1 | MODULE singleton |
---|
2 | |
---|
3 | !----------------------------------------------------------------------------- |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: singleton.f90 1321 2014-03-20 09:40:40Z knoop $ |
---|
11 | ! |
---|
12 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
13 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
14 | ! kinds are defined in new module kinds, |
---|
15 | ! revision history before 2012 removed, |
---|
16 | ! |
---|
17 | ! Revision 1.1 2002/05/02 18:56:59 raasch |
---|
18 | ! Initial revision |
---|
19 | ! |
---|
20 | ! |
---|
21 | ! Description: |
---|
22 | ! ------------ |
---|
23 | ! Multivariate Fast Fourier Transform |
---|
24 | ! |
---|
25 | ! Fortran 90 Implementation of Singleton's mixed-radix algorithm, |
---|
26 | ! RC Singleton, Stanford Research Institute, Sept. 1968. |
---|
27 | ! |
---|
28 | ! Adapted from fftn.c, translated from Fortran 66 to C by Mark Olesen and |
---|
29 | ! John Beale. |
---|
30 | ! |
---|
31 | ! Fourier transforms can be computed either in place, using assumed size |
---|
32 | ! arguments, or by generic function, using assumed shape arguments. |
---|
33 | ! |
---|
34 | ! |
---|
35 | ! Public: |
---|
36 | ! |
---|
37 | ! fftkind kind parameter of complex arguments |
---|
38 | ! and function results. |
---|
39 | ! |
---|
40 | ! fft(array, dim, inv, stat) generic transform function |
---|
41 | ! COMPLEX(fftkind), DIMENSION(:,...,:), INTENT(IN) :: array |
---|
42 | ! INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
43 | ! LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
44 | ! INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
45 | ! |
---|
46 | ! fftn(array, shape, dim, inv, stat) in place transform subroutine |
---|
47 | ! COMPLEX(fftkind), DIMENSION(*), INTENT(INOUT) :: array |
---|
48 | ! INTEGER, DIMENSION(:), INTENT(IN) :: shape |
---|
49 | ! INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
50 | ! LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
51 | ! INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
52 | ! |
---|
53 | ! |
---|
54 | ! Formal Parameters: |
---|
55 | ! |
---|
56 | ! array The complex array to be transformed. array can be of arbitrary |
---|
57 | ! rank (i.e. up to seven). |
---|
58 | ! |
---|
59 | ! shape With subroutine fftn, the shape of the array to be transformed |
---|
60 | ! has to be passed separately, since fftradix - the internal trans- |
---|
61 | ! formation routine - will treat array always as one dimensional. |
---|
62 | ! The product of elements in shape must be the number of |
---|
63 | ! elements in array. |
---|
64 | ! Although passing array with assumed shape would have been nicer, |
---|
65 | ! I prefered assumed size in order to prevent the compiler from |
---|
66 | ! using a copy-in-copy-out mechanism. That would generally be |
---|
67 | ! necessary with fftn passing array to fftradix and with fftn |
---|
68 | ! being prepared for accepting non consecutive array sections. |
---|
69 | ! Using assumed size, it's up to the user to pass an array argu- |
---|
70 | ! ment, that can be addressed as continous one dimensional array |
---|
71 | ! without copying. Otherwise, transformation will not really be |
---|
72 | ! performed in place. |
---|
73 | ! On the other hand, since the rank of array and the size of |
---|
74 | ! shape needn't match, fftn is appropriate for handling more than |
---|
75 | ! seven dimensions. |
---|
76 | ! As far as function fft is concerned all this doesn't matter, |
---|
77 | ! because the argument will be copied anyway. Thus no extra |
---|
78 | ! shape argument is needed for fft. |
---|
79 | ! |
---|
80 | ! Optional Parameters: |
---|
81 | ! |
---|
82 | ! dim One dimensional integer array, containing the dimensions to be |
---|
83 | ! transformed. Default is (/1,...,N/) with N being the rank of |
---|
84 | ! array, i.e. complete transform. dim can restrict transformation |
---|
85 | ! to a subset of available dimensions. Its size must not exceed the |
---|
86 | ! rank of array or the size of shape respectivly. |
---|
87 | ! |
---|
88 | ! inv If .true., inverse transformation will be performed. Default is |
---|
89 | ! .false., i.e. forward transformation. |
---|
90 | ! |
---|
91 | ! stat If present, a system dependent nonzero status value will be |
---|
92 | ! returned in stat, if allocation of temporary storage failed. |
---|
93 | ! |
---|
94 | ! |
---|
95 | ! Scaling: |
---|
96 | ! |
---|
97 | ! Transformation results will always be scaled by the square root of the |
---|
98 | ! product of sizes of each dimension in dim. (See examples below) |
---|
99 | ! |
---|
100 | ! |
---|
101 | ! Examples: |
---|
102 | ! |
---|
103 | ! Let A be a L*M*N three dimensional complex array. Then |
---|
104 | ! |
---|
105 | ! result = fft(A) |
---|
106 | ! |
---|
107 | ! will produce a three dimensional transform, scaled by sqrt(L*M*N), while |
---|
108 | ! |
---|
109 | ! call fftn(A, SHAPE(A)) |
---|
110 | ! |
---|
111 | ! will do the same in place. |
---|
112 | ! |
---|
113 | ! result = fft(A, dim=(/1,3/)) |
---|
114 | ! |
---|
115 | ! will transform with respect to the first and the third dimension, scaled |
---|
116 | ! by sqrt(L*N). |
---|
117 | ! |
---|
118 | ! result = fft(fft(A), inv=.true.) |
---|
119 | ! |
---|
120 | ! should (approximately) reproduce A. |
---|
121 | ! With B having the same shape as A |
---|
122 | ! |
---|
123 | ! result = fft(fft(A) * CONJG(fft(B)), inv=.true.) |
---|
124 | ! |
---|
125 | ! will correlate A and B. |
---|
126 | ! |
---|
127 | ! |
---|
128 | ! Remarks: |
---|
129 | ! |
---|
130 | ! Following changes have been introduced with respect to fftn.c: |
---|
131 | ! - complex arguments and results are of type complex, rather than |
---|
132 | ! real an imaginary part separately. |
---|
133 | ! - increment parameter (magnitude of isign) has been dropped, |
---|
134 | ! inc is always one, direction of transform is given by inv. |
---|
135 | ! - maxf and maxp have been dropped. The amount of temporary storage |
---|
136 | ! needed is determined by the fftradix routine. Both fftn and fft |
---|
137 | ! can handle any size of array. (Maybe they take a lot of time and |
---|
138 | ! memory, but they will do it) |
---|
139 | ! |
---|
140 | ! Redesigning fftradix in a way, that it handles assumed shape arrays |
---|
141 | ! would have been desirable. However, I found it rather hard to do this |
---|
142 | ! in an efficient way. Problems were: |
---|
143 | ! - to prevent stride multiplications when indexing arrays. At least our |
---|
144 | ! compiler was not clever enough to discover that in fact additions |
---|
145 | ! would do the job as well. On the other hand, I haven't been clever |
---|
146 | ! enough to find an implementation using array operations. |
---|
147 | ! - fftradix is rather large and different versions would be necessaray |
---|
148 | ! for each possible rank of array. |
---|
149 | ! Consequently, in place transformation still needs the argument stored |
---|
150 | ! in a consecutive bunch of memory and can't be performed on array |
---|
151 | ! sections like A(100:199:-3, 50:1020). Calling fftn with such sections |
---|
152 | ! will most probably imply copy-in-copy-out. However, the function fft |
---|
153 | ! works with everything it gets and should be convenient to use. |
---|
154 | ! |
---|
155 | ! Michael Steffens, 09.12.96, <Michael.Steffens@mbox.muk.uni-hannover.de> |
---|
156 | ! Restructured fftradix for better optimization. M. Steffens, 4 June 1997 |
---|
157 | !----------------------------------------------------------------------------- |
---|
158 | |
---|
159 | USE kinds |
---|
160 | |
---|
161 | IMPLICIT NONE |
---|
162 | |
---|
163 | PRIVATE |
---|
164 | PUBLIC:: fft, fftn |
---|
165 | |
---|
166 | REAL(wp), PARAMETER:: sin60 = 0.86602540378443865_wp |
---|
167 | REAL(wp), PARAMETER:: cos72 = 0.30901699437494742_wp |
---|
168 | REAL(wp), PARAMETER:: sin72 = 0.95105651629515357_wp |
---|
169 | REAL(wp), PARAMETER:: pi = 3.14159265358979323_wp |
---|
170 | |
---|
171 | INTERFACE fft |
---|
172 | MODULE PROCEDURE fft1d |
---|
173 | MODULE PROCEDURE fft2d |
---|
174 | MODULE PROCEDURE fft3d |
---|
175 | MODULE PROCEDURE fft4d |
---|
176 | MODULE PROCEDURE fft5d |
---|
177 | MODULE PROCEDURE fft6d |
---|
178 | MODULE PROCEDURE fft7d |
---|
179 | END INTERFACE |
---|
180 | |
---|
181 | |
---|
182 | CONTAINS |
---|
183 | |
---|
184 | |
---|
185 | FUNCTION fft1d(array, dim, inv, stat) RESULT(ft) |
---|
186 | ! |
---|
187 | !-- Formal parameters |
---|
188 | COMPLEX(wp), DIMENSION(:), INTENT(IN) :: array |
---|
189 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
190 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
191 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
192 | ! |
---|
193 | !-- Function result |
---|
194 | COMPLEX(wp), DIMENSION(SIZE(array, 1)):: ft |
---|
195 | |
---|
196 | INTEGER(iwp):: ishape(1) |
---|
197 | |
---|
198 | ! |
---|
199 | !-- Intrinsics used |
---|
200 | INTRINSIC SIZE, SHAPE |
---|
201 | |
---|
202 | ft = array |
---|
203 | ishape = SHAPE( array ) |
---|
204 | CALL fftn(ft, ishape, inv = inv, stat = stat) |
---|
205 | |
---|
206 | END FUNCTION fft1d |
---|
207 | |
---|
208 | |
---|
209 | FUNCTION fft2d(array, dim, inv, stat) RESULT(ft) |
---|
210 | ! |
---|
211 | !-- Formal parameters |
---|
212 | COMPLEX(wp), DIMENSION(:,:), INTENT(IN) :: array |
---|
213 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
214 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
215 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
216 | ! |
---|
217 | !-- Function result |
---|
218 | COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2)):: ft |
---|
219 | |
---|
220 | INTEGER(iwp) :: ishape(2) |
---|
221 | ! |
---|
222 | !-- Intrinsics used |
---|
223 | INTRINSIC SIZE, SHAPE |
---|
224 | |
---|
225 | ft = array |
---|
226 | ishape = SHAPE( array ) |
---|
227 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
228 | |
---|
229 | END FUNCTION fft2d |
---|
230 | |
---|
231 | |
---|
232 | FUNCTION fft3d(array, dim, inv, stat) RESULT(ft) |
---|
233 | ! |
---|
234 | !-- Formal parameters |
---|
235 | COMPLEX(wp), DIMENSION(:,:,:), INTENT(IN) :: array |
---|
236 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
237 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
238 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
239 | ! |
---|
240 | !-- Function result |
---|
241 | COMPLEX(wp), & |
---|
242 | DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3)):: ft |
---|
243 | |
---|
244 | INTEGER(iwp) :: ishape(3) |
---|
245 | |
---|
246 | ! |
---|
247 | !-- Intrinsics used |
---|
248 | INTRINSIC SIZE, SHAPE |
---|
249 | |
---|
250 | ft = array |
---|
251 | ishape = SHAPE( array) |
---|
252 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
253 | |
---|
254 | END FUNCTION fft3d |
---|
255 | |
---|
256 | |
---|
257 | FUNCTION fft4d(array, dim, inv, stat) RESULT(ft) |
---|
258 | ! |
---|
259 | !-- Formal parameters |
---|
260 | COMPLEX(wp), DIMENSION(:,:,:,:), INTENT(IN) :: array |
---|
261 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
262 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
263 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
264 | ! |
---|
265 | !-- Function result |
---|
266 | COMPLEX(wp), DIMENSION( & |
---|
267 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4)):: ft |
---|
268 | |
---|
269 | INTEGER(iwp) :: ishape(4) |
---|
270 | ! |
---|
271 | !-- Intrinsics used |
---|
272 | INTRINSIC SIZE, SHAPE |
---|
273 | |
---|
274 | ft = array |
---|
275 | ishape = SHAPE( array ) |
---|
276 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
277 | |
---|
278 | END FUNCTION fft4d |
---|
279 | |
---|
280 | |
---|
281 | FUNCTION fft5d(array, dim, inv, stat) RESULT(ft) |
---|
282 | ! |
---|
283 | !-- Formal parameters |
---|
284 | COMPLEX(wp), DIMENSION(:,:,:,:,:), INTENT(IN) :: array |
---|
285 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
286 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
287 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
288 | ! |
---|
289 | !-- Function result |
---|
290 | COMPLEX(wp), DIMENSION( & |
---|
291 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
292 | SIZE(array, 5)):: ft |
---|
293 | |
---|
294 | INTEGER(iwp) :: ishape(5) |
---|
295 | |
---|
296 | ! |
---|
297 | !-- Intrinsics used |
---|
298 | INTRINSIC SIZE, SHAPE |
---|
299 | |
---|
300 | ft = array |
---|
301 | ishape = SHAPE( array ) |
---|
302 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
303 | |
---|
304 | END FUNCTION fft5d |
---|
305 | |
---|
306 | |
---|
307 | FUNCTION fft6d(array, dim, inv, stat) RESULT(ft) |
---|
308 | ! |
---|
309 | !-- Formal parameters |
---|
310 | COMPLEX(wp), DIMENSION(:,:,:,:,:,:), INTENT(IN) :: array |
---|
311 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
312 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
313 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
314 | ! |
---|
315 | !-- Function result |
---|
316 | COMPLEX(wp), DIMENSION( & |
---|
317 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
318 | SIZE(array, 5), SIZE(array, 6)):: ft |
---|
319 | |
---|
320 | INTEGER(iwp) :: ishape(6) |
---|
321 | |
---|
322 | ! |
---|
323 | !-- Intrinsics used |
---|
324 | INTRINSIC SIZE, SHAPE |
---|
325 | |
---|
326 | ft = array |
---|
327 | ishape = SHAPE( array ) |
---|
328 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
329 | |
---|
330 | END FUNCTION fft6d |
---|
331 | |
---|
332 | |
---|
333 | FUNCTION fft7d(array, dim, inv, stat) RESULT(ft) |
---|
334 | ! |
---|
335 | !-- Formal parameters |
---|
336 | COMPLEX(wp), DIMENSION(:,:,:,:,:,:,:), INTENT(IN) :: array |
---|
337 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
338 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
339 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
340 | ! |
---|
341 | !-- Function result |
---|
342 | COMPLEX(wp), DIMENSION( & |
---|
343 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
344 | SIZE(array, 5), SIZE(array, 6), SIZE(array, 7)):: ft |
---|
345 | |
---|
346 | INTEGER(iwp) :: ishape(7) |
---|
347 | |
---|
348 | ! |
---|
349 | !-- Intrinsics used |
---|
350 | INTRINSIC SIZE, SHAPE |
---|
351 | |
---|
352 | ft = array |
---|
353 | ishape = SHAPE( array ) |
---|
354 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
355 | |
---|
356 | END FUNCTION fft7d |
---|
357 | |
---|
358 | |
---|
359 | SUBROUTINE fftn(array, shape, dim, inv, stat) |
---|
360 | ! |
---|
361 | !-- Formal parameters |
---|
362 | COMPLEX(wp), DIMENSION(*), INTENT(INOUT) :: array |
---|
363 | INTEGER(iwp), DIMENSION(:), INTENT(IN) :: shape |
---|
364 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
365 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
366 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
367 | ! |
---|
368 | !-- Local arrays |
---|
369 | INTEGER(iwp), DIMENSION(SIZE(shape)):: d |
---|
370 | ! |
---|
371 | !-- Local scalars |
---|
372 | LOGICAL :: inverse |
---|
373 | INTEGER(iwp) :: i, ndim, ntotal |
---|
374 | REAL(wp):: scale |
---|
375 | ! |
---|
376 | !-- Intrinsics used |
---|
377 | INTRINSIC PRESENT, MIN, PRODUCT, SIZE, SQRT |
---|
378 | |
---|
379 | ! |
---|
380 | !-- Optional parameter settings |
---|
381 | IF (PRESENT(inv)) THEN |
---|
382 | inverse = inv |
---|
383 | ELSE |
---|
384 | inverse = .FALSE. |
---|
385 | END IF |
---|
386 | IF (PRESENT(dim)) THEN |
---|
387 | ndim = MIN(SIZE(dim), SIZE(d)) |
---|
388 | d(1:ndim) = DIM(1:ndim) |
---|
389 | ELSE |
---|
390 | ndim = SIZE(d) |
---|
391 | d = (/(i, i = 1, SIZE(d))/) |
---|
392 | END IF |
---|
393 | |
---|
394 | ntotal = PRODUCT(shape) |
---|
395 | scale = SQRT(1.0_wp / PRODUCT(shape(d(1:ndim)))) |
---|
396 | DO i = 1, ntotal |
---|
397 | array(i) = CMPLX(REAL(array(i)) * scale, AIMAG(array(i)) * scale, & |
---|
398 | KIND=wp) |
---|
399 | END DO |
---|
400 | |
---|
401 | DO i = 1, ndim |
---|
402 | CALL fftradix(array, ntotal, shape(d(i)), PRODUCT(shape(1:d(i))), & |
---|
403 | inverse, stat) |
---|
404 | IF (PRESENT(stat)) THEN |
---|
405 | IF (stat /=0) RETURN |
---|
406 | END IF |
---|
407 | END DO |
---|
408 | |
---|
409 | END SUBROUTINE fftn |
---|
410 | |
---|
411 | |
---|
412 | SUBROUTINE fftradix(array, ntotal, npass, nspan, inv, stat) |
---|
413 | ! |
---|
414 | !-- Formal parameters |
---|
415 | COMPLEX(wp), DIMENSION(*), INTENT(INOUT) :: array |
---|
416 | INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan |
---|
417 | INTEGER(iwp), INTENT(OUT), OPTIONAL:: stat |
---|
418 | LOGICAL, INTENT(IN) :: inv |
---|
419 | ! |
---|
420 | !-- Local arrays |
---|
421 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: ctmp |
---|
422 | INTEGER(iwp), DIMENSION(BIT_SIZE(0)) :: factor |
---|
423 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: perm |
---|
424 | REAL(wp), DIMENSION(:), ALLOCATABLE :: sine, cosine |
---|
425 | ! |
---|
426 | !-- Local scalars |
---|
427 | INTEGER(iwp) :: maxfactor, nfactor, nsquare, nperm |
---|
428 | ! |
---|
429 | !-- Intrinsics used |
---|
430 | INTRINSIC MAXVAL, MOD, PRESENT, ISHFT, BIT_SIZE, SIN, COS, & |
---|
431 | CMPLX, REAL, AIMAG |
---|
432 | |
---|
433 | IF (npass <= 1) RETURN |
---|
434 | |
---|
435 | CALL factorize(npass, factor, nfactor, nsquare) |
---|
436 | |
---|
437 | maxfactor = MAXVAL(factor(:nfactor)) |
---|
438 | IF (nfactor - ISHFT(nsquare, 1) > 0) THEN |
---|
439 | nperm = MAX(nfactor + 1, PRODUCT(factor(nsquare+1: nfactor-nsquare)) - 1) |
---|
440 | ELSE |
---|
441 | nperm = nfactor + 1 |
---|
442 | END IF |
---|
443 | |
---|
444 | IF (PRESENT(stat)) THEN |
---|
445 | ALLOCATE(ctmp(maxfactor), sine(maxfactor), cosine(maxfactor), STAT=stat) |
---|
446 | IF (stat /= 0) RETURN |
---|
447 | CALL transform(array, ntotal, npass, nspan, & |
---|
448 | factor, nfactor, ctmp, sine, cosine, inv) |
---|
449 | DEALLOCATE(sine, cosine, STAT=stat) |
---|
450 | IF (stat /= 0) RETURN |
---|
451 | ALLOCATE(perm(nperm), STAT=stat) |
---|
452 | IF (stat /= 0) RETURN |
---|
453 | CALL permute(array, ntotal, npass, nspan, & |
---|
454 | factor, nfactor, nsquare, maxfactor, & |
---|
455 | ctmp, perm) |
---|
456 | DEALLOCATE(perm, ctmp, STAT=stat) |
---|
457 | IF (stat /= 0) RETURN |
---|
458 | ELSE |
---|
459 | ALLOCATE(ctmp(maxfactor), sine(maxfactor), cosine(maxfactor)) |
---|
460 | CALL transform(array, ntotal, npass, nspan, & |
---|
461 | factor, nfactor, ctmp, sine, cosine, inv) |
---|
462 | DEALLOCATE(sine, cosine) |
---|
463 | ALLOCATE(perm(nperm)) |
---|
464 | CALL permute(array, ntotal, npass, nspan, & |
---|
465 | factor, nfactor, nsquare, maxfactor, & |
---|
466 | ctmp, perm) |
---|
467 | DEALLOCATE(perm, ctmp) |
---|
468 | END IF |
---|
469 | |
---|
470 | |
---|
471 | CONTAINS |
---|
472 | |
---|
473 | |
---|
474 | SUBROUTINE factorize(npass, factor, nfactor, nsquare) |
---|
475 | ! |
---|
476 | !-- Formal parameters |
---|
477 | INTEGER(iwp), INTENT(IN) :: npass |
---|
478 | INTEGER(iwp), DIMENSION(*), INTENT(OUT):: factor |
---|
479 | INTEGER(iwp), INTENT(OUT):: nfactor, nsquare |
---|
480 | ! |
---|
481 | !-- Local scalars |
---|
482 | INTEGER(iwp):: j, jj, k |
---|
483 | |
---|
484 | nfactor = 0 |
---|
485 | k = npass |
---|
486 | DO WHILE (MOD(k, 16) == 0) |
---|
487 | nfactor = nfactor + 1 |
---|
488 | factor(nfactor) = 4 |
---|
489 | k = k / 16 |
---|
490 | END DO |
---|
491 | j = 3 |
---|
492 | jj = 9 |
---|
493 | DO |
---|
494 | DO WHILE (MOD(k, jj) == 0) |
---|
495 | nfactor = nfactor + 1 |
---|
496 | factor(nfactor) = j |
---|
497 | k = k / jj |
---|
498 | END DO |
---|
499 | j = j + 2 |
---|
500 | jj = j * j |
---|
501 | IF (jj > k) EXIT |
---|
502 | END DO |
---|
503 | IF (k <= 4) THEN |
---|
504 | nsquare = nfactor |
---|
505 | factor(nfactor + 1) = k |
---|
506 | IF (k /= 1) nfactor = nfactor + 1 |
---|
507 | ELSE |
---|
508 | IF (k - ISHFT(k / 4, 2) == 0) THEN |
---|
509 | nfactor = nfactor + 1 |
---|
510 | factor(nfactor) = 2 |
---|
511 | k = k / 4 |
---|
512 | END IF |
---|
513 | nsquare = nfactor |
---|
514 | j = 2 |
---|
515 | DO |
---|
516 | IF (MOD(k, j) == 0) THEN |
---|
517 | nfactor = nfactor + 1 |
---|
518 | factor(nfactor) = j |
---|
519 | k = k / j |
---|
520 | END IF |
---|
521 | j = ISHFT((j + 1) / 2, 1) + 1 |
---|
522 | IF (j > k) EXIT |
---|
523 | END DO |
---|
524 | END IF |
---|
525 | IF (nsquare > 0) THEN |
---|
526 | j = nsquare |
---|
527 | DO |
---|
528 | nfactor = nfactor + 1 |
---|
529 | factor(nfactor) = factor(j) |
---|
530 | j = j - 1 |
---|
531 | IF (j==0) EXIT |
---|
532 | END DO |
---|
533 | END IF |
---|
534 | |
---|
535 | END SUBROUTINE factorize |
---|
536 | |
---|
537 | |
---|
538 | SUBROUTINE transform(array, ntotal, npass, nspan, & |
---|
539 | factor, nfactor, ctmp, sine, cosine, inv) !-- compute fourier transform |
---|
540 | ! |
---|
541 | !-- Formal parameters |
---|
542 | COMPLEX(wp), DIMENSION(*), INTENT(IN OUT):: array |
---|
543 | COMPLEX(wp), DIMENSION(*), INTENT(OUT) :: ctmp |
---|
544 | INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan |
---|
545 | INTEGER(iwp), DIMENSION(*), INTENT(IN) :: factor |
---|
546 | INTEGER(iwp), INTENT(IN) :: nfactor |
---|
547 | LOGICAL, INTENT(IN) :: inv |
---|
548 | REAL(wp), DIMENSION(*), INTENT(OUT) :: sine, cosine |
---|
549 | ! |
---|
550 | !-- Local scalars |
---|
551 | INTEGER(iwp):: ii, ispan |
---|
552 | INTEGER(iwp):: j, jc, jf, jj |
---|
553 | INTEGER(iwp):: k, kk, kspan, k1, k2, k3, k4 |
---|
554 | INTEGER(iwp):: nn, nt |
---|
555 | REAL(wp) :: s60, c72, s72, pi2, radf |
---|
556 | REAL(wp) :: c1, s1, c2, s2, c3, s3, cd, sd, ak |
---|
557 | COMPLEX(wp) :: cc, cj, ck, cjp, cjm, ckp, ckm |
---|
558 | |
---|
559 | c72 = cos72 |
---|
560 | IF (inv) THEN |
---|
561 | s72 = sin72 |
---|
562 | s60 = sin60 |
---|
563 | pi2 = pi |
---|
564 | ELSE |
---|
565 | s72 = -sin72 |
---|
566 | s60 = -sin60 |
---|
567 | pi2 = -pi |
---|
568 | END IF |
---|
569 | |
---|
570 | nt = ntotal |
---|
571 | nn = nt - 1 |
---|
572 | kspan = nspan |
---|
573 | jc = nspan / npass |
---|
574 | radf = pi2 * jc |
---|
575 | pi2 = pi2 * 2.0_wp !-- use 2 PI from here on |
---|
576 | |
---|
577 | ii = 0 |
---|
578 | jf = 0 |
---|
579 | DO |
---|
580 | sd = radf / kspan |
---|
581 | cd = SIN(sd) |
---|
582 | cd = 2.0_wp * cd * cd |
---|
583 | sd = SIN(sd + sd) |
---|
584 | kk = 1 |
---|
585 | ii = ii + 1 |
---|
586 | |
---|
587 | SELECT CASE (factor(ii)) |
---|
588 | CASE (2) |
---|
589 | ! |
---|
590 | !-- Transform for factor of 2 (including rotation factor) |
---|
591 | kspan = kspan / 2 |
---|
592 | k1 = kspan + 2 |
---|
593 | DO |
---|
594 | DO |
---|
595 | k2 = kk + kspan |
---|
596 | ck = array(k2) |
---|
597 | array(k2) = array(kk)-ck |
---|
598 | array(kk) = array(kk) + ck |
---|
599 | kk = k2 + kspan |
---|
600 | IF (kk > nn) EXIT |
---|
601 | END DO |
---|
602 | kk = kk - nn |
---|
603 | IF (kk > jc) EXIT |
---|
604 | END DO |
---|
605 | IF (kk > kspan) RETURN |
---|
606 | DO |
---|
607 | c1 = 1.0_wp - cd |
---|
608 | s1 = sd |
---|
609 | DO |
---|
610 | DO |
---|
611 | DO |
---|
612 | k2 = kk + kspan |
---|
613 | ck = array(kk) - array(k2) |
---|
614 | array(kk) = array(kk) + array(k2) |
---|
615 | array(k2) = ck * CMPLX(c1, s1, KIND=wp) |
---|
616 | kk = k2 + kspan |
---|
617 | IF (kk >= nt) EXIT |
---|
618 | END DO |
---|
619 | k2 = kk - nt |
---|
620 | c1 = -c1 |
---|
621 | kk = k1 - k2 |
---|
622 | IF (kk <= k2) EXIT |
---|
623 | END DO |
---|
624 | ak = c1 - (cd * c1 + sd * s1) |
---|
625 | s1 = sd * c1 - cd * s1 + s1 |
---|
626 | c1 = 2.0_wp - (ak * ak + s1 * s1) |
---|
627 | s1 = s1 * c1 |
---|
628 | c1 = c1 * ak |
---|
629 | kk = kk + jc |
---|
630 | IF (kk >= k2) EXIT |
---|
631 | END DO |
---|
632 | k1 = k1 + 1 + 1 |
---|
633 | kk = (k1 - kspan) / 2 + jc |
---|
634 | IF (kk > jc + jc) EXIT |
---|
635 | END DO |
---|
636 | |
---|
637 | CASE (4) !-- transform for factor of 4 |
---|
638 | ispan = kspan |
---|
639 | kspan = kspan / 4 |
---|
640 | |
---|
641 | DO |
---|
642 | c1 = 1.0_wp |
---|
643 | s1 = 0.0_wp |
---|
644 | DO |
---|
645 | DO |
---|
646 | k1 = kk + kspan |
---|
647 | k2 = k1 + kspan |
---|
648 | k3 = k2 + kspan |
---|
649 | ckp = array(kk) + array(k2) |
---|
650 | ckm = array(kk) - array(k2) |
---|
651 | cjp = array(k1) + array(k3) |
---|
652 | cjm = array(k1) - array(k3) |
---|
653 | array(kk) = ckp + cjp |
---|
654 | cjp = ckp - cjp |
---|
655 | IF (inv) THEN |
---|
656 | ckp = ckm + CMPLX(-AIMAG(cjm), REAL(cjm), KIND=wp) |
---|
657 | ckm = ckm + CMPLX(AIMAG(cjm), -REAL(cjm), KIND=wp) |
---|
658 | ELSE |
---|
659 | ckp = ckm + CMPLX(AIMAG(cjm), -REAL(cjm), KIND=wp) |
---|
660 | ckm = ckm + CMPLX(-AIMAG(cjm), REAL(cjm), KIND=wp) |
---|
661 | END IF |
---|
662 | ! |
---|
663 | !-- Avoid useless multiplies |
---|
664 | IF (s1 == 0.0_wp) THEN |
---|
665 | array(k1) = ckp |
---|
666 | array(k2) = cjp |
---|
667 | array(k3) = ckm |
---|
668 | ELSE |
---|
669 | array(k1) = ckp * CMPLX(c1, s1, KIND=wp) |
---|
670 | array(k2) = cjp * CMPLX(c2, s2, KIND=wp) |
---|
671 | array(k3) = ckm * CMPLX(c3, s3, KIND=wp) |
---|
672 | END IF |
---|
673 | kk = k3 + kspan |
---|
674 | IF (kk > nt) EXIT |
---|
675 | END DO |
---|
676 | |
---|
677 | c2 = c1 - (cd * c1 + sd * s1) |
---|
678 | s1 = sd * c1 - cd * s1 + s1 |
---|
679 | c1 = 2.0_wp - (c2 * c2 + s1 * s1) |
---|
680 | s1 = s1 * c1 |
---|
681 | c1 = c1 * c2 |
---|
682 | ! |
---|
683 | !-- Values of c2, c3, s2, s3 that will get used next time |
---|
684 | c2 = c1 * c1 - s1 * s1 |
---|
685 | s2 = 2.0_wp * c1 * s1 |
---|
686 | c3 = c2 * c1 - s2 * s1 |
---|
687 | s3 = c2 * s1 + s2 * c1 |
---|
688 | kk = kk - nt + jc |
---|
689 | IF (kk > kspan) EXIT |
---|
690 | END DO |
---|
691 | kk = kk - kspan + 1 |
---|
692 | IF (kk > jc) EXIT |
---|
693 | END DO |
---|
694 | IF (kspan == jc) RETURN |
---|
695 | |
---|
696 | CASE default |
---|
697 | ! |
---|
698 | !-- Transform for odd factors |
---|
699 | k = factor(ii) |
---|
700 | ispan = kspan |
---|
701 | kspan = kspan / k |
---|
702 | |
---|
703 | SELECT CASE (k) |
---|
704 | CASE (3) !-- transform for factor of 3 (optional code) |
---|
705 | DO |
---|
706 | DO |
---|
707 | k1 = kk + kspan |
---|
708 | k2 = k1 + kspan |
---|
709 | ck = array(kk) |
---|
710 | cj = array(k1) + array(k2) |
---|
711 | array(kk) = ck + cj |
---|
712 | ck = ck - CMPLX( & |
---|
713 | 0.5_wp * REAL (cj), & |
---|
714 | 0.5_wp * AIMAG(cj), & |
---|
715 | KIND=wp) |
---|
716 | cj = CMPLX( & |
---|
717 | (REAL (array(k1)) - REAL (array(k2))) * s60, & |
---|
718 | (AIMAG(array(k1)) - AIMAG(array(k2))) * s60, & |
---|
719 | KIND=wp) |
---|
720 | array(k1) = ck + CMPLX(-AIMAG(cj), REAL(cj), KIND=wp) |
---|
721 | array(k2) = ck + CMPLX(AIMAG(cj), -REAL(cj), KIND=wp) |
---|
722 | kk = k2 + kspan |
---|
723 | IF (kk >= nn) EXIT |
---|
724 | END DO |
---|
725 | kk = kk - nn |
---|
726 | IF (kk > kspan) EXIT |
---|
727 | END DO |
---|
728 | |
---|
729 | CASE (5) !-- transform for factor of 5 (optional code) |
---|
730 | c2 = c72 * c72 - s72 * s72 |
---|
731 | s2 = 2.0_wp * c72 * s72 |
---|
732 | DO |
---|
733 | DO |
---|
734 | k1 = kk + kspan |
---|
735 | k2 = k1 + kspan |
---|
736 | k3 = k2 + kspan |
---|
737 | k4 = k3 + kspan |
---|
738 | ckp = array(k1) + array(k4) |
---|
739 | ckm = array(k1) - array(k4) |
---|
740 | cjp = array(k2) + array(k3) |
---|
741 | cjm = array(k2) - array(k3) |
---|
742 | cc = array(kk) |
---|
743 | array(kk) = cc + ckp + cjp |
---|
744 | ck = CMPLX(REAL(ckp) * c72, AIMAG(ckp) * c72, & |
---|
745 | KIND=wp) + & |
---|
746 | CMPLX(REAL(cjp) * c2, AIMAG(cjp) * c2, & |
---|
747 | KIND=wp) + cc |
---|
748 | cj = CMPLX(REAL(ckm) * s72, AIMAG(ckm) * s72, & |
---|
749 | KIND=wp) + & |
---|
750 | CMPLX(REAL(cjm) * s2, AIMAG(cjm) * s2, & |
---|
751 | KIND=wp) |
---|
752 | array(k1) = ck + CMPLX(-AIMAG(cj), REAL(cj), KIND=wp) |
---|
753 | array(k4) = ck + CMPLX(AIMAG(cj), -REAL(cj), KIND=wp) |
---|
754 | ck = CMPLX(REAL(ckp) * c2, AIMAG(ckp) * c2, & |
---|
755 | KIND=wp) + & |
---|
756 | CMPLX(REAL(cjp) * c72, AIMAG(cjp) * c72, & |
---|
757 | KIND=wp) + cc |
---|
758 | cj = CMPLX(REAL(ckm) * s2, AIMAG(ckm) * s2, & |
---|
759 | KIND=wp) - & |
---|
760 | CMPLX(REAL(cjm) * s72, AIMAG(cjm) * s72, & |
---|
761 | KIND=wp) |
---|
762 | array(k2) = ck + CMPLX(-AIMAG(cj), REAL(cj), KIND=wp) |
---|
763 | array(k3) = ck + CMPLX(AIMAG(cj), -REAL(cj), KIND=wp) |
---|
764 | kk = k4 + kspan |
---|
765 | IF (kk >= nn) EXIT |
---|
766 | END DO |
---|
767 | kk = kk - nn |
---|
768 | IF (kk > kspan) EXIT |
---|
769 | END DO |
---|
770 | |
---|
771 | CASE default |
---|
772 | IF (k /= jf) THEN |
---|
773 | jf = k |
---|
774 | s1 = pi2 / k |
---|
775 | c1 = COS(s1) |
---|
776 | s1 = SIN(s1) |
---|
777 | cosine (jf) = 1.0_wp |
---|
778 | sine (jf) = 0.0_wp |
---|
779 | j = 1 |
---|
780 | DO |
---|
781 | cosine (j) = cosine (k) * c1 + sine (k) * s1 |
---|
782 | sine (j) = cosine (k) * s1 - sine (k) * c1 |
---|
783 | k = k-1 |
---|
784 | cosine (k) = cosine (j) |
---|
785 | sine (k) = -sine (j) |
---|
786 | j = j + 1 |
---|
787 | IF (j >= k) EXIT |
---|
788 | END DO |
---|
789 | END IF |
---|
790 | DO |
---|
791 | DO |
---|
792 | k1 = kk |
---|
793 | k2 = kk + ispan |
---|
794 | cc = array(kk) |
---|
795 | ck = cc |
---|
796 | j = 1 |
---|
797 | k1 = k1 + kspan |
---|
798 | DO |
---|
799 | k2 = k2 - kspan |
---|
800 | j = j + 1 |
---|
801 | ctmp(j) = array(k1) + array(k2) |
---|
802 | ck = ck + ctmp(j) |
---|
803 | j = j + 1 |
---|
804 | ctmp(j) = array(k1) - array(k2) |
---|
805 | k1 = k1 + kspan |
---|
806 | IF (k1 >= k2) EXIT |
---|
807 | END DO |
---|
808 | array(kk) = ck |
---|
809 | k1 = kk |
---|
810 | k2 = kk + ispan |
---|
811 | j = 1 |
---|
812 | DO |
---|
813 | k1 = k1 + kspan |
---|
814 | k2 = k2 - kspan |
---|
815 | jj = j |
---|
816 | ck = cc |
---|
817 | cj = (0.0_wp, 0.0_wp) |
---|
818 | k = 1 |
---|
819 | DO |
---|
820 | k = k + 1 |
---|
821 | ck = ck + CMPLX( & |
---|
822 | REAL (ctmp(k)) * cosine(jj), & |
---|
823 | AIMAG(ctmp(k)) * cosine(jj), KIND=wp) |
---|
824 | k = k + 1 |
---|
825 | cj = cj + CMPLX( & |
---|
826 | REAL (ctmp(k)) * sine(jj), & |
---|
827 | AIMAG(ctmp(k)) * sine(jj), KIND=wp) |
---|
828 | jj = jj + j |
---|
829 | IF (jj > jf) jj = jj - jf |
---|
830 | IF (k >= jf) EXIT |
---|
831 | END DO |
---|
832 | k = jf - j |
---|
833 | array(k1) = ck + CMPLX(-AIMAG(cj), REAL(cj), & |
---|
834 | KIND=wp) |
---|
835 | array(k2) = ck + CMPLX(AIMAG(cj), -REAL(cj), & |
---|
836 | KIND=wp) |
---|
837 | j = j + 1 |
---|
838 | IF (j >= k) EXIT |
---|
839 | END DO |
---|
840 | kk = kk + ispan |
---|
841 | IF (kk > nn) EXIT |
---|
842 | END DO |
---|
843 | kk = kk - nn |
---|
844 | IF (kk > kspan) EXIT |
---|
845 | END DO |
---|
846 | |
---|
847 | END SELECT |
---|
848 | ! |
---|
849 | !-- Multiply by rotation factor (except for factors of 2 and 4) |
---|
850 | IF (ii == nfactor) RETURN |
---|
851 | kk = jc + 1 |
---|
852 | DO |
---|
853 | c2 = 1.0_wp - cd |
---|
854 | s1 = sd |
---|
855 | DO |
---|
856 | c1 = c2 |
---|
857 | s2 = s1 |
---|
858 | kk = kk + kspan |
---|
859 | DO |
---|
860 | DO |
---|
861 | array(kk) = CMPLX(c2, s2, KIND=wp) * array(kk) |
---|
862 | kk = kk + ispan |
---|
863 | IF (kk > nt) EXIT |
---|
864 | END DO |
---|
865 | ak = s1 * s2 |
---|
866 | s2 = s1 * c2 + c1 * s2 |
---|
867 | c2 = c1 * c2 - ak |
---|
868 | kk = kk - nt + kspan |
---|
869 | IF (kk > ispan) EXIT |
---|
870 | END DO |
---|
871 | c2 = c1 - (cd * c1 + sd * s1) |
---|
872 | s1 = s1 + sd * c1 - cd * s1 |
---|
873 | c1 = 2.0_wp - (c2 * c2 + s1 * s1) |
---|
874 | s1 = s1 * c1 |
---|
875 | c2 = c2 * c1 |
---|
876 | kk = kk - ispan + jc |
---|
877 | IF (kk > kspan) EXIT |
---|
878 | END DO |
---|
879 | kk = kk - kspan + jc + 1 |
---|
880 | IF (kk > jc + jc) EXIT |
---|
881 | END DO |
---|
882 | |
---|
883 | END SELECT |
---|
884 | END DO |
---|
885 | END SUBROUTINE transform |
---|
886 | |
---|
887 | |
---|
888 | SUBROUTINE permute(array, ntotal, npass, nspan, & |
---|
889 | factor, nfactor, nsquare, maxfactor, & |
---|
890 | ctmp, perm) |
---|
891 | ! |
---|
892 | !-- Formal parameters |
---|
893 | COMPLEX(wp), DIMENSION(*), INTENT(IN OUT):: array |
---|
894 | COMPLEX(wp), DIMENSION(*), INTENT(OUT) :: ctmp |
---|
895 | INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan |
---|
896 | INTEGER(iwp), DIMENSION(*), INTENT(IN OUT):: factor |
---|
897 | INTEGER(iwp), INTENT(IN) :: nfactor, nsquare |
---|
898 | INTEGER(iwp), INTENT(IN) :: maxfactor |
---|
899 | INTEGER(iwp), DIMENSION(*), INTENT(OUT) :: perm |
---|
900 | ! |
---|
901 | !-- Local scalars |
---|
902 | COMPLEX(wp) :: ck |
---|
903 | INTEGER(iwp):: ii, ispan |
---|
904 | INTEGER(iwp):: j, jc, jj |
---|
905 | INTEGER(iwp):: k, kk, kspan, kt, k1, k2, k3 |
---|
906 | INTEGER(iwp):: nn, nt |
---|
907 | ! |
---|
908 | !-- Permute the results to normal order---done in two stages |
---|
909 | !-- Permutation for square factors of n |
---|
910 | |
---|
911 | nt = ntotal |
---|
912 | nn = nt - 1 |
---|
913 | kt = nsquare |
---|
914 | kspan = nspan |
---|
915 | jc = nspan / npass |
---|
916 | |
---|
917 | perm (1) = nspan |
---|
918 | IF (kt > 0) THEN |
---|
919 | k = kt + kt + 1 |
---|
920 | IF (nfactor < k) k = k - 1 |
---|
921 | j = 1 |
---|
922 | perm (k + 1) = jc |
---|
923 | DO |
---|
924 | perm (j + 1) = perm (j) / factor(j) |
---|
925 | perm (k) = perm (k + 1) * factor(j) |
---|
926 | j = j + 1 |
---|
927 | k = k - 1 |
---|
928 | IF (j >= k) EXIT |
---|
929 | END DO |
---|
930 | k3 = perm (k + 1) |
---|
931 | kspan = perm (2) |
---|
932 | kk = jc + 1 |
---|
933 | k2 = kspan + 1 |
---|
934 | j = 1 |
---|
935 | |
---|
936 | IF (npass /= ntotal) THEN |
---|
937 | permute_multi: DO |
---|
938 | DO |
---|
939 | DO |
---|
940 | k = kk + jc |
---|
941 | DO |
---|
942 | ! |
---|
943 | !-- Swap array(kk) <> array(k2) |
---|
944 | ck = array(kk) |
---|
945 | array(kk) = array(k2) |
---|
946 | array(k2) = ck |
---|
947 | kk = kk + 1 |
---|
948 | k2 = k2 + 1 |
---|
949 | IF (kk >= k) EXIT |
---|
950 | END DO |
---|
951 | kk = kk + nspan - jc |
---|
952 | k2 = k2 + nspan - jc |
---|
953 | IF (kk >= nt) EXIT |
---|
954 | END DO |
---|
955 | kk = kk - nt + jc |
---|
956 | k2 = k2 - nt + kspan |
---|
957 | IF (k2 >= nspan) EXIT |
---|
958 | END DO |
---|
959 | DO |
---|
960 | DO |
---|
961 | k2 = k2 - perm (j) |
---|
962 | j = j + 1 |
---|
963 | k2 = perm (j + 1) + k2 |
---|
964 | IF (k2 <= perm (j)) EXIT |
---|
965 | END DO |
---|
966 | j = 1 |
---|
967 | DO |
---|
968 | IF (kk < k2) CYCLE permute_multi |
---|
969 | kk = kk + jc |
---|
970 | k2 = k2 + kspan |
---|
971 | IF (k2 >= nspan) EXIT |
---|
972 | END DO |
---|
973 | IF (kk >= nspan) EXIT |
---|
974 | END DO |
---|
975 | EXIT |
---|
976 | END DO permute_multi |
---|
977 | ELSE |
---|
978 | permute_single: DO |
---|
979 | DO |
---|
980 | ! |
---|
981 | !-- Swap array(kk) <> array(k2) |
---|
982 | ck = array(kk) |
---|
983 | array(kk) = array(k2) |
---|
984 | array(k2) = ck |
---|
985 | kk = kk + 1 |
---|
986 | k2 = k2 + kspan |
---|
987 | IF (k2 >= nspan) EXIT |
---|
988 | END DO |
---|
989 | DO |
---|
990 | DO |
---|
991 | k2 = k2 - perm (j) |
---|
992 | j = j + 1 |
---|
993 | k2 = perm (j + 1) + k2 |
---|
994 | IF (k2 <= perm (j)) EXIT |
---|
995 | END DO |
---|
996 | j = 1 |
---|
997 | DO |
---|
998 | IF (kk < k2) CYCLE permute_single |
---|
999 | kk = kk + 1 |
---|
1000 | k2 = k2 + kspan |
---|
1001 | IF (k2 >= nspan) EXIT |
---|
1002 | END DO |
---|
1003 | IF (kk >= nspan) EXIT |
---|
1004 | END DO |
---|
1005 | EXIT |
---|
1006 | END DO permute_single |
---|
1007 | END IF |
---|
1008 | jc = k3 |
---|
1009 | END IF |
---|
1010 | |
---|
1011 | IF (ISHFT(kt, 1) + 1 >= nfactor) RETURN |
---|
1012 | |
---|
1013 | ispan = perm (kt + 1) |
---|
1014 | ! |
---|
1015 | !-- Permutation for square-free factors of n |
---|
1016 | j = nfactor - kt |
---|
1017 | factor(j + 1) = 1 |
---|
1018 | DO |
---|
1019 | factor(j) = factor(j) * factor(j+1) |
---|
1020 | j = j - 1 |
---|
1021 | IF (j == kt) EXIT |
---|
1022 | END DO |
---|
1023 | kt = kt + 1 |
---|
1024 | nn = factor(kt) - 1 |
---|
1025 | j = 0 |
---|
1026 | jj = 0 |
---|
1027 | DO |
---|
1028 | k = kt + 1 |
---|
1029 | k2 = factor(kt) |
---|
1030 | kk = factor(k) |
---|
1031 | j = j + 1 |
---|
1032 | IF (j > nn) EXIT !-- exit infinite loop |
---|
1033 | jj = jj + kk |
---|
1034 | DO WHILE (jj >= k2) |
---|
1035 | jj = jj - k2 |
---|
1036 | k2 = kk |
---|
1037 | k = k + 1 |
---|
1038 | kk = factor(k) |
---|
1039 | jj = jj + kk |
---|
1040 | END DO |
---|
1041 | perm (j) = jj |
---|
1042 | END DO |
---|
1043 | ! |
---|
1044 | !-- Determine the permutation cycles of length greater than 1 |
---|
1045 | j = 0 |
---|
1046 | DO |
---|
1047 | DO |
---|
1048 | j = j + 1 |
---|
1049 | kk = perm(j) |
---|
1050 | IF (kk >= 0) EXIT |
---|
1051 | END DO |
---|
1052 | IF (kk /= j) THEN |
---|
1053 | DO |
---|
1054 | k = kk |
---|
1055 | kk = perm (k) |
---|
1056 | perm (k) = -kk |
---|
1057 | IF (kk == j) EXIT |
---|
1058 | END DO |
---|
1059 | k3 = kk |
---|
1060 | ELSE |
---|
1061 | perm (j) = -j |
---|
1062 | IF (j == nn) EXIT !-- exit infinite loop |
---|
1063 | END IF |
---|
1064 | END DO |
---|
1065 | ! |
---|
1066 | !-- Reorder a and b, following the permutation cycles |
---|
1067 | DO |
---|
1068 | j = k3 + 1 |
---|
1069 | nt = nt - ispan |
---|
1070 | ii = nt - 1 + 1 |
---|
1071 | IF (nt < 0) EXIT !-- exit infinite loop |
---|
1072 | DO |
---|
1073 | DO |
---|
1074 | j = j-1 |
---|
1075 | IF (perm(j) >= 0) EXIT |
---|
1076 | END DO |
---|
1077 | jj = jc |
---|
1078 | DO |
---|
1079 | kspan = jj |
---|
1080 | IF (jj > maxfactor) kspan = maxfactor |
---|
1081 | jj = jj - kspan |
---|
1082 | k = perm(j) |
---|
1083 | kk = jc * k + ii + jj |
---|
1084 | k1 = kk + kspan |
---|
1085 | k2 = 0 |
---|
1086 | DO |
---|
1087 | k2 = k2 + 1 |
---|
1088 | ctmp(k2) = array(k1) |
---|
1089 | k1 = k1 - 1 |
---|
1090 | IF (k1 == kk) EXIT |
---|
1091 | END DO |
---|
1092 | DO |
---|
1093 | k1 = kk + kspan |
---|
1094 | k2 = k1 - jc * (k + perm(k)) |
---|
1095 | k = -perm(k) |
---|
1096 | DO |
---|
1097 | array(k1) = array(k2) |
---|
1098 | k1 = k1 - 1 |
---|
1099 | k2 = k2 - 1 |
---|
1100 | IF (k1 == kk) EXIT |
---|
1101 | END DO |
---|
1102 | kk = k2 |
---|
1103 | IF (k == j) EXIT |
---|
1104 | END DO |
---|
1105 | k1 = kk + kspan |
---|
1106 | k2 = 0 |
---|
1107 | DO |
---|
1108 | k2 = k2 + 1 |
---|
1109 | array(k1) = ctmp(k2) |
---|
1110 | k1 = k1 - 1 |
---|
1111 | IF (k1 == kk) EXIT |
---|
1112 | END DO |
---|
1113 | IF (jj == 0) EXIT |
---|
1114 | END DO |
---|
1115 | IF (j == 1) EXIT |
---|
1116 | END DO |
---|
1117 | END DO |
---|
1118 | |
---|
1119 | END SUBROUTINE permute |
---|
1120 | |
---|
1121 | END SUBROUTINE fftradix |
---|
1122 | |
---|
1123 | END MODULE singleton |
---|