[1] | 1 | SUBROUTINE spline_x( vad_in_out, ad_v, var_char ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: spline_x.f90 484 2010-02-05 07:36:54Z maronga $ |
---|
| 11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 12 | ! |
---|
[1] | 13 | ! Revision 1.8 2004/04/30 12:54:20 raasch |
---|
| 14 | ! Names of transpose indices changed, enlarged transposition arrays introduced |
---|
| 15 | ! |
---|
| 16 | ! Revision 1.1 1999/02/05 09:15:59 raasch |
---|
| 17 | ! Initial revision |
---|
| 18 | ! |
---|
| 19 | ! |
---|
| 20 | ! Description: |
---|
| 21 | ! ------------ |
---|
| 22 | ! Upstream-spline advection along x |
---|
| 23 | ! |
---|
| 24 | ! Input/output parameters: |
---|
| 25 | ! ad_v = advecting wind speed component |
---|
| 26 | ! vad_in_out = quantity to be advected, excluding ghost- or cyclic boundaries |
---|
| 27 | ! result is given to the calling routine in this array |
---|
| 28 | ! var_char = string which defines the quantity to be advected |
---|
| 29 | ! |
---|
| 30 | ! Internal arrays: |
---|
| 31 | ! r = 2D-working array (right hand side of linear equation, buffer for |
---|
| 32 | ! Long filter) |
---|
| 33 | ! tf = tendency field (2D), used for long filter |
---|
| 34 | ! vad = quantity to be advected (2D), including ghost- or cyclic |
---|
| 35 | ! boundarys along the direction of advection |
---|
| 36 | ! wrk_long = working array (long coefficients) |
---|
| 37 | ! wrk_spline = working array (spline coefficients) |
---|
| 38 | !------------------------------------------------------------------------------! |
---|
| 39 | |
---|
| 40 | USE advection |
---|
| 41 | USE grid_variables |
---|
| 42 | USE indices |
---|
| 43 | USE statistics |
---|
| 44 | USE control_parameters |
---|
| 45 | USE transpose_indices |
---|
| 46 | |
---|
| 47 | IMPLICIT NONE |
---|
| 48 | |
---|
| 49 | CHARACTER (LEN=*) :: var_char |
---|
| 50 | |
---|
| 51 | INTEGER :: component, i, j, k, sr |
---|
| 52 | REAL :: overshoot_limit, sm_faktor, t1, t2, t3, ups_limit |
---|
| 53 | REAL, DIMENSION(:,:), ALLOCATABLE :: r, tf, vad, wrk_spline |
---|
| 54 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: wrk_long |
---|
| 55 | |
---|
| 56 | #if defined( __parallel ) |
---|
| 57 | REAL :: ad_v(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa), & |
---|
| 58 | vad_in_out(0:nxa,nys_x:nyn_xa,nzb_x:nzt_xa) |
---|
| 59 | #else |
---|
| 60 | REAL :: ad_v(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
| 61 | vad_in_out(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) |
---|
| 62 | #endif |
---|
| 63 | |
---|
| 64 | ! |
---|
| 65 | !-- Set criteria for switching between upstream- and upstream-spline-method |
---|
| 66 | IF ( var_char == 'u' ) THEN |
---|
| 67 | overshoot_limit = overshoot_limit_u |
---|
| 68 | ups_limit = ups_limit_u |
---|
| 69 | component = 1 |
---|
| 70 | ELSEIF ( var_char == 'v' ) THEN |
---|
| 71 | overshoot_limit = overshoot_limit_v |
---|
| 72 | ups_limit = ups_limit_v |
---|
| 73 | component = 2 |
---|
| 74 | ELSEIF ( var_char == 'w' ) THEN |
---|
| 75 | overshoot_limit = overshoot_limit_w |
---|
| 76 | ups_limit = ups_limit_w |
---|
| 77 | component = 3 |
---|
| 78 | ELSEIF ( var_char == 'pt' ) THEN |
---|
| 79 | overshoot_limit = overshoot_limit_pt |
---|
| 80 | ups_limit = ups_limit_pt |
---|
| 81 | component = 4 |
---|
| 82 | ELSEIF ( var_char == 'e' ) THEN |
---|
| 83 | overshoot_limit = overshoot_limit_e |
---|
| 84 | ups_limit = ups_limit_e |
---|
| 85 | component = 5 |
---|
| 86 | ENDIF |
---|
| 87 | |
---|
| 88 | ! |
---|
| 89 | !-- Initialize calculation of relative upstream fraction |
---|
| 90 | sums_up_fraction_l(component,1,:) = 0.0 |
---|
| 91 | |
---|
| 92 | #if defined( __parallel ) |
---|
| 93 | |
---|
| 94 | ! |
---|
| 95 | !-- Allocate working arrays |
---|
| 96 | ALLOCATE( r(-1:nx+1,nys_x:nyn_x), vad(-1:nx+1,nys_x:nyn_x), & |
---|
| 97 | wrk_spline(0:nx,nys_x:nyn_x) ) |
---|
| 98 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
| 99 | ALLOCATE( tf(0:nx,nys_x:nyn_x), wrk_long(0:nx,nys_x:nyn_x,1:3) ) |
---|
| 100 | ENDIF |
---|
| 101 | |
---|
| 102 | ! |
---|
| 103 | !-- Loop over all gridpoints along z |
---|
| 104 | DO k = nzb_x, nzt_x |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- Store array to be advected on work array and add cyclic boundary along x |
---|
| 108 | vad(0:nx,nys_x:nyn_x) = vad_in_out(0:nx,nys_x:nyn_x,k) |
---|
| 109 | vad(-1,:) = vad(nx,:) |
---|
| 110 | vad(nx+1,:) = vad(0,:) |
---|
| 111 | |
---|
| 112 | ! |
---|
| 113 | !-- Calculate right hand side |
---|
| 114 | DO j = nys_x, nyn_x |
---|
| 115 | DO i = 0, nx |
---|
| 116 | r(i,j) = 3.0 * ( & |
---|
| 117 | spl_tri_x(2,i) * ( vad(i,j) - vad(i-1,j) ) * ddx + & |
---|
| 118 | spl_tri_x(3,i) * ( vad(i+1,j) - vad(i,j) ) * ddx & |
---|
| 119 | ) |
---|
| 120 | ENDDO |
---|
| 121 | ENDDO |
---|
| 122 | |
---|
| 123 | ! |
---|
| 124 | !-- Forward substitution |
---|
| 125 | DO j = nys_x, nyn_x |
---|
| 126 | wrk_spline(0,j) = r(0,j) |
---|
| 127 | DO i = 1, nx |
---|
| 128 | wrk_spline(i,j) = r(i,j) - spl_tri_x(5,i) * wrk_spline(i-1,j) |
---|
| 129 | ENDDO |
---|
| 130 | ENDDO |
---|
| 131 | |
---|
| 132 | ! |
---|
| 133 | !-- Backward substitution (Sherman-Morrison-formula) |
---|
| 134 | DO j = nys_x, nyn_x |
---|
| 135 | r(nx,j) = wrk_spline(nx,j) / spl_tri_x(4,nx) |
---|
| 136 | DO i = nx-1, 0, -1 |
---|
| 137 | r(i,j) = ( wrk_spline(i,j) - spl_tri_x(3,i) * r(i+1,j) ) / & |
---|
| 138 | spl_tri_x(4,i) |
---|
| 139 | ENDDO |
---|
| 140 | sm_faktor = ( r(0,j) + 0.5 * r(nx,j) / spl_gamma_x ) / & |
---|
| 141 | ( 1.0 + spl_z_x(0) + 0.5 * spl_z_x(nx) / spl_gamma_x ) |
---|
| 142 | DO i = 0, nx |
---|
| 143 | r(i,j) = r(i,j) - sm_faktor * spl_z_x(i) |
---|
| 144 | ENDDO |
---|
| 145 | ENDDO |
---|
| 146 | |
---|
| 147 | ! |
---|
| 148 | !-- Add cyclic boundary to right hand side |
---|
| 149 | r(-1,:) = r(nx,:) |
---|
| 150 | r(nx+1,:) = r(0,:) |
---|
| 151 | |
---|
| 152 | ! |
---|
| 153 | !-- Calculate advection along x |
---|
| 154 | DO j = nys_x, nyn_x |
---|
| 155 | DO i = 0, nx |
---|
| 156 | |
---|
| 157 | IF ( ad_v(i,j,k) == 0.0 ) THEN |
---|
| 158 | |
---|
| 159 | vad_in_out(i,j,k) = vad(i,j) |
---|
| 160 | |
---|
| 161 | ELSEIF ( ad_v(i,j,k) > 0.0 ) THEN |
---|
| 162 | |
---|
| 163 | IF ( ABS( vad(i,j) - vad(i-1,j) ) <= ups_limit ) THEN |
---|
| 164 | vad_in_out(i,j,k) = vad(i,j) - dt_3d * ad_v(i,j,k) * & |
---|
| 165 | ( vad(i,j) - vad(i-1,j) ) * ddx |
---|
| 166 | ! |
---|
| 167 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
| 168 | DO sr = 0, statistic_regions |
---|
| 169 | sums_up_fraction_l(component,1,sr) = & |
---|
| 170 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
| 171 | ENDDO |
---|
| 172 | ELSE |
---|
| 173 | t1 = ad_v(i,j,k) * dt_3d * ddx |
---|
| 174 | t2 = 3.0 * ( vad(i-1,j) - vad(i,j) ) + & |
---|
| 175 | ( 2.0 * r(i,j) + r(i-1,j) ) * dx |
---|
| 176 | t3 = 2.0 * ( vad(i-1,j) - vad(i,j) ) + & |
---|
| 177 | ( r(i,j) + r(i-1,j) ) * dx |
---|
| 178 | vad_in_out(i,j,k) = vad(i,j) - r(i,j) * t1 * dx + & |
---|
| 179 | t2 * t1**2 - t3 * t1**3 |
---|
| 180 | IF ( vad(i-1,j) == vad(i,j) ) THEN |
---|
| 181 | vad_in_out(i,j,k) = vad(i,j) |
---|
| 182 | ENDIF |
---|
| 183 | ENDIF |
---|
| 184 | |
---|
| 185 | ELSE |
---|
| 186 | |
---|
| 187 | IF ( ABS( vad(i,j) - vad(i+1,j) ) <= ups_limit ) THEN |
---|
| 188 | vad_in_out(i,j,k) = vad(i,j) - dt_3d * ad_v(i,j,k) * & |
---|
| 189 | ( vad(i+1,j) - vad(i,j) ) * ddx |
---|
| 190 | ! |
---|
| 191 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
| 192 | DO sr = 0, statistic_regions |
---|
| 193 | sums_up_fraction_l(component,1,sr) = & |
---|
| 194 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
| 195 | ENDDO |
---|
| 196 | ELSE |
---|
| 197 | t1 = -ad_v(i,j,k) * dt_3d * ddx |
---|
| 198 | t2 = 3.0 * ( vad(i,j) - vad(i+1,j) ) + & |
---|
| 199 | ( 2.0 * r(i,j) + r(i+1,j) ) * dx |
---|
| 200 | t3 = 2.0 * ( vad(i,j) - vad(i+1,j) ) + & |
---|
| 201 | ( r(i,j) + r(i+1,j) ) * dx |
---|
| 202 | vad_in_out(i,j,k) = vad(i,j) + r(i,j) * t1 * dx - & |
---|
| 203 | t2 * t1**2 + t3 * t1**3 |
---|
| 204 | IF ( vad(i+1,j) == vad(i,j) ) THEN |
---|
| 205 | vad_in_out(i,j,k) = vad(i,j) |
---|
| 206 | ENDIF |
---|
| 207 | ENDIF |
---|
| 208 | |
---|
| 209 | ENDIF |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | |
---|
| 213 | ! |
---|
| 214 | !-- Limit values in order to prevent overshooting |
---|
| 215 | IF ( cut_spline_overshoot ) THEN |
---|
| 216 | |
---|
| 217 | DO j = nys_x, nyn_x |
---|
| 218 | DO i = 0, nx |
---|
| 219 | IF ( ad_v(i,j,k) > 0.0 ) THEN |
---|
| 220 | IF ( vad(i,j) > vad(i-1,j) ) THEN |
---|
| 221 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
| 222 | vad(i,j) + overshoot_limit ) |
---|
| 223 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
| 224 | vad(i-1,j) - overshoot_limit ) |
---|
| 225 | ELSE |
---|
| 226 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
| 227 | vad(i,j) - overshoot_limit ) |
---|
| 228 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
| 229 | vad(i-1,j) + overshoot_limit ) |
---|
| 230 | ENDIF |
---|
| 231 | ELSE |
---|
| 232 | IF ( vad(i,j) > vad(i+1,j) ) THEN |
---|
| 233 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
| 234 | vad(i,j) + overshoot_limit ) |
---|
| 235 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
| 236 | vad(i+1,j) - overshoot_limit ) |
---|
| 237 | ELSE |
---|
| 238 | vad_in_out(i,j,k) = MAX( vad_in_out(i,j,k), & |
---|
| 239 | vad(i,j) - overshoot_limit ) |
---|
| 240 | vad_in_out(i,j,k) = MIN( vad_in_out(i,j,k), & |
---|
| 241 | vad(i+1,j) + overshoot_limit ) |
---|
| 242 | ENDIF |
---|
| 243 | ENDIF |
---|
| 244 | ENDDO |
---|
| 245 | ENDDO |
---|
| 246 | |
---|
| 247 | ENDIF |
---|
| 248 | |
---|
| 249 | ! |
---|
| 250 | !-- Long-filter (acting on tendency only) |
---|
| 251 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
| 252 | |
---|
| 253 | ! |
---|
| 254 | !-- Compute tendency |
---|
| 255 | DO j = nys_x, nyn_x |
---|
| 256 | DO i = 0, nx |
---|
| 257 | tf(i,j) = vad_in_out(i,j,k) - vad(i,j) |
---|
| 258 | ENDDO |
---|
| 259 | ENDDO |
---|
| 260 | |
---|
| 261 | ! |
---|
| 262 | !-- Apply the filter. |
---|
| 263 | DO j = nys_x, nyn_x |
---|
| 264 | wrk_long(0,j,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
| 265 | wrk_long(0,j,2) = ( 1.0 - long_filter_factor ) / wrk_long(0,j,1) |
---|
| 266 | wrk_long(0,j,3) = ( long_filter_factor * tf(nx,j) + & |
---|
| 267 | 2.0 * tf(0,j) + tf(1,j) & |
---|
| 268 | ) / wrk_long(0,j,1) |
---|
| 269 | DO i = 1, nx-1 |
---|
| 270 | wrk_long(i,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
| 271 | ( 1.0 - long_filter_factor ) * wrk_long(i-1,j,2) |
---|
| 272 | wrk_long(i,j,2) = ( 1.0 - long_filter_factor ) / wrk_long(i,j,1) |
---|
| 273 | wrk_long(i,j,3) = ( tf(i-1,j) + 2.0 * tf(i,j) + & |
---|
| 274 | tf(i+1,j) - ( 1.0 - long_filter_factor ) * & |
---|
| 275 | wrk_long(i-1,j,3) ) / wrk_long(i,j,1) |
---|
| 276 | ENDDO |
---|
| 277 | wrk_long(nx,j,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
| 278 | ( 1.0 - long_filter_factor ) * wrk_long(nx-1,j,2) |
---|
| 279 | wrk_long(nx,j,2) = ( 1.0 - long_filter_factor ) / wrk_long(nx,j,1) |
---|
| 280 | wrk_long(nx,j,3) = ( tf(nx-1,j) + 2.0 * tf(nx,j) + & |
---|
| 281 | long_filter_factor * tf(0,j) - & |
---|
| 282 | ( 1.0 - long_filter_factor ) * & |
---|
| 283 | wrk_long(nx-1,j,3) & |
---|
| 284 | ) / wrk_long(nx,j,1) |
---|
| 285 | r(nx,j) = wrk_long(nx,j,3) |
---|
| 286 | ENDDO |
---|
| 287 | |
---|
| 288 | DO i = nx-1, 0, -1 |
---|
| 289 | DO j = nys_x, nyn_x |
---|
| 290 | r(i,j) = wrk_long(i,j,3) - wrk_long(i,j,2) * r(i+1,j) |
---|
| 291 | ENDDO |
---|
| 292 | ENDDO |
---|
| 293 | |
---|
| 294 | DO j = nys_x, nyn_x |
---|
| 295 | DO i = 0, nx |
---|
| 296 | vad_in_out(i,j,k) = vad(i,j) + r(i,j) |
---|
| 297 | ENDDO |
---|
| 298 | ENDDO |
---|
| 299 | |
---|
| 300 | ENDIF ! Long filter |
---|
| 301 | |
---|
| 302 | ENDDO |
---|
| 303 | |
---|
| 304 | #else |
---|
| 305 | |
---|
| 306 | ! |
---|
| 307 | !-- Allocate working arrays |
---|
| 308 | ALLOCATE( r(nzb+1:nzt,nxl-1:nxr+1), vad(nzb:nzt+1,nxl-1:nxr+1), & |
---|
| 309 | wrk_spline(nzb+1:nzt,nxl-1:nxr+1) ) |
---|
| 310 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
| 311 | ALLOCATE( tf(nzb+1:nzt,nxl-1:nxr+1), wrk_long(nzb+1:nzt,0:nx,1:3) ) |
---|
| 312 | ENDIF |
---|
| 313 | |
---|
| 314 | ! |
---|
| 315 | !-- Loop over all gridpoints along y |
---|
| 316 | DO j = nys, nyn |
---|
| 317 | |
---|
| 318 | ! |
---|
| 319 | !-- Store array to be advected on work array and add cyclic boundary along x |
---|
| 320 | vad(:,:) = vad_in_out(:,j,:) |
---|
| 321 | vad(:,-1) = vad(:,nx) |
---|
| 322 | vad(:,nx+1) = vad(:,0) |
---|
| 323 | |
---|
| 324 | ! |
---|
| 325 | !-- Calculate right hand side |
---|
| 326 | DO i = 0, nx |
---|
| 327 | DO k = nzb+1, nzt |
---|
| 328 | r(k,i) = 3.0 * ( & |
---|
| 329 | spl_tri_x(2,i) * ( vad(k,i) - vad(k,i-1) ) * ddx + & |
---|
| 330 | spl_tri_x(3,i) * ( vad(k,i+1) - vad(k,i) ) * ddx & |
---|
| 331 | ) |
---|
| 332 | ENDDO |
---|
| 333 | ENDDO |
---|
| 334 | |
---|
| 335 | ! |
---|
| 336 | !-- Forward substitution |
---|
| 337 | DO k = nzb+1, nzt |
---|
| 338 | wrk_spline(k,0) = r(k,0) |
---|
| 339 | ENDDO |
---|
| 340 | |
---|
| 341 | DO i = 1, nx |
---|
| 342 | DO k = nzb+1, nzt |
---|
| 343 | wrk_spline(k,i) = r(k,i) - spl_tri_x(5,i) * wrk_spline(k,i-1) |
---|
| 344 | ENDDO |
---|
| 345 | ENDDO |
---|
| 346 | |
---|
| 347 | ! |
---|
| 348 | !-- Backward substitution (Sherman-Morrison-formula) |
---|
| 349 | DO k = nzb+1, nzt |
---|
| 350 | r(k,nx) = wrk_spline(k,nx) / spl_tri_x(4,nx) |
---|
| 351 | ENDDO |
---|
| 352 | |
---|
| 353 | DO k = nzb+1, nzt |
---|
| 354 | DO i = nx-1, 0, -1 |
---|
| 355 | r(k,i) = ( wrk_spline(k,i) - spl_tri_x(3,i) * r(k,i+1) ) / & |
---|
| 356 | spl_tri_x(4,i) |
---|
| 357 | ENDDO |
---|
| 358 | sm_faktor = ( r(k,0) + 0.5 * r(k,nx) / spl_gamma_x ) / & |
---|
| 359 | ( 1.0 + spl_z_x(0) + 0.5 * spl_z_x(nx) / spl_gamma_x ) |
---|
| 360 | DO i = 0, nx |
---|
| 361 | r(k,i) = r(k,i) - sm_faktor * spl_z_x(i) |
---|
| 362 | ENDDO |
---|
| 363 | ENDDO |
---|
| 364 | |
---|
| 365 | ! |
---|
| 366 | !-- Add cyclic boundary to the right hand side |
---|
| 367 | r(:,-1) = r(:,nx) |
---|
| 368 | r(:,nx+1) = r(:,0) |
---|
| 369 | |
---|
| 370 | ! |
---|
| 371 | !-- Calculate advection along x |
---|
| 372 | DO i = 0, nx |
---|
| 373 | DO k = nzb+1, nzt |
---|
| 374 | |
---|
| 375 | IF (ad_v(k,j,i) == 0.0) THEN |
---|
| 376 | |
---|
| 377 | vad_in_out(k,j,i) = vad(k,i) |
---|
| 378 | |
---|
| 379 | ELSEIF ( ad_v(k,j,i) > 0.0) THEN |
---|
| 380 | |
---|
| 381 | IF ( ABS( vad(k,i) - vad(k,i-1) ) <= ups_limit ) THEN |
---|
| 382 | vad_in_out(k,j,i) = vad(k,i) - dt_3d * ad_v(k,j,i) * & |
---|
| 383 | ( vad(k,i) - vad(k,i-1) ) * ddx |
---|
| 384 | ! |
---|
| 385 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
| 386 | DO sr = 0, statistic_regions |
---|
| 387 | sums_up_fraction_l(component,1,sr) = & |
---|
| 388 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
| 389 | ENDDO |
---|
| 390 | ELSE |
---|
| 391 | t1 = ad_v(k,j,i) * dt_3d * ddx |
---|
| 392 | t2 = 3.0 * ( vad(k,i-1) - vad(k,i) ) + & |
---|
| 393 | ( 2.0 * r(k,i) + r(k,i-1) ) * dx |
---|
| 394 | t3 = 2.0 * ( vad(k,i-1) - vad(k,i) ) + & |
---|
| 395 | ( r(k,i) + r(k,i-1) ) * dx |
---|
| 396 | vad_in_out(k,j,i) = vad(k,i) - r(k,i) * t1 * dx + & |
---|
| 397 | t2 * t1**2 - t3 * t1**3 |
---|
| 398 | IF ( vad(k,i-1) == vad(k,i) ) THEN |
---|
| 399 | vad_in_out(k,j,i) = vad(k,i) |
---|
| 400 | ENDIF |
---|
| 401 | ENDIF |
---|
| 402 | |
---|
| 403 | ELSE |
---|
| 404 | |
---|
| 405 | IF ( ABS( vad(k,i) - vad(k,i+1) ) <= ups_limit ) THEN |
---|
| 406 | vad_in_out(k,j,i) = vad(k,i) - dt_3d * ad_v(k,j,i) * & |
---|
| 407 | ( vad(k,i+1) - vad(k,i) ) * ddx |
---|
| 408 | ! |
---|
| 409 | !-- Calculate upstream fraction in % (s. flow_statistics) |
---|
| 410 | DO sr = 0, statistic_regions |
---|
| 411 | sums_up_fraction_l(component,1,sr) = & |
---|
| 412 | sums_up_fraction_l(component,1,sr) + 1.0 |
---|
| 413 | ENDDO |
---|
| 414 | ELSE |
---|
| 415 | t1 = -ad_v(k,j,i) * dt_3d * ddx |
---|
| 416 | t2 = 3.0 * ( vad(k,i) - vad(k,i+1) ) + & |
---|
| 417 | ( 2.0 * r(k,i) + r(k,i+1)) * dx |
---|
| 418 | t3 = 2.0 * ( vad(k,i) - vad(k,i+1) ) + & |
---|
| 419 | ( r(k,i) + r(k,i+1) ) * dx |
---|
| 420 | vad_in_out(k,j,i) = vad(k,i) + r(k,i) * t1 * dx - & |
---|
| 421 | t2 * t1**2 + t3 * t1**3 |
---|
| 422 | IF ( vad(k,i+1) == vad(k,i) ) THEN |
---|
| 423 | vad_in_out(k,j,i) = vad(k,i) |
---|
| 424 | ENDIF |
---|
| 425 | ENDIF |
---|
| 426 | |
---|
| 427 | ENDIF |
---|
| 428 | ENDDO |
---|
| 429 | ENDDO |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- Limit values in order to prevent overshooting |
---|
| 433 | IF ( cut_spline_overshoot ) THEN |
---|
| 434 | |
---|
| 435 | DO i = 0, nx |
---|
| 436 | DO k = nzb+1, nzt |
---|
| 437 | IF ( ad_v(k,j,i) > 0.0 ) THEN |
---|
| 438 | IF ( vad(k,i) > vad(k,i-1) ) THEN |
---|
| 439 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 440 | vad(k,i) + overshoot_limit ) |
---|
| 441 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 442 | vad(k,i-1) - overshoot_limit ) |
---|
| 443 | ELSE |
---|
| 444 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 445 | vad(k,i) - overshoot_limit ) |
---|
| 446 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 447 | vad(k,i-1) + overshoot_limit ) |
---|
| 448 | ENDIF |
---|
| 449 | ELSE |
---|
| 450 | IF ( vad(k,i) > vad(k,i+1) ) THEN |
---|
| 451 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 452 | vad(k,i) + overshoot_limit ) |
---|
| 453 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 454 | vad(k,i+1) - overshoot_limit ) |
---|
| 455 | ELSE |
---|
| 456 | vad_in_out(k,j,i) = MAX( vad_in_out(k,j,i), & |
---|
| 457 | vad(k,i) - overshoot_limit ) |
---|
| 458 | vad_in_out(k,j,i) = MIN( vad_in_out(k,j,i), & |
---|
| 459 | vad(k,i+1) + overshoot_limit ) |
---|
| 460 | ENDIF |
---|
| 461 | ENDIF |
---|
| 462 | ENDDO |
---|
| 463 | ENDDO |
---|
| 464 | |
---|
| 465 | ENDIF |
---|
| 466 | |
---|
| 467 | ! |
---|
| 468 | !-- Long filter (acting on tendency only) |
---|
| 469 | IF ( long_filter_factor /= 0.0 ) THEN |
---|
| 470 | |
---|
| 471 | ! |
---|
| 472 | !-- Compute tendency |
---|
| 473 | DO i = nxl, nxr |
---|
| 474 | DO k = nzb+1, nzt |
---|
| 475 | tf(k,i) = vad_in_out(k,j,i) - vad(k,i) |
---|
| 476 | ENDDO |
---|
| 477 | ENDDO |
---|
| 478 | |
---|
| 479 | ! |
---|
| 480 | !-- Apply the filter |
---|
| 481 | wrk_long(:,0,1) = 2.0 * ( 1.0 + long_filter_factor ) |
---|
| 482 | wrk_long(:,0,2) = ( 1.0 - long_filter_factor ) / wrk_long(:,0,1) |
---|
| 483 | wrk_long(:,0,3) = ( long_filter_factor * tf(:,nx) + & |
---|
| 484 | 2.0 * tf(:,0) + tf(:,1) ) / wrk_long(:,0,1) |
---|
| 485 | |
---|
| 486 | DO i = 1, nx-1 |
---|
| 487 | DO k = nzb+1, nzt |
---|
| 488 | wrk_long(k,i,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
| 489 | ( 1.0 - long_filter_factor ) * & |
---|
| 490 | wrk_long(k,i-1,2) |
---|
| 491 | wrk_long(k,i,2) = ( 1.0 - long_filter_factor ) / wrk_long(k,i,1) |
---|
| 492 | wrk_long(k,i,3) = ( tf(k,i-1) + 2.0 * tf(k,i) + & |
---|
| 493 | tf(k,i+1) - ( 1.0 - long_filter_factor ) * & |
---|
| 494 | wrk_long(k,i-1,3) ) / wrk_long(k,i,1) |
---|
| 495 | ENDDO |
---|
| 496 | wrk_long(:,nx,1) = 2.0 * ( 1.0 + long_filter_factor ) - & |
---|
| 497 | ( 1.0 - long_filter_factor ) * & |
---|
| 498 | wrk_long(:,nx-1,2) |
---|
| 499 | wrk_long(:,nx,2) = ( 1.0 - long_filter_factor ) / wrk_long(:,nx,1) |
---|
| 500 | wrk_long(:,nx,3) = ( tf(:,nx-1) + 2.0 * tf(:,nx) + & |
---|
| 501 | long_filter_factor * tf(:,0) - & |
---|
| 502 | ( 1.0 - long_filter_factor ) * & |
---|
| 503 | wrk_long(:,nx-1,3) ) / wrk_long(:,nx,1) |
---|
| 504 | r(:,nx) = wrk_long(:,nx,3) |
---|
| 505 | ENDDO |
---|
| 506 | DO i = nx-1, 0, -1 |
---|
| 507 | DO k = nzb+1, nzt |
---|
| 508 | r(k,i) = wrk_long(k,i,3) - wrk_long(k,i,2) * r(k,i+1) |
---|
| 509 | ENDDO |
---|
| 510 | ENDDO |
---|
| 511 | DO i = 0, nx |
---|
| 512 | DO k = nzb+1, nzt |
---|
| 513 | vad_in_out(k,j,i) = vad(k,i) + r(k,i) |
---|
| 514 | ENDDO |
---|
| 515 | ENDDO |
---|
| 516 | |
---|
| 517 | ENDIF ! Long filter |
---|
| 518 | |
---|
| 519 | ENDDO |
---|
| 520 | #endif |
---|
| 521 | |
---|
| 522 | IF ( long_filter_factor /= 0.0 ) DEALLOCATE( tf, wrk_long ) |
---|
| 523 | DEALLOCATE( r, vad, wrk_spline ) |
---|
| 524 | |
---|
| 525 | END SUBROUTINE spline_x |
---|