 | |
---|
| 306 | ENDIF |
---|
| 307 | |
---|
| 308 | ! |
---|
| 309 | !-- Long-filter (acting on tendency only) |
---|
| 310 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
| 311 | |
---|
| 312 | ! |
---|
| 313 | !-- Compute tendency |
---|
| 314 | DO j = nys, nyn |
---|
| 315 | |
---|
| 316 | ! |
---|
| 317 | !-- Depending on the quantity to be advected, the respective vertical |
---|
| 318 | !-- boundary conditions must be applied. |
---|
| 319 | IF ( var_char == 'u' .OR. var_char == 'v' ) THEN |
---|
| 320 | |
---|
| 321 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 322 | tf(nzb,j) = - ( vad_in_out(nzb+1,j,i) - vad(nzb+1,j) ) |
---|
| 323 | ELSE |
---|
| 324 | tf(nzb,j) = vad_in_out(nzb+1,j,i) - vad(nzb+1,j) |
---|
| 325 | ENDIF |
---|
| 326 | |
---|
| 327 | IF ( ibc_uv_t == 0 ) THEN |
---|
| 328 | tf(nzt+1,j) = 0.0 |
---|
| 329 | ELSE |
---|
| 330 | tf(nzt+1,j) = vad_in_out(nzt,j,i) - vad(nzt,j) |
---|
| 331 | ENDIF |
---|
| 332 | |
---|
| 333 | ELSEIF ( var_char == 'w' ) THEN |
---|
| 334 | |
---|
| 335 | tf(nzb,j) = 0.0 |
---|
| 336 | tf(nzt+1,j) = 0.0 |
---|
| 337 | |
---|
| 338 | ELSEIF ( var_char == 'pt' ) THEN |
---|
| 339 | |
---|
| 340 | IF ( ibc_pt_b == 1 ) THEN |
---|
| 341 | tf(nzb,j) = vad_in_out(nzb+1,j,i) - vad(nzb+1,j) |
---|
| 342 | ELSE |
---|
| 343 | tf(nzb,j) = 0.0 |
---|
| 344 | ENDIF |
---|
| 345 | |
---|
| 346 | IF ( ibc_pt_t == 1 ) THEN |
---|
| 347 | vad_in_out(nzt,j,i) = vad_in_out(nzt-1,j,i) + bc_pt_t_val * & |
---|
| 348 | dz_spline(nzt) |
---|
| 349 | tf(nzt+1,j) = vad_in_out(nzt,j,i) + bc_pt_t_val * & |
---|
| 350 | dz_spline(nzt+1) - vad(nzt+1,j) |
---|
| 351 | ELSE |
---|
| 352 | vad_in_out(nzt,j,i) = pt(nzt,j,i) |
---|
| 353 | tf(nzt+1,j) = 0.0 |
---|
| 354 | ENDIF |
---|
| 355 | |
---|
| 356 | ENDIF |
---|
| 357 | |
---|
| 358 | DO k = nzb+1, nzt |
---|
| 359 | tf(k,j) = vad_in_out(k,j,i) - vad(k,j) |
---|
| 360 | ENDDO |
---|
| 361 | |
---|
| 362 | ENDDO |
---|
| 363 | |
---|
| 364 | ! |
---|
| 365 | !-- Apply the filter. |
---|
| 366 | DO j = nys, nyn |
---|
| 367 | |
---|
| 368 | dzwd = dz_spline(1) / ( dz_spline(1) + dz_spline(2) ) |
---|
| 369 | dzwu = dz_spline(2) / ( dz_spline(1) + dz_spline(2) ) |
---|
| 370 | |
---|
| 371 | wrk_long(nzb+1,j,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
| 372 | wrk_long(nzb+1,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
| 373 | wrk_long(nzb+1,j,1) |
---|
| 374 | wrk_long(nzb+1,j,3) = ( long_filter_factor * dzwu * tf(nzb,j) + & |
---|
| 375 | 2.0 * tf(nzb+1,j) + dzwd * tf(nzb+2,j) & |
---|
| 376 | ) / wrk_long(nzb+1,j,1) |
---|
| 377 | |
---|
| 378 | DO k = nzb+2, nzt-1 |
---|
| 379 | |
---|
| 380 | dzwd = dz_spline(k) / ( dz_spline(k) + dz_spline(k+1) ) |
---|
| 381 | dzwu = dz_spline(k+1) / ( dz_spline(k) + dz_spline(k+1) ) |
---|
| 382 | |
---|
| 383 | wrk_long(k,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
| 384 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
| 385 | wrk_long(k-1,j,2) |
---|
| 386 | wrk_long(k,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
| 387 | wrk_long(k,j,1) |
---|
| 388 | wrk_long(k,j,3) = ( dzwu * tf(k-1,j) + 2.0 * tf(k,j) + & |
---|
| 389 | dzwd * tf(k+1,j) - & |
---|
| 390 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
| 391 | wrk_long(k-1,j,3) & |
---|
| 392 | ) / wrk_long(k,j,1) |
---|
| 393 | ENDDO |
---|
| 394 | |
---|
| 395 | dzwd = dz_spline(nzt) / ( dz_spline(nzt) + dz_spline(nzt+1) ) |
---|
| 396 | dzwu = dz_spline(nzt+1) / ( dz_spline(nzt) + dz_spline(nzt+1) ) |
---|
| 397 | |
---|
| 398 | wrk_long(nzt,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
| 399 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
| 400 | wrk_long(nzt-1,j,2) |
---|
| 401 | wrk_long(nzt,j,2) = ( 1.0 - long_filter_factor ) * dzwd / & |
---|
| 402 | wrk_long(nzt,j,1) |
---|
| 403 | wrk_long(nzt,j,3) = ( dzwu * tf(nzt-1,j) + 2.0 * tf(nzt,j) + & |
---|
| 404 | dzwd * long_filter_factor * tf(nzt+1,j) - & |
---|
| 405 | ( 1.0 - long_filter_factor ) * dzwu * & |
---|
| 406 | wrk_long(nzt-1,j,3) & |
---|
| 407 | ) / wrk_long(nzt,j,1) |
---|
| 408 | r(nzt,j) = wrk_long(nzt,j,3) |
---|
| 409 | |
---|
| 410 | ENDDO |
---|
| 411 | |
---|
| 412 | DO j = nys, nyn |
---|
| 413 | DO k = nzt-1, nzb+1, -1 |
---|
| 414 | r(k,j) = wrk_long(k,j,3) - wrk_long(k,j,2) * r(k+1,j) |
---|
| 415 | ENDDO |
---|
| 416 | ENDDO |
---|
| 417 | |
---|
| 418 | DO j = nys, nyn |
---|
| 419 | DO k = nzb+1, nzt |
---|
| 420 | vad_in_out(k,j,i) = vad(k,j) + r(k,j) |
---|
| 421 | ENDDO |
---|
| 422 | ENDDO |
---|
| 423 | |
---|
| 424 | ENDIF ! Long filter |
---|
| 425 | |
---|
| 426 | ENDDO |
---|
| 427 | |
---|
| 428 | DEALLOCATE( r, vad, wrk_spline ) |
---|
| 429 | IF ( long_filter_factor /= 0.0 ) DEALLOCATE( tf, wrk_long ) |
---|
| 430 | |
---|
| 431 | END SUBROUTINE spline_z |
---|