[1] | 1 | SUBROUTINE sor( d, ddzu, ddzw, p ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
[708] | 6 | ! |
---|
[1] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: sor.f90 708 2011-03-29 12:34:54Z maronga $ |
---|
[77] | 11 | ! |
---|
[708] | 12 | ! 707 2011-03-29 11:39:40Z raasch |
---|
| 13 | ! bc_lr/ns replaced by bc_lr/ns_cyc |
---|
| 14 | ! |
---|
[668] | 15 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 16 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng. |
---|
| 17 | ! Call of exchange_horiz are modified. |
---|
| 18 | ! bug removed in declaration of ddzw(), nz replaced by nzt+1 |
---|
| 19 | ! |
---|
[77] | 20 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 21 | ! 2nd+3rd argument removed from exchange horiz |
---|
| 22 | ! |
---|
[3] | 23 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 24 | ! |
---|
[1] | 25 | ! Revision 1.9 2005/03/26 21:02:23 raasch |
---|
| 26 | ! Implementation of non-cyclic (Neumann) horizontal boundary conditions, |
---|
| 27 | ! dx2,dy2 replaced by ddx2,ddy2 |
---|
| 28 | ! |
---|
| 29 | ! Revision 1.1 1997/08/11 06:25:56 raasch |
---|
| 30 | ! Initial revision |
---|
| 31 | ! |
---|
| 32 | ! |
---|
| 33 | ! Description: |
---|
| 34 | ! ------------ |
---|
| 35 | ! Solve the Poisson-equation with the SOR-Red/Black-scheme. |
---|
[3] | 36 | !------------------------------------------------------------------------------! |
---|
[1] | 37 | |
---|
| 38 | USE grid_variables |
---|
| 39 | USE indices |
---|
| 40 | USE pegrid |
---|
| 41 | USE control_parameters |
---|
| 42 | |
---|
| 43 | IMPLICIT NONE |
---|
| 44 | |
---|
| 45 | INTEGER :: i, j, k, n, nxl1, nxl2, nys1, nys2 |
---|
[667] | 46 | REAL :: ddzu(1:nz+1), ddzw(1:nzt+1) |
---|
[1] | 47 | REAL :: d(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
[667] | 48 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) |
---|
[1] | 49 | REAL, DIMENSION(:), ALLOCATABLE :: f1, f2, f3 |
---|
| 50 | |
---|
| 51 | ALLOCATE( f1(1:nz), f2(1:nz), f3(1:nz) ) |
---|
| 52 | |
---|
| 53 | ! |
---|
| 54 | !-- Compute pre-factors. |
---|
| 55 | DO k = 1, nz |
---|
| 56 | f2(k) = ddzu(k+1) * ddzw(k) |
---|
| 57 | f3(k) = ddzu(k) * ddzw(k) |
---|
| 58 | f1(k) = 2.0 * ( ddx2 + ddy2 ) + f2(k) + f3(k) |
---|
| 59 | ENDDO |
---|
| 60 | |
---|
| 61 | ! |
---|
| 62 | !-- Limits for RED- and BLACK-part. |
---|
| 63 | IF ( MOD( nxl , 2 ) == 0 ) THEN |
---|
| 64 | nxl1 = nxl |
---|
| 65 | nxl2 = nxl + 1 |
---|
| 66 | ELSE |
---|
| 67 | nxl1 = nxl + 1 |
---|
| 68 | nxl2 = nxl |
---|
| 69 | ENDIF |
---|
| 70 | IF ( MOD( nys , 2 ) == 0 ) THEN |
---|
| 71 | nys1 = nys |
---|
| 72 | nys2 = nys + 1 |
---|
| 73 | ELSE |
---|
| 74 | nys1 = nys + 1 |
---|
| 75 | nys2 = nys |
---|
| 76 | ENDIF |
---|
| 77 | |
---|
| 78 | DO n = 1, n_sor |
---|
| 79 | |
---|
| 80 | ! |
---|
| 81 | !-- RED-part |
---|
| 82 | DO i = nxl1, nxr, 2 |
---|
| 83 | DO j = nys2, nyn, 2 |
---|
| 84 | DO k = nzb+1, nzt |
---|
| 85 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 86 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 87 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 88 | f2(k) * p(k+1,j,i) + & |
---|
| 89 | f3(k) * p(k-1,j,i) - & |
---|
| 90 | d(k,j,i) - & |
---|
| 91 | f1(k) * p(k,j,i) ) |
---|
| 92 | ENDDO |
---|
| 93 | ENDDO |
---|
| 94 | ENDDO |
---|
| 95 | |
---|
| 96 | DO i = nxl2, nxr, 2 |
---|
| 97 | DO j = nys1, nyn, 2 |
---|
| 98 | DO k = nzb+1, nzt |
---|
| 99 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 100 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 101 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 102 | f2(k) * p(k+1,j,i) + & |
---|
| 103 | f3(k) * p(k-1,j,i) - & |
---|
| 104 | d(k,j,i) - & |
---|
| 105 | f1(k) * p(k,j,i) ) |
---|
| 106 | ENDDO |
---|
| 107 | ENDDO |
---|
| 108 | ENDDO |
---|
| 109 | |
---|
| 110 | ! |
---|
| 111 | !-- Exchange of boundary values for p. |
---|
[667] | 112 | CALL exchange_horiz( p, nbgp ) |
---|
[1] | 113 | |
---|
| 114 | ! |
---|
| 115 | !-- Horizontal (Neumann) boundary conditions in case of non-cyclic boundaries |
---|
[707] | 116 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 117 | IF ( inflow_l .OR. outflow_l ) p(:,:,nxl-1) = p(:,:,nxl) |
---|
| 118 | IF ( inflow_r .OR. outflow_r ) p(:,:,nxr+1) = p(:,:,nxr) |
---|
| 119 | ENDIF |
---|
[707] | 120 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1] | 121 | IF ( inflow_n .OR. outflow_n ) p(:,nyn+1,:) = p(:,nyn,:) |
---|
| 122 | IF ( inflow_s .OR. outflow_s ) p(:,nys-1,:) = p(:,nys,:) |
---|
| 123 | ENDIF |
---|
| 124 | |
---|
| 125 | ! |
---|
| 126 | !-- BLACK-part |
---|
| 127 | DO i = nxl1, nxr, 2 |
---|
| 128 | DO j = nys1, nyn, 2 |
---|
| 129 | DO k = nzb+1, nzt |
---|
| 130 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 131 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 132 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 133 | f2(k) * p(k+1,j,i) + & |
---|
| 134 | f3(k) * p(k-1,j,i) - & |
---|
| 135 | d(k,j,i) - & |
---|
| 136 | f1(k) * p(k,j,i) ) |
---|
| 137 | ENDDO |
---|
| 138 | ENDDO |
---|
| 139 | ENDDO |
---|
| 140 | |
---|
| 141 | DO i = nxl2, nxr, 2 |
---|
| 142 | DO j = nys2, nyn, 2 |
---|
| 143 | DO k = nzb+1, nzt |
---|
| 144 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 145 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 146 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 147 | f2(k) * p(k+1,j,i) + & |
---|
| 148 | f3(k) * p(k-1,j,i) - & |
---|
| 149 | d(k,j,i) - & |
---|
| 150 | f1(k) * p(k,j,i) ) |
---|
| 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | ENDDO |
---|
| 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Exchange of boundary values for p. |
---|
[667] | 157 | CALL exchange_horiz( p, nbgp ) |
---|
[1] | 158 | |
---|
| 159 | ! |
---|
| 160 | !-- Boundary conditions top/bottom. |
---|
| 161 | !-- Bottom boundary |
---|
[667] | 162 | IF ( ibc_p_b == 1 ) THEN ! Neumann |
---|
[1] | 163 | p(nzb,:,:) = p(nzb+1,:,:) |
---|
[667] | 164 | ELSE ! Dirichlet |
---|
[1] | 165 | p(nzb,:,:) = 0.0 |
---|
| 166 | ENDIF |
---|
| 167 | |
---|
| 168 | ! |
---|
| 169 | !-- Top boundary |
---|
[667] | 170 | IF ( ibc_p_t == 1 ) THEN ! Neumann |
---|
[1] | 171 | p(nzt+1,:,:) = p(nzt,:,:) |
---|
[667] | 172 | ELSE ! Dirichlet |
---|
[1] | 173 | p(nzt+1,:,:) = 0.0 |
---|
| 174 | ENDIF |
---|
| 175 | |
---|
| 176 | ! |
---|
| 177 | !-- Horizontal (Neumann) boundary conditions in case of non-cyclic boundaries |
---|
[707] | 178 | IF ( .NOT. bc_lr_cyc ) THEN |
---|
[1] | 179 | IF ( inflow_l .OR. outflow_l ) p(:,:,nxl-1) = p(:,:,nxl) |
---|
| 180 | IF ( inflow_r .OR. outflow_r ) p(:,:,nxr+1) = p(:,:,nxr) |
---|
| 181 | ENDIF |
---|
[707] | 182 | IF ( .NOT. bc_ns_cyc ) THEN |
---|
[1] | 183 | IF ( inflow_n .OR. outflow_n ) p(:,nyn+1,:) = p(:,nyn,:) |
---|
| 184 | IF ( inflow_s .OR. outflow_s ) p(:,nys-1,:) = p(:,nys,:) |
---|
| 185 | ENDIF |
---|
| 186 | |
---|
[667] | 187 | |
---|
[1] | 188 | ENDDO |
---|
| 189 | |
---|
| 190 | DEALLOCATE( f1, f2, f3 ) |
---|
| 191 | |
---|
| 192 | END SUBROUTINE sor |
---|