[1] | 1 | SUBROUTINE sor( d, ddzu, ddzw, p ) |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
[3] | 9 | ! $Id: sor.f90 668 2010-12-23 13:22:58Z raasch $ |
---|
[77] | 10 | ! |
---|
[668] | 11 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 12 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng. |
---|
| 13 | ! Call of exchange_horiz are modified. |
---|
| 14 | ! bug removed in declaration of ddzw(), nz replaced by nzt+1 |
---|
| 15 | ! |
---|
[77] | 16 | ! 75 2007-03-22 09:54:05Z raasch |
---|
| 17 | ! 2nd+3rd argument removed from exchange horiz |
---|
| 18 | ! |
---|
[3] | 19 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 20 | ! |
---|
[1] | 21 | ! Revision 1.9 2005/03/26 21:02:23 raasch |
---|
| 22 | ! Implementation of non-cyclic (Neumann) horizontal boundary conditions, |
---|
| 23 | ! dx2,dy2 replaced by ddx2,ddy2 |
---|
| 24 | ! |
---|
| 25 | ! Revision 1.1 1997/08/11 06:25:56 raasch |
---|
| 26 | ! Initial revision |
---|
| 27 | ! |
---|
| 28 | ! |
---|
| 29 | ! Description: |
---|
| 30 | ! ------------ |
---|
| 31 | ! Solve the Poisson-equation with the SOR-Red/Black-scheme. |
---|
[3] | 32 | !------------------------------------------------------------------------------! |
---|
[1] | 33 | |
---|
| 34 | USE grid_variables |
---|
| 35 | USE indices |
---|
| 36 | USE pegrid |
---|
| 37 | USE control_parameters |
---|
| 38 | |
---|
| 39 | IMPLICIT NONE |
---|
| 40 | |
---|
| 41 | INTEGER :: i, j, k, n, nxl1, nxl2, nys1, nys2 |
---|
[667] | 42 | REAL :: ddzu(1:nz+1), ddzw(1:nzt+1) |
---|
[1] | 43 | REAL :: d(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
[667] | 44 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) |
---|
[1] | 45 | REAL, DIMENSION(:), ALLOCATABLE :: f1, f2, f3 |
---|
| 46 | |
---|
| 47 | ALLOCATE( f1(1:nz), f2(1:nz), f3(1:nz) ) |
---|
| 48 | |
---|
| 49 | ! |
---|
| 50 | !-- Compute pre-factors. |
---|
| 51 | DO k = 1, nz |
---|
| 52 | f2(k) = ddzu(k+1) * ddzw(k) |
---|
| 53 | f3(k) = ddzu(k) * ddzw(k) |
---|
| 54 | f1(k) = 2.0 * ( ddx2 + ddy2 ) + f2(k) + f3(k) |
---|
| 55 | ENDDO |
---|
| 56 | |
---|
| 57 | ! |
---|
| 58 | !-- Limits for RED- and BLACK-part. |
---|
| 59 | IF ( MOD( nxl , 2 ) == 0 ) THEN |
---|
| 60 | nxl1 = nxl |
---|
| 61 | nxl2 = nxl + 1 |
---|
| 62 | ELSE |
---|
| 63 | nxl1 = nxl + 1 |
---|
| 64 | nxl2 = nxl |
---|
| 65 | ENDIF |
---|
| 66 | IF ( MOD( nys , 2 ) == 0 ) THEN |
---|
| 67 | nys1 = nys |
---|
| 68 | nys2 = nys + 1 |
---|
| 69 | ELSE |
---|
| 70 | nys1 = nys + 1 |
---|
| 71 | nys2 = nys |
---|
| 72 | ENDIF |
---|
| 73 | |
---|
| 74 | DO n = 1, n_sor |
---|
| 75 | |
---|
| 76 | ! |
---|
| 77 | !-- RED-part |
---|
| 78 | DO i = nxl1, nxr, 2 |
---|
| 79 | DO j = nys2, nyn, 2 |
---|
| 80 | DO k = nzb+1, nzt |
---|
| 81 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 82 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 83 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 84 | f2(k) * p(k+1,j,i) + & |
---|
| 85 | f3(k) * p(k-1,j,i) - & |
---|
| 86 | d(k,j,i) - & |
---|
| 87 | f1(k) * p(k,j,i) ) |
---|
| 88 | ENDDO |
---|
| 89 | ENDDO |
---|
| 90 | ENDDO |
---|
| 91 | |
---|
| 92 | DO i = nxl2, nxr, 2 |
---|
| 93 | DO j = nys1, nyn, 2 |
---|
| 94 | DO k = nzb+1, nzt |
---|
| 95 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 96 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 97 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 98 | f2(k) * p(k+1,j,i) + & |
---|
| 99 | f3(k) * p(k-1,j,i) - & |
---|
| 100 | d(k,j,i) - & |
---|
| 101 | f1(k) * p(k,j,i) ) |
---|
| 102 | ENDDO |
---|
| 103 | ENDDO |
---|
| 104 | ENDDO |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- Exchange of boundary values for p. |
---|
[667] | 108 | CALL exchange_horiz( p, nbgp ) |
---|
[1] | 109 | |
---|
| 110 | ! |
---|
| 111 | !-- Horizontal (Neumann) boundary conditions in case of non-cyclic boundaries |
---|
| 112 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
| 113 | IF ( inflow_l .OR. outflow_l ) p(:,:,nxl-1) = p(:,:,nxl) |
---|
| 114 | IF ( inflow_r .OR. outflow_r ) p(:,:,nxr+1) = p(:,:,nxr) |
---|
| 115 | ENDIF |
---|
| 116 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 117 | IF ( inflow_n .OR. outflow_n ) p(:,nyn+1,:) = p(:,nyn,:) |
---|
| 118 | IF ( inflow_s .OR. outflow_s ) p(:,nys-1,:) = p(:,nys,:) |
---|
| 119 | ENDIF |
---|
| 120 | |
---|
| 121 | ! |
---|
| 122 | !-- BLACK-part |
---|
| 123 | DO i = nxl1, nxr, 2 |
---|
| 124 | DO j = nys1, nyn, 2 |
---|
| 125 | DO k = nzb+1, nzt |
---|
| 126 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 127 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 128 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 129 | f2(k) * p(k+1,j,i) + & |
---|
| 130 | f3(k) * p(k-1,j,i) - & |
---|
| 131 | d(k,j,i) - & |
---|
| 132 | f1(k) * p(k,j,i) ) |
---|
| 133 | ENDDO |
---|
| 134 | ENDDO |
---|
| 135 | ENDDO |
---|
| 136 | |
---|
| 137 | DO i = nxl2, nxr, 2 |
---|
| 138 | DO j = nys2, nyn, 2 |
---|
| 139 | DO k = nzb+1, nzt |
---|
| 140 | p(k,j,i) = p(k,j,i) + omega_sor / f1(k) * ( & |
---|
| 141 | ddx2 * ( p(k,j,i+1) + p(k,j,i-1) ) + & |
---|
| 142 | ddy2 * ( p(k,j+1,i) + p(k,j-1,i) ) + & |
---|
| 143 | f2(k) * p(k+1,j,i) + & |
---|
| 144 | f3(k) * p(k-1,j,i) - & |
---|
| 145 | d(k,j,i) - & |
---|
| 146 | f1(k) * p(k,j,i) ) |
---|
| 147 | ENDDO |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | |
---|
| 151 | ! |
---|
| 152 | !-- Exchange of boundary values for p. |
---|
[667] | 153 | CALL exchange_horiz( p, nbgp ) |
---|
[1] | 154 | |
---|
| 155 | ! |
---|
| 156 | !-- Boundary conditions top/bottom. |
---|
| 157 | !-- Bottom boundary |
---|
[667] | 158 | IF ( ibc_p_b == 1 ) THEN ! Neumann |
---|
[1] | 159 | p(nzb,:,:) = p(nzb+1,:,:) |
---|
[667] | 160 | ELSE ! Dirichlet |
---|
[1] | 161 | p(nzb,:,:) = 0.0 |
---|
| 162 | ENDIF |
---|
| 163 | |
---|
| 164 | ! |
---|
| 165 | !-- Top boundary |
---|
[667] | 166 | IF ( ibc_p_t == 1 ) THEN ! Neumann |
---|
[1] | 167 | p(nzt+1,:,:) = p(nzt,:,:) |
---|
[667] | 168 | ELSE ! Dirichlet |
---|
[1] | 169 | p(nzt+1,:,:) = 0.0 |
---|
| 170 | ENDIF |
---|
| 171 | |
---|
| 172 | ! |
---|
| 173 | !-- Horizontal (Neumann) boundary conditions in case of non-cyclic boundaries |
---|
| 174 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
| 175 | IF ( inflow_l .OR. outflow_l ) p(:,:,nxl-1) = p(:,:,nxl) |
---|
| 176 | IF ( inflow_r .OR. outflow_r ) p(:,:,nxr+1) = p(:,:,nxr) |
---|
| 177 | ENDIF |
---|
| 178 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 179 | IF ( inflow_n .OR. outflow_n ) p(:,nyn+1,:) = p(:,nyn,:) |
---|
| 180 | IF ( inflow_s .OR. outflow_s ) p(:,nys-1,:) = p(:,nys,:) |
---|
| 181 | ENDIF |
---|
| 182 | |
---|
[667] | 183 | |
---|
[1] | 184 | ENDDO |
---|
| 185 | |
---|
| 186 | DEALLOCATE( f1, f2, f3 ) |
---|
| 187 | |
---|
| 188 | END SUBROUTINE sor |
---|