1 | SUBROUTINE spline_x( vad_in_out, ad_v, var_char ) |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: spline_x.f90 484 2010-02-05 07:36:54Z gryschka $ |
---|
11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
12 | ! |
---|
13 | ! Revision 1.8 2004/04/30 12:54:20 raasch |
---|
14 | ! Names of transpose indices changed, enlarged transposition arrays introduced |
---|
15 | ! |
---|
16 | ! Revision 1.1 1999/02/05 09:15:59 raasch |
---|
17 | ! Initial revision |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Description: |
---|
21 | ! ------------ |
---|
22 | ! Upstream-spline advection along x |
---|
23 | ! |
---|
24 | ! Input/output parameters: |
---|
25 | ! ad_v = advecting wind speed component |
---|
26 | ! vad_in_out = quantity to be advected, excluding ghost- or cyclic boundaries |
---|
27 | ! result is given to the calling routine in this array |
---|
28 | ! var_char = string which defines the quantity to be advected |
---|
29 | ! |
---|
30 | ! Internal arrays: |
---|
31 | ! r = 2D-working array (right hand side of linear equation, buffer for |
---|
32 | ! Long filter) |
---|
33 | ! tf = tendency field (2D), used for long filter |
---|
34 | ! vad = quantity to be advected (2D), including ghost- or cyclic |
---|
35 | ! boundarys along the direction of advection |
---|
36 | ! wrk_long = working array (long coefficients) |
---|
37 | ! wrk_spline = working array (spline coefficients) |
---|
38 | !------------------------------------------------------------------------------! |
---|
39 | |
---|
40 | USE advection |
---|
41 | USE grid_variables |
---|
42 | USE indices |
---|
43 | USE statistics |
---|
44 | USE control_parameters |
---|
45 | USE transpose_indices |
---|
46 | |
---|
47 | IMPLICIT NONE |
---|
48 | |
---|
49 | CHARACTER (LEN=*) :: var_char |
---|
50 | |
---|
51 | INTEGER :: component, i, j, k, sr |
---|
52 | REAL :: overshoot_limit, sm_faktor, t1, t2, t3, ups_limit |
---|
53 | REAL, DIMENSION(:,:), ALLOCATABLE :: r, tf, vad, wrk_spline |
---|
54 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: wrk_long |
---|
55 | |
---|
56 | #if defined( __parallel ) |
---|
57 | REAL :: ad_v(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
58 | vad_in_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa) |
---|
59 | #else |
---|
60 | REAL :: ad_v(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
61 | vad_in_out(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
62 | #endif |
---|
63 | |
---|
64 | ! |
---|
65 | !-- Set criteria for switching between upstream- and upstream-spline-method |
---|
66 | IF ( var_char == 'u' ) THEN |
---|
67 | overshoot_limit = overshoot_limit_u |
---|
68 | ups_limit = ups_limit_u |
---|
69 | component = 1 |
---|
70 | ELSEIF ( var_char == 'v' ) THEN |
---|
71 | overshoot_limit = overshoot_limit_v |
---|
72 | ups_limit = ups_limit_v |
---|
73 | component = 2 |
---|
74 | ELSEIF ( var_char == 'w' ) THEN |
---|
75 | overshoot_limit = overshoot_limit_w |
---|
76 | ups_limit = ups_limit_w |
---|
77 | component = 3 |
---|
78 | ELSEIF ( var_char == 'pt' ) THEN |
---|
79 | overshoot_limit = overshoot_limit_pt |
---|
80 | ups_limit = ups_limit_pt |
---|
81 | component = 4 |
---|
82 | ELSEIF ( var_char == 'e' ) THEN |
---|
83 | overshoot_limit = overshoot_limit_e |
---|
84 | ups_limit = ups_limit_e |
---|
85 | component = 5 |
---|
86 | ENDIF |
---|
87 | |
---|
88 | ! |
---|
89 | !-- Initialize calculation of relative upstream fraction |
---|
90 | sums_up_fraction_l(component,1,:) = 0.0 |
---|
91 | |
---|
92 | #if defined( __parallel ) |
---|
93 | |
---|
94 | ! |
---|
95 | !-- Allocate working arrays |
---|
96 | ALLOCATE( r(-1:nx+1,nys_x:nyn_x), vad(-1:nx+1,nys_x:nyn_x), & |
---|
97 | wrk_spline(0:nx,nys_x:nyn_x) ) |
---|
98 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
99 | ALLOCATE( tf(0:nx,nys_x:nyn_x), wrk_long(0:nx,nys_x:nyn_x,1:3) ) |
---|
100 | ENDIF |
---|
101 | |
---|
102 | ! |
---|
103 | !-- Loop over all gridpoints along z |
---|
104 | DO k = nzb_x, nzt_x |
---|
105 | |
---|
106 | ! |
---|
107 | !-- Store array to be advected on work array and add cyclic boundary along x |
---|
108 | vad(0:nx,nys_x:nyn_x) = vad_in_out(0:nx,nys_x:nyn_x,k) |
---|
109 | vad(-1,:) = vad(nx,:) |
---|
110 | vad(nx+1,:) = vad(0,:) |
---|
111 | |
---|
112 | ! |
---|
113 | !-- Calculate right hand side |
---|
114 | DO j = nys_x, nyn_x |
---|
115 | DO i = 0, nx |
---|
116 | r(i,j) = 3.0 * ( & |
---|
117 | spl_tri_x(2,i) * ( vad(i,j) - vad(i-1,j) ) * ddx + & |
---|
118 | spl_tri_x(3,i) * ( vad(i+1,j) - vad(i,j) ) * ddx & |
---|
119 | ) |
---|
120 | ENDDO |
---|
121 | ENDDO |
---|
122 | |
---|
123 | ! |
---|
124 | !-- Forward substitution |
---|
125 | DO j = nys_x, nyn_x |
---|
126 | wrk_spline(0,j) = r(0,j) |
---|
127 | DO i = 1, nx |
---|
128 | wrk_spline(i,j) = r(i,j) - spl_tri_x(5,i) * wrk_spline(i-1,j) |
---|
129 | ENDDO |
---|
130 | ENDDO |
---|
131 | |
---|
132 | ! |
---|
133 | !-- Backward substitution (Sherman-Morrison-formula) |
---|
134 | DO j = nys_x, nyn_x |
---|
135 | r(nx,j) = wrk_spline(nx,j) / spl_tri_x(4,nx) |
---|
136 | DO i = nx-1, 0, -1 |
---|
137 | r(i,j) = ( wrk_spline(i,j) - spl_tri_x(3,i) * r(i+1,j) ) / & |
---|
138 | spl_tri_x(4,i) |
---|
139 | ENDDO |
---|
140 | sm_faktor = ( r(0,j) + 0.5 * r(nx,j) / spl_gamma_x ) / & |
---|
141 | ( 1.0 + spl_z_x(0) + 0.5 * spl_z_x(nx) / spl_gamma_x ) |
---|
142 | DO i = 0, nx |
---|
143 | r(i,j) = r(i,j) - sm_faktor * spl_z_x(i) |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | |
---|
147 | ! |
---|
148 | !-- Add cyclic boundary to right hand side |
---|
149 | r(-1,:) = r(nx,:) |
---|
150 | r(nx+1,:) = r(0,:) |
---|
151 | |
---|
152 | ! |
---|
153 | !-- Calculate advection along x |
---|
154 | DO j = nys_x, nyn_x |
---|
155 | DO i = 0, nx |
---|
156 | |
---|
157 | IF ( ad_v(i,j,k) == 0.0 ) THEN |
---|
158 | |
---|
159 | vad_in_out(i,j,k) = vad(i,j) |
---|
160 | |
---|
161 | ELSEIF ( ad_v(i,j,k) > 0.0 ) THEN |
---|
162 | |
---|
163 | IF ( ABS( vad(i,j) - vad(i-1,j) ) <= ups_limit ) THEN |
---|
164 | vad_in_out(i,j,k) = vad(i,j) - dt_3d * ad_v(i,j,k) * & |
---|
165 | ( vad(i,j) - vad(i-1,j) ) * ddx |
---|
166 | ! |
---|
167 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
168 | DO sr = 0, statistic_regions |
---|
169 | sums_up_fraction_l(component,1,sr) = & |
---|
170 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
171 | ENDDO |
---|
172 | ELSE |
---|
173 | t1 = ad_v(i,j,k) * dt_3d * ddx |
---|
174 | t2 = 3.0 * ( vad(i-1,j) - vad(i,j) ) + & |
---|
175 | ( 2.0 * r(i,j) + r(i-1,j) ) * dx |
---|
176 | t3 = 2.0 * ( vad(i-1,j) - vad(i,j) ) + & |
---|
177 | ( r(i,j) + r(i-1,j) ) * dx |
---|
178 | vad_in_out(i,j,k) = vad(i,j) - r(i,j) * t1 * dx + & |
---|
179 | t2 * t1**2 - t3 * t1**3 |
---|
180 | IF ( vad(i-1,j) == vad(i,j) ) THEN |
---|
181 | vad_in_out(i,j,k) = vad(i,j) |
---|
182 | ENDIF |
---|
183 | ENDIF |
---|
184 | |
---|
185 | ELSE |
---|
186 | |
---|
187 | IF ( ABS( vad(i,j) - vad(i+1,j) ) <= ups_limit ) THEN |
---|
188 | vad_in_out(i,j,k) = vad(i,j) - dt_3d * ad_v(i,j,k) * & |
---|
189 | ( vad(i+1,j) - vad(i,j) ) * ddx |
---|
190 | ! |
---|
191 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
192 | DO sr = 0, statistic_regions |
---|
193 | sums_up_fraction_l(component,1,sr) = & |
---|
194 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
195 | ENDDO |
---|
196 | ELSE |
---|
197 | t1 = -ad_v(i,j,k) * dt_3d * ddx |
---|
198 | t2 = 3.0 * ( vad(i,j) - vad(i+1,j) ) + & |
---|
199 | ( 2.0 * r(i,j) + r(i+1,j) ) * dx |
---|
200 | t3 = 2.0 * ( vad(i,j) - vad(i+1,j) ) + & |
---|
201 | ( r(i,j) + r(i+1,j) ) * dx |
---|
202 | vad_in_out(i,j,k) = vad(i,j) + r(i,j) * t1 * dx - & |
---|
203 | t2 * t1**2 + t3 * t1**3 |
---|
204 | IF ( vad(i+1,j) == vad(i,j) ) THEN |
---|
205 | vad_in_out(i,j,k) = vad(i,j) |
---|
206 | ENDIF |
---|
207 | ENDIF |
---|
208 | |
---|
209 | ENDIF |
---|
210 | ENDDO |
---|
211 | ENDDO |
---|
212 | |
---|
213 | ! |
---|
214 | !-- Limit values in order to prevent overshooting |
---|
215 | IF ( cut_spline_overshoot ) THEN |
---|
216 | |
---|
217 | DO j = nys_x, nyn_x |
---|
218 | DO i = 0, nx |
---|
219 | IF ( ad_v(i,j,k) > 0.0 ) THEN |
---|
220 | IF ( vad(i,j) > vad(i-1,j) ) THEN |
---|
221 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
222 | vad(i,j) + overshoot_limit ) |
---|
223 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
224 | vad(i-1,j) - overshoot_limit ) |
---|
225 | ELSE |
---|
226 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
227 | vad(i,j) - overshoot_limit ) |
---|
228 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
229 | vad(i-1,j) + overshoot_limit ) |
---|
230 | ENDIF |
---|
231 | ELSE |
---|
232 | IF ( vad(i,j) > vad(i+1,j) ) THEN |
---|
233 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
234 | vad(i,j) + overshoot_limit ) |
---|
235 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
236 | vad(i+1,j) - overshoot_limit ) |
---|
237 | ELSE |
---|
238 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
239 | vad(i,j) - overshoot_limit ) |
---|
240 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
241 | vad(i+1,j) + overshoot_limit ) |
---|
242 | ENDIF |
---|
243 | ENDIF |
---|
244 | ENDDO |
---|
245 | ENDDO |
---|
246 | |
---|
247 | ENDIF |
---|
248 | |
---|
249 | ! |
---|
250 | !-- Long-filter (acting on tendency only) |
---|
251 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
252 | |
---|
253 | ! |
---|
254 | !-- Compute tendency |
---|
255 | DO j = nys_x, nyn_x |
---|
256 | DO i = 0, nx |
---|
257 | tf(i,j) = vad_in_out(i,j,k) - vad(i,j) |
---|
258 | ENDDO |
---|
259 | ENDDO |
---|
260 | |
---|
261 | ! |
---|
262 | !-- Apply the filter. |
---|
263 | DO j = nys_x, nyn_x |
---|
264 | wrk_long(0,j,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
265 | wrk_long(0,j,2) = ( 1.0 - long_filter_factor ) / wrk_long(0,j,1) |
---|
266 | wrk_long(0,j,3) = ( long_filter_factor * tf(nx,j) + & |
---|
267 | 2.0 * tf(0,j) + tf(1,j) & |
---|
268 | ) / wrk_long(0,j,1) |
---|
269 | DO i = 1, nx-1 |
---|
270 | wrk_long(i,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
271 | ( 1.0 - long_filter_factor ) * wrk_long(i-1,j,2) |
---|
272 | wrk_long(i,j,2) = ( 1.0 - long_filter_factor ) / wrk_long(i,j,1) |
---|
273 | wrk_long(i,j,3) = ( tf(i-1,j) + 2.0 * tf(i,j) + & |
---|
274 | tf(i+1,j) - ( 1.0 - long_filter_factor ) * & |
---|
275 | wrk_long(i-1,j,3) ) / wrk_long(i,j,1) |
---|
276 | ENDDO |
---|
277 | wrk_long(nx,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
278 | ( 1.0 - long_filter_factor ) * wrk_long(nx-1,j,2) |
---|
279 | wrk_long(nx,j,2) = ( 1.0 - long_filter_factor ) / wrk_long(nx,j,1) |
---|
280 | wrk_long(nx,j,3) = ( tf(nx-1,j) + 2.0 * tf(nx,j) + & |
---|
281 | long_filter_factor * tf(0,j) - & |
---|
282 | ( 1.0 - long_filter_factor ) * & |
---|
283 | wrk_long(nx-1,j,3) & |
---|
284 | ) / wrk_long(nx,j,1) |
---|
285 | r(nx,j) = wrk_long(nx,j,3) |
---|
286 | ENDDO |
---|
287 | |
---|
288 | DO i = nx-1, 0, -1 |
---|
289 | DO j = nys_x, nyn_x |
---|
290 | r(i,j) = wrk_long(i,j,3) - wrk_long(i,j,2) * r(i+1,j) |
---|
291 | ENDDO |
---|
292 | ENDDO |
---|
293 | |
---|
294 | DO j = nys_x, nyn_x |
---|
295 | DO i = 0, nx |
---|
296 | vad_in_out(i,j,k) = vad(i,j) + r(i,j) |
---|
297 | ENDDO |
---|
298 | ENDDO |
---|
299 | |
---|
300 | ENDIF ! Long filter |
---|
301 | |
---|
302 | ENDDO |
---|
303 | |
---|
304 | #else |
---|
305 | |
---|
306 | ! |
---|
307 | !-- Allocate working arrays |
---|
308 | ALLOCATE( r(nzb+1:nzt,nxl-1:nxr+1), vad(nzb:nzt+1,nxl-1:nxr+1), & |
---|
309 | wrk_spline(nzb+1:nzt,nxl-1:nxr+1) ) |
---|
310 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
311 | ALLOCATE( tf(nzb+1:nzt,nxl-1:nxr+1), wrk_long(nzb+1:nzt,0:nx,1:3) ) |
---|
312 | ENDIF |
---|
313 | |
---|
314 | ! |
---|
315 | !-- Loop over all gridpoints along y |
---|
316 | DO j = nys, nyn |
---|
317 | |
---|
318 | ! |
---|
319 | !-- Store array to be advected on work array and add cyclic boundary along x |
---|
320 | vad(:,:) = vad_in_out(:,j,:) |
---|
321 | vad(:,-1) = vad(:,nx) |
---|
322 | vad(:,nx+1) = vad(:,0) |
---|
323 | |
---|
324 | ! |
---|
325 | !-- Calculate right hand side |
---|
326 | DO i = 0, nx |
---|
327 | DO k = nzb+1, nzt |
---|
328 | r(k,i) = 3.0 * ( & |
---|
329 | spl_tri_x(2,i) * ( vad(k,i) - vad(k,i-1) ) * ddx + & |
---|
330 | spl_tri_x(3,i) * ( vad(k,i+1) - vad(k,i) ) * ddx & |
---|
331 | ) |
---|
332 | ENDDO |
---|
333 | ENDDO |
---|
334 | |
---|
335 | ! |
---|
336 | !-- Forward substitution |
---|
337 | DO k = nzb+1, nzt |
---|
338 | wrk_spline(k,0) = r(k,0) |
---|
339 | ENDDO |
---|
340 | |
---|
341 | DO i = 1, nx |
---|
342 | DO k = nzb+1, nzt |
---|
343 | wrk_spline(k,i) = r(k,i) - spl_tri_x(5,i) * wrk_spline(k,i-1) |
---|
344 | ENDDO |
---|
345 | ENDDO |
---|
346 | |
---|
347 | ! |
---|
348 | !-- Backward substitution (Sherman-Morrison-formula) |
---|
349 | DO k = nzb+1, nzt |
---|
350 | r(k,nx) = wrk_spline(k,nx) / spl_tri_x(4,nx) |
---|
351 | ENDDO |
---|
352 | |
---|
353 | DO k = nzb+1, nzt |
---|
354 | DO i = nx-1, 0, -1 |
---|
355 | r(k,i) = ( wrk_spline(k,i) - spl_tri_x(3,i) * r(k,i+1) ) / & |
---|
356 | spl_tri_x(4,i) |
---|
357 | ENDDO |
---|
358 | sm_faktor = ( r(k,0) + 0.5 * r(k,nx) / spl_gamma_x ) / & |
---|
359 | ( 1.0 + spl_z_x(0) + 0.5 * spl_z_x(nx) / spl_gamma_x ) |
---|
360 | DO i = 0, nx |
---|
361 | r(k,i) = r(k,i) - sm_faktor * spl_z_x(i) |
---|
362 | ENDDO |
---|
363 | ENDDO |
---|
364 | |
---|
365 | ! |
---|
366 | !-- Add cyclic boundary to the right hand side |
---|
367 | r(:,-1) = r(:,nx) |
---|
368 | r(:,nx+1) = r(:,0) |
---|
369 | |
---|
370 | ! |
---|
371 | !-- Calculate advection along x |
---|
372 | DO i = 0, nx |
---|
373 | DO k = nzb+1, nzt |
---|
374 | |
---|
375 | IF (ad_v(k,j,i) == 0.0) THEN |
---|
376 | |
---|
377 | vad_in_out(k,j,i) = vad(k,i) |
---|
378 | |
---|
379 | ELSEIF ( ad_v(k,j,i) > 0.0) THEN |
---|
380 | |
---|
381 | IF ( ABS( vad(k,i) - vad(k,i-1) ) <= ups_limit ) THEN |
---|
382 | vad_in_out(k,j,i) = vad(k,i) - dt_3d * ad_v(k,j,i) * & |
---|
383 | ( vad(k,i) - vad(k,i-1) ) * ddx |
---|
384 | ! |
---|
385 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
386 | DO sr = 0, statistic_regions |
---|
387 | sums_up_fraction_l(component,1,sr) = & |
---|
388 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
389 | ENDDO |
---|
390 | ELSE |
---|
391 | t1 = ad_v(k,j,i) * dt_3d * ddx |
---|
392 | t2 = 3.0 * ( vad(k,i-1) - vad(k,i) ) + & |
---|
393 | ( 2.0 * r(k,i) + r(k,i-1) ) * dx |
---|
394 | t3 = 2.0 * ( vad(k,i-1) - vad(k,i) ) + & |
---|
395 | ( r(k,i) + r(k,i-1) ) * dx |
---|
396 | vad_in_out(k,j,i) = vad(k,i) - r(k,i) * t1 * dx + & |
---|
397 | t2 * t1**2 - t3 * t1**3 |
---|
398 | IF ( vad(k,i-1) == vad(k,i) ) THEN |
---|
399 | vad_in_out(k,j,i) = vad(k,i) |
---|
400 | ENDIF |
---|
401 | ENDIF |
---|
402 | |
---|
403 | ELSE |
---|
404 | |
---|
405 | IF ( ABS( vad(k,i) - vad(k,i+1) ) <= ups_limit ) THEN |
---|
406 | vad_in_out(k,j,i) = vad(k,i) - dt_3d * ad_v(k,j,i) * & |
---|
407 | ( vad(k,i+1) - vad(k,i) ) * ddx |
---|
408 | ! |
---|
409 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
410 | DO sr = 0, statistic_regions |
---|
411 | sums_up_fraction_l(component,1,sr) = & |
---|
412 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
413 | ENDDO |
---|
414 | ELSE |
---|
415 | t1 = -ad_v(k,j,i) * dt_3d * ddx |
---|
416 | t2 = 3.0 * ( vad(k,i) - vad(k,i+1) ) + & |
---|
417 | ( 2.0 * r(k,i) + r(k,i+1)) * dx |
---|
418 | t3 = 2.0 * ( vad(k,i) - vad(k,i+1) ) + & |
---|
419 | ( r(k,i) + r(k,i+1) ) * dx |
---|
420 | vad_in_out(k,j,i) = vad(k,i) + r(k,i) * t1 * dx - & |
---|
421 | t2 * t1**2 + t3 * t1**3 |
---|
422 | IF ( vad(k,i+1) == vad(k,i) ) THEN |
---|
423 | vad_in_out(k,j,i) = vad(k,i) |
---|
424 | ENDIF |
---|
425 | ENDIF |
---|
426 | |
---|
427 | ENDIF |
---|
428 | ENDDO |
---|
429 | ENDDO |
---|
430 | |
---|
431 | ! |
---|
432 | !-- Limit values in order to prevent overshooting |
---|
433 | IF ( cut_spline_overshoot ) THEN |
---|
434 | |
---|
435 | DO i = 0, nx |
---|
436 | DO k = nzb+1, nzt |
---|
437 | IF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
438 | IF ( vad(k,i) > vad(k,i-1) ) THEN |
---|
439 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
440 | vad(k,i) + overshoot_limit ) |
---|
441 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
442 | vad(k,i-1) - overshoot_limit ) |
---|
443 | ELSE |
---|
444 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
445 | vad(k,i) - overshoot_limit ) |
---|
446 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
447 | vad(k,i-1) + overshoot_limit ) |
---|
448 | ENDIF |
---|
449 | ELSE |
---|
450 | IF ( vad(k,i) > vad(k,i+1) ) THEN |
---|
451 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
452 | vad(k,i) + overshoot_limit ) |
---|
453 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
454 | vad(k,i+1) - overshoot_limit ) |
---|
455 | ELSE |
---|
456 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
457 | vad(k,i) - overshoot_limit ) |
---|
458 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
459 | vad(k,i+1) + overshoot_limit ) |
---|
460 | ENDIF |
---|
461 | ENDIF |
---|
462 | ENDDO |
---|
463 | ENDDO |
---|
464 | |
---|
465 | ENDIF |
---|
466 | |
---|
467 | ! |
---|
468 | !-- Long filter (acting on tendency only) |
---|
469 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
470 | |
---|
471 | ! |
---|
472 | !-- Compute tendency |
---|
473 | DO i = nxl, nxr |
---|
474 | DO k = nzb+1, nzt |
---|
475 | tf(k,i) = vad_in_out(k,j,i) - vad(k,i) |
---|
476 | ENDDO |
---|
477 | ENDDO |
---|
478 | |
---|
479 | ! |
---|
480 | !-- Apply the filter |
---|
481 | wrk_long(:,0,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
482 | wrk_long(:,0,2) = ( 1.0 - long_filter_factor ) / wrk_long(:,0,1) |
---|
483 | wrk_long(:,0,3) = ( long_filter_factor * tf(:,nx) + & |
---|
484 | 2.0 * tf(:,0) + tf(:,1) ) / wrk_long(:,0,1) |
---|
485 | |
---|
486 | DO i = 1, nx-1 |
---|
487 | DO k = nzb+1, nzt |
---|
488 | wrk_long(k,i,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
489 | ( 1.0 - long_filter_factor ) * & |
---|
490 | wrk_long(k,i-1,2) |
---|
491 | wrk_long(k,i,2) = ( 1.0 - long_filter_factor ) / wrk_long(k,i,1) |
---|
492 | wrk_long(k,i,3) = ( tf(k,i-1) + 2.0 * tf(k,i) + & |
---|
493 | tf(k,i+1) - ( 1.0 - long_filter_factor ) * & |
---|
494 | wrk_long(k,i-1,3) ) / wrk_long(k,i,1) |
---|
495 | ENDDO |
---|
496 | wrk_long(:,nx,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
497 | ( 1.0 - long_filter_factor ) * & |
---|
498 | wrk_long(:,nx-1,2) |
---|
499 | wrk_long(:,nx,2) = ( 1.0 - long_filter_factor ) / wrk_long(:,nx,1) |
---|
500 | wrk_long(:,nx,3) = ( tf(:,nx-1) + 2.0 * tf(:,nx) + & |
---|
501 | long_filter_factor * tf(:,0) - & |
---|
502 | ( 1.0 - long_filter_factor ) * & |
---|
503 | wrk_long(:,nx-1,3) ) / wrk_long(:,nx,1) |
---|
504 | r(:,nx) = wrk_long(:,nx,3) |
---|
505 | ENDDO |
---|
506 | DO i = nx-1, 0, -1 |
---|
507 | DO k = nzb+1, nzt |
---|
508 | r(k,i) = wrk_long(k,i,3) - wrk_long(k,i,2) * r(k,i+1) |
---|
509 | ENDDO |
---|
510 | ENDDO |
---|
511 | DO i = 0, nx |
---|
512 | DO k = nzb+1, nzt |
---|
513 | vad_in_out(k,j,i) = vad(k,i) + r(k,i) |
---|
514 | ENDDO |
---|
515 | ENDDO |
---|
516 | |
---|
517 | ENDIF ! Long filter |
---|
518 | |
---|
519 | ENDDO |
---|
520 | #endif |
---|
521 | |
---|
522 | IF ( long_filter_factor /= 0.0 ) DEALLOCATE( tf, wrk_long ) |
---|
523 | DEALLOCATE( r, vad, wrk_spline ) |
---|
524 | |
---|
525 | END SUBROUTINE spline_x |
---|