[1] | 1 | MODULE singleton |
---|
| 2 | |
---|
| 3 | !----------------------------------------------------------------------------- |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
[3] | 10 | ! $Id: singleton.f90 484 2010-02-05 07:36:54Z suehring $ |
---|
| 11 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 12 | ! |
---|
[1] | 13 | ! Revision 1.2 2004/04/30 12:52:09 raasch |
---|
| 14 | ! Shape of arrays is explicitly stored in ishape and handled to the |
---|
| 15 | ! fft-routines instead of the shape-function (due to a compiler error on |
---|
| 16 | ! decalpha) |
---|
| 17 | ! |
---|
| 18 | ! Revision 1.1 2002/05/02 18:56:59 raasch |
---|
| 19 | ! Initial revision |
---|
| 20 | ! |
---|
| 21 | ! |
---|
| 22 | ! Description: |
---|
| 23 | ! ------------ |
---|
| 24 | ! Multivariate Fast Fourier Transform |
---|
| 25 | ! |
---|
| 26 | ! Fortran 90 Implementation of Singleton's mixed-radix algorithm, |
---|
| 27 | ! RC Singleton, Stanford Research Institute, Sept. 1968. |
---|
| 28 | ! |
---|
| 29 | ! Adapted from fftn.c, translated from Fortran 66 to C by Mark Olesen and |
---|
| 30 | ! John Beale. |
---|
| 31 | ! |
---|
| 32 | ! Fourier transforms can be computed either in place, using assumed size |
---|
| 33 | ! arguments, or by generic function, using assumed shape arguments. |
---|
| 34 | ! |
---|
| 35 | ! |
---|
| 36 | ! Public: |
---|
| 37 | ! |
---|
| 38 | ! fftkind kind parameter of complex arguments |
---|
| 39 | ! and function results. |
---|
| 40 | ! |
---|
| 41 | ! fft(array, dim, inv, stat) generic transform function |
---|
| 42 | ! COMPLEX(fftkind), DIMENSION(:,...,:), INTENT(IN) :: array |
---|
| 43 | ! INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 44 | ! LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 45 | ! INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 46 | ! |
---|
| 47 | ! fftn(array, shape, dim, inv, stat) in place transform subroutine |
---|
| 48 | ! COMPLEX(fftkind), DIMENSION(*), INTENT(INOUT) :: array |
---|
| 49 | ! INTEGER, DIMENSION(:), INTENT(IN) :: shape |
---|
| 50 | ! INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 51 | ! LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 52 | ! INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 53 | ! |
---|
| 54 | ! |
---|
| 55 | ! Formal Parameters: |
---|
| 56 | ! |
---|
| 57 | ! array The complex array to be transformed. array can be of arbitrary |
---|
| 58 | ! rank (i.e. up to seven). |
---|
| 59 | ! |
---|
| 60 | ! shape With subroutine fftn, the shape of the array to be transformed |
---|
| 61 | ! has to be passed separately, since fftradix - the internal trans- |
---|
| 62 | ! formation routine - will treat array always as one dimensional. |
---|
| 63 | ! The product of elements in shape must be the number of |
---|
| 64 | ! elements in array. |
---|
| 65 | ! Although passing array with assumed shape would have been nicer, |
---|
| 66 | ! I prefered assumed size in order to prevent the compiler from |
---|
| 67 | ! using a copy-in-copy-out mechanism. That would generally be |
---|
| 68 | ! necessary with fftn passing array to fftradix and with fftn |
---|
| 69 | ! being prepared for accepting non consecutive array sections. |
---|
| 70 | ! Using assumed size, it's up to the user to pass an array argu- |
---|
| 71 | ! ment, that can be addressed as continous one dimensional array |
---|
| 72 | ! without copying. Otherwise, transformation will not really be |
---|
| 73 | ! performed in place. |
---|
| 74 | ! On the other hand, since the rank of array and the size of |
---|
| 75 | ! shape needn't match, fftn is appropriate for handling more than |
---|
| 76 | ! seven dimensions. |
---|
| 77 | ! As far as function fft is concerned all this doesn't matter, |
---|
| 78 | ! because the argument will be copied anyway. Thus no extra |
---|
| 79 | ! shape argument is needed for fft. |
---|
| 80 | ! |
---|
| 81 | ! Optional Parameters: |
---|
| 82 | ! |
---|
| 83 | ! dim One dimensional integer array, containing the dimensions to be |
---|
| 84 | ! transformed. Default is (/1,...,N/) with N being the rank of |
---|
| 85 | ! array, i.e. complete transform. dim can restrict transformation |
---|
| 86 | ! to a subset of available dimensions. Its size must not exceed the |
---|
| 87 | ! rank of array or the size of shape respectivly. |
---|
| 88 | ! |
---|
| 89 | ! inv If .true., inverse transformation will be performed. Default is |
---|
| 90 | ! .false., i.e. forward transformation. |
---|
| 91 | ! |
---|
| 92 | ! stat If present, a system dependent nonzero status value will be |
---|
| 93 | ! returned in stat, if allocation of temporary storage failed. |
---|
| 94 | ! |
---|
| 95 | ! |
---|
| 96 | ! Scaling: |
---|
| 97 | ! |
---|
| 98 | ! Transformation results will always be scaled by the square root of the |
---|
| 99 | ! product of sizes of each dimension in dim. (See examples below) |
---|
| 100 | ! |
---|
| 101 | ! |
---|
| 102 | ! Examples: |
---|
| 103 | ! |
---|
| 104 | ! Let A be a L*M*N three dimensional complex array. Then |
---|
| 105 | ! |
---|
| 106 | ! result = fft(A) |
---|
| 107 | ! |
---|
| 108 | ! will produce a three dimensional transform, scaled by sqrt(L*M*N), while |
---|
| 109 | ! |
---|
| 110 | ! call fftn(A, SHAPE(A)) |
---|
| 111 | ! |
---|
| 112 | ! will do the same in place. |
---|
| 113 | ! |
---|
| 114 | ! result = fft(A, dim=(/1,3/)) |
---|
| 115 | ! |
---|
| 116 | ! will transform with respect to the first and the third dimension, scaled |
---|
| 117 | ! by sqrt(L*N). |
---|
| 118 | ! |
---|
| 119 | ! result = fft(fft(A), inv=.true.) |
---|
| 120 | ! |
---|
| 121 | ! should (approximately) reproduce A. |
---|
| 122 | ! With B having the same shape as A |
---|
| 123 | ! |
---|
| 124 | ! result = fft(fft(A) * CONJG(fft(B)), inv=.true.) |
---|
| 125 | ! |
---|
| 126 | ! will correlate A and B. |
---|
| 127 | ! |
---|
| 128 | ! |
---|
| 129 | ! Remarks: |
---|
| 130 | ! |
---|
| 131 | ! Following changes have been introduced with respect to fftn.c: |
---|
| 132 | ! - complex arguments and results are of type complex, rather than |
---|
| 133 | ! real an imaginary part separately. |
---|
| 134 | ! - increment parameter (magnitude of isign) has been dropped, |
---|
| 135 | ! inc is always one, direction of transform is given by inv. |
---|
| 136 | ! - maxf and maxp have been dropped. The amount of temporary storage |
---|
| 137 | ! needed is determined by the fftradix routine. Both fftn and fft |
---|
| 138 | ! can handle any size of array. (Maybe they take a lot of time and |
---|
| 139 | ! memory, but they will do it) |
---|
| 140 | ! |
---|
| 141 | ! Redesigning fftradix in a way, that it handles assumed shape arrays |
---|
| 142 | ! would have been desirable. However, I found it rather hard to do this |
---|
| 143 | ! in an efficient way. Problems were: |
---|
| 144 | ! - to prevent stride multiplications when indexing arrays. At least our |
---|
| 145 | ! compiler was not clever enough to discover that in fact additions |
---|
| 146 | ! would do the job as well. On the other hand, I haven't been clever |
---|
| 147 | ! enough to find an implementation using array operations. |
---|
| 148 | ! - fftradix is rather large and different versions would be necessaray |
---|
| 149 | ! for each possible rank of array. |
---|
| 150 | ! Consequently, in place transformation still needs the argument stored |
---|
| 151 | ! in a consecutive bunch of memory and can't be performed on array |
---|
| 152 | ! sections like A(100:199:-3, 50:1020). Calling fftn with such sections |
---|
| 153 | ! will most probably imply copy-in-copy-out. However, the function fft |
---|
| 154 | ! works with everything it gets and should be convenient to use. |
---|
| 155 | ! |
---|
| 156 | ! Michael Steffens, 09.12.96, <Michael.Steffens@mbox.muk.uni-hannover.de> |
---|
| 157 | ! Restructured fftradix for better optimization. M. Steffens, 4 June 1997 |
---|
| 158 | !----------------------------------------------------------------------------- |
---|
| 159 | |
---|
| 160 | IMPLICIT NONE |
---|
| 161 | |
---|
| 162 | PRIVATE |
---|
| 163 | PUBLIC:: fft, fftn, fftkind |
---|
| 164 | |
---|
| 165 | INTEGER, PARAMETER:: fftkind = KIND(0.0) ! adjust here for other precisions |
---|
| 166 | |
---|
| 167 | REAL(fftkind), PARAMETER:: sin60 = 0.86602540378443865_fftkind |
---|
| 168 | REAL(fftkind), PARAMETER:: cos72 = 0.30901699437494742_fftkind |
---|
| 169 | REAL(fftkind), PARAMETER:: sin72 = 0.95105651629515357_fftkind |
---|
| 170 | REAL(fftkind), PARAMETER:: pi = 3.14159265358979323_fftkind |
---|
| 171 | |
---|
| 172 | INTERFACE fft |
---|
| 173 | MODULE PROCEDURE fft1d |
---|
| 174 | MODULE PROCEDURE fft2d |
---|
| 175 | MODULE PROCEDURE fft3d |
---|
| 176 | MODULE PROCEDURE fft4d |
---|
| 177 | MODULE PROCEDURE fft5d |
---|
| 178 | MODULE PROCEDURE fft6d |
---|
| 179 | MODULE PROCEDURE fft7d |
---|
| 180 | END INTERFACE |
---|
| 181 | |
---|
| 182 | |
---|
| 183 | CONTAINS |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | FUNCTION fft1d(array, dim, inv, stat) RESULT(ft) |
---|
| 187 | ! |
---|
| 188 | !-- Formal parameters |
---|
| 189 | COMPLEX(fftkind), DIMENSION(:), INTENT(IN) :: array |
---|
| 190 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 191 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 192 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 193 | ! |
---|
| 194 | !-- Function result |
---|
| 195 | COMPLEX(fftkind), DIMENSION(SIZE(array, 1)):: ft |
---|
| 196 | |
---|
| 197 | INTEGER :: ishape(1) |
---|
| 198 | |
---|
| 199 | ! |
---|
| 200 | !-- Intrinsics used |
---|
| 201 | INTRINSIC SIZE, SHAPE |
---|
| 202 | |
---|
| 203 | ft = array |
---|
| 204 | ishape = SHAPE( array ) |
---|
| 205 | CALL fftn(ft, ishape, inv = inv, stat = stat) |
---|
| 206 | |
---|
| 207 | END FUNCTION fft1d |
---|
| 208 | |
---|
| 209 | |
---|
| 210 | FUNCTION fft2d(array, dim, inv, stat) RESULT(ft) |
---|
| 211 | ! |
---|
| 212 | !-- Formal parameters |
---|
| 213 | COMPLEX(fftkind), DIMENSION(:,:), INTENT(IN) :: array |
---|
| 214 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 215 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 216 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 217 | ! |
---|
| 218 | !-- Function result |
---|
| 219 | COMPLEX(fftkind), DIMENSION(SIZE(array, 1), SIZE(array, 2)):: ft |
---|
| 220 | |
---|
| 221 | INTEGER :: ishape(2) |
---|
| 222 | ! |
---|
| 223 | !-- Intrinsics used |
---|
| 224 | INTRINSIC SIZE, SHAPE |
---|
| 225 | |
---|
| 226 | ft = array |
---|
| 227 | ishape = SHAPE( array ) |
---|
| 228 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
| 229 | |
---|
| 230 | END FUNCTION fft2d |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | FUNCTION fft3d(array, dim, inv, stat) RESULT(ft) |
---|
| 234 | ! |
---|
| 235 | !-- Formal parameters |
---|
| 236 | COMPLEX(fftkind), DIMENSION(:,:,:), INTENT(IN) :: array |
---|
| 237 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 238 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 239 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 240 | ! |
---|
| 241 | !-- Function result |
---|
| 242 | COMPLEX(fftkind), & |
---|
| 243 | DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3)):: ft |
---|
| 244 | |
---|
| 245 | INTEGER :: ishape(3) |
---|
| 246 | |
---|
| 247 | ! |
---|
| 248 | !-- Intrinsics used |
---|
| 249 | INTRINSIC SIZE, SHAPE |
---|
| 250 | |
---|
| 251 | ft = array |
---|
| 252 | ishape = SHAPE( array) |
---|
| 253 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
| 254 | |
---|
| 255 | END FUNCTION fft3d |
---|
| 256 | |
---|
| 257 | |
---|
| 258 | FUNCTION fft4d(array, dim, inv, stat) RESULT(ft) |
---|
| 259 | ! |
---|
| 260 | !-- Formal parameters |
---|
| 261 | COMPLEX(fftkind), DIMENSION(:,:,:,:), INTENT(IN) :: array |
---|
| 262 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 263 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 264 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 265 | ! |
---|
| 266 | !-- Function result |
---|
| 267 | COMPLEX(fftkind), DIMENSION( & |
---|
| 268 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4)):: ft |
---|
| 269 | |
---|
| 270 | INTEGER :: ishape(4) |
---|
| 271 | ! |
---|
| 272 | !-- Intrinsics used |
---|
| 273 | INTRINSIC SIZE, SHAPE |
---|
| 274 | |
---|
| 275 | ft = array |
---|
| 276 | ishape = SHAPE( array ) |
---|
| 277 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
| 278 | |
---|
| 279 | END FUNCTION fft4d |
---|
| 280 | |
---|
| 281 | |
---|
| 282 | FUNCTION fft5d(array, dim, inv, stat) RESULT(ft) |
---|
| 283 | ! |
---|
| 284 | !-- Formal parameters |
---|
| 285 | COMPLEX(fftkind), DIMENSION(:,:,:,:,:), INTENT(IN) :: array |
---|
| 286 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 287 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 288 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 289 | ! |
---|
| 290 | !-- Function result |
---|
| 291 | COMPLEX(fftkind), DIMENSION( & |
---|
| 292 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
| 293 | SIZE(array, 5)):: ft |
---|
| 294 | |
---|
| 295 | INTEGER :: ishape(5) |
---|
| 296 | |
---|
| 297 | ! |
---|
| 298 | !-- Intrinsics used |
---|
| 299 | INTRINSIC SIZE, SHAPE |
---|
| 300 | |
---|
| 301 | ft = array |
---|
| 302 | ishape = SHAPE( array ) |
---|
| 303 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
| 304 | |
---|
| 305 | END FUNCTION fft5d |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | FUNCTION fft6d(array, dim, inv, stat) RESULT(ft) |
---|
| 309 | ! |
---|
| 310 | !-- Formal parameters |
---|
| 311 | COMPLEX(fftkind), DIMENSION(:,:,:,:,:,:), INTENT(IN) :: array |
---|
| 312 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 313 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 314 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 315 | ! |
---|
| 316 | !-- Function result |
---|
| 317 | COMPLEX(fftkind), DIMENSION( & |
---|
| 318 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
| 319 | SIZE(array, 5), SIZE(array, 6)):: ft |
---|
| 320 | |
---|
| 321 | INTEGER :: ishape(6) |
---|
| 322 | |
---|
| 323 | ! |
---|
| 324 | !-- Intrinsics used |
---|
| 325 | INTRINSIC SIZE, SHAPE |
---|
| 326 | |
---|
| 327 | ft = array |
---|
| 328 | ishape = SHAPE( array ) |
---|
| 329 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
| 330 | |
---|
| 331 | END FUNCTION fft6d |
---|
| 332 | |
---|
| 333 | |
---|
| 334 | FUNCTION fft7d(array, dim, inv, stat) RESULT(ft) |
---|
| 335 | ! |
---|
| 336 | !-- Formal parameters |
---|
| 337 | COMPLEX(fftkind), DIMENSION(:,:,:,:,:,:,:), INTENT(IN) :: array |
---|
| 338 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 339 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 340 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 341 | ! |
---|
| 342 | !-- Function result |
---|
| 343 | COMPLEX(fftkind), DIMENSION( & |
---|
| 344 | SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
| 345 | SIZE(array, 5), SIZE(array, 6), SIZE(array, 7)):: ft |
---|
| 346 | |
---|
| 347 | INTEGER :: ishape(7) |
---|
| 348 | |
---|
| 349 | ! |
---|
| 350 | !-- Intrinsics used |
---|
| 351 | INTRINSIC SIZE, SHAPE |
---|
| 352 | |
---|
| 353 | ft = array |
---|
| 354 | ishape = SHAPE( array ) |
---|
| 355 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
| 356 | |
---|
| 357 | END FUNCTION fft7d |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | SUBROUTINE fftn(array, shape, dim, inv, stat) |
---|
| 361 | ! |
---|
| 362 | !-- Formal parameters |
---|
| 363 | COMPLEX(fftkind), DIMENSION(*), INTENT(INOUT) :: array |
---|
| 364 | INTEGER, DIMENSION(:), INTENT(IN) :: shape |
---|
| 365 | INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
| 366 | LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
| 367 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 368 | ! |
---|
| 369 | !-- Local arrays |
---|
| 370 | INTEGER, DIMENSION(SIZE(shape)):: d |
---|
| 371 | ! |
---|
| 372 | !-- Local scalars |
---|
| 373 | LOGICAL :: inverse |
---|
| 374 | INTEGER :: i, ndim, ntotal |
---|
| 375 | REAL(fftkind):: scale |
---|
| 376 | ! |
---|
| 377 | !-- Intrinsics used |
---|
| 378 | INTRINSIC PRESENT, MIN, PRODUCT, SIZE, SQRT |
---|
| 379 | |
---|
| 380 | ! |
---|
| 381 | !-- Optional parameter settings |
---|
| 382 | IF (PRESENT(inv)) THEN |
---|
| 383 | inverse = inv |
---|
| 384 | ELSE |
---|
| 385 | inverse = .FALSE. |
---|
| 386 | END IF |
---|
| 387 | IF (PRESENT(dim)) THEN |
---|
| 388 | ndim = MIN(SIZE(dim), SIZE(d)) |
---|
| 389 | d(1:ndim) = DIM(1:ndim) |
---|
| 390 | ELSE |
---|
| 391 | ndim = SIZE(d) |
---|
| 392 | d = (/(i, i = 1, SIZE(d))/) |
---|
| 393 | END IF |
---|
| 394 | |
---|
| 395 | ntotal = PRODUCT(shape) |
---|
| 396 | scale = SQRT(1.0_fftkind / PRODUCT(shape(d(1:ndim)))) |
---|
| 397 | DO i = 1, ntotal |
---|
| 398 | array(i) = CMPLX(REAL(array(i)) * scale, AIMAG(array(i)) * scale, & |
---|
| 399 | KIND=fftkind) |
---|
| 400 | END DO |
---|
| 401 | |
---|
| 402 | DO i = 1, ndim |
---|
| 403 | CALL fftradix(array, ntotal, shape(d(i)), PRODUCT(shape(1:d(i))), & |
---|
| 404 | inverse, stat) |
---|
| 405 | IF (PRESENT(stat)) THEN |
---|
| 406 | IF (stat /=0) RETURN |
---|
| 407 | END IF |
---|
| 408 | END DO |
---|
| 409 | |
---|
| 410 | END SUBROUTINE fftn |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | SUBROUTINE fftradix(array, ntotal, npass, nspan, inv, stat) |
---|
| 414 | ! |
---|
| 415 | !-- Formal parameters |
---|
| 416 | COMPLEX(fftkind), DIMENSION(*), INTENT(INOUT) :: array |
---|
| 417 | INTEGER, INTENT(IN) :: ntotal, npass, nspan |
---|
| 418 | LOGICAL, INTENT(IN) :: inv |
---|
| 419 | INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
| 420 | ! |
---|
| 421 | !-- Local arrays |
---|
| 422 | INTEGER, DIMENSION(BIT_SIZE(0)) :: factor |
---|
| 423 | COMPLEX(fftkind), DIMENSION(:), ALLOCATABLE :: ctmp |
---|
| 424 | REAL(fftkind), DIMENSION(:), ALLOCATABLE :: sine, cosine |
---|
| 425 | INTEGER, DIMENSION(:), ALLOCATABLE :: perm |
---|
| 426 | ! |
---|
| 427 | !-- Local scalars |
---|
| 428 | INTEGER :: maxfactor, nfactor, nsquare, nperm |
---|
| 429 | ! |
---|
| 430 | !-- Intrinsics used |
---|
| 431 | INTRINSIC MAXVAL, MOD, PRESENT, ISHFT, BIT_SIZE, SIN, COS, & |
---|
| 432 | CMPLX, REAL, AIMAG |
---|
| 433 | |
---|
| 434 | IF (npass <= 1) RETURN |
---|
| 435 | |
---|
| 436 | CALL factorize(npass, factor, nfactor, nsquare) |
---|
| 437 | |
---|
| 438 | maxfactor = MAXVAL(factor(:nfactor)) |
---|
| 439 | IF (nfactor - ISHFT(nsquare, 1) > 0) THEN |
---|
| 440 | nperm = MAX(nfactor + 1, PRODUCT(factor(nsquare+1: nfactor-nsquare)) - 1) |
---|
| 441 | ELSE |
---|
| 442 | nperm = nfactor + 1 |
---|
| 443 | END IF |
---|
| 444 | |
---|
| 445 | IF (PRESENT(stat)) THEN |
---|
| 446 | ALLOCATE(ctmp(maxfactor), sine(maxfactor), cosine(maxfactor), STAT=stat) |
---|
| 447 | IF (stat /= 0) RETURN |
---|
| 448 | CALL transform(array, ntotal, npass, nspan, & |
---|
| 449 | factor, nfactor, ctmp, sine, cosine, inv) |
---|
| 450 | DEALLOCATE(sine, cosine, STAT=stat) |
---|
| 451 | IF (stat /= 0) RETURN |
---|
| 452 | ALLOCATE(perm(nperm), STAT=stat) |
---|
| 453 | IF (stat /= 0) RETURN |
---|
| 454 | CALL permute(array, ntotal, npass, nspan, & |
---|
| 455 | factor, nfactor, nsquare, maxfactor, & |
---|
| 456 | ctmp, perm) |
---|
| 457 | DEALLOCATE(perm, ctmp, STAT=stat) |
---|
| 458 | IF (stat /= 0) RETURN |
---|
| 459 | ELSE |
---|
| 460 | ALLOCATE(ctmp(maxfactor), sine(maxfactor), cosine(maxfactor)) |
---|
| 461 | CALL transform(array, ntotal, npass, nspan, & |
---|
| 462 | factor, nfactor, ctmp, sine, cosine, inv) |
---|
| 463 | DEALLOCATE(sine, cosine) |
---|
| 464 | ALLOCATE(perm(nperm)) |
---|
| 465 | CALL permute(array, ntotal, npass, nspan, & |
---|
| 466 | factor, nfactor, nsquare, maxfactor, & |
---|
| 467 | ctmp, perm) |
---|
| 468 | DEALLOCATE(perm, ctmp) |
---|
| 469 | END IF |
---|
| 470 | |
---|
| 471 | |
---|
| 472 | CONTAINS |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | SUBROUTINE factorize(npass, factor, nfactor, nsquare) |
---|
| 476 | ! |
---|
| 477 | !-- Formal parameters |
---|
| 478 | INTEGER, INTENT(IN) :: npass |
---|
| 479 | INTEGER, DIMENSION(*), INTENT(OUT):: factor |
---|
| 480 | INTEGER, INTENT(OUT):: nfactor, nsquare |
---|
| 481 | ! |
---|
| 482 | !-- Local scalars |
---|
| 483 | INTEGER:: j, jj, k |
---|
| 484 | |
---|
| 485 | nfactor = 0 |
---|
| 486 | k = npass |
---|
| 487 | DO WHILE (MOD(k, 16) == 0) |
---|
| 488 | nfactor = nfactor + 1 |
---|
| 489 | factor(nfactor) = 4 |
---|
| 490 | k = k / 16 |
---|
| 491 | END DO |
---|
| 492 | j = 3 |
---|
| 493 | jj = 9 |
---|
| 494 | DO |
---|
| 495 | DO WHILE (MOD(k, jj) == 0) |
---|
| 496 | nfactor = nfactor + 1 |
---|
| 497 | factor(nfactor) = j |
---|
| 498 | k = k / jj |
---|
| 499 | END DO |
---|
| 500 | j = j + 2 |
---|
| 501 | jj = j * j |
---|
| 502 | IF (jj > k) EXIT |
---|
| 503 | END DO |
---|
| 504 | IF (k <= 4) THEN |
---|
| 505 | nsquare = nfactor |
---|
| 506 | factor(nfactor + 1) = k |
---|
| 507 | IF (k /= 1) nfactor = nfactor + 1 |
---|
| 508 | ELSE |
---|
| 509 | IF (k - ISHFT(k / 4, 2) == 0) THEN |
---|
| 510 | nfactor = nfactor + 1 |
---|
| 511 | factor(nfactor) = 2 |
---|
| 512 | k = k / 4 |
---|
| 513 | END IF |
---|
| 514 | nsquare = nfactor |
---|
| 515 | j = 2 |
---|
| 516 | DO |
---|
| 517 | IF (MOD(k, j) == 0) THEN |
---|
| 518 | nfactor = nfactor + 1 |
---|
| 519 | factor(nfactor) = j |
---|
| 520 | k = k / j |
---|
| 521 | END IF |
---|
| 522 | j = ISHFT((j + 1) / 2, 1) + 1 |
---|
| 523 | IF (j > k) EXIT |
---|
| 524 | END DO |
---|
| 525 | END IF |
---|
| 526 | IF (nsquare > 0) THEN |
---|
| 527 | j = nsquare |
---|
| 528 | DO |
---|
| 529 | nfactor = nfactor + 1 |
---|
| 530 | factor(nfactor) = factor(j) |
---|
| 531 | j = j - 1 |
---|
| 532 | IF (j==0) EXIT |
---|
| 533 | END DO |
---|
| 534 | END IF |
---|
| 535 | |
---|
| 536 | END SUBROUTINE factorize |
---|
| 537 | |
---|
| 538 | |
---|
| 539 | SUBROUTINE transform(array, ntotal, npass, nspan, & |
---|
| 540 | factor, nfactor, ctmp, sine, cosine, inv) !-- compute fourier transform |
---|
| 541 | ! |
---|
| 542 | !-- Formal parameters |
---|
| 543 | COMPLEX(fftkind), DIMENSION(*), INTENT(IN OUT):: array |
---|
| 544 | INTEGER, INTENT(IN) :: ntotal, npass, nspan |
---|
| 545 | INTEGER, DIMENSION(*), INTENT(IN) :: factor |
---|
| 546 | INTEGER, INTENT(IN) :: nfactor |
---|
| 547 | COMPLEX(fftkind), DIMENSION(*), INTENT(OUT) :: ctmp |
---|
| 548 | REAL(fftkind), DIMENSION(*), INTENT(OUT) :: sine, cosine |
---|
| 549 | LOGICAL, INTENT(IN) :: inv |
---|
| 550 | ! |
---|
| 551 | !-- Local scalars |
---|
| 552 | INTEGER :: ii, ispan |
---|
| 553 | INTEGER :: j, jc, jf, jj |
---|
| 554 | INTEGER :: k, kk, kspan, k1, k2, k3, k4 |
---|
| 555 | INTEGER :: nn, nt |
---|
| 556 | REAL(fftkind) :: s60, c72, s72, pi2, radf |
---|
| 557 | REAL(fftkind) :: c1, s1, c2, s2, c3, s3, cd, sd, ak |
---|
| 558 | COMPLEX(fftkind):: cc, cj, ck, cjp, cjm, ckp, ckm |
---|
| 559 | |
---|
| 560 | c72 = cos72 |
---|
| 561 | IF (inv) THEN |
---|
| 562 | s72 = sin72 |
---|
| 563 | s60 = sin60 |
---|
| 564 | pi2 = pi |
---|
| 565 | ELSE |
---|
| 566 | s72 = -sin72 |
---|
| 567 | s60 = -sin60 |
---|
| 568 | pi2 = -pi |
---|
| 569 | END IF |
---|
| 570 | |
---|
| 571 | nt = ntotal |
---|
| 572 | nn = nt - 1 |
---|
| 573 | kspan = nspan |
---|
| 574 | jc = nspan / npass |
---|
| 575 | radf = pi2 * jc |
---|
| 576 | pi2 = pi2 * 2.0_fftkind !-- use 2 PI from here on |
---|
| 577 | |
---|
| 578 | ii = 0 |
---|
| 579 | jf = 0 |
---|
| 580 | DO |
---|
| 581 | sd = radf / kspan |
---|
| 582 | cd = SIN(sd) |
---|
| 583 | cd = 2.0_fftkind * cd * cd |
---|
| 584 | sd = SIN(sd + sd) |
---|
| 585 | kk = 1 |
---|
| 586 | ii = ii + 1 |
---|
| 587 | |
---|
| 588 | SELECT CASE (factor(ii)) |
---|
| 589 | CASE (2) |
---|
| 590 | ! |
---|
| 591 | !-- Transform for factor of 2 (including rotation factor) |
---|
| 592 | kspan = kspan / 2 |
---|
| 593 | k1 = kspan + 2 |
---|
| 594 | DO |
---|
| 595 | DO |
---|
| 596 | k2 = kk + kspan |
---|
| 597 | ck = array(k2) |
---|
| 598 | array(k2) = array(kk)-ck |
---|
| 599 | array(kk) = array(kk) + ck |
---|
| 600 | kk = k2 + kspan |
---|
| 601 | IF (kk > nn) EXIT |
---|
| 602 | END DO |
---|
| 603 | kk = kk - nn |
---|
| 604 | IF (kk > jc) EXIT |
---|
| 605 | END DO |
---|
| 606 | IF (kk > kspan) RETURN |
---|
| 607 | DO |
---|
| 608 | c1 = 1.0_fftkind - cd |
---|
| 609 | s1 = sd |
---|
| 610 | DO |
---|
| 611 | DO |
---|
| 612 | DO |
---|
| 613 | k2 = kk + kspan |
---|
| 614 | ck = array(kk) - array(k2) |
---|
| 615 | array(kk) = array(kk) + array(k2) |
---|
| 616 | array(k2) = ck * CMPLX(c1, s1, KIND=fftkind) |
---|
| 617 | kk = k2 + kspan |
---|
| 618 | IF (kk >= nt) EXIT |
---|
| 619 | END DO |
---|
| 620 | k2 = kk - nt |
---|
| 621 | c1 = -c1 |
---|
| 622 | kk = k1 - k2 |
---|
| 623 | IF (kk <= k2) EXIT |
---|
| 624 | END DO |
---|
| 625 | ak = c1 - (cd * c1 + sd * s1) |
---|
| 626 | s1 = sd * c1 - cd * s1 + s1 |
---|
| 627 | c1 = 2.0_fftkind - (ak * ak + s1 * s1) |
---|
| 628 | s1 = s1 * c1 |
---|
| 629 | c1 = c1 * ak |
---|
| 630 | kk = kk + jc |
---|
| 631 | IF (kk >= k2) EXIT |
---|
| 632 | END DO |
---|
| 633 | k1 = k1 + 1 + 1 |
---|
| 634 | kk = (k1 - kspan) / 2 + jc |
---|
| 635 | IF (kk > jc + jc) EXIT |
---|
| 636 | END DO |
---|
| 637 | |
---|
| 638 | CASE (4) !-- transform for factor of 4 |
---|
| 639 | ispan = kspan |
---|
| 640 | kspan = kspan / 4 |
---|
| 641 | |
---|
| 642 | DO |
---|
| 643 | c1 = 1.0_fftkind |
---|
| 644 | s1 = 0.0_fftkind |
---|
| 645 | DO |
---|
| 646 | DO |
---|
| 647 | k1 = kk + kspan |
---|
| 648 | k2 = k1 + kspan |
---|
| 649 | k3 = k2 + kspan |
---|
| 650 | ckp = array(kk) + array(k2) |
---|
| 651 | ckm = array(kk) - array(k2) |
---|
| 652 | cjp = array(k1) + array(k3) |
---|
| 653 | cjm = array(k1) - array(k3) |
---|
| 654 | array(kk) = ckp + cjp |
---|
| 655 | cjp = ckp - cjp |
---|
| 656 | IF (inv) THEN |
---|
| 657 | ckp = ckm + CMPLX(-AIMAG(cjm), REAL(cjm), KIND=fftkind) |
---|
| 658 | ckm = ckm + CMPLX(AIMAG(cjm), -REAL(cjm), KIND=fftkind) |
---|
| 659 | ELSE |
---|
| 660 | ckp = ckm + CMPLX(AIMAG(cjm), -REAL(cjm), KIND=fftkind) |
---|
| 661 | ckm = ckm + CMPLX(-AIMAG(cjm), REAL(cjm), KIND=fftkind) |
---|
| 662 | END IF |
---|
| 663 | ! |
---|
| 664 | !-- Avoid useless multiplies |
---|
| 665 | IF (s1 == 0.0_fftkind) THEN |
---|
| 666 | array(k1) = ckp |
---|
| 667 | array(k2) = cjp |
---|
| 668 | array(k3) = ckm |
---|
| 669 | ELSE |
---|
| 670 | array(k1) = ckp * CMPLX(c1, s1, KIND=fftkind) |
---|
| 671 | array(k2) = cjp * CMPLX(c2, s2, KIND=fftkind) |
---|
| 672 | array(k3) = ckm * CMPLX(c3, s3, KIND=fftkind) |
---|
| 673 | END IF |
---|
| 674 | kk = k3 + kspan |
---|
| 675 | IF (kk > nt) EXIT |
---|
| 676 | END DO |
---|
| 677 | |
---|
| 678 | c2 = c1 - (cd * c1 + sd * s1) |
---|
| 679 | s1 = sd * c1 - cd * s1 + s1 |
---|
| 680 | c1 = 2.0_fftkind - (c2 * c2 + s1 * s1) |
---|
| 681 | s1 = s1 * c1 |
---|
| 682 | c1 = c1 * c2 |
---|
| 683 | ! |
---|
| 684 | !-- Values of c2, c3, s2, s3 that will get used next time |
---|
| 685 | c2 = c1 * c1 - s1 * s1 |
---|
| 686 | s2 = 2.0_fftkind * c1 * s1 |
---|
| 687 | c3 = c2 * c1 - s2 * s1 |
---|
| 688 | s3 = c2 * s1 + s2 * c1 |
---|
| 689 | kk = kk - nt + jc |
---|
| 690 | IF (kk > kspan) EXIT |
---|
| 691 | END DO |
---|
| 692 | kk = kk - kspan + 1 |
---|
| 693 | IF (kk > jc) EXIT |
---|
| 694 | END DO |
---|
| 695 | IF (kspan == jc) RETURN |
---|
| 696 | |
---|
| 697 | CASE default |
---|
| 698 | ! |
---|
| 699 | !-- Transform for odd factors |
---|
| 700 | k = factor(ii) |
---|
| 701 | ispan = kspan |
---|
| 702 | kspan = kspan / k |
---|
| 703 | |
---|
| 704 | SELECT CASE (k) |
---|
| 705 | CASE (3) !-- transform for factor of 3 (optional code) |
---|
| 706 | DO |
---|
| 707 | DO |
---|
| 708 | k1 = kk + kspan |
---|
| 709 | k2 = k1 + kspan |
---|
| 710 | ck = array(kk) |
---|
| 711 | cj = array(k1) + array(k2) |
---|
| 712 | array(kk) = ck + cj |
---|
| 713 | ck = ck - CMPLX( & |
---|
| 714 | 0.5_fftkind * REAL (cj), & |
---|
| 715 | 0.5_fftkind * AIMAG(cj), & |
---|
| 716 | KIND=fftkind) |
---|
| 717 | cj = CMPLX( & |
---|
| 718 | (REAL (array(k1)) - REAL (array(k2))) * s60, & |
---|
| 719 | (AIMAG(array(k1)) - AIMAG(array(k2))) * s60, & |
---|
| 720 | KIND=fftkind) |
---|
| 721 | array(k1) = ck + CMPLX(-AIMAG(cj), REAL(cj), KIND=fftkind) |
---|
| 722 | array(k2) = ck + CMPLX(AIMAG(cj), -REAL(cj), KIND=fftkind) |
---|
| 723 | kk = k2 + kspan |
---|
| 724 | IF (kk >= nn) EXIT |
---|
| 725 | END DO |
---|
| 726 | kk = kk - nn |
---|
| 727 | IF (kk > kspan) EXIT |
---|
| 728 | END DO |
---|
| 729 | |
---|
| 730 | CASE (5) !-- transform for factor of 5 (optional code) |
---|
| 731 | c2 = c72 * c72 - s72 * s72 |
---|
| 732 | s2 = 2.0_fftkind * c72 * s72 |
---|
| 733 | DO |
---|
| 734 | DO |
---|
| 735 | k1 = kk + kspan |
---|
| 736 | k2 = k1 + kspan |
---|
| 737 | k3 = k2 + kspan |
---|
| 738 | k4 = k3 + kspan |
---|
| 739 | ckp = array(k1) + array(k4) |
---|
| 740 | ckm = array(k1) - array(k4) |
---|
| 741 | cjp = array(k2) + array(k3) |
---|
| 742 | cjm = array(k2) - array(k3) |
---|
| 743 | cc = array(kk) |
---|
| 744 | array(kk) = cc + ckp + cjp |
---|
| 745 | ck = CMPLX(REAL(ckp) * c72, AIMAG(ckp) * c72, & |
---|
| 746 | KIND=fftkind) + & |
---|
| 747 | CMPLX(REAL(cjp) * c2, AIMAG(cjp) * c2, & |
---|
| 748 | KIND=fftkind) + cc |
---|
| 749 | cj = CMPLX(REAL(ckm) * s72, AIMAG(ckm) * s72, & |
---|
| 750 | KIND=fftkind) + & |
---|
| 751 | CMPLX(REAL(cjm) * s2, AIMAG(cjm) * s2, & |
---|
| 752 | KIND=fftkind) |
---|
| 753 | array(k1) = ck + CMPLX(-AIMAG(cj), REAL(cj), KIND=fftkind) |
---|
| 754 | array(k4) = ck + CMPLX(AIMAG(cj), -REAL(cj), KIND=fftkind) |
---|
| 755 | ck = CMPLX(REAL(ckp) * c2, AIMAG(ckp) * c2, & |
---|
| 756 | KIND=fftkind) + & |
---|
| 757 | CMPLX(REAL(cjp) * c72, AIMAG(cjp) * c72, & |
---|
| 758 | KIND=fftkind) + cc |
---|
| 759 | cj = CMPLX(REAL(ckm) * s2, AIMAG(ckm) * s2, & |
---|
| 760 | KIND=fftkind) - & |
---|
| 761 | CMPLX(REAL(cjm) * s72, AIMAG(cjm) * s72, & |
---|
| 762 | KIND=fftkind) |
---|
| 763 | array(k2) = ck + CMPLX(-AIMAG(cj), REAL(cj), KIND=fftkind) |
---|
| 764 | array(k3) = ck + CMPLX(AIMAG(cj), -REAL(cj), KIND=fftkind) |
---|
| 765 | kk = k4 + kspan |
---|
| 766 | IF (kk >= nn) EXIT |
---|
| 767 | END DO |
---|
| 768 | kk = kk - nn |
---|
| 769 | IF (kk > kspan) EXIT |
---|
| 770 | END DO |
---|
| 771 | |
---|
| 772 | CASE default |
---|
| 773 | IF (k /= jf) THEN |
---|
| 774 | jf = k |
---|
| 775 | s1 = pi2 / k |
---|
| 776 | c1 = COS(s1) |
---|
| 777 | s1 = SIN(s1) |
---|
| 778 | cosine (jf) = 1.0_fftkind |
---|
| 779 | sine (jf) = 0.0_fftkind |
---|
| 780 | j = 1 |
---|
| 781 | DO |
---|
| 782 | cosine (j) = cosine (k) * c1 + sine (k) * s1 |
---|
| 783 | sine (j) = cosine (k) * s1 - sine (k) * c1 |
---|
| 784 | k = k-1 |
---|
| 785 | cosine (k) = cosine (j) |
---|
| 786 | sine (k) = -sine (j) |
---|
| 787 | j = j + 1 |
---|
| 788 | IF (j >= k) EXIT |
---|
| 789 | END DO |
---|
| 790 | END IF |
---|
| 791 | DO |
---|
| 792 | DO |
---|
| 793 | k1 = kk |
---|
| 794 | k2 = kk + ispan |
---|
| 795 | cc = array(kk) |
---|
| 796 | ck = cc |
---|
| 797 | j = 1 |
---|
| 798 | k1 = k1 + kspan |
---|
| 799 | DO |
---|
| 800 | k2 = k2 - kspan |
---|
| 801 | j = j + 1 |
---|
| 802 | ctmp(j) = array(k1) + array(k2) |
---|
| 803 | ck = ck + ctmp(j) |
---|
| 804 | j = j + 1 |
---|
| 805 | ctmp(j) = array(k1) - array(k2) |
---|
| 806 | k1 = k1 + kspan |
---|
| 807 | IF (k1 >= k2) EXIT |
---|
| 808 | END DO |
---|
| 809 | array(kk) = ck |
---|
| 810 | k1 = kk |
---|
| 811 | k2 = kk + ispan |
---|
| 812 | j = 1 |
---|
| 813 | DO |
---|
| 814 | k1 = k1 + kspan |
---|
| 815 | k2 = k2 - kspan |
---|
| 816 | jj = j |
---|
| 817 | ck = cc |
---|
| 818 | cj = (0.0_fftkind, 0.0_fftkind) |
---|
| 819 | k = 1 |
---|
| 820 | DO |
---|
| 821 | k = k + 1 |
---|
| 822 | ck = ck + CMPLX( & |
---|
| 823 | REAL (ctmp(k)) * cosine(jj), & |
---|
| 824 | AIMAG(ctmp(k)) * cosine(jj), KIND=fftkind) |
---|
| 825 | k = k + 1 |
---|
| 826 | cj = cj + CMPLX( & |
---|
| 827 | REAL (ctmp(k)) * sine(jj), & |
---|
| 828 | AIMAG(ctmp(k)) * sine(jj), KIND=fftkind) |
---|
| 829 | jj = jj + j |
---|
| 830 | IF (jj > jf) jj = jj - jf |
---|
| 831 | IF (k >= jf) EXIT |
---|
| 832 | END DO |
---|
| 833 | k = jf - j |
---|
| 834 | array(k1) = ck + CMPLX(-AIMAG(cj), REAL(cj), & |
---|
| 835 | KIND=fftkind) |
---|
| 836 | array(k2) = ck + CMPLX(AIMAG(cj), -REAL(cj), & |
---|
| 837 | KIND=fftkind) |
---|
| 838 | j = j + 1 |
---|
| 839 | IF (j >= k) EXIT |
---|
| 840 | END DO |
---|
| 841 | kk = kk + ispan |
---|
| 842 | IF (kk > nn) EXIT |
---|
| 843 | END DO |
---|
| 844 | kk = kk - nn |
---|
| 845 | IF (kk > kspan) EXIT |
---|
| 846 | END DO |
---|
| 847 | |
---|
| 848 | END SELECT |
---|
| 849 | ! |
---|
| 850 | !-- Multiply by rotation factor (except for factors of 2 and 4) |
---|
| 851 | IF (ii == nfactor) RETURN |
---|
| 852 | kk = jc + 1 |
---|
| 853 | DO |
---|
| 854 | c2 = 1.0_fftkind - cd |
---|
| 855 | s1 = sd |
---|
| 856 | DO |
---|
| 857 | c1 = c2 |
---|
| 858 | s2 = s1 |
---|
| 859 | kk = kk + kspan |
---|
| 860 | DO |
---|
| 861 | DO |
---|
| 862 | array(kk) = CMPLX(c2, s2, KIND=fftkind) * array(kk) |
---|
| 863 | kk = kk + ispan |
---|
| 864 | IF (kk > nt) EXIT |
---|
| 865 | END DO |
---|
| 866 | ak = s1 * s2 |
---|
| 867 | s2 = s1 * c2 + c1 * s2 |
---|
| 868 | c2 = c1 * c2 - ak |
---|
| 869 | kk = kk - nt + kspan |
---|
| 870 | IF (kk > ispan) EXIT |
---|
| 871 | END DO |
---|
| 872 | c2 = c1 - (cd * c1 + sd * s1) |
---|
| 873 | s1 = s1 + sd * c1 - cd * s1 |
---|
| 874 | c1 = 2.0_fftkind - (c2 * c2 + s1 * s1) |
---|
| 875 | s1 = s1 * c1 |
---|
| 876 | c2 = c2 * c1 |
---|
| 877 | kk = kk - ispan + jc |
---|
| 878 | IF (kk > kspan) EXIT |
---|
| 879 | END DO |
---|
| 880 | kk = kk - kspan + jc + 1 |
---|
| 881 | IF (kk > jc + jc) EXIT |
---|
| 882 | END DO |
---|
| 883 | |
---|
| 884 | END SELECT |
---|
| 885 | END DO |
---|
| 886 | END SUBROUTINE transform |
---|
| 887 | |
---|
| 888 | |
---|
| 889 | SUBROUTINE permute(array, ntotal, npass, nspan, & |
---|
| 890 | factor, nfactor, nsquare, maxfactor, & |
---|
| 891 | ctmp, perm) |
---|
| 892 | ! |
---|
| 893 | !-- Formal parameters |
---|
| 894 | COMPLEX(fftkind), DIMENSION(*), INTENT(IN OUT):: array |
---|
| 895 | INTEGER, INTENT(IN) :: ntotal, npass, nspan |
---|
| 896 | INTEGER, DIMENSION(*), INTENT(IN OUT):: factor |
---|
| 897 | INTEGER, INTENT(IN) :: nfactor, nsquare |
---|
| 898 | INTEGER, INTENT(IN) :: maxfactor |
---|
| 899 | COMPLEX(fftkind), DIMENSION(*), INTENT(OUT) :: ctmp |
---|
| 900 | INTEGER, DIMENSION(*), INTENT(OUT) :: perm |
---|
| 901 | ! |
---|
| 902 | !-- Local scalars |
---|
| 903 | INTEGER :: ii, ispan |
---|
| 904 | INTEGER :: j, jc, jj |
---|
| 905 | INTEGER :: k, kk, kspan, kt, k1, k2, k3 |
---|
| 906 | INTEGER :: nn, nt |
---|
| 907 | COMPLEX(fftkind):: ck |
---|
| 908 | |
---|
| 909 | ! |
---|
| 910 | !-- Permute the results to normal order---done in two stages |
---|
| 911 | !-- Permutation for square factors of n |
---|
| 912 | |
---|
| 913 | nt = ntotal |
---|
| 914 | nn = nt - 1 |
---|
| 915 | kt = nsquare |
---|
| 916 | kspan = nspan |
---|
| 917 | jc = nspan / npass |
---|
| 918 | |
---|
| 919 | perm (1) = nspan |
---|
| 920 | IF (kt > 0) THEN |
---|
| 921 | k = kt + kt + 1 |
---|
| 922 | IF (nfactor < k) k = k - 1 |
---|
| 923 | j = 1 |
---|
| 924 | perm (k + 1) = jc |
---|
| 925 | DO |
---|
| 926 | perm (j + 1) = perm (j) / factor(j) |
---|
| 927 | perm (k) = perm (k + 1) * factor(j) |
---|
| 928 | j = j + 1 |
---|
| 929 | k = k - 1 |
---|
| 930 | IF (j >= k) EXIT |
---|
| 931 | END DO |
---|
| 932 | k3 = perm (k + 1) |
---|
| 933 | kspan = perm (2) |
---|
| 934 | kk = jc + 1 |
---|
| 935 | k2 = kspan + 1 |
---|
| 936 | j = 1 |
---|
| 937 | |
---|
| 938 | IF (npass /= ntotal) THEN |
---|
| 939 | permute_multi: DO |
---|
| 940 | DO |
---|
| 941 | DO |
---|
| 942 | k = kk + jc |
---|
| 943 | DO |
---|
| 944 | ! |
---|
| 945 | !-- Swap array(kk) <> array(k2) |
---|
| 946 | ck = array(kk) |
---|
| 947 | array(kk) = array(k2) |
---|
| 948 | array(k2) = ck |
---|
| 949 | kk = kk + 1 |
---|
| 950 | k2 = k2 + 1 |
---|
| 951 | IF (kk >= k) EXIT |
---|
| 952 | END DO |
---|
| 953 | kk = kk + nspan - jc |
---|
| 954 | k2 = k2 + nspan - jc |
---|
| 955 | IF (kk >= nt) EXIT |
---|
| 956 | END DO |
---|
| 957 | kk = kk - nt + jc |
---|
| 958 | k2 = k2 - nt + kspan |
---|
| 959 | IF (k2 >= nspan) EXIT |
---|
| 960 | END DO |
---|
| 961 | DO |
---|
| 962 | DO |
---|
| 963 | k2 = k2 - perm (j) |
---|
| 964 | j = j + 1 |
---|
| 965 | k2 = perm (j + 1) + k2 |
---|
| 966 | IF (k2 <= perm (j)) EXIT |
---|
| 967 | END DO |
---|
| 968 | j = 1 |
---|
| 969 | DO |
---|
| 970 | IF (kk < k2) CYCLE permute_multi |
---|
| 971 | kk = kk + jc |
---|
| 972 | k2 = k2 + kspan |
---|
| 973 | IF (k2 >= nspan) EXIT |
---|
| 974 | END DO |
---|
| 975 | IF (kk >= nspan) EXIT |
---|
| 976 | END DO |
---|
| 977 | EXIT |
---|
| 978 | END DO permute_multi |
---|
| 979 | ELSE |
---|
| 980 | permute_single: DO |
---|
| 981 | DO |
---|
| 982 | ! |
---|
| 983 | !-- Swap array(kk) <> array(k2) |
---|
| 984 | ck = array(kk) |
---|
| 985 | array(kk) = array(k2) |
---|
| 986 | array(k2) = ck |
---|
| 987 | kk = kk + 1 |
---|
| 988 | k2 = k2 + kspan |
---|
| 989 | IF (k2 >= nspan) EXIT |
---|
| 990 | END DO |
---|
| 991 | DO |
---|
| 992 | DO |
---|
| 993 | k2 = k2 - perm (j) |
---|
| 994 | j = j + 1 |
---|
| 995 | k2 = perm (j + 1) + k2 |
---|
| 996 | IF (k2 <= perm (j)) EXIT |
---|
| 997 | END DO |
---|
| 998 | j = 1 |
---|
| 999 | DO |
---|
| 1000 | IF (kk < k2) CYCLE permute_single |
---|
| 1001 | kk = kk + 1 |
---|
| 1002 | k2 = k2 + kspan |
---|
| 1003 | IF (k2 >= nspan) EXIT |
---|
| 1004 | END DO |
---|
| 1005 | IF (kk >= nspan) EXIT |
---|
| 1006 | END DO |
---|
| 1007 | EXIT |
---|
| 1008 | END DO permute_single |
---|
| 1009 | END IF |
---|
| 1010 | jc = k3 |
---|
| 1011 | END IF |
---|
| 1012 | |
---|
| 1013 | IF (ISHFT(kt, 1) + 1 >= nfactor) RETURN |
---|
| 1014 | |
---|
| 1015 | ispan = perm (kt + 1) |
---|
| 1016 | ! |
---|
| 1017 | !-- Permutation for square-free factors of n |
---|
| 1018 | j = nfactor - kt |
---|
| 1019 | factor(j + 1) = 1 |
---|
| 1020 | DO |
---|
| 1021 | factor(j) = factor(j) * factor(j+1) |
---|
| 1022 | j = j - 1 |
---|
| 1023 | IF (j == kt) EXIT |
---|
| 1024 | END DO |
---|
| 1025 | kt = kt + 1 |
---|
| 1026 | nn = factor(kt) - 1 |
---|
| 1027 | j = 0 |
---|
| 1028 | jj = 0 |
---|
| 1029 | DO |
---|
| 1030 | k = kt + 1 |
---|
| 1031 | k2 = factor(kt) |
---|
| 1032 | kk = factor(k) |
---|
| 1033 | j = j + 1 |
---|
| 1034 | IF (j > nn) EXIT !-- exit infinite loop |
---|
| 1035 | jj = jj + kk |
---|
| 1036 | DO WHILE (jj >= k2) |
---|
| 1037 | jj = jj - k2 |
---|
| 1038 | k2 = kk |
---|
| 1039 | k = k + 1 |
---|
| 1040 | kk = factor(k) |
---|
| 1041 | jj = jj + kk |
---|
| 1042 | END DO |
---|
| 1043 | perm (j) = jj |
---|
| 1044 | END DO |
---|
| 1045 | ! |
---|
| 1046 | !-- Determine the permutation cycles of length greater than 1 |
---|
| 1047 | j = 0 |
---|
| 1048 | DO |
---|
| 1049 | DO |
---|
| 1050 | j = j + 1 |
---|
| 1051 | kk = perm(j) |
---|
| 1052 | IF (kk >= 0) EXIT |
---|
| 1053 | END DO |
---|
| 1054 | IF (kk /= j) THEN |
---|
| 1055 | DO |
---|
| 1056 | k = kk |
---|
| 1057 | kk = perm (k) |
---|
| 1058 | perm (k) = -kk |
---|
| 1059 | IF (kk == j) EXIT |
---|
| 1060 | END DO |
---|
| 1061 | k3 = kk |
---|
| 1062 | ELSE |
---|
| 1063 | perm (j) = -j |
---|
| 1064 | IF (j == nn) EXIT !-- exit infinite loop |
---|
| 1065 | END IF |
---|
| 1066 | END DO |
---|
| 1067 | ! |
---|
| 1068 | !-- Reorder a and b, following the permutation cycles |
---|
| 1069 | DO |
---|
| 1070 | j = k3 + 1 |
---|
| 1071 | nt = nt - ispan |
---|
| 1072 | ii = nt - 1 + 1 |
---|
| 1073 | IF (nt < 0) EXIT !-- exit infinite loop |
---|
| 1074 | DO |
---|
| 1075 | DO |
---|
| 1076 | j = j-1 |
---|
| 1077 | IF (perm(j) >= 0) EXIT |
---|
| 1078 | END DO |
---|
| 1079 | jj = jc |
---|
| 1080 | DO |
---|
| 1081 | kspan = jj |
---|
| 1082 | IF (jj > maxfactor) kspan = maxfactor |
---|
| 1083 | jj = jj - kspan |
---|
| 1084 | k = perm(j) |
---|
| 1085 | kk = jc * k + ii + jj |
---|
| 1086 | k1 = kk + kspan |
---|
| 1087 | k2 = 0 |
---|
| 1088 | DO |
---|
| 1089 | k2 = k2 + 1 |
---|
| 1090 | ctmp(k2) = array(k1) |
---|
| 1091 | k1 = k1 - 1 |
---|
| 1092 | IF (k1 == kk) EXIT |
---|
| 1093 | END DO |
---|
| 1094 | DO |
---|
| 1095 | k1 = kk + kspan |
---|
| 1096 | k2 = k1 - jc * (k + perm(k)) |
---|
| 1097 | k = -perm(k) |
---|
| 1098 | DO |
---|
| 1099 | array(k1) = array(k2) |
---|
| 1100 | k1 = k1 - 1 |
---|
| 1101 | k2 = k2 - 1 |
---|
| 1102 | IF (k1 == kk) EXIT |
---|
| 1103 | END DO |
---|
| 1104 | kk = k2 |
---|
| 1105 | IF (k == j) EXIT |
---|
| 1106 | END DO |
---|
| 1107 | k1 = kk + kspan |
---|
| 1108 | k2 = 0 |
---|
| 1109 | DO |
---|
| 1110 | k2 = k2 + 1 |
---|
| 1111 | array(k1) = ctmp(k2) |
---|
| 1112 | k1 = k1 - 1 |
---|
| 1113 | IF (k1 == kk) EXIT |
---|
| 1114 | END DO |
---|
| 1115 | IF (jj == 0) EXIT |
---|
| 1116 | END DO |
---|
| 1117 | IF (j == 1) EXIT |
---|
| 1118 | END DO |
---|
| 1119 | END DO |
---|
| 1120 | |
---|
| 1121 | END SUBROUTINE permute |
---|
| 1122 | |
---|
| 1123 | END SUBROUTINE fftradix |
---|
| 1124 | |
---|
| 1125 | END MODULE singleton |
---|