[1826] | 1 | !> @file radiation_model_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1496] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1496] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2920] | 17 | ! Copyright 2015-2018 Institute of Computer Science of the |
---|
| 18 | ! Czech Academy of Sciences, Prague |
---|
[3337] | 19 | ! Copyright 2015-2018 Czech Technical University in Prague |
---|
[2718] | 20 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 21 | !------------------------------------------------------------------------------! |
---|
[1496] | 22 | ! |
---|
| 23 | ! Current revisions: |
---|
[2977] | 24 | ! ------------------ |
---|
[2008] | 25 | ! |
---|
[3049] | 26 | ! |
---|
[2008] | 27 | ! Former revisions: |
---|
| 28 | ! ----------------- |
---|
| 29 | ! $Id: radiation_model_mod.f90 3528 2018-11-15 19:07:11Z kanani $ |
---|
[3528] | 30 | ! Add an epsilon value to compare values in if statement to fix possible |
---|
| 31 | ! precsion related errors in raytrace routines. |
---|
| 32 | ! |
---|
| 33 | ! 3524 2018-11-14 13:36:44Z raasch |
---|
[3524] | 34 | ! missing cpp-directives added |
---|
| 35 | ! |
---|
| 36 | ! 3495 2018-11-06 15:22:17Z kanani |
---|
[3495] | 37 | ! Resort control_parameters ONLY list, |
---|
| 38 | ! From branch radiation@3491 moh.hefny: |
---|
| 39 | ! bugfix in calculating the apparent solar positions by updating |
---|
| 40 | ! the simulated time so that the actual time is correct. |
---|
| 41 | ! |
---|
| 42 | ! 3464 2018-10-30 18:08:55Z kanani |
---|
[3464] | 43 | ! From branch resler@3462, pavelkrc: |
---|
| 44 | ! add MRT shaping function for human |
---|
| 45 | ! |
---|
| 46 | ! 3449 2018-10-29 19:36:56Z suehring |
---|
[3449] | 47 | ! New RTM version 3.0: (Pavel Krc, Jaroslav Resler, ICS, Prague) |
---|
| 48 | ! - Interaction of plant canopy with LW radiation |
---|
| 49 | ! - Transpiration from resolved plant canopy dependent on radiation |
---|
| 50 | ! called from RTM |
---|
| 51 | ! |
---|
| 52 | ! |
---|
| 53 | ! 3435 2018-10-26 18:25:44Z gronemeier |
---|
[3435] | 54 | ! - workaround: return unit=illegal in check_data_output for certain variables |
---|
| 55 | ! when check called from init_masks |
---|
| 56 | ! - Use pointer in masked output to reduce code redundancies |
---|
| 57 | ! - Add terrain-following masked output |
---|
| 58 | ! |
---|
| 59 | ! 3424 2018-10-25 07:29:10Z gronemeier |
---|
[3424] | 60 | ! bugfix: add rad_lw_in, rad_lw_out, rad_sw_out to radiation_check_data_output |
---|
| 61 | ! |
---|
| 62 | ! 3378 2018-10-19 12:34:59Z kanani |
---|
[3378] | 63 | ! merge from radiation branch (r3362) into trunk |
---|
| 64 | ! (moh.hefny): |
---|
| 65 | ! - removed read/write_svf_on_init and read_dist_max_svf (not used anymore) |
---|
| 66 | ! - bugfix nzut > nzpt in calculating maxboxes |
---|
| 67 | ! |
---|
| 68 | ! 3372 2018-10-18 14:03:19Z raasch |
---|
[3372] | 69 | ! bugfix: kind type of 2nd argument of mpi_win_allocate changed, misplaced |
---|
| 70 | ! __parallel directive |
---|
| 71 | ! |
---|
| 72 | ! 3351 2018-10-15 18:40:42Z suehring |
---|
[3351] | 73 | ! Do not overwrite values of spectral and broadband albedo during initialization |
---|
| 74 | ! if they are already initialized in the urban-surface model via ASCII input. |
---|
| 75 | ! |
---|
| 76 | ! 3337 2018-10-12 15:17:09Z kanani |
---|
[3337] | 77 | ! - New RTM version 2.9: (Pavel Krc, Jaroslav Resler, ICS, Prague) |
---|
| 78 | ! added calculation of the MRT inside the RTM module |
---|
| 79 | ! MRT fluxes are consequently used in the new biometeorology module |
---|
| 80 | ! for calculation of biological indices (MRT, PET) |
---|
| 81 | ! Fixes of v. 2.5 and SVN trunk: |
---|
| 82 | ! - proper initialization of rad_net_l |
---|
| 83 | ! - make arrays nsurfs and surfstart TARGET to prevent some MPI problems |
---|
| 84 | ! - initialization of arrays used in MPI one-sided operation as 1-D arrays |
---|
| 85 | ! to prevent problems with some MPI/compiler combinations |
---|
| 86 | ! - fix indexing of target displacement in subroutine request_itarget to |
---|
| 87 | ! consider nzub |
---|
| 88 | ! - fix LAD dimmension range in PCB calculation |
---|
| 89 | ! - check ierr in all MPI calls |
---|
| 90 | ! - use proper per-gridbox sky and diffuse irradiance |
---|
| 91 | ! - fix shading for reflected irradiance |
---|
| 92 | ! - clear away the residuals of "atmospheric surfaces" implementation |
---|
| 93 | ! - fix rounding bug in raytrace_2d introduced in SVN trunk |
---|
| 94 | ! - New RTM version 2.5: (Pavel Krc, Jaroslav Resler, ICS, Prague) |
---|
| 95 | ! can use angular discretization for all SVF |
---|
| 96 | ! (i.e. reflected and emitted radiation in addition to direct and diffuse), |
---|
| 97 | ! allowing for much better scaling wih high resoltion and/or complex terrain |
---|
| 98 | ! - Unite array grow factors |
---|
| 99 | ! - Fix slightly shifted terrain height in raytrace_2d |
---|
| 100 | ! - Use more efficient MPI_Win_allocate for reverse gridsurf index |
---|
| 101 | ! - Fix random MPI RMA bugs on Intel compilers |
---|
| 102 | ! - Fix approx. double plant canopy sink values for reflected radiation |
---|
| 103 | ! - Fix mostly missing plant canopy sinks for direct radiation |
---|
| 104 | ! - Fix discretization errors for plant canopy sink in diffuse radiation |
---|
| 105 | ! - Fix rounding errors in raytrace_2d |
---|
| 106 | ! |
---|
| 107 | ! 3274 2018-09-24 15:42:55Z knoop |
---|
[3274] | 108 | ! Modularization of all bulk cloud physics code components |
---|
| 109 | ! |
---|
| 110 | ! 3272 2018-09-24 10:16:32Z suehring |
---|
[3272] | 111 | ! - split direct and diffusion shortwave radiation using RRTMG rather than using |
---|
| 112 | ! calc_diffusion_radiation, in case of RRTMG |
---|
| 113 | ! - removed the namelist variable split_diffusion_radiation. Now splitting depends |
---|
| 114 | ! on the choise of radiation radiation scheme |
---|
| 115 | ! - removed calculating the rdiation flux for surfaces at the radiation scheme |
---|
| 116 | ! in case of using RTM since it will be calculated anyway in the radiation |
---|
| 117 | ! interaction routine. |
---|
| 118 | ! - set SW radiation flux for surfaces to zero at night in case of no RTM is used |
---|
| 119 | ! - precalculate the unit vector yxdir of ray direction to avoid the temporarly |
---|
| 120 | ! array allocation during the subroutine call |
---|
| 121 | ! - fixed a bug in calculating the max number of boxes ray can cross in the domain |
---|
| 122 | ! |
---|
| 123 | ! 3264 2018-09-20 13:54:11Z moh.hefny |
---|
[3261] | 124 | ! Bugfix in raytrace_2d calls |
---|
| 125 | ! |
---|
| 126 | ! 3248 2018-09-14 09:42:06Z sward |
---|
[3248] | 127 | ! Minor formating changes |
---|
| 128 | ! |
---|
| 129 | ! 3246 2018-09-13 15:14:50Z sward |
---|
[3246] | 130 | ! Added error handling for input namelist via parin_fail_message |
---|
| 131 | ! |
---|
| 132 | ! 3241 2018-09-12 15:02:00Z raasch |
---|
[3241] | 133 | ! unused variables removed or commented |
---|
| 134 | ! |
---|
| 135 | ! 3233 2018-09-07 13:21:24Z schwenkel |
---|
[3233] | 136 | ! Adapted for the use of cloud_droplets |
---|
| 137 | ! |
---|
| 138 | ! 3230 2018-09-05 09:29:05Z schwenkel |
---|
[3230] | 139 | ! Bugfix in radiation_constant_surf: changed (10.0 - emissivity_urb) to |
---|
| 140 | ! (1.0 - emissivity_urb) |
---|
| 141 | ! |
---|
| 142 | ! 3226 2018-08-31 12:27:09Z suehring |
---|
[3226] | 143 | ! Bugfixes in calculation of sky-view factors and canopy-sink factors. |
---|
| 144 | ! |
---|
| 145 | ! 3186 2018-07-30 17:07:14Z suehring |
---|
[3186] | 146 | ! Remove print statement |
---|
| 147 | ! |
---|
| 148 | ! 3180 2018-07-27 11:00:56Z suehring |
---|
[3178] | 149 | ! Revise concept for calculation of effective radiative temperature and mapping |
---|
| 150 | ! of radiative heating |
---|
| 151 | ! |
---|
| 152 | ! 3175 2018-07-26 14:07:38Z suehring |
---|
[3175] | 153 | ! Bugfix for commit 3172 |
---|
| 154 | ! |
---|
| 155 | ! 3173 2018-07-26 12:55:23Z suehring |
---|
[3173] | 156 | ! Revise output of surface radiation quantities in case of overhanging |
---|
| 157 | ! structures |
---|
| 158 | ! |
---|
| 159 | ! 3172 2018-07-26 12:06:06Z suehring |
---|
[3172] | 160 | ! Bugfixes: |
---|
| 161 | ! - temporal work-around for calculation of effective radiative surface |
---|
| 162 | ! temperature |
---|
| 163 | ! - prevent positive solar radiation during nighttime |
---|
| 164 | ! |
---|
| 165 | ! 3170 2018-07-25 15:19:37Z suehring |
---|
[3170] | 166 | ! Bugfix, map signle-column radiation forcing profiles on top of any topography |
---|
| 167 | ! |
---|
| 168 | ! 3156 2018-07-19 16:30:54Z knoop |
---|
[3155] | 169 | ! Bugfix: replaced usage of the pt array with the surf%pt_surface array |
---|
| 170 | ! |
---|
| 171 | ! 3137 2018-07-17 06:44:21Z maronga |
---|
[3137] | 172 | ! String length for trace_names fixed |
---|
| 173 | ! |
---|
| 174 | ! 3127 2018-07-15 08:01:25Z maronga |
---|
[3127] | 175 | ! A few pavement parameters updated. |
---|
| 176 | ! |
---|
| 177 | ! 3123 2018-07-12 16:21:53Z suehring |
---|
[3123] | 178 | ! Correct working precision for INTEGER number |
---|
| 179 | ! |
---|
| 180 | ! 3122 2018-07-11 21:46:41Z maronga |
---|
[3122] | 181 | ! Bugfix: maximum distance for raytracing was set to -999 m by default, |
---|
| 182 | ! effectively switching off all surface reflections when max_raytracing_dist |
---|
| 183 | ! was not explicitly set in namelist |
---|
| 184 | ! |
---|
| 185 | ! 3117 2018-07-11 09:59:11Z maronga |
---|
[3274] | 186 | ! Bugfix: water vapor was not transfered to RRTMG when bulk_cloud_model = .F. |
---|
[3117] | 187 | ! Bugfix: changed the calculation of RRTMG boundary conditions (Mohamed Salim) |
---|
| 188 | ! Bugfix: dry residual atmosphere is replaced by standard RRTMG atmosphere |
---|
| 189 | ! |
---|
| 190 | ! 3116 2018-07-10 14:31:58Z suehring |
---|
[3116] | 191 | ! Output of long/shortwave radiation at surface |
---|
| 192 | ! |
---|
| 193 | ! 3107 2018-07-06 15:55:51Z suehring |
---|
[3107] | 194 | ! Bugfix, missing index for dz |
---|
| 195 | ! |
---|
| 196 | ! 3066 2018-06-12 08:55:55Z Giersch |
---|
[3066] | 197 | ! Error message revised |
---|
| 198 | ! |
---|
| 199 | ! 3065 2018-06-12 07:03:02Z Giersch |
---|
[3065] | 200 | ! dz was replaced by dz(1), error message concerning vertical stretching was |
---|
| 201 | ! added |
---|
| 202 | ! |
---|
| 203 | ! 3049 2018-05-29 13:52:36Z Giersch |
---|
[3049] | 204 | ! Error messages revised |
---|
| 205 | ! |
---|
| 206 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
[3045] | 207 | ! Error message revised |
---|
| 208 | ! |
---|
| 209 | ! 3026 2018-05-22 10:30:53Z schwenkel |
---|
[3026] | 210 | ! Changed the name specific humidity to mixing ratio, since we are computing |
---|
| 211 | ! mixing ratios. |
---|
| 212 | ! |
---|
| 213 | ! 3016 2018-05-09 10:53:37Z Giersch |
---|
[3016] | 214 | ! Revised structure of reading svf data according to PALM coding standard: |
---|
| 215 | ! svf_code_field/len and fsvf removed, error messages PA0493 and PA0494 added, |
---|
| 216 | ! allocation status of output arrays checked. |
---|
| 217 | ! |
---|
| 218 | ! 3014 2018-05-09 08:42:38Z maronga |
---|
[3014] | 219 | ! Introduced plant canopy height similar to urban canopy height to limit |
---|
| 220 | ! the memory requirement to allocate lad. |
---|
| 221 | ! Deactivated automatic setting of minimum raytracing distance. |
---|
| 222 | ! |
---|
| 223 | ! 3004 2018-04-27 12:33:25Z Giersch |
---|
[3004] | 224 | ! Further allocation checks implemented (averaged data will be assigned to fill |
---|
| 225 | ! values if no allocation happened so far) |
---|
| 226 | ! |
---|
| 227 | ! 2995 2018-04-19 12:13:16Z Giersch |
---|
[2995] | 228 | ! IF-statement in radiation_init removed so that the calculation of radiative |
---|
| 229 | ! fluxes at model start is done in any case, bugfix in |
---|
| 230 | ! radiation_presimulate_solar_pos (end_time is the sum of end_time and the |
---|
| 231 | ! spinup_time specified in the p3d_file ), list of variables/fields that have |
---|
| 232 | ! to be written out or read in case of restarts has been extended |
---|
| 233 | ! |
---|
| 234 | ! 2977 2018-04-17 10:27:57Z kanani |
---|
[2977] | 235 | ! Implement changes from branch radiation (r2948-2971) with minor modifications, |
---|
| 236 | ! plus some formatting. |
---|
| 237 | ! (moh.hefny): |
---|
| 238 | ! - replaced plant_canopy by npcbl to check tree existence to avoid weird |
---|
| 239 | ! allocation of related arrays (after domain decomposition some domains |
---|
| 240 | ! contains no trees although plant_canopy (global parameter) is still TRUE). |
---|
| 241 | ! - added a namelist parameter to force RTM settings |
---|
| 242 | ! - enabled the option to switch radiation reflections off |
---|
| 243 | ! - renamed surf_reflections to surface_reflections |
---|
| 244 | ! - removed average_radiation flag from the namelist (now it is implicitly set |
---|
| 245 | ! in init_3d_model according to RTM) |
---|
| 246 | ! - edited read and write sky view factors and CSF routines to account for |
---|
| 247 | ! the sub-domains which may not contain any of them |
---|
| 248 | ! |
---|
| 249 | ! 2967 2018-04-13 11:22:08Z raasch |
---|
[2967] | 250 | ! bugfix: missing parallel cpp-directives added |
---|
| 251 | ! |
---|
| 252 | ! 2964 2018-04-12 16:04:03Z Giersch |
---|
[2964] | 253 | ! Error message PA0491 has been introduced which could be previously found in |
---|
| 254 | ! check_open. The variable numprocs_previous_run is only known in case of |
---|
| 255 | ! initializing_actions == read_restart_data |
---|
| 256 | ! |
---|
| 257 | ! 2963 2018-04-12 14:47:44Z suehring |
---|
[2963] | 258 | ! - Introduce index for vegetation/wall, pavement/green-wall and water/window |
---|
| 259 | ! surfaces, for clearer access of surface fraction, albedo, emissivity, etc. . |
---|
| 260 | ! - Minor bugfix in initialization of albedo for window surfaces |
---|
| 261 | ! |
---|
| 262 | ! 2944 2018-04-03 16:20:18Z suehring |
---|
[2944] | 263 | ! Fixed bad commit |
---|
| 264 | ! |
---|
| 265 | ! 2943 2018-04-03 16:17:10Z suehring |
---|
[2941] | 266 | ! No read of nsurfl from SVF file since it is calculated in |
---|
| 267 | ! radiation_interaction_init, |
---|
| 268 | ! allocation of arrays in radiation_read_svf only if not yet allocated, |
---|
| 269 | ! update of 2920 revision comment. |
---|
| 270 | ! |
---|
| 271 | ! 2932 2018-03-26 09:39:22Z maronga |
---|
[2932] | 272 | ! renamed radiation_par to radiation_parameters |
---|
| 273 | ! |
---|
| 274 | ! 2930 2018-03-23 16:30:46Z suehring |
---|
[2930] | 275 | ! Remove default surfaces from radiation model, does not make much sense to |
---|
| 276 | ! apply radiation model without energy-balance solvers; Further, add check for |
---|
| 277 | ! this. |
---|
| 278 | ! |
---|
| 279 | ! 2920 2018-03-22 11:22:01Z kanani |
---|
[2920] | 280 | ! - Bugfix: Initialize pcbl array (=-1) |
---|
[2941] | 281 | ! RTM version 2.0 (Jaroslav Resler, Pavel Krc, Mohamed Salim): |
---|
| 282 | ! - new major version of radiation interactions |
---|
| 283 | ! - substantially enhanced performance and scalability |
---|
| 284 | ! - processing of direct and diffuse solar radiation separated from reflected |
---|
| 285 | ! radiation, removed virtual surfaces |
---|
| 286 | ! - new type of sky discretization by azimuth and elevation angles |
---|
| 287 | ! - diffuse radiation processed cumulatively using sky view factor |
---|
| 288 | ! - used precalculated apparent solar positions for direct irradiance |
---|
| 289 | ! - added new 2D raytracing process for processing whole vertical column at once |
---|
| 290 | ! to increase memory efficiency and decrease number of MPI RMA operations |
---|
| 291 | ! - enabled limiting the number of view factors between surfaces by the distance |
---|
| 292 | ! and value |
---|
| 293 | ! - fixing issues induced by transferring radiation interactions from |
---|
| 294 | ! urban_surface_mod to radiation_mod |
---|
| 295 | ! - bugfixes and other minor enhancements |
---|
[2920] | 296 | ! |
---|
| 297 | ! 2906 2018-03-19 08:56:40Z Giersch |
---|
[2906] | 298 | ! NAMELIST paramter read/write_svf_on_init have been removed, functions |
---|
| 299 | ! check_open and close_file are used now for opening/closing files related to |
---|
| 300 | ! svf data, adjusted unit number and error numbers |
---|
| 301 | ! |
---|
| 302 | ! 2894 2018-03-15 09:17:58Z Giersch |
---|
[2894] | 303 | ! Calculations of the index range of the subdomain on file which overlaps with |
---|
| 304 | ! the current subdomain are already done in read_restart_data_mod |
---|
| 305 | ! radiation_read_restart_data was renamed to radiation_rrd_local and |
---|
| 306 | ! radiation_last_actions was renamed to radiation_wrd_local, variable named |
---|
| 307 | ! found has been introduced for checking if restart data was found, reading |
---|
| 308 | ! of restart strings has been moved completely to read_restart_data_mod, |
---|
| 309 | ! radiation_rrd_local is already inside the overlap loop programmed in |
---|
| 310 | ! read_restart_data_mod, the marker *** end rad *** is not necessary anymore, |
---|
| 311 | ! strings and their respective lengths are written out and read now in case of |
---|
| 312 | ! restart runs to get rid of prescribed character lengths (Giersch) |
---|
| 313 | ! |
---|
| 314 | ! 2809 2018-02-15 09:55:58Z suehring |
---|
[2809] | 315 | ! Bugfix for gfortran: Replace the function C_SIZEOF with STORAGE_SIZE |
---|
| 316 | ! |
---|
| 317 | ! 2753 2018-01-16 14:16:49Z suehring |
---|
[2753] | 318 | ! Tile approach for spectral albedo implemented. |
---|
| 319 | ! |
---|
| 320 | ! 2746 2018-01-15 12:06:04Z suehring |
---|
[2746] | 321 | ! Move flag plant canopy to modules |
---|
| 322 | ! |
---|
| 323 | ! 2724 2018-01-05 12:12:38Z maronga |
---|
[2724] | 324 | ! Set default of average_radiation to .FALSE. |
---|
| 325 | ! |
---|
| 326 | ! 2723 2018-01-05 09:27:03Z maronga |
---|
[2723] | 327 | ! Bugfix in calculation of rad_lw_out (clear-sky). First grid level was used |
---|
| 328 | ! instead of the surface value |
---|
| 329 | ! |
---|
| 330 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 331 | ! Corrected "Former revisions" section |
---|
[2707] | 332 | ! |
---|
[2716] | 333 | ! 2707 2017-12-18 18:34:46Z suehring |
---|
| 334 | ! Changes from last commit documented |
---|
| 335 | ! |
---|
[2707] | 336 | ! 2706 2017-12-18 18:33:49Z suehring |
---|
[2716] | 337 | ! Bugfix, in average radiation case calculate exner function before using it. |
---|
| 338 | ! |
---|
| 339 | ! 2701 2017-12-15 15:40:50Z suehring |
---|
| 340 | ! Changes from last commit documented |
---|
[2701] | 341 | ! |
---|
| 342 | ! 2698 2017-12-14 18:46:24Z suehring |
---|
[2716] | 343 | ! Bugfix in get_topography_top_index |
---|
| 344 | ! |
---|
| 345 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 346 | ! - Change in file header (GPL part) |
---|
[2696] | 347 | ! - Improved reading/writing of SVF from/to file (BM) |
---|
| 348 | ! - Bugfixes concerning RRTMG as well as average_radiation options (M. Salim) |
---|
| 349 | ! - Revised initialization of surface albedo and some minor bugfixes (MS) |
---|
| 350 | ! - Update net radiation after running radiation interaction routine (MS) |
---|
| 351 | ! - Revisions from M Salim included |
---|
| 352 | ! - Adjustment to topography and surface structure (MS) |
---|
| 353 | ! - Initialization of albedo and surface emissivity via input file (MS) |
---|
| 354 | ! - albedo_pars extended (MS) |
---|
| 355 | ! |
---|
| 356 | ! 2604 2017-11-06 13:29:00Z schwenkel |
---|
[2604] | 357 | ! bugfix for calculation of effective radius using morrison microphysics |
---|
| 358 | ! |
---|
| 359 | ! 2601 2017-11-02 16:22:46Z scharf |
---|
[2601] | 360 | ! added emissivity to namelist |
---|
| 361 | ! |
---|
| 362 | ! 2575 2017-10-24 09:57:58Z maronga |
---|
[2575] | 363 | ! Bugfix: calculation of shortwave and longwave albedos for RRTMG swapped |
---|
| 364 | ! |
---|
| 365 | ! 2547 2017-10-16 12:41:56Z schwenkel |
---|
[2547] | 366 | ! extended by cloud_droplets option, minor bugfix and correct calculation of |
---|
| 367 | ! cloud droplet number concentration |
---|
| 368 | ! |
---|
| 369 | ! 2544 2017-10-13 18:09:32Z maronga |
---|
[2920] | 370 | ! Moved date and time quantitis to separate module date_and_time_mod |
---|
[2544] | 371 | ! |
---|
| 372 | ! 2512 2017-10-04 08:26:59Z raasch |
---|
[2512] | 373 | ! upper bounds of cross section and 3d output changed from nx+1,ny+1 to nx,ny |
---|
| 374 | ! no output of ghost layer data |
---|
| 375 | ! |
---|
| 376 | ! 2504 2017-09-27 10:36:13Z maronga |
---|
[2504] | 377 | ! Updates pavement types and albedo parameters |
---|
| 378 | ! |
---|
| 379 | ! 2328 2017-08-03 12:34:22Z maronga |
---|
[2328] | 380 | ! Emissivity can now be set individually for each pixel. |
---|
| 381 | ! Albedo type can be inferred from land surface model. |
---|
| 382 | ! Added default albedo type for bare soil |
---|
| 383 | ! |
---|
| 384 | ! 2318 2017-07-20 17:27:44Z suehring |
---|
[2318] | 385 | ! Get topography top index via Function call |
---|
| 386 | ! |
---|
| 387 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
[2299] | 388 | ! Improved syntax layout |
---|
| 389 | ! |
---|
| 390 | ! 2298 2017-06-29 09:28:18Z raasch |
---|
[2298] | 391 | ! type of write_binary changed from CHARACTER to LOGICAL |
---|
| 392 | ! |
---|
| 393 | ! 2296 2017-06-28 07:53:56Z maronga |
---|
[2296] | 394 | ! Added output of rad_sw_out for radiation_scheme = 'constant' |
---|
| 395 | ! |
---|
| 396 | ! 2270 2017-06-09 12:18:47Z maronga |
---|
[2270] | 397 | ! Numbering changed (2 timeseries removed) |
---|
| 398 | ! |
---|
| 399 | ! 2249 2017-06-06 13:58:01Z sward |
---|
[2242] | 400 | ! Allow for RRTMG runs without humidity/cloud physics |
---|
| 401 | ! |
---|
[2249] | 402 | ! 2248 2017-06-06 13:52:54Z sward |
---|
| 403 | ! Error no changed |
---|
| 404 | ! |
---|
[2242] | 405 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
| 406 | ! |
---|
[2233] | 407 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 408 | ! Adjustments to new topography concept |
---|
| 409 | ! Bugfix in read restart |
---|
| 410 | ! |
---|
[2201] | 411 | ! 2200 2017-04-11 11:37:51Z suehring |
---|
| 412 | ! Bugfix in call of exchange_horiz_2d and read restart data |
---|
| 413 | ! |
---|
[2164] | 414 | ! 2163 2017-03-01 13:23:15Z schwenkel |
---|
| 415 | ! Bugfix in radiation_check_data_output |
---|
| 416 | ! |
---|
[2158] | 417 | ! 2157 2017-02-22 15:10:35Z suehring |
---|
| 418 | ! Bugfix in read_restart data |
---|
| 419 | ! |
---|
[2012] | 420 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
| 421 | ! Removed CALL of auxiliary SUBROUTINE get_usm_info, |
---|
| 422 | ! flag urban_surface is now defined in module control_parameters. |
---|
| 423 | ! |
---|
[2008] | 424 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
[2007] | 425 | ! Added calculation of solar directional vector for new urban surface |
---|
| 426 | ! model, |
---|
| 427 | ! accounted for urban_surface model in radiation_check_parameters, |
---|
| 428 | ! correction of comments for zenith angle. |
---|
[1977] | 429 | ! |
---|
[2001] | 430 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 431 | ! Forced header and separation lines into 80 columns |
---|
| 432 | ! |
---|
[1977] | 433 | ! 1976 2016-07-27 13:28:04Z maronga |
---|
[1976] | 434 | ! Output of 2D/3D/masked data is now directly done within this module. The |
---|
| 435 | ! radiation schemes have been simplified for better usability so that |
---|
| 436 | ! rad_lw_in, rad_lw_out, rad_sw_in, and rad_sw_out are available independent of |
---|
| 437 | ! the radiation code used. |
---|
[1854] | 438 | ! |
---|
[1857] | 439 | ! 1856 2016-04-13 12:56:17Z maronga |
---|
| 440 | ! Bugfix: allocation of rad_lw_out for radiation_scheme = 'clear-sky' |
---|
| 441 | ! |
---|
[1854] | 442 | ! 1853 2016-04-11 09:00:35Z maronga |
---|
| 443 | ! Added routine for radiation_scheme = constant. |
---|
| 444 | ! |
---|
[1852] | 445 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
[1851] | 446 | ! Adapted for modularization of microphysics |
---|
[1852] | 447 | ! |
---|
[1827] | 448 | ! 1826 2016-04-07 12:01:39Z maronga |
---|
| 449 | ! Further modularization. |
---|
| 450 | ! |
---|
[1789] | 451 | ! 1788 2016-03-10 11:01:04Z maronga |
---|
| 452 | ! Added new albedo class for pavements / roads. |
---|
| 453 | ! |
---|
[1784] | 454 | ! 1783 2016-03-06 18:36:17Z raasch |
---|
| 455 | ! palm-netcdf-module removed in order to avoid a circular module dependency, |
---|
| 456 | ! netcdf-variables moved to netcdf-module, new routine netcdf_handle_error_rad |
---|
| 457 | ! added |
---|
| 458 | ! |
---|
[1758] | 459 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
| 460 | ! Added parameter unscheduled_radiation_calls. Bugfix: interpolation of sounding |
---|
| 461 | ! profiles for pressure and temperature above the LES domain. |
---|
| 462 | ! |
---|
[1710] | 463 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
| 464 | ! Bugfix: set initial value for rrtm_lwuflx_dt to zero, small formatting |
---|
| 465 | ! corrections |
---|
| 466 | ! |
---|
[1702] | 467 | ! 1701 2015-11-02 07:43:04Z maronga |
---|
| 468 | ! Bugfixes: wrong index for output of timeseries, setting of nz_snd_end |
---|
| 469 | ! |
---|
[1692] | 470 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 471 | ! Added option for spin-up runs without radiation (skip_time_do_radiation). Bugfix |
---|
| 472 | ! in calculation of pressure profiles. Bugfix in calculation of trace gas profiles. |
---|
| 473 | ! Added output of radiative heating rates. |
---|
| 474 | ! |
---|
[1683] | 475 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 476 | ! Code annotations made doxygen readable |
---|
| 477 | ! |
---|
[1607] | 478 | ! 1606 2015-06-29 10:43:37Z maronga |
---|
| 479 | ! Added preprocessor directive __netcdf to allow for compiling without netCDF. |
---|
| 480 | ! Note, however, that RRTMG cannot be used without netCDF. |
---|
| 481 | ! |
---|
[1591] | 482 | ! 1590 2015-05-08 13:56:27Z maronga |
---|
| 483 | ! Bugfix: definition of character strings requires same length for all elements |
---|
| 484 | ! |
---|
[1588] | 485 | ! 1587 2015-05-04 14:19:01Z maronga |
---|
| 486 | ! Added albedo class for snow |
---|
| 487 | ! |
---|
[1586] | 488 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 489 | ! Added support for RRTMG |
---|
| 490 | ! |
---|
[1572] | 491 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
| 492 | ! Added missing KIND attribute. Removed upper-case variable names |
---|
| 493 | ! |
---|
[1552] | 494 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
| 495 | ! Added support for data output. Various variables have been renamed. Added |
---|
| 496 | ! interface for different radiation schemes (currently: clear-sky, constant, and |
---|
| 497 | ! RRTM (not yet implemented). |
---|
| 498 | ! |
---|
[1497] | 499 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 500 | ! Initial revision |
---|
| 501 | ! |
---|
[1496] | 502 | ! |
---|
| 503 | ! Description: |
---|
| 504 | ! ------------ |
---|
[1682] | 505 | !> Radiation models and interfaces |
---|
[3065] | 506 | !> @todo Replace dz(1) appropriatly to account for grid stretching |
---|
[1826] | 507 | !> @todo move variable definitions used in radiation_init only to the subroutine |
---|
[1682] | 508 | !> as they are no longer required after initialization. |
---|
| 509 | !> @todo Output of full column vertical profiles used in RRTMG |
---|
| 510 | !> @todo Output of other rrtm arrays (such as volume mixing ratios) |
---|
[3226] | 511 | !> @todo Check for mis-used NINT() calls in raytrace_2d |
---|
[3337] | 512 | !> RESULT: Original was correct (carefully verified formula), the change |
---|
| 513 | !> to INT broke raytracing -- P. Krc |
---|
[2696] | 514 | !> @todo Optimize radiation_tendency routines |
---|
[1682] | 515 | !> |
---|
| 516 | !> @note Many variables have a leading dummy dimension (0:0) in order to |
---|
| 517 | !> match the assume-size shape expected by the RRTMG model. |
---|
[1496] | 518 | !------------------------------------------------------------------------------! |
---|
[1682] | 519 | MODULE radiation_model_mod |
---|
| 520 | |
---|
[1496] | 521 | USE arrays_3d, & |
---|
[3337] | 522 | ONLY: dzw, hyp, nc, pt, p, q, ql, u, v, w, zu, zw, exner, d_exner |
---|
[1496] | 523 | |
---|
[3274] | 524 | USE basic_constants_and_equations_mod, & |
---|
[3449] | 525 | ONLY: c_p, g, lv_d_cp, l_v, pi, r_d, rho_l, solar_constant, & |
---|
[3274] | 526 | barometric_formula |
---|
| 527 | |
---|
[2696] | 528 | USE calc_mean_profile_mod, & |
---|
| 529 | ONLY: calc_mean_profile |
---|
| 530 | |
---|
[1496] | 531 | USE control_parameters, & |
---|
[3495] | 532 | ONLY: cloud_droplets, coupling_char, dz, dt_spinup, end_time, & |
---|
[3117] | 533 | humidity, & |
---|
[2696] | 534 | initializing_actions, io_blocks, io_group, & |
---|
[3495] | 535 | land_surface, large_scale_forcing, & |
---|
| 536 | latitude, longitude, lsf_surf, & |
---|
| 537 | message_string, plant_canopy, pt_surface, & |
---|
| 538 | rho_surface, simulated_time, spinup_time, surface_pressure, & |
---|
| 539 | time_since_reference_point, urban_surface |
---|
[1496] | 540 | |
---|
[2696] | 541 | USE cpulog, & |
---|
| 542 | ONLY: cpu_log, log_point, log_point_s |
---|
| 543 | |
---|
| 544 | USE grid_variables, & |
---|
| 545 | ONLY: ddx, ddy, dx, dy |
---|
| 546 | |
---|
[2544] | 547 | USE date_and_time_mod, & |
---|
| 548 | ONLY: calc_date_and_time, d_hours_day, d_seconds_hour, day_of_year, & |
---|
[2920] | 549 | d_seconds_year, day_of_year_init, time_utc_init, time_utc |
---|
[2544] | 550 | |
---|
[1496] | 551 | USE indices, & |
---|
[2696] | 552 | ONLY: nnx, nny, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, & |
---|
| 553 | nzb, nzt |
---|
[1496] | 554 | |
---|
[2696] | 555 | USE, INTRINSIC :: iso_c_binding |
---|
| 556 | |
---|
[1496] | 557 | USE kinds |
---|
| 558 | |
---|
[3274] | 559 | USE bulk_cloud_model_mod, & |
---|
| 560 | ONLY: bulk_cloud_model, microphysics_morrison, na_init, nc_const, sigma_gc |
---|
[1849] | 561 | |
---|
[1606] | 562 | #if defined ( __netcdf ) |
---|
[1783] | 563 | USE NETCDF |
---|
[1606] | 564 | #endif |
---|
[1585] | 565 | |
---|
[2696] | 566 | USE netcdf_data_input_mod, & |
---|
| 567 | ONLY: albedo_type_f, albedo_pars_f, building_type_f, pavement_type_f, & |
---|
| 568 | vegetation_type_f, water_type_f |
---|
| 569 | |
---|
| 570 | USE plant_canopy_model_mod, & |
---|
[3449] | 571 | ONLY: lad_s, pc_heating_rate, pc_transpiration_rate, pc_latent_rate, & |
---|
| 572 | plant_canopy_transpiration, pcm_calc_transpiration_rate |
---|
[2696] | 573 | |
---|
| 574 | USE pegrid |
---|
| 575 | |
---|
[1585] | 576 | #if defined ( __rrtmg ) |
---|
| 577 | USE parrrsw, & |
---|
| 578 | ONLY: naerec, nbndsw |
---|
[1551] | 579 | |
---|
[1585] | 580 | USE parrrtm, & |
---|
| 581 | ONLY: nbndlw |
---|
| 582 | |
---|
| 583 | USE rrtmg_lw_init, & |
---|
| 584 | ONLY: rrtmg_lw_ini |
---|
| 585 | |
---|
| 586 | USE rrtmg_sw_init, & |
---|
| 587 | ONLY: rrtmg_sw_ini |
---|
| 588 | |
---|
| 589 | USE rrtmg_lw_rad, & |
---|
| 590 | ONLY: rrtmg_lw |
---|
| 591 | |
---|
| 592 | USE rrtmg_sw_rad, & |
---|
| 593 | ONLY: rrtmg_sw |
---|
| 594 | #endif |
---|
[2696] | 595 | USE statistics, & |
---|
| 596 | ONLY: hom |
---|
| 597 | |
---|
[2317] | 598 | USE surface_mod, & |
---|
[2698] | 599 | ONLY: get_topography_top_index, get_topography_top_index_ji, & |
---|
[2963] | 600 | ind_pav_green, ind_veg_wall, ind_wat_win, & |
---|
[2930] | 601 | surf_lsm_h, surf_lsm_v, surf_type, surf_usm_h, surf_usm_v |
---|
[1585] | 602 | |
---|
[1496] | 603 | IMPLICIT NONE |
---|
| 604 | |
---|
[1585] | 605 | CHARACTER(10) :: radiation_scheme = 'clear-sky' ! 'constant', 'clear-sky', or 'rrtmg' |
---|
[1551] | 606 | |
---|
[1585] | 607 | ! |
---|
| 608 | !-- Predefined Land surface classes (albedo_type) after Briegleb (1992) |
---|
[2504] | 609 | CHARACTER(37), DIMENSION(0:33), PARAMETER :: albedo_type_name = (/ & |
---|
[1590] | 610 | 'user defined ', & ! 0 |
---|
| 611 | 'ocean ', & ! 1 |
---|
| 612 | 'mixed farming, tall grassland ', & ! 2 |
---|
| 613 | 'tall/medium grassland ', & ! 3 |
---|
| 614 | 'evergreen shrubland ', & ! 4 |
---|
| 615 | 'short grassland/meadow/shrubland ', & ! 5 |
---|
| 616 | 'evergreen needleleaf forest ', & ! 6 |
---|
| 617 | 'mixed deciduous evergreen forest ', & ! 7 |
---|
| 618 | 'deciduous forest ', & ! 8 |
---|
| 619 | 'tropical evergreen broadleaved forest', & ! 9 |
---|
| 620 | 'medium/tall grassland/woodland ', & ! 10 |
---|
| 621 | 'desert, sandy ', & ! 11 |
---|
| 622 | 'desert, rocky ', & ! 12 |
---|
| 623 | 'tundra ', & ! 13 |
---|
| 624 | 'land ice ', & ! 14 |
---|
| 625 | 'sea ice ', & ! 15 |
---|
[1788] | 626 | 'snow ', & ! 16 |
---|
[2504] | 627 | 'bare soil ', & ! 17 |
---|
| 628 | 'asphalt/concrete mix ', & ! 18 |
---|
| 629 | 'asphalt (asphalt concrete) ', & ! 19 |
---|
| 630 | 'concrete (Portland concrete) ', & ! 20 |
---|
| 631 | 'sett ', & ! 21 |
---|
| 632 | 'paving stones ', & ! 22 |
---|
| 633 | 'cobblestone ', & ! 23 |
---|
| 634 | 'metal ', & ! 24 |
---|
| 635 | 'wood ', & ! 25 |
---|
| 636 | 'gravel ', & ! 26 |
---|
| 637 | 'fine gravel ', & ! 27 |
---|
| 638 | 'pebblestone ', & ! 28 |
---|
| 639 | 'woodchips ', & ! 29 |
---|
| 640 | 'tartan (sports) ', & ! 30 |
---|
| 641 | 'artifical turf (sports) ', & ! 31 |
---|
| 642 | 'clay (sports) ', & ! 32 |
---|
| 643 | 'building (dummy) ' & ! 33 |
---|
[1585] | 644 | /) |
---|
[1496] | 645 | |
---|
[3274] | 646 | REAL(wp), PARAMETER :: sigma_sb = 5.67037321E-8_wp !< Stefan-Boltzmann constant |
---|
| 647 | |
---|
[2328] | 648 | INTEGER(iwp) :: albedo_type = 9999999, & !< Albedo surface type |
---|
| 649 | dots_rad = 0 !< starting index for timeseries output |
---|
[1496] | 650 | |
---|
[1757] | 651 | LOGICAL :: unscheduled_radiation_calls = .TRUE., & !< flag parameter indicating whether additional calls of the radiation code are allowed |
---|
| 652 | constant_albedo = .FALSE., & !< flag parameter indicating whether the albedo may change depending on zenith |
---|
| 653 | force_radiation_call = .FALSE., & !< flag parameter for unscheduled radiation calls |
---|
| 654 | lw_radiation = .TRUE., & !< flag parameter indicating whether longwave radiation shall be calculated |
---|
| 655 | radiation = .FALSE., & !< flag parameter indicating whether the radiation model is used |
---|
| 656 | sun_up = .TRUE., & !< flag parameter indicating whether the sun is up or down |
---|
[2696] | 657 | sw_radiation = .TRUE., & !< flag parameter indicating whether shortwave radiation shall be calculated |
---|
| 658 | sun_direction = .FALSE., & !< flag parameter indicating whether solar direction shall be calculated |
---|
[2724] | 659 | average_radiation = .FALSE., & !< flag to set the calculation of radiation averaging for the domain |
---|
[2977] | 660 | radiation_interactions = .FALSE., & !< flag to activiate RTM (TRUE only if vertical urban/land surface and trees exist) |
---|
| 661 | surface_reflections = .TRUE., & !< flag to switch the calculation of radiation interaction between surfaces. |
---|
[3378] | 662 | !< When it switched off, only the effect of buildings and trees shadow |
---|
[2696] | 663 | !< will be considered. However fewer SVFs are expected. |
---|
[2977] | 664 | radiation_interactions_on = .TRUE. !< namelist flag to force RTM activiation regardless to vertical urban/land surface and trees |
---|
[1585] | 665 | |
---|
[1691] | 666 | REAL(wp) :: albedo = 9999999.9_wp, & !< NAMELIST alpha |
---|
| 667 | albedo_lw_dif = 9999999.9_wp, & !< NAMELIST aldif |
---|
| 668 | albedo_lw_dir = 9999999.9_wp, & !< NAMELIST aldir |
---|
| 669 | albedo_sw_dif = 9999999.9_wp, & !< NAMELIST asdif |
---|
| 670 | albedo_sw_dir = 9999999.9_wp, & !< NAMELIST asdir |
---|
| 671 | decl_1, & !< declination coef. 1 |
---|
| 672 | decl_2, & !< declination coef. 2 |
---|
| 673 | decl_3, & !< declination coef. 3 |
---|
| 674 | dt_radiation = 0.0_wp, & !< radiation model timestep |
---|
[2328] | 675 | emissivity = 9999999.9_wp, & !< NAMELIST surface emissivity |
---|
[1691] | 676 | lon = 0.0_wp, & !< longitude in radians |
---|
| 677 | lat = 0.0_wp, & !< latitude in radians |
---|
| 678 | net_radiation = 0.0_wp, & !< net radiation at surface |
---|
| 679 | skip_time_do_radiation = 0.0_wp, & !< Radiation model is not called before this time |
---|
| 680 | sky_trans, & !< sky transmissivity |
---|
[2544] | 681 | time_radiation = 0.0_wp !< time since last call of radiation code |
---|
[1691] | 682 | |
---|
[2544] | 683 | |
---|
[2007] | 684 | REAL(wp), DIMENSION(0:0) :: zenith, & !< cosine of solar zenith angle |
---|
| 685 | sun_dir_lat, & !< solar directional vector in latitudes |
---|
| 686 | sun_dir_lon !< solar directional vector in longitudes |
---|
[1585] | 687 | |
---|
[3116] | 688 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_net_av !< average of net radiation (rad_net) at surface |
---|
| 689 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_xy_av !< average of incoming longwave radiation at surface |
---|
| 690 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_out_xy_av !< average of outgoing longwave radiation at surface |
---|
| 691 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_xy_av !< average of incoming shortwave radiation at surface |
---|
| 692 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_out_xy_av !< average of outgoing shortwave radiation at surface |
---|
[1585] | 693 | ! |
---|
| 694 | !-- Land surface albedos for solar zenith angle of 60° after Briegleb (1992) |
---|
| 695 | !-- (shortwave, longwave, broadband): sw, lw, bb, |
---|
[2504] | 696 | REAL(wp), DIMENSION(0:2,1:33), PARAMETER :: albedo_pars = RESHAPE( (/& |
---|
[1585] | 697 | 0.06_wp, 0.06_wp, 0.06_wp, & ! 1 |
---|
| 698 | 0.09_wp, 0.28_wp, 0.19_wp, & ! 2 |
---|
| 699 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 3 |
---|
| 700 | 0.11_wp, 0.33_wp, 0.23_wp, & ! 4 |
---|
| 701 | 0.14_wp, 0.34_wp, 0.25_wp, & ! 5 |
---|
| 702 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 6 |
---|
| 703 | 0.06_wp, 0.27_wp, 0.17_wp, & ! 7 |
---|
| 704 | 0.06_wp, 0.31_wp, 0.19_wp, & ! 8 |
---|
| 705 | 0.06_wp, 0.22_wp, 0.14_wp, & ! 9 |
---|
| 706 | 0.06_wp, 0.28_wp, 0.18_wp, & ! 10 |
---|
| 707 | 0.35_wp, 0.51_wp, 0.43_wp, & ! 11 |
---|
| 708 | 0.24_wp, 0.40_wp, 0.32_wp, & ! 12 |
---|
| 709 | 0.10_wp, 0.27_wp, 0.19_wp, & ! 13 |
---|
| 710 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 14 |
---|
[1587] | 711 | 0.90_wp, 0.65_wp, 0.77_wp, & ! 15 |
---|
[1788] | 712 | 0.95_wp, 0.70_wp, 0.82_wp, & ! 16 |
---|
[2328] | 713 | 0.08_wp, 0.08_wp, 0.08_wp, & ! 17 |
---|
[2504] | 714 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 18 |
---|
| 715 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 19 |
---|
[3127] | 716 | 0.30_wp, 0.30_wp, 0.30_wp, & ! 20 |
---|
[2504] | 717 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 21 |
---|
| 718 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 22 |
---|
| 719 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 23 |
---|
| 720 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 24 |
---|
| 721 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 25 |
---|
| 722 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 26 |
---|
| 723 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 27 |
---|
| 724 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 28 |
---|
| 725 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 29 |
---|
| 726 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 30 |
---|
| 727 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 31 |
---|
| 728 | 0.17_wp, 0.17_wp, 0.17_wp, & ! 32 |
---|
| 729 | 0.17_wp, 0.17_wp, 0.17_wp & ! 33 |
---|
| 730 | /), (/ 3, 33 /) ) |
---|
[1496] | 731 | |
---|
[1585] | 732 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
[1691] | 733 | rad_lw_cs_hr, & !< longwave clear sky radiation heating rate (K/s) |
---|
| 734 | rad_lw_cs_hr_av, & !< average of rad_lw_cs_hr |
---|
| 735 | rad_lw_hr, & !< longwave radiation heating rate (K/s) |
---|
| 736 | rad_lw_hr_av, & !< average of rad_sw_hr |
---|
| 737 | rad_lw_in, & !< incoming longwave radiation (W/m2) |
---|
| 738 | rad_lw_in_av, & !< average of rad_lw_in |
---|
| 739 | rad_lw_out, & !< outgoing longwave radiation (W/m2) |
---|
| 740 | rad_lw_out_av, & !< average of rad_lw_out |
---|
| 741 | rad_sw_cs_hr, & !< shortwave clear sky radiation heating rate (K/s) |
---|
| 742 | rad_sw_cs_hr_av, & !< average of rad_sw_cs_hr |
---|
| 743 | rad_sw_hr, & !< shortwave radiation heating rate (K/s) |
---|
| 744 | rad_sw_hr_av, & !< average of rad_sw_hr |
---|
[1682] | 745 | rad_sw_in, & !< incoming shortwave radiation (W/m2) |
---|
| 746 | rad_sw_in_av, & !< average of rad_sw_in |
---|
| 747 | rad_sw_out, & !< outgoing shortwave radiation (W/m2) |
---|
[1691] | 748 | rad_sw_out_av !< average of rad_sw_out |
---|
[1585] | 749 | |
---|
[1691] | 750 | |
---|
[1585] | 751 | ! |
---|
| 752 | !-- Variables and parameters used in RRTMG only |
---|
| 753 | #if defined ( __rrtmg ) |
---|
[1682] | 754 | CHARACTER(LEN=12) :: rrtm_input_file = "RAD_SND_DATA" !< name of the NetCDF input file (sounding data) |
---|
[1585] | 755 | |
---|
| 756 | |
---|
| 757 | ! |
---|
| 758 | !-- Flag parameters for RRTMGS (should not be changed) |
---|
[1976] | 759 | INTEGER(iwp), PARAMETER :: rrtm_idrv = 1, & !< flag for longwave upward flux calculation option (0,1) |
---|
| 760 | rrtm_inflglw = 2, & !< flag for lw cloud optical properties (0,1,2) |
---|
[1682] | 761 | rrtm_iceflglw = 0, & !< flag for lw ice particle specifications (0,1,2,3) |
---|
| 762 | rrtm_liqflglw = 1, & !< flag for lw liquid droplet specifications |
---|
| 763 | rrtm_inflgsw = 2, & !< flag for sw cloud optical properties (0,1,2) |
---|
| 764 | rrtm_iceflgsw = 0, & !< flag for sw ice particle specifications (0,1,2,3) |
---|
| 765 | rrtm_liqflgsw = 1 !< flag for sw liquid droplet specifications |
---|
[1585] | 766 | |
---|
| 767 | ! |
---|
| 768 | !-- The following variables should be only changed with care, as this will |
---|
| 769 | !-- require further setting of some variables, which is currently not |
---|
| 770 | !-- implemented (aerosols, ice phase). |
---|
[1682] | 771 | INTEGER(iwp) :: nzt_rad, & !< upper vertical limit for radiation calculations |
---|
| 772 | rrtm_icld = 0, & !< cloud flag (0: clear sky column, 1: cloudy column) |
---|
[1976] | 773 | rrtm_iaer = 0 !< aerosol option flag (0: no aerosol layers, for lw only: 6 (requires setting of rrtm_sw_ecaer), 10: one or more aerosol layers (not implemented) |
---|
[1585] | 774 | |
---|
[1788] | 775 | INTEGER(iwp) :: nc_stat !< local variable for storin the result of netCDF calls for error message handling |
---|
| 776 | |
---|
[1682] | 777 | LOGICAL :: snd_exists = .FALSE. !< flag parameter to check whether a user-defined input files exists |
---|
[1585] | 778 | |
---|
[1691] | 779 | REAL(wp), PARAMETER :: mol_mass_air_d_wv = 1.607793_wp !< molecular weight dry air / water vapor |
---|
[1585] | 780 | |
---|
[1682] | 781 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd, & !< hypostatic pressure from sounding data (hPa) |
---|
| 782 | rrtm_tsfc, & !< dummy array for storing surface temperature |
---|
| 783 | t_snd !< actual temperature from sounding data (hPa) |
---|
[1585] | 784 | |
---|
[2696] | 785 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rrtm_ccl4vmr, & !< CCL4 volume mixing ratio (g/mol) |
---|
[1691] | 786 | rrtm_cfc11vmr, & !< CFC11 volume mixing ratio (g/mol) |
---|
| 787 | rrtm_cfc12vmr, & !< CFC12 volume mixing ratio (g/mol) |
---|
| 788 | rrtm_cfc22vmr, & !< CFC22 volume mixing ratio (g/mol) |
---|
| 789 | rrtm_ch4vmr, & !< CH4 volume mixing ratio |
---|
| 790 | rrtm_cicewp, & !< in-cloud ice water path (g/m²) |
---|
| 791 | rrtm_cldfr, & !< cloud fraction (0,1) |
---|
| 792 | rrtm_cliqwp, & !< in-cloud liquid water path (g/m²) |
---|
| 793 | rrtm_co2vmr, & !< CO2 volume mixing ratio (g/mol) |
---|
[2696] | 794 | rrtm_emis, & !< surface emissivity (0-1) |
---|
[1691] | 795 | rrtm_h2ovmr, & !< H2O volume mixing ratio |
---|
| 796 | rrtm_n2ovmr, & !< N2O volume mixing ratio |
---|
| 797 | rrtm_o2vmr, & !< O2 volume mixing ratio |
---|
| 798 | rrtm_o3vmr, & !< O3 volume mixing ratio |
---|
| 799 | rrtm_play, & !< pressure layers (hPa, zu-grid) |
---|
| 800 | rrtm_plev, & !< pressure layers (hPa, zw-grid) |
---|
| 801 | rrtm_reice, & !< cloud ice effective radius (microns) |
---|
| 802 | rrtm_reliq, & !< cloud water drop effective radius (microns) |
---|
| 803 | rrtm_tlay, & !< actual temperature (K, zu-grid) |
---|
| 804 | rrtm_tlev, & !< actual temperature (K, zw-grid) |
---|
| 805 | rrtm_lwdflx, & !< RRTM output of incoming longwave radiation flux (W/m2) |
---|
| 806 | rrtm_lwdflxc, & !< RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
| 807 | rrtm_lwuflx, & !< RRTM output of outgoing longwave radiation flux (W/m2) |
---|
| 808 | rrtm_lwuflxc, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
| 809 | rrtm_lwuflx_dt, & !< RRTM output of incoming clear sky longwave radiation flux (W/m2) |
---|
| 810 | rrtm_lwuflxc_dt,& !< RRTM output of outgoing clear sky longwave radiation flux (W/m2) |
---|
| 811 | rrtm_lwhr, & !< RRTM output of longwave radiation heating rate (K/d) |
---|
| 812 | rrtm_lwhrc, & !< RRTM output of incoming longwave clear sky radiation heating rate (K/d) |
---|
| 813 | rrtm_swdflx, & !< RRTM output of incoming shortwave radiation flux (W/m2) |
---|
| 814 | rrtm_swdflxc, & !< RRTM output of outgoing clear sky shortwave radiation flux (W/m2) |
---|
| 815 | rrtm_swuflx, & !< RRTM output of outgoing shortwave radiation flux (W/m2) |
---|
| 816 | rrtm_swuflxc, & !< RRTM output of incoming clear sky shortwave radiation flux (W/m2) |
---|
| 817 | rrtm_swhr, & !< RRTM output of shortwave radiation heating rate (K/d) |
---|
[3272] | 818 | rrtm_swhrc, & !< RRTM output of incoming shortwave clear sky radiation heating rate (K/d) |
---|
[3378] | 819 | rrtm_dirdflux, & !< RRTM output of incoming direct shortwave (W/m2) |
---|
| 820 | rrtm_difdflux !< RRTM output of incoming diffuse shortwave (W/m2) |
---|
[1585] | 821 | |
---|
[2696] | 822 | REAL(wp), DIMENSION(1) :: rrtm_aldif, & !< surface albedo for longwave diffuse radiation |
---|
| 823 | rrtm_aldir, & !< surface albedo for longwave direct radiation |
---|
| 824 | rrtm_asdif, & !< surface albedo for shortwave diffuse radiation |
---|
| 825 | rrtm_asdir !< surface albedo for shortwave direct radiation |
---|
| 826 | |
---|
[1585] | 827 | ! |
---|
| 828 | !-- Definition of arrays that are currently not used for calling RRTMG (due to setting of flag parameters) |
---|
[1682] | 829 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rad_lw_cs_in, & !< incoming clear sky longwave radiation (W/m2) (not used) |
---|
| 830 | rad_lw_cs_out, & !< outgoing clear sky longwave radiation (W/m2) (not used) |
---|
| 831 | rad_sw_cs_in, & !< incoming clear sky shortwave radiation (W/m2) (not used) |
---|
| 832 | rad_sw_cs_out, & !< outgoing clear sky shortwave radiation (W/m2) (not used) |
---|
| 833 | rrtm_lw_tauaer, & !< lw aerosol optical depth |
---|
| 834 | rrtm_lw_taucld, & !< lw in-cloud optical depth |
---|
| 835 | rrtm_sw_taucld, & !< sw in-cloud optical depth |
---|
| 836 | rrtm_sw_ssacld, & !< sw in-cloud single scattering albedo |
---|
| 837 | rrtm_sw_asmcld, & !< sw in-cloud asymmetry parameter |
---|
| 838 | rrtm_sw_fsfcld, & !< sw in-cloud forward scattering fraction |
---|
| 839 | rrtm_sw_tauaer, & !< sw aerosol optical depth |
---|
| 840 | rrtm_sw_ssaaer, & !< sw aerosol single scattering albedo |
---|
| 841 | rrtm_sw_asmaer, & !< sw aerosol asymmetry parameter |
---|
| 842 | rrtm_sw_ecaer !< sw aerosol optical detph at 0.55 microns (rrtm_iaer = 6 only) |
---|
[1691] | 843 | |
---|
[1585] | 844 | #endif |
---|
[2696] | 845 | ! |
---|
| 846 | !-- Parameters of urban and land surface models |
---|
| 847 | INTEGER(iwp) :: nzu !< number of layers of urban surface (will be calculated) |
---|
[3014] | 848 | INTEGER(iwp) :: nzp !< number of layers of plant canopy (will be calculated) |
---|
[2696] | 849 | INTEGER(iwp) :: nzub,nzut !< bottom and top layer of urban surface (will be calculated) |
---|
[3014] | 850 | INTEGER(iwp) :: nzpt !< top layer of plant canopy (will be calculated) |
---|
[2696] | 851 | !-- parameters of urban and land surface models |
---|
| 852 | INTEGER(iwp), PARAMETER :: nzut_free = 3 !< number of free layers above top of of topography |
---|
| 853 | INTEGER(iwp), PARAMETER :: ndsvf = 2 !< number of dimensions of real values in SVF |
---|
| 854 | INTEGER(iwp), PARAMETER :: idsvf = 2 !< number of dimensions of integer values in SVF |
---|
[3337] | 855 | INTEGER(iwp), PARAMETER :: ndcsf = 1 !< number of dimensions of real values in CSF |
---|
[2696] | 856 | INTEGER(iwp), PARAMETER :: idcsf = 2 !< number of dimensions of integer values in CSF |
---|
| 857 | INTEGER(iwp), PARAMETER :: kdcsf = 4 !< number of dimensions of integer values in CSF calculation array |
---|
| 858 | INTEGER(iwp), PARAMETER :: id = 1 !< position of d-index in surfl and surf |
---|
| 859 | INTEGER(iwp), PARAMETER :: iz = 2 !< position of k-index in surfl and surf |
---|
| 860 | INTEGER(iwp), PARAMETER :: iy = 3 !< position of j-index in surfl and surf |
---|
| 861 | INTEGER(iwp), PARAMETER :: ix = 4 !< position of i-index in surfl and surf |
---|
[1585] | 862 | |
---|
[3337] | 863 | INTEGER(iwp), PARAMETER :: nsurf_type = 10 !< number of surf types incl. phys.(land+urban) & (atm.,sky,boundary) surfaces - 1 |
---|
[2696] | 864 | |
---|
[2920] | 865 | INTEGER(iwp), PARAMETER :: iup_u = 0 !< 0 - index of urban upward surface (ground or roof) |
---|
[2696] | 866 | INTEGER(iwp), PARAMETER :: idown_u = 1 !< 1 - index of urban downward surface (overhanging) |
---|
| 867 | INTEGER(iwp), PARAMETER :: inorth_u = 2 !< 2 - index of urban northward facing wall |
---|
| 868 | INTEGER(iwp), PARAMETER :: isouth_u = 3 !< 3 - index of urban southward facing wall |
---|
| 869 | INTEGER(iwp), PARAMETER :: ieast_u = 4 !< 4 - index of urban eastward facing wall |
---|
| 870 | INTEGER(iwp), PARAMETER :: iwest_u = 5 !< 5 - index of urban westward facing wall |
---|
| 871 | |
---|
[2920] | 872 | INTEGER(iwp), PARAMETER :: iup_l = 6 !< 6 - index of land upward surface (ground or roof) |
---|
[2696] | 873 | INTEGER(iwp), PARAMETER :: inorth_l = 7 !< 7 - index of land northward facing wall |
---|
| 874 | INTEGER(iwp), PARAMETER :: isouth_l = 8 !< 8 - index of land southward facing wall |
---|
| 875 | INTEGER(iwp), PARAMETER :: ieast_l = 9 !< 9 - index of land eastward facing wall |
---|
| 876 | INTEGER(iwp), PARAMETER :: iwest_l = 10 !< 10- index of land westward facing wall |
---|
| 877 | |
---|
[3337] | 878 | INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: idir = (/0, 0,0, 0,1,-1,0,0, 0,1,-1/) !< surface normal direction x indices |
---|
| 879 | INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: jdir = (/0, 0,1,-1,0, 0,0,1,-1,0, 0/) !< surface normal direction y indices |
---|
| 880 | INTEGER(iwp), DIMENSION(0:nsurf_type), PARAMETER :: kdir = (/1,-1,0, 0,0, 0,1,0, 0,0, 0/) !< surface normal direction z indices |
---|
[3449] | 881 | REAL(wp), DIMENSION(0:nsurf_type) :: facearea !< area of single face in respective |
---|
| 882 | !< direction (will be calc'd) |
---|
[2696] | 883 | |
---|
| 884 | |
---|
| 885 | !-- indices and sizes of urban and land surface models |
---|
[2920] | 886 | INTEGER(iwp) :: startland !< start index of block of land and roof surfaces |
---|
| 887 | INTEGER(iwp) :: endland !< end index of block of land and roof surfaces |
---|
| 888 | INTEGER(iwp) :: nlands !< number of land and roof surfaces in local processor |
---|
| 889 | INTEGER(iwp) :: startwall !< start index of block of wall surfaces |
---|
| 890 | INTEGER(iwp) :: endwall !< end index of block of wall surfaces |
---|
| 891 | INTEGER(iwp) :: nwalls !< number of wall surfaces in local processor |
---|
[2696] | 892 | |
---|
| 893 | !-- indices and sizes of urban and land surface models |
---|
[3337] | 894 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: surfl_l !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x] |
---|
| 895 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: surf_l !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x] |
---|
| 896 | INTEGER(iwp), DIMENSION(:,:), POINTER :: surfl !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x] |
---|
| 897 | INTEGER(iwp), DIMENSION(:,:), POINTER :: surf !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x] |
---|
[2696] | 898 | INTEGER(iwp) :: nsurfl !< number of all surfaces in local processor |
---|
[3337] | 899 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: nsurfs !< array of number of all surfaces in individual processors |
---|
[2696] | 900 | INTEGER(iwp) :: nsurf !< global number of surfaces in index array of surfaces (nsurf = proc nsurfs) |
---|
[3337] | 901 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET :: surfstart !< starts of blocks of surfaces for individual processors in array surf (indexed from 1) |
---|
| 902 | !< respective block for particular processor is surfstart[iproc+1]+1 : surfstart[iproc+1]+nsurfs[iproc+1] |
---|
[2696] | 903 | |
---|
| 904 | !-- block variables needed for calculation of the plant canopy model inside the urban surface model |
---|
| 905 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pct !< top layer of the plant canopy |
---|
| 906 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch !< heights of the plant canopy |
---|
[2977] | 907 | INTEGER(iwp) :: npcbl = 0 !< number of the plant canopy gridboxes in local processor |
---|
[3123] | 908 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pcbl !< k,j,i coordinates of l-th local plant canopy box pcbl[:,l] = [k, j, i] |
---|
[2696] | 909 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw !< array of absorbed sw radiation for local plant canopy box |
---|
[2920] | 910 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdir !< array of absorbed direct sw radiation for local plant canopy box |
---|
| 911 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinswdif !< array of absorbed diffusion sw radiation for local plant canopy box |
---|
[2696] | 912 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw !< array of absorbed lw radiation for local plant canopy box |
---|
| 913 | |
---|
| 914 | !-- configuration parameters (they can be setup in PALM config) |
---|
[3337] | 915 | LOGICAL :: raytrace_mpi_rma = .TRUE. !< use MPI RMA to access LAD and gridsurf from remote processes during raytracing |
---|
[3449] | 916 | LOGICAL :: rad_angular_discretization = .TRUE.!< whether to use fixed resolution discretization of view factors for |
---|
[3337] | 917 | !< reflected radiation (as opposed to all mutually visible pairs) |
---|
[3449] | 918 | LOGICAL :: plant_lw_interact = .TRUE. !< whether plant canopy interacts with LW radiation (in addition to SW) |
---|
[3337] | 919 | INTEGER(iwp) :: mrt_nlevels = 0 !< number of vertical boxes above surface for which to calculate MRT |
---|
| 920 | LOGICAL :: mrt_skip_roof = .TRUE. !< do not calculate MRT above roof surfaces |
---|
| 921 | LOGICAL :: mrt_include_sw = .TRUE. !< should MRT calculation include SW radiation as well? |
---|
[3464] | 922 | LOGICAL :: mrt_geom_human = .TRUE. !< MRT direction weights simulate human body instead of a sphere |
---|
[3449] | 923 | INTEGER(iwp) :: nrefsteps = 3 !< number of reflection steps to perform |
---|
[2696] | 924 | REAL(wp), PARAMETER :: ext_coef = 0.6_wp !< extinction coefficient (a.k.a. alpha) |
---|
[2920] | 925 | INTEGER(iwp), PARAMETER :: rad_version_len = 10 !< length of identification string of rad version |
---|
[3449] | 926 | CHARACTER(rad_version_len), PARAMETER :: rad_version = 'RAD v. 3.0' !< identification of version of binary svf and restart files |
---|
[2920] | 927 | INTEGER(iwp) :: raytrace_discrete_elevs = 40 !< number of discretization steps for elevation (nadir to zenith) |
---|
| 928 | INTEGER(iwp) :: raytrace_discrete_azims = 80 !< number of discretization steps for azimuth (out of 360 degrees) |
---|
| 929 | REAL(wp) :: max_raytracing_dist = -999.0_wp !< maximum distance for raytracing (in metres) |
---|
| 930 | REAL(wp) :: min_irrf_value = 1e-6_wp !< minimum potential irradiance factor value for raytracing |
---|
| 931 | REAL(wp), DIMENSION(1:30) :: svfnorm_report_thresh = 1e21_wp !< thresholds of SVF normalization values to report |
---|
| 932 | INTEGER(iwp) :: svfnorm_report_num !< number of SVF normalization thresholds to report |
---|
[2696] | 933 | |
---|
| 934 | !-- radiation related arrays to be used in radiation_interaction routine |
---|
| 935 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_dir !< direct sw radiation |
---|
| 936 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_diff !< diffusion sw radiation |
---|
| 937 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_diff !< diffusion lw radiation |
---|
| 938 | |
---|
| 939 | !-- parameters required for RRTMG lower boundary condition |
---|
| 940 | REAL(wp) :: albedo_urb !< albedo value retuned to RRTMG boundary cond. |
---|
| 941 | REAL(wp) :: emissivity_urb !< emissivity value retuned to RRTMG boundary cond. |
---|
| 942 | REAL(wp) :: t_rad_urb !< temperature value retuned to RRTMG boundary cond. |
---|
| 943 | |
---|
| 944 | !-- type for calculation of svf |
---|
| 945 | TYPE t_svf |
---|
| 946 | INTEGER(iwp) :: isurflt !< |
---|
| 947 | INTEGER(iwp) :: isurfs !< |
---|
| 948 | REAL(wp) :: rsvf !< |
---|
| 949 | REAL(wp) :: rtransp !< |
---|
| 950 | END TYPE |
---|
| 951 | |
---|
| 952 | !-- type for calculation of csf |
---|
| 953 | TYPE t_csf |
---|
| 954 | INTEGER(iwp) :: ip !< |
---|
| 955 | INTEGER(iwp) :: itx !< |
---|
| 956 | INTEGER(iwp) :: ity !< |
---|
| 957 | INTEGER(iwp) :: itz !< |
---|
[3449] | 958 | INTEGER(iwp) :: isurfs !< Idx of source face / -1 for sky |
---|
| 959 | REAL(wp) :: rcvf !< Canopy view factor for faces / |
---|
| 960 | !< canopy sink factor for sky (-1) |
---|
[2696] | 961 | END TYPE |
---|
| 962 | |
---|
| 963 | !-- arrays storing the values of USM |
---|
[3337] | 964 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: svfsurf !< svfsurf[:,isvf] = index of target and source surface for svf[isvf] |
---|
[2696] | 965 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: svf !< array of shape view factors+direct irradiation factors for local surfaces |
---|
| 966 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins !< array of sw radiation falling to local surface after i-th reflection |
---|
| 967 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl !< array of lw radiation for local surface after i-th reflection |
---|
[2920] | 968 | |
---|
| 969 | REAL(wp), DIMENSION(:), ALLOCATABLE :: skyvf !< array of sky view factor for each local surface |
---|
| 970 | REAL(wp), DIMENSION(:), ALLOCATABLE :: skyvft !< array of sky view factor including transparency for each local surface |
---|
| 971 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsitrans !< dsidir[isvfl,i] = path transmittance of i-th |
---|
| 972 | !< direction of direct solar irradiance per target surface |
---|
| 973 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsitransc !< dtto per plant canopy box |
---|
| 974 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsidir !< dsidir[:,i] = unit vector of i-th |
---|
| 975 | !< direction of direct solar irradiance |
---|
| 976 | INTEGER(iwp) :: ndsidir !< number of apparent solar directions used |
---|
| 977 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: dsidir_rev !< dsidir_rev[ielev,iazim] = i for dsidir or -1 if not present |
---|
| 978 | |
---|
[3337] | 979 | INTEGER(iwp) :: nmrtbl !< No. of local grid boxes for which MRT is calculated |
---|
| 980 | INTEGER(iwp) :: nmrtf !< number of MRT factors for local processor |
---|
| 981 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: mrtbl !< coordinates of i-th local MRT box - surfl[:,i] = [z, y, x] |
---|
| 982 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: mrtfsurf !< mrtfsurf[:,imrtf] = index of target MRT box and source surface for mrtf[imrtf] |
---|
| 983 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtf !< array of MRT factors for each local MRT box |
---|
| 984 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtft !< array of MRT factors including transparency for each local MRT box |
---|
| 985 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtsky !< array of sky view factor for each local MRT box |
---|
| 986 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtskyt !< array of sky view factor including transparency for each local MRT box |
---|
| 987 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: mrtdsit !< array of direct solar transparencies for each local MRT box |
---|
| 988 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinsw !< mean SW radiant flux for each MRT box |
---|
| 989 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinlw !< mean LW radiant flux for each MRT box |
---|
| 990 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrt !< mean radiant temperature for each MRT box |
---|
| 991 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinsw_av !< time average mean SW radiant flux for each MRT box |
---|
| 992 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrtinlw_av !< time average mean LW radiant flux for each MRT box |
---|
| 993 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mrt_av !< time average mean radiant temperature for each MRT box |
---|
| 994 | |
---|
[2696] | 995 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw !< array of sw radiation falling to local surface including radiation from reflections |
---|
| 996 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw !< array of lw radiation falling to local surface including radiation from reflections |
---|
| 997 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir !< array of direct sw radiation falling to local surface |
---|
| 998 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif !< array of diffuse sw radiation from sky and model boundary falling to local surface |
---|
| 999 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif !< array of diffuse lw radiation from sky and model boundary falling to local surface |
---|
| 1000 | |
---|
| 1001 | !< Outward radiation is only valid for nonvirtual surfaces |
---|
| 1002 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsl !< array of reflected sw radiation for local surface in i-th reflection |
---|
| 1003 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutll !< array of reflected + emitted lw radiation for local surface in i-th reflection |
---|
| 1004 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfouts !< array of reflected sw radiation for all surfaces in i-th reflection |
---|
| 1005 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutl !< array of reflected + emitted lw radiation for all surfaces in i-th reflection |
---|
[3449] | 1006 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlg !< global array of incoming lw radiation from plant canopy |
---|
[2696] | 1007 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw !< array of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
| 1008 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw !< array of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
[3117] | 1009 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfemitlwl !< array of emitted lw radiation for local surface used to calculate effective surface temperature for radiation model |
---|
[2696] | 1010 | |
---|
| 1011 | !-- block variables needed for calculation of the plant canopy model inside the urban surface model |
---|
| 1012 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: csfsurf !< csfsurf[:,icsf] = index of target surface and csf grid index for csf[icsf] |
---|
| 1013 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csf !< array of plant canopy sink fators + direct irradiation factors (transparency) |
---|
[2920] | 1014 | REAL(wp), DIMENSION(:,:,:), POINTER :: sub_lad !< subset of lad_s within urban surface, transformed to plain Z coordinate |
---|
| 1015 | REAL(wp), DIMENSION(:), POINTER :: sub_lad_g !< sub_lad globalized (used to avoid MPI RMA calls in raytracing) |
---|
| 1016 | REAL(wp) :: prototype_lad !< prototype leaf area density for computing effective optical depth |
---|
[2696] | 1017 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nzterr, plantt !< temporary global arrays for raytracing |
---|
[2920] | 1018 | INTEGER(iwp) :: plantt_max |
---|
[2696] | 1019 | |
---|
| 1020 | !-- arrays and variables for calculation of svf and csf |
---|
| 1021 | TYPE(t_svf), DIMENSION(:), POINTER :: asvf !< pointer to growing svc array |
---|
| 1022 | TYPE(t_csf), DIMENSION(:), POINTER :: acsf !< pointer to growing csf array |
---|
[3337] | 1023 | TYPE(t_svf), DIMENSION(:), POINTER :: amrtf !< pointer to growing mrtf array |
---|
[2696] | 1024 | TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: asvf1, asvf2 !< realizations of svf array |
---|
| 1025 | TYPE(t_csf), DIMENSION(:), ALLOCATABLE, TARGET :: acsf1, acsf2 !< realizations of csf array |
---|
[3337] | 1026 | TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: amrtf1, amrtf2 !< realizations of mftf array |
---|
[2696] | 1027 | INTEGER(iwp) :: nsvfla !< dimmension of array allocated for storage of svf in local processor |
---|
| 1028 | INTEGER(iwp) :: ncsfla !< dimmension of array allocated for storage of csf in local processor |
---|
[3337] | 1029 | INTEGER(iwp) :: nmrtfa !< dimmension of array allocated for storage of mrt |
---|
| 1030 | INTEGER(iwp) :: msvf, mcsf, mmrtf!< mod for swapping the growing array |
---|
| 1031 | INTEGER(iwp), PARAMETER :: gasize = 100000 !< initial size of growing arrays |
---|
| 1032 | REAL(wp), PARAMETER :: grow_factor = 1.4_wp !< growth factor of growing arrays |
---|
[2696] | 1033 | INTEGER(iwp) :: nsvfl !< number of svf for local processor |
---|
| 1034 | INTEGER(iwp) :: ncsfl !< no. of csf in local processor |
---|
| 1035 | !< needed only during calc_svf but must be here because it is |
---|
[2920] | 1036 | !< shared between subroutines calc_svf and raytrace |
---|
[3337] | 1037 | INTEGER(iwp), DIMENSION(:,:,:,:), POINTER :: gridsurf !< reverse index of local surfl[d,k,j,i] (for case rad_angular_discretization) |
---|
| 1038 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: gridpcbl !< reverse index of local pcbl[k,j,i] |
---|
| 1039 | INTEGER(iwp), PARAMETER :: nsurf_type_u = 6 !< number of urban surf types (used in gridsurf) |
---|
[2696] | 1040 | |
---|
| 1041 | !-- temporary arrays for calculation of csf in raytracing |
---|
| 1042 | INTEGER(iwp) :: maxboxesg !< max number of boxes ray can cross in the domain |
---|
| 1043 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: boxes !< coordinates of gridboxes being crossed by ray |
---|
| 1044 | REAL(wp), DIMENSION(:), ALLOCATABLE :: crlens !< array of crossing lengths of ray for particular grid boxes |
---|
| 1045 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: lad_ip !< array of numbers of process where lad is stored |
---|
| 1046 | #if defined( __parallel ) |
---|
| 1047 | INTEGER(kind=MPI_ADDRESS_KIND), & |
---|
| 1048 | DIMENSION(:), ALLOCATABLE :: lad_disp !< array of displaycements of lad in local array of proc lad_ip |
---|
[3337] | 1049 | INTEGER(iwp) :: win_lad !< MPI RMA window for leaf area density |
---|
| 1050 | INTEGER(iwp) :: win_gridsurf !< MPI RMA window for reverse grid surface index |
---|
[2696] | 1051 | #endif |
---|
[2920] | 1052 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad_s_ray !< array of received lad_s for appropriate gridboxes crossed by ray |
---|
[3337] | 1053 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: target_surfl |
---|
[2920] | 1054 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: rt2_track |
---|
| 1055 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rt2_track_lad |
---|
| 1056 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rt2_track_dist |
---|
| 1057 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rt2_dist |
---|
[2696] | 1058 | |
---|
| 1059 | |
---|
[2920] | 1060 | |
---|
[2696] | 1061 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1062 | !-- Energy balance variables |
---|
| 1063 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 1064 | !-- parameters of the land, roof and wall surfaces |
---|
| 1065 | REAL(wp), DIMENSION(:), ALLOCATABLE :: albedo_surf !< albedo of the surface |
---|
| 1066 | REAL(wp), DIMENSION(:), ALLOCATABLE :: emiss_surf !< emissivity of the wall surface |
---|
| 1067 | |
---|
| 1068 | |
---|
[1826] | 1069 | INTERFACE radiation_check_data_output |
---|
| 1070 | MODULE PROCEDURE radiation_check_data_output |
---|
| 1071 | END INTERFACE radiation_check_data_output |
---|
[1496] | 1072 | |
---|
[1826] | 1073 | INTERFACE radiation_check_data_output_pr |
---|
| 1074 | MODULE PROCEDURE radiation_check_data_output_pr |
---|
| 1075 | END INTERFACE radiation_check_data_output_pr |
---|
| 1076 | |
---|
| 1077 | INTERFACE radiation_check_parameters |
---|
| 1078 | MODULE PROCEDURE radiation_check_parameters |
---|
| 1079 | END INTERFACE radiation_check_parameters |
---|
| 1080 | |
---|
[1551] | 1081 | INTERFACE radiation_clearsky |
---|
| 1082 | MODULE PROCEDURE radiation_clearsky |
---|
| 1083 | END INTERFACE radiation_clearsky |
---|
[1853] | 1084 | |
---|
| 1085 | INTERFACE radiation_constant |
---|
| 1086 | MODULE PROCEDURE radiation_constant |
---|
| 1087 | END INTERFACE radiation_constant |
---|
| 1088 | |
---|
[1976] | 1089 | INTERFACE radiation_control |
---|
| 1090 | MODULE PROCEDURE radiation_control |
---|
| 1091 | END INTERFACE radiation_control |
---|
| 1092 | |
---|
| 1093 | INTERFACE radiation_3d_data_averaging |
---|
| 1094 | MODULE PROCEDURE radiation_3d_data_averaging |
---|
| 1095 | END INTERFACE radiation_3d_data_averaging |
---|
| 1096 | |
---|
| 1097 | INTERFACE radiation_data_output_2d |
---|
| 1098 | MODULE PROCEDURE radiation_data_output_2d |
---|
| 1099 | END INTERFACE radiation_data_output_2d |
---|
| 1100 | |
---|
| 1101 | INTERFACE radiation_data_output_3d |
---|
| 1102 | MODULE PROCEDURE radiation_data_output_3d |
---|
| 1103 | END INTERFACE radiation_data_output_3d |
---|
| 1104 | |
---|
| 1105 | INTERFACE radiation_data_output_mask |
---|
| 1106 | MODULE PROCEDURE radiation_data_output_mask |
---|
| 1107 | END INTERFACE radiation_data_output_mask |
---|
| 1108 | |
---|
| 1109 | INTERFACE radiation_define_netcdf_grid |
---|
| 1110 | MODULE PROCEDURE radiation_define_netcdf_grid |
---|
| 1111 | END INTERFACE radiation_define_netcdf_grid |
---|
| 1112 | |
---|
[1826] | 1113 | INTERFACE radiation_header |
---|
| 1114 | MODULE PROCEDURE radiation_header |
---|
| 1115 | END INTERFACE radiation_header |
---|
| 1116 | |
---|
| 1117 | INTERFACE radiation_init |
---|
| 1118 | MODULE PROCEDURE radiation_init |
---|
| 1119 | END INTERFACE radiation_init |
---|
[1496] | 1120 | |
---|
[1826] | 1121 | INTERFACE radiation_parin |
---|
| 1122 | MODULE PROCEDURE radiation_parin |
---|
| 1123 | END INTERFACE radiation_parin |
---|
| 1124 | |
---|
[1585] | 1125 | INTERFACE radiation_rrtmg |
---|
| 1126 | MODULE PROCEDURE radiation_rrtmg |
---|
| 1127 | END INTERFACE radiation_rrtmg |
---|
[1551] | 1128 | |
---|
[1585] | 1129 | INTERFACE radiation_tendency |
---|
| 1130 | MODULE PROCEDURE radiation_tendency |
---|
| 1131 | MODULE PROCEDURE radiation_tendency_ij |
---|
| 1132 | END INTERFACE radiation_tendency |
---|
[1551] | 1133 | |
---|
[2894] | 1134 | INTERFACE radiation_rrd_local |
---|
| 1135 | MODULE PROCEDURE radiation_rrd_local |
---|
| 1136 | END INTERFACE radiation_rrd_local |
---|
[1976] | 1137 | |
---|
[2894] | 1138 | INTERFACE radiation_wrd_local |
---|
| 1139 | MODULE PROCEDURE radiation_wrd_local |
---|
| 1140 | END INTERFACE radiation_wrd_local |
---|
[1976] | 1141 | |
---|
[2696] | 1142 | INTERFACE radiation_interaction |
---|
| 1143 | MODULE PROCEDURE radiation_interaction |
---|
| 1144 | END INTERFACE radiation_interaction |
---|
| 1145 | |
---|
| 1146 | INTERFACE radiation_interaction_init |
---|
| 1147 | MODULE PROCEDURE radiation_interaction_init |
---|
| 1148 | END INTERFACE radiation_interaction_init |
---|
[2920] | 1149 | |
---|
| 1150 | INTERFACE radiation_presimulate_solar_pos |
---|
| 1151 | MODULE PROCEDURE radiation_presimulate_solar_pos |
---|
| 1152 | END INTERFACE radiation_presimulate_solar_pos |
---|
[2696] | 1153 | |
---|
| 1154 | INTERFACE radiation_radflux_gridbox |
---|
| 1155 | MODULE PROCEDURE radiation_radflux_gridbox |
---|
| 1156 | END INTERFACE radiation_radflux_gridbox |
---|
| 1157 | |
---|
| 1158 | INTERFACE radiation_calc_svf |
---|
| 1159 | MODULE PROCEDURE radiation_calc_svf |
---|
| 1160 | END INTERFACE radiation_calc_svf |
---|
| 1161 | |
---|
| 1162 | INTERFACE radiation_write_svf |
---|
| 1163 | MODULE PROCEDURE radiation_write_svf |
---|
| 1164 | END INTERFACE radiation_write_svf |
---|
| 1165 | |
---|
| 1166 | INTERFACE radiation_read_svf |
---|
| 1167 | MODULE PROCEDURE radiation_read_svf |
---|
| 1168 | END INTERFACE radiation_read_svf |
---|
| 1169 | |
---|
| 1170 | |
---|
[1496] | 1171 | SAVE |
---|
| 1172 | |
---|
| 1173 | PRIVATE |
---|
| 1174 | |
---|
[1826] | 1175 | ! |
---|
[1976] | 1176 | !-- Public functions / NEEDS SORTING |
---|
[1826] | 1177 | PUBLIC radiation_check_data_output, radiation_check_data_output_pr, & |
---|
[1976] | 1178 | radiation_check_parameters, radiation_control, & |
---|
| 1179 | radiation_header, radiation_init, radiation_parin, & |
---|
| 1180 | radiation_3d_data_averaging, radiation_tendency, & |
---|
| 1181 | radiation_data_output_2d, radiation_data_output_3d, & |
---|
[2894] | 1182 | radiation_define_netcdf_grid, radiation_wrd_local, & |
---|
| 1183 | radiation_rrd_local, radiation_data_output_mask, & |
---|
[2696] | 1184 | radiation_radflux_gridbox, radiation_calc_svf, radiation_write_svf, & |
---|
| 1185 | radiation_interaction, radiation_interaction_init, & |
---|
[2920] | 1186 | radiation_read_svf, radiation_presimulate_solar_pos |
---|
[2696] | 1187 | |
---|
| 1188 | |
---|
[1826] | 1189 | |
---|
| 1190 | ! |
---|
[1976] | 1191 | !-- Public variables and constants / NEEDS SORTING |
---|
[2696] | 1192 | PUBLIC albedo, albedo_type, decl_1, decl_2, decl_3, dots_rad, dt_radiation,& |
---|
[3464] | 1193 | emissivity, force_radiation_call, lat, lon, mrt_geom_human, & |
---|
[3337] | 1194 | mrt_include_sw, mrt_nlevels, mrtbl, mrtinsw, mrtinlw, nmrtbl, & |
---|
| 1195 | rad_net_av, radiation, radiation_scheme, rad_lw_in, & |
---|
[2696] | 1196 | rad_lw_in_av, rad_lw_out, rad_lw_out_av, & |
---|
[1826] | 1197 | rad_lw_cs_hr, rad_lw_cs_hr_av, rad_lw_hr, rad_lw_hr_av, rad_sw_in, & |
---|
| 1198 | rad_sw_in_av, rad_sw_out, rad_sw_out_av, rad_sw_cs_hr, & |
---|
[2696] | 1199 | rad_sw_cs_hr_av, rad_sw_hr, rad_sw_hr_av, sigma_sb, solar_constant, & |
---|
| 1200 | skip_time_do_radiation, time_radiation, unscheduled_radiation_calls,& |
---|
| 1201 | zenith, calc_zenith, sun_direction, sun_dir_lat, sun_dir_lon, & |
---|
[3378] | 1202 | nrefsteps, nsvfl, svf, & |
---|
[2696] | 1203 | svfsurf, surfinsw, surfinlw, surfins, surfinl, surfinswdir, & |
---|
| 1204 | surfinswdif, surfoutsw, surfoutlw, surfinlwdif, rad_sw_in_dir, & |
---|
| 1205 | rad_sw_in_diff, rad_lw_in_diff, surfouts, surfoutl, surfoutsl, & |
---|
[3337] | 1206 | surfoutll, idir, jdir, kdir, id, iz, iy, ix, & |
---|
[2920] | 1207 | surf, surfl, nsurfl, pcbinswdir, pcbinswdif, pcbinsw, pcbinlw, & |
---|
[3337] | 1208 | iup_u, inorth_u, isouth_u, ieast_u, iwest_u, & |
---|
[2920] | 1209 | iup_l, inorth_l, isouth_l, ieast_l, iwest_l, & |
---|
[3378] | 1210 | nsurf_type, nzub, nzut, nzu, pch, nsurf, & |
---|
[2920] | 1211 | idsvf, ndsvf, idcsf, ndcsf, kdcsf, pct, & |
---|
| 1212 | radiation_interactions, startwall, startland, endland, endwall, & |
---|
[3337] | 1213 | skyvf, skyvft, radiation_interactions_on, average_radiation, npcbl, & |
---|
| 1214 | pcbl |
---|
[1496] | 1215 | |
---|
[1585] | 1216 | #if defined ( __rrtmg ) |
---|
[1976] | 1217 | PUBLIC rrtm_aldif, rrtm_aldir, rrtm_asdif, rrtm_asdir |
---|
[1585] | 1218 | #endif |
---|
[1496] | 1219 | |
---|
| 1220 | CONTAINS |
---|
| 1221 | |
---|
[1976] | 1222 | |
---|
[1496] | 1223 | !------------------------------------------------------------------------------! |
---|
| 1224 | ! Description: |
---|
| 1225 | ! ------------ |
---|
[1976] | 1226 | !> This subroutine controls the calls of the radiation schemes |
---|
| 1227 | !------------------------------------------------------------------------------! |
---|
| 1228 | SUBROUTINE radiation_control |
---|
| 1229 | |
---|
| 1230 | |
---|
| 1231 | IMPLICIT NONE |
---|
| 1232 | |
---|
| 1233 | |
---|
| 1234 | SELECT CASE ( TRIM( radiation_scheme ) ) |
---|
| 1235 | |
---|
| 1236 | CASE ( 'constant' ) |
---|
| 1237 | CALL radiation_constant |
---|
| 1238 | |
---|
[2696] | 1239 | CASE ( 'clear-sky' ) |
---|
[1976] | 1240 | CALL radiation_clearsky |
---|
| 1241 | |
---|
| 1242 | CASE ( 'rrtmg' ) |
---|
| 1243 | CALL radiation_rrtmg |
---|
| 1244 | |
---|
| 1245 | CASE DEFAULT |
---|
| 1246 | |
---|
| 1247 | END SELECT |
---|
| 1248 | |
---|
| 1249 | |
---|
| 1250 | END SUBROUTINE radiation_control |
---|
| 1251 | |
---|
| 1252 | !------------------------------------------------------------------------------! |
---|
| 1253 | ! Description: |
---|
| 1254 | ! ------------ |
---|
[1826] | 1255 | !> Check data output for radiation model |
---|
| 1256 | !------------------------------------------------------------------------------! |
---|
| 1257 | SUBROUTINE radiation_check_data_output( var, unit, i, ilen, k ) |
---|
| 1258 | |
---|
| 1259 | |
---|
| 1260 | USE control_parameters, & |
---|
| 1261 | ONLY: data_output, message_string |
---|
| 1262 | |
---|
| 1263 | IMPLICIT NONE |
---|
| 1264 | |
---|
| 1265 | CHARACTER (LEN=*) :: unit !< |
---|
| 1266 | CHARACTER (LEN=*) :: var !< |
---|
| 1267 | |
---|
| 1268 | INTEGER(iwp) :: i |
---|
| 1269 | INTEGER(iwp) :: ilen |
---|
| 1270 | INTEGER(iwp) :: k |
---|
| 1271 | |
---|
| 1272 | SELECT CASE ( TRIM( var ) ) |
---|
| 1273 | |
---|
[3424] | 1274 | CASE ( 'rad_lw_cs_hr', 'rad_lw_hr', 'rad_lw_in', 'rad_lw_out', & |
---|
| 1275 | 'rad_sw_cs_hr', 'rad_sw_hr', 'rad_sw_in', 'rad_sw_out' ) |
---|
[1826] | 1276 | IF ( .NOT. radiation .OR. radiation_scheme /= 'rrtmg' ) THEN |
---|
| 1277 | message_string = '"output of "' // TRIM( var ) // '" requi' // & |
---|
| 1278 | 'res radiation = .TRUE. and ' // & |
---|
| 1279 | 'radiation_scheme = "rrtmg"' |
---|
| 1280 | CALL message( 'check_parameters', 'PA0406', 1, 2, 0, 6, 0 ) |
---|
| 1281 | ENDIF |
---|
[2163] | 1282 | unit = 'K/h' |
---|
[1826] | 1283 | |
---|
| 1284 | CASE ( 'rad_net*', 'rrtm_aldif*', 'rrtm_aldir*', 'rrtm_asdif*', & |
---|
[3116] | 1285 | 'rrtm_asdir*', 'rad_lw_in*', 'rad_lw_out*', 'rad_sw_in*', & |
---|
| 1286 | 'rad_sw_out*') |
---|
[3435] | 1287 | IF ( i == 0 .AND. ilen == 0 .AND. k == 0) THEN |
---|
| 1288 | ! Workaround for masked output (calls with i=ilen=k=0) |
---|
| 1289 | unit = 'illegal' |
---|
| 1290 | RETURN |
---|
| 1291 | ENDIF |
---|
[1826] | 1292 | IF ( k == 0 .OR. data_output(i)(ilen-2:ilen) /= '_xy' ) THEN |
---|
| 1293 | message_string = 'illegal value for data_output: "' // & |
---|
| 1294 | TRIM( var ) // '" & only 2d-horizontal ' // & |
---|
| 1295 | 'cross sections are allowed for this value' |
---|
| 1296 | CALL message( 'check_parameters', 'PA0111', 1, 2, 0, 6, 0 ) |
---|
| 1297 | ENDIF |
---|
| 1298 | IF ( .NOT. radiation .OR. radiation_scheme /= "rrtmg" ) THEN |
---|
| 1299 | IF ( TRIM( var ) == 'rrtm_aldif*' .OR. & |
---|
| 1300 | TRIM( var ) == 'rrtm_aldir*' .OR. & |
---|
| 1301 | TRIM( var ) == 'rrtm_asdif*' .OR. & |
---|
| 1302 | TRIM( var ) == 'rrtm_asdir*' ) & |
---|
| 1303 | THEN |
---|
| 1304 | message_string = 'output of "' // TRIM( var ) // '" require'& |
---|
| 1305 | // 's radiation = .TRUE. and radiation_sch'& |
---|
| 1306 | // 'eme = "rrtmg"' |
---|
| 1307 | CALL message( 'check_parameters', 'PA0409', 1, 2, 0, 6, 0 ) |
---|
| 1308 | ENDIF |
---|
| 1309 | ENDIF |
---|
| 1310 | |
---|
| 1311 | IF ( TRIM( var ) == 'rad_net*' ) unit = 'W/m2' |
---|
[3116] | 1312 | IF ( TRIM( var ) == 'rad_lw_in*' ) unit = 'W/m2' |
---|
| 1313 | IF ( TRIM( var ) == 'rad_lw_out*' ) unit = 'W/m2' |
---|
| 1314 | IF ( TRIM( var ) == 'rad_sw_in*' ) unit = 'W/m2' |
---|
| 1315 | IF ( TRIM( var ) == 'rad_sw_out*' ) unit = 'W/m2' |
---|
[3272] | 1316 | IF ( TRIM( var ) == 'rad_sw_in' ) unit = 'W/m2' |
---|
[1826] | 1317 | IF ( TRIM( var ) == 'rrtm_aldif*' ) unit = '' |
---|
| 1318 | IF ( TRIM( var ) == 'rrtm_aldir*' ) unit = '' |
---|
| 1319 | IF ( TRIM( var ) == 'rrtm_asdif*' ) unit = '' |
---|
| 1320 | IF ( TRIM( var ) == 'rrtm_asdir*' ) unit = '' |
---|
| 1321 | |
---|
[3337] | 1322 | CASE ( 'rad_mrt', 'rad_mrt_sw', 'rad_mrt_lw' ) |
---|
[3435] | 1323 | |
---|
| 1324 | IF ( i == 0 .AND. ilen == 0 .AND. k == 0) THEN |
---|
| 1325 | ! Workaround for masked output (calls with i=ilen=k=0) |
---|
| 1326 | unit = 'illegal' |
---|
| 1327 | RETURN |
---|
| 1328 | ENDIF |
---|
| 1329 | |
---|
[3337] | 1330 | IF ( .NOT. radiation ) THEN |
---|
| 1331 | message_string = 'output of "' // TRIM( var ) // '" require'& |
---|
| 1332 | // 's radiation = .TRUE.' |
---|
| 1333 | CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 ) |
---|
| 1334 | ENDIF |
---|
| 1335 | IF ( mrt_nlevels == 0 ) THEN |
---|
| 1336 | message_string = 'output of "' // TRIM( var ) // '" require'& |
---|
| 1337 | // 's mrt_nlevels > 0' |
---|
| 1338 | CALL message( 'check_parameters', 'PA0510', 1, 2, 0, 6, 0 ) |
---|
| 1339 | ENDIF |
---|
| 1340 | IF ( TRIM( var ) == 'rad_mrt_sw' .AND. .NOT. mrt_include_sw ) THEN |
---|
| 1341 | message_string = 'output of "' // TRIM( var ) // '" require'& |
---|
| 1342 | // 's rad_mrt_sw = .TRUE.' |
---|
| 1343 | CALL message( 'check_parameters', 'PA0511', 1, 2, 0, 6, 0 ) |
---|
| 1344 | ENDIF |
---|
| 1345 | IF ( TRIM( var ) == 'rad_mrt' ) THEN |
---|
| 1346 | unit = 'K' |
---|
| 1347 | ELSE |
---|
| 1348 | unit = 'W m-2' |
---|
| 1349 | ENDIF |
---|
| 1350 | |
---|
[1826] | 1351 | CASE DEFAULT |
---|
| 1352 | unit = 'illegal' |
---|
| 1353 | |
---|
| 1354 | END SELECT |
---|
| 1355 | |
---|
| 1356 | |
---|
| 1357 | END SUBROUTINE radiation_check_data_output |
---|
| 1358 | |
---|
| 1359 | !------------------------------------------------------------------------------! |
---|
| 1360 | ! Description: |
---|
| 1361 | ! ------------ |
---|
| 1362 | !> Check data output of profiles for radiation model |
---|
| 1363 | !------------------------------------------------------------------------------! |
---|
[2299] | 1364 | SUBROUTINE radiation_check_data_output_pr( variable, var_count, unit, & |
---|
| 1365 | dopr_unit ) |
---|
[1826] | 1366 | |
---|
| 1367 | USE arrays_3d, & |
---|
| 1368 | ONLY: zu |
---|
| 1369 | |
---|
| 1370 | USE control_parameters, & |
---|
| 1371 | ONLY: data_output_pr, message_string |
---|
| 1372 | |
---|
| 1373 | USE indices |
---|
| 1374 | |
---|
| 1375 | USE profil_parameter |
---|
| 1376 | |
---|
| 1377 | USE statistics |
---|
| 1378 | |
---|
| 1379 | IMPLICIT NONE |
---|
| 1380 | |
---|
| 1381 | CHARACTER (LEN=*) :: unit !< |
---|
| 1382 | CHARACTER (LEN=*) :: variable !< |
---|
| 1383 | CHARACTER (LEN=*) :: dopr_unit !< local value of dopr_unit |
---|
| 1384 | |
---|
| 1385 | INTEGER(iwp) :: var_count !< |
---|
| 1386 | |
---|
| 1387 | SELECT CASE ( TRIM( variable ) ) |
---|
| 1388 | |
---|
| 1389 | CASE ( 'rad_net' ) |
---|
| 1390 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' )& |
---|
| 1391 | THEN |
---|
| 1392 | message_string = 'data_output_pr = ' // & |
---|
| 1393 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1394 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1395 | 'radiation_scheme = "constant"' |
---|
| 1396 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
| 1397 | ELSE |
---|
[2270] | 1398 | dopr_index(var_count) = 99 |
---|
[1826] | 1399 | dopr_unit = 'W/m2' |
---|
[2270] | 1400 | hom(:,2,99,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
[1826] | 1401 | unit = dopr_unit |
---|
| 1402 | ENDIF |
---|
| 1403 | |
---|
| 1404 | CASE ( 'rad_lw_in' ) |
---|
| 1405 | IF ( ( .NOT. radiation) .OR. radiation_scheme == 'constant' ) & |
---|
| 1406 | THEN |
---|
| 1407 | message_string = 'data_output_pr = ' // & |
---|
| 1408 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1409 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1410 | 'radiation_scheme = "constant"' |
---|
| 1411 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
| 1412 | ELSE |
---|
[2270] | 1413 | dopr_index(var_count) = 100 |
---|
[1826] | 1414 | dopr_unit = 'W/m2' |
---|
[2270] | 1415 | hom(:,2,100,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
[1826] | 1416 | unit = dopr_unit |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | CASE ( 'rad_lw_out' ) |
---|
| 1420 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' ) & |
---|
| 1421 | THEN |
---|
| 1422 | message_string = 'data_output_pr = ' // & |
---|
| 1423 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1424 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1425 | 'radiation_scheme = "constant"' |
---|
| 1426 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
| 1427 | ELSE |
---|
[2270] | 1428 | dopr_index(var_count) = 101 |
---|
[1826] | 1429 | dopr_unit = 'W/m2' |
---|
[2270] | 1430 | hom(:,2,101,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
[1826] | 1431 | unit = dopr_unit |
---|
| 1432 | ENDIF |
---|
| 1433 | |
---|
| 1434 | CASE ( 'rad_sw_in' ) |
---|
| 1435 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' ) & |
---|
| 1436 | THEN |
---|
| 1437 | message_string = 'data_output_pr = ' // & |
---|
| 1438 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1439 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1440 | 'radiation_scheme = "constant"' |
---|
| 1441 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
| 1442 | ELSE |
---|
[2270] | 1443 | dopr_index(var_count) = 102 |
---|
[1826] | 1444 | dopr_unit = 'W/m2' |
---|
[2270] | 1445 | hom(:,2,102,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
[1826] | 1446 | unit = dopr_unit |
---|
| 1447 | ENDIF |
---|
| 1448 | |
---|
| 1449 | CASE ( 'rad_sw_out') |
---|
| 1450 | IF ( ( .NOT. radiation ) .OR. radiation_scheme == 'constant' )& |
---|
| 1451 | THEN |
---|
| 1452 | message_string = 'data_output_pr = ' // & |
---|
| 1453 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1454 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1455 | 'radiation_scheme = "constant"' |
---|
| 1456 | CALL message( 'check_parameters', 'PA0408', 1, 2, 0, 6, 0 ) |
---|
| 1457 | ELSE |
---|
[2270] | 1458 | dopr_index(var_count) = 103 |
---|
[1826] | 1459 | dopr_unit = 'W/m2' |
---|
[2270] | 1460 | hom(:,2,103,:) = SPREAD( zw, 2, statistic_regions+1 ) |
---|
[1826] | 1461 | unit = dopr_unit |
---|
| 1462 | ENDIF |
---|
| 1463 | |
---|
| 1464 | CASE ( 'rad_lw_cs_hr' ) |
---|
| 1465 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
| 1466 | THEN |
---|
| 1467 | message_string = 'data_output_pr = ' // & |
---|
| 1468 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1469 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1470 | 'radiation_scheme /= "rrtmg"' |
---|
| 1471 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
| 1472 | ELSE |
---|
[2270] | 1473 | dopr_index(var_count) = 104 |
---|
[1826] | 1474 | dopr_unit = 'K/h' |
---|
[2270] | 1475 | hom(:,2,104,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
[1826] | 1476 | unit = dopr_unit |
---|
| 1477 | ENDIF |
---|
| 1478 | |
---|
| 1479 | CASE ( 'rad_lw_hr' ) |
---|
| 1480 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
| 1481 | THEN |
---|
| 1482 | message_string = 'data_output_pr = ' // & |
---|
| 1483 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1484 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1485 | 'radiation_scheme /= "rrtmg"' |
---|
| 1486 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
| 1487 | ELSE |
---|
[2270] | 1488 | dopr_index(var_count) = 105 |
---|
[1826] | 1489 | dopr_unit = 'K/h' |
---|
[2270] | 1490 | hom(:,2,105,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
[1826] | 1491 | unit = dopr_unit |
---|
| 1492 | ENDIF |
---|
| 1493 | |
---|
| 1494 | CASE ( 'rad_sw_cs_hr' ) |
---|
| 1495 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
| 1496 | THEN |
---|
| 1497 | message_string = 'data_output_pr = ' // & |
---|
| 1498 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1499 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1500 | 'radiation_scheme /= "rrtmg"' |
---|
| 1501 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
| 1502 | ELSE |
---|
[2270] | 1503 | dopr_index(var_count) = 106 |
---|
[1826] | 1504 | dopr_unit = 'K/h' |
---|
[2270] | 1505 | hom(:,2,106,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
[1826] | 1506 | unit = dopr_unit |
---|
| 1507 | ENDIF |
---|
| 1508 | |
---|
| 1509 | CASE ( 'rad_sw_hr' ) |
---|
| 1510 | IF ( ( .NOT. radiation ) .OR. radiation_scheme /= 'rrtmg' ) & |
---|
| 1511 | THEN |
---|
| 1512 | message_string = 'data_output_pr = ' // & |
---|
| 1513 | TRIM( data_output_pr(var_count) ) // ' is' // & |
---|
| 1514 | 'not available for radiation = .FALSE. or ' //& |
---|
| 1515 | 'radiation_scheme /= "rrtmg"' |
---|
| 1516 | CALL message( 'check_parameters', 'PA0413', 1, 2, 0, 6, 0 ) |
---|
| 1517 | ELSE |
---|
[2270] | 1518 | dopr_index(var_count) = 107 |
---|
[1826] | 1519 | dopr_unit = 'K/h' |
---|
[2270] | 1520 | hom(:,2,107,:) = SPREAD( zu, 2, statistic_regions+1 ) |
---|
[1826] | 1521 | unit = dopr_unit |
---|
| 1522 | ENDIF |
---|
| 1523 | |
---|
| 1524 | |
---|
| 1525 | CASE DEFAULT |
---|
| 1526 | unit = 'illegal' |
---|
| 1527 | |
---|
| 1528 | END SELECT |
---|
| 1529 | |
---|
| 1530 | |
---|
| 1531 | END SUBROUTINE radiation_check_data_output_pr |
---|
| 1532 | |
---|
| 1533 | |
---|
| 1534 | !------------------------------------------------------------------------------! |
---|
| 1535 | ! Description: |
---|
| 1536 | ! ------------ |
---|
| 1537 | !> Check parameters routine for radiation model |
---|
| 1538 | !------------------------------------------------------------------------------! |
---|
| 1539 | SUBROUTINE radiation_check_parameters |
---|
| 1540 | |
---|
| 1541 | USE control_parameters, & |
---|
[3241] | 1542 | ONLY: land_surface, message_string, urban_surface |
---|
[2696] | 1543 | |
---|
| 1544 | USE netcdf_data_input_mod, & |
---|
| 1545 | ONLY: input_pids_static |
---|
[1826] | 1546 | |
---|
| 1547 | IMPLICIT NONE |
---|
[2007] | 1548 | |
---|
[2930] | 1549 | ! |
---|
| 1550 | !-- In case no urban-surface or land-surface model is applied, usage of |
---|
| 1551 | !-- a radiation model make no sense. |
---|
| 1552 | IF ( .NOT. land_surface .AND. .NOT. urban_surface ) THEN |
---|
| 1553 | message_string = 'Usage of radiation module is only allowed if ' // & |
---|
| 1554 | 'land-surface and/or urban-surface model is applied.' |
---|
| 1555 | CALL message( 'check_parameters', 'PA0486', 1, 2, 0, 6, 0 ) |
---|
| 1556 | ENDIF |
---|
[1826] | 1557 | |
---|
| 1558 | IF ( radiation_scheme /= 'constant' .AND. & |
---|
| 1559 | radiation_scheme /= 'clear-sky' .AND. & |
---|
| 1560 | radiation_scheme /= 'rrtmg' ) THEN |
---|
| 1561 | message_string = 'unknown radiation_scheme = '// & |
---|
| 1562 | TRIM( radiation_scheme ) |
---|
| 1563 | CALL message( 'check_parameters', 'PA0405', 1, 2, 0, 6, 0 ) |
---|
| 1564 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
| 1565 | #if ! defined ( __rrtmg ) |
---|
| 1566 | message_string = 'radiation_scheme = "rrtmg" requires ' // & |
---|
| 1567 | 'compilation of PALM with pre-processor ' // & |
---|
| 1568 | 'directive -D__rrtmg' |
---|
| 1569 | CALL message( 'check_parameters', 'PA0407', 1, 2, 0, 6, 0 ) |
---|
| 1570 | #endif |
---|
| 1571 | #if defined ( __rrtmg ) && ! defined( __netcdf ) |
---|
| 1572 | message_string = 'radiation_scheme = "rrtmg" requires ' // & |
---|
| 1573 | 'the use of NetCDF (preprocessor directive ' // & |
---|
| 1574 | '-D__netcdf' |
---|
| 1575 | CALL message( 'check_parameters', 'PA0412', 1, 2, 0, 6, 0 ) |
---|
| 1576 | #endif |
---|
| 1577 | |
---|
| 1578 | ENDIF |
---|
[2696] | 1579 | ! |
---|
| 1580 | !-- Checks performed only if data is given via namelist only. |
---|
| 1581 | IF ( .NOT. input_pids_static ) THEN |
---|
| 1582 | IF ( albedo_type == 0 .AND. albedo == 9999999.9_wp .AND. & |
---|
| 1583 | radiation_scheme == 'clear-sky') THEN |
---|
[3045] | 1584 | message_string = 'radiation_scheme = "clear-sky" in combination'//& |
---|
| 1585 | 'with albedo_type = 0 requires setting of'// & |
---|
| 1586 | 'albedo /= 9999999.9' |
---|
[2696] | 1587 | CALL message( 'check_parameters', 'PA0410', 1, 2, 0, 6, 0 ) |
---|
| 1588 | ENDIF |
---|
[1826] | 1589 | |
---|
[2696] | 1590 | IF ( albedo_type == 0 .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1591 | ( albedo_lw_dif == 9999999.9_wp .OR. albedo_lw_dir == 9999999.9_wp& |
---|
[1826] | 1592 | .OR. albedo_sw_dif == 9999999.9_wp .OR. albedo_sw_dir == 9999999.9_wp& |
---|
[2696] | 1593 | ) ) THEN |
---|
| 1594 | message_string = 'radiation_scheme = "rrtmg" in combination' // & |
---|
| 1595 | 'with albedo_type = 0 requires setting of ' // & |
---|
| 1596 | 'albedo_lw_dif /= 9999999.9' // & |
---|
| 1597 | 'albedo_lw_dir /= 9999999.9' // & |
---|
| 1598 | 'albedo_sw_dif /= 9999999.9 and' // & |
---|
| 1599 | 'albedo_sw_dir /= 9999999.9' |
---|
| 1600 | CALL message( 'check_parameters', 'PA0411', 1, 2, 0, 6, 0 ) |
---|
| 1601 | ENDIF |
---|
[1826] | 1602 | ENDIF |
---|
[3337] | 1603 | ! |
---|
| 1604 | !-- Parallel rad_angular_discretization without raytrace_mpi_rma is not implemented |
---|
| 1605 | #if defined( __parallel ) |
---|
| 1606 | IF ( rad_angular_discretization .AND. .NOT. raytrace_mpi_rma ) THEN |
---|
| 1607 | message_string = 'rad_angular_discretization can only be used ' // & |
---|
| 1608 | 'together with raytrace_mpi_rma or when ' // & |
---|
| 1609 | 'no parallelization is applied.' |
---|
| 1610 | CALL message( 'check_parameters', 'PA0486', 1, 2, 0, 6, 0 ) |
---|
| 1611 | ENDIF |
---|
| 1612 | #endif |
---|
[1826] | 1613 | |
---|
[3233] | 1614 | IF ( cloud_droplets .AND. radiation_scheme == 'rrtmg' .AND. & |
---|
| 1615 | average_radiation ) THEN |
---|
| 1616 | message_string = 'average_radiation = .T. with radiation_scheme'// & |
---|
| 1617 | '= "rrtmg" in combination cloud_droplets = .T.'// & |
---|
| 1618 | 'is not implementd' |
---|
| 1619 | CALL message( 'check_parameters', 'PA0560', 1, 2, 0, 6, 0 ) |
---|
| 1620 | ENDIF |
---|
| 1621 | |
---|
[2007] | 1622 | ! |
---|
[2920] | 1623 | !-- Incialize svf normalization reporting histogram |
---|
| 1624 | svfnorm_report_num = 1 |
---|
| 1625 | DO WHILE ( svfnorm_report_thresh(svfnorm_report_num) < 1e20_wp & |
---|
| 1626 | .AND. svfnorm_report_num <= 30 ) |
---|
| 1627 | svfnorm_report_num = svfnorm_report_num + 1 |
---|
| 1628 | ENDDO |
---|
| 1629 | svfnorm_report_num = svfnorm_report_num - 1 |
---|
| 1630 | |
---|
| 1631 | |
---|
[1826] | 1632 | |
---|
| 1633 | END SUBROUTINE radiation_check_parameters |
---|
| 1634 | |
---|
| 1635 | |
---|
| 1636 | !------------------------------------------------------------------------------! |
---|
| 1637 | ! Description: |
---|
| 1638 | ! ------------ |
---|
[1682] | 1639 | !> Initialization of the radiation model |
---|
[1496] | 1640 | !------------------------------------------------------------------------------! |
---|
[1826] | 1641 | SUBROUTINE radiation_init |
---|
[1496] | 1642 | |
---|
| 1643 | IMPLICIT NONE |
---|
| 1644 | |
---|
[2696] | 1645 | INTEGER(iwp) :: i !< running index x-direction |
---|
| 1646 | INTEGER(iwp) :: ioff !< offset in x between surface element reference grid point in atmosphere and actual surface |
---|
| 1647 | INTEGER(iwp) :: j !< running index y-direction |
---|
| 1648 | INTEGER(iwp) :: joff !< offset in y between surface element reference grid point in atmosphere and actual surface |
---|
| 1649 | INTEGER(iwp) :: l !< running index for orientation of vertical surfaces |
---|
[3241] | 1650 | INTEGER(iwp) :: m !< running index for surface elements |
---|
| 1651 | #if defined( __rrtmg ) |
---|
| 1652 | INTEGER(iwp) :: ind_type !< running index for subgrid-surface tiles |
---|
| 1653 | #endif |
---|
[2696] | 1654 | |
---|
[1585] | 1655 | ! |
---|
[2696] | 1656 | !-- Allocate array for storing the surface net radiation |
---|
| 1657 | IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_net ) .AND. & |
---|
| 1658 | surf_lsm_h%ns > 0 ) THEN |
---|
| 1659 | ALLOCATE( surf_lsm_h%rad_net(1:surf_lsm_h%ns) ) |
---|
| 1660 | surf_lsm_h%rad_net = 0.0_wp |
---|
| 1661 | ENDIF |
---|
| 1662 | IF ( .NOT. ALLOCATED ( surf_usm_h%rad_net ) .AND. & |
---|
| 1663 | surf_usm_h%ns > 0 ) THEN |
---|
| 1664 | ALLOCATE( surf_usm_h%rad_net(1:surf_usm_h%ns) ) |
---|
| 1665 | surf_usm_h%rad_net = 0.0_wp |
---|
| 1666 | ENDIF |
---|
| 1667 | DO l = 0, 3 |
---|
| 1668 | IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_net ) .AND. & |
---|
| 1669 | surf_lsm_v(l)%ns > 0 ) THEN |
---|
| 1670 | ALLOCATE( surf_lsm_v(l)%rad_net(1:surf_lsm_v(l)%ns) ) |
---|
| 1671 | surf_lsm_v(l)%rad_net = 0.0_wp |
---|
| 1672 | ENDIF |
---|
| 1673 | IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_net ) .AND. & |
---|
| 1674 | surf_usm_v(l)%ns > 0 ) THEN |
---|
| 1675 | ALLOCATE( surf_usm_v(l)%rad_net(1:surf_usm_v(l)%ns) ) |
---|
| 1676 | surf_usm_v(l)%rad_net = 0.0_wp |
---|
| 1677 | ENDIF |
---|
| 1678 | ENDDO |
---|
[2328] | 1679 | |
---|
[2696] | 1680 | |
---|
[2328] | 1681 | ! |
---|
[2696] | 1682 | !-- Allocate array for storing the surface longwave (out) radiation change |
---|
| 1683 | IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_lw_out_change_0 ) .AND. & |
---|
| 1684 | surf_lsm_h%ns > 0 ) THEN |
---|
| 1685 | ALLOCATE( surf_lsm_h%rad_lw_out_change_0(1:surf_lsm_h%ns) ) |
---|
| 1686 | surf_lsm_h%rad_lw_out_change_0 = 0.0_wp |
---|
| 1687 | ENDIF |
---|
| 1688 | IF ( .NOT. ALLOCATED ( surf_usm_h%rad_lw_out_change_0 ) .AND. & |
---|
| 1689 | surf_usm_h%ns > 0 ) THEN |
---|
| 1690 | ALLOCATE( surf_usm_h%rad_lw_out_change_0(1:surf_usm_h%ns) ) |
---|
| 1691 | surf_usm_h%rad_lw_out_change_0 = 0.0_wp |
---|
| 1692 | ENDIF |
---|
| 1693 | DO l = 0, 3 |
---|
| 1694 | IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_lw_out_change_0 ) .AND. & |
---|
| 1695 | surf_lsm_v(l)%ns > 0 ) THEN |
---|
| 1696 | ALLOCATE( surf_lsm_v(l)%rad_lw_out_change_0(1:surf_lsm_v(l)%ns) ) |
---|
| 1697 | surf_lsm_v(l)%rad_lw_out_change_0 = 0.0_wp |
---|
| 1698 | ENDIF |
---|
| 1699 | IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_lw_out_change_0 ) .AND. & |
---|
| 1700 | surf_usm_v(l)%ns > 0 ) THEN |
---|
| 1701 | ALLOCATE( surf_usm_v(l)%rad_lw_out_change_0(1:surf_usm_v(l)%ns) ) |
---|
| 1702 | surf_usm_v(l)%rad_lw_out_change_0 = 0.0_wp |
---|
| 1703 | ENDIF |
---|
| 1704 | ENDDO |
---|
[1496] | 1705 | |
---|
| 1706 | ! |
---|
[2696] | 1707 | !-- Allocate surface arrays for incoming/outgoing short/longwave radiation |
---|
| 1708 | IF ( .NOT. ALLOCATED ( surf_lsm_h%rad_sw_in ) .AND. & |
---|
| 1709 | surf_lsm_h%ns > 0 ) THEN |
---|
| 1710 | ALLOCATE( surf_lsm_h%rad_sw_in(1:surf_lsm_h%ns) ) |
---|
| 1711 | ALLOCATE( surf_lsm_h%rad_sw_out(1:surf_lsm_h%ns) ) |
---|
| 1712 | ALLOCATE( surf_lsm_h%rad_lw_in(1:surf_lsm_h%ns) ) |
---|
| 1713 | ALLOCATE( surf_lsm_h%rad_lw_out(1:surf_lsm_h%ns) ) |
---|
| 1714 | surf_lsm_h%rad_sw_in = 0.0_wp |
---|
| 1715 | surf_lsm_h%rad_sw_out = 0.0_wp |
---|
| 1716 | surf_lsm_h%rad_lw_in = 0.0_wp |
---|
| 1717 | surf_lsm_h%rad_lw_out = 0.0_wp |
---|
| 1718 | ENDIF |
---|
| 1719 | IF ( .NOT. ALLOCATED ( surf_usm_h%rad_sw_in ) .AND. & |
---|
| 1720 | surf_usm_h%ns > 0 ) THEN |
---|
| 1721 | ALLOCATE( surf_usm_h%rad_sw_in(1:surf_usm_h%ns) ) |
---|
| 1722 | ALLOCATE( surf_usm_h%rad_sw_out(1:surf_usm_h%ns) ) |
---|
| 1723 | ALLOCATE( surf_usm_h%rad_lw_in(1:surf_usm_h%ns) ) |
---|
| 1724 | ALLOCATE( surf_usm_h%rad_lw_out(1:surf_usm_h%ns) ) |
---|
| 1725 | surf_usm_h%rad_sw_in = 0.0_wp |
---|
| 1726 | surf_usm_h%rad_sw_out = 0.0_wp |
---|
| 1727 | surf_usm_h%rad_lw_in = 0.0_wp |
---|
| 1728 | surf_usm_h%rad_lw_out = 0.0_wp |
---|
| 1729 | ENDIF |
---|
| 1730 | DO l = 0, 3 |
---|
| 1731 | IF ( .NOT. ALLOCATED ( surf_lsm_v(l)%rad_sw_in ) .AND. & |
---|
| 1732 | surf_lsm_v(l)%ns > 0 ) THEN |
---|
| 1733 | ALLOCATE( surf_lsm_v(l)%rad_sw_in(1:surf_lsm_v(l)%ns) ) |
---|
| 1734 | ALLOCATE( surf_lsm_v(l)%rad_sw_out(1:surf_lsm_v(l)%ns) ) |
---|
| 1735 | ALLOCATE( surf_lsm_v(l)%rad_lw_in(1:surf_lsm_v(l)%ns) ) |
---|
| 1736 | ALLOCATE( surf_lsm_v(l)%rad_lw_out(1:surf_lsm_v(l)%ns) ) |
---|
| 1737 | surf_lsm_v(l)%rad_sw_in = 0.0_wp |
---|
| 1738 | surf_lsm_v(l)%rad_sw_out = 0.0_wp |
---|
| 1739 | surf_lsm_v(l)%rad_lw_in = 0.0_wp |
---|
| 1740 | surf_lsm_v(l)%rad_lw_out = 0.0_wp |
---|
| 1741 | ENDIF |
---|
| 1742 | IF ( .NOT. ALLOCATED ( surf_usm_v(l)%rad_sw_in ) .AND. & |
---|
| 1743 | surf_usm_v(l)%ns > 0 ) THEN |
---|
| 1744 | ALLOCATE( surf_usm_v(l)%rad_sw_in(1:surf_usm_v(l)%ns) ) |
---|
| 1745 | ALLOCATE( surf_usm_v(l)%rad_sw_out(1:surf_usm_v(l)%ns) ) |
---|
| 1746 | ALLOCATE( surf_usm_v(l)%rad_lw_in(1:surf_usm_v(l)%ns) ) |
---|
| 1747 | ALLOCATE( surf_usm_v(l)%rad_lw_out(1:surf_usm_v(l)%ns) ) |
---|
| 1748 | surf_usm_v(l)%rad_sw_in = 0.0_wp |
---|
| 1749 | surf_usm_v(l)%rad_sw_out = 0.0_wp |
---|
| 1750 | surf_usm_v(l)%rad_lw_in = 0.0_wp |
---|
| 1751 | surf_usm_v(l)%rad_lw_out = 0.0_wp |
---|
| 1752 | ENDIF |
---|
| 1753 | ENDDO |
---|
| 1754 | ! |
---|
[1551] | 1755 | !-- Fix net radiation in case of radiation_scheme = 'constant' |
---|
[1585] | 1756 | IF ( radiation_scheme == 'constant' ) THEN |
---|
[2696] | 1757 | IF ( ALLOCATED( surf_lsm_h%rad_net ) ) & |
---|
| 1758 | surf_lsm_h%rad_net = net_radiation |
---|
| 1759 | IF ( ALLOCATED( surf_usm_h%rad_net ) ) & |
---|
| 1760 | surf_usm_h%rad_net = net_radiation |
---|
| 1761 | ! |
---|
| 1762 | !-- Todo: weight with inclination angle |
---|
| 1763 | DO l = 0, 3 |
---|
| 1764 | IF ( ALLOCATED( surf_lsm_v(l)%rad_net ) ) & |
---|
| 1765 | surf_lsm_v(l)%rad_net = net_radiation |
---|
| 1766 | IF ( ALLOCATED( surf_usm_v(l)%rad_net ) ) & |
---|
| 1767 | surf_usm_v(l)%rad_net = net_radiation |
---|
| 1768 | ENDDO |
---|
[1853] | 1769 | ! radiation = .FALSE. |
---|
[1551] | 1770 | ! |
---|
[1585] | 1771 | !-- Calculate orbital constants |
---|
| 1772 | ELSE |
---|
[1551] | 1773 | decl_1 = SIN(23.45_wp * pi / 180.0_wp) |
---|
| 1774 | decl_2 = 2.0_wp * pi / 365.0_wp |
---|
| 1775 | decl_3 = decl_2 * 81.0_wp |
---|
[2575] | 1776 | lat = latitude * pi / 180.0_wp |
---|
| 1777 | lon = longitude * pi / 180.0_wp |
---|
[1585] | 1778 | ENDIF |
---|
| 1779 | |
---|
[1976] | 1780 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 1781 | radiation_scheme == 'constant') THEN |
---|
[2920] | 1782 | |
---|
| 1783 | |
---|
[2696] | 1784 | ! |
---|
[2920] | 1785 | !-- Allocate arrays for incoming/outgoing short/longwave radiation |
---|
| 1786 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
| 1787 | ALLOCATE ( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1788 | ENDIF |
---|
| 1789 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
| 1790 | ALLOCATE ( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1791 | ENDIF |
---|
| 1792 | |
---|
| 1793 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
| 1794 | ALLOCATE ( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1795 | ENDIF |
---|
| 1796 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
| 1797 | ALLOCATE ( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1798 | ENDIF |
---|
| 1799 | |
---|
| 1800 | ! |
---|
[2696] | 1801 | !-- Allocate average arrays for incoming/outgoing short/longwave radiation |
---|
[1585] | 1802 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
| 1803 | ALLOCATE ( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1804 | ENDIF |
---|
| 1805 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
| 1806 | ALLOCATE ( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1807 | ENDIF |
---|
| 1808 | |
---|
| 1809 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
| 1810 | ALLOCATE ( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1811 | ENDIF |
---|
| 1812 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
| 1813 | ALLOCATE ( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 1814 | ENDIF |
---|
[2696] | 1815 | ! |
---|
| 1816 | !-- Allocate arrays for broadband albedo, and level 1 initialization |
---|
[3351] | 1817 | !-- via namelist paramter, unless not already allocated. |
---|
[2920] | 1818 | IF ( .NOT. ALLOCATED(surf_lsm_h%albedo) ) THEN |
---|
[2696] | 1819 | ALLOCATE( surf_lsm_h%albedo(0:2,1:surf_lsm_h%ns) ) |
---|
[2920] | 1820 | surf_lsm_h%albedo = albedo |
---|
| 1821 | ENDIF |
---|
| 1822 | IF ( .NOT. ALLOCATED(surf_usm_h%albedo) ) THEN |
---|
[2696] | 1823 | ALLOCATE( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) ) |
---|
[2920] | 1824 | surf_usm_h%albedo = albedo |
---|
| 1825 | ENDIF |
---|
[1585] | 1826 | |
---|
[2696] | 1827 | DO l = 0, 3 |
---|
[2920] | 1828 | IF ( .NOT. ALLOCATED( surf_lsm_v(l)%albedo ) ) THEN |
---|
[2696] | 1829 | ALLOCATE( surf_lsm_v(l)%albedo(0:2,1:surf_lsm_v(l)%ns) ) |
---|
[2920] | 1830 | surf_lsm_v(l)%albedo = albedo |
---|
| 1831 | ENDIF |
---|
| 1832 | IF ( .NOT. ALLOCATED( surf_usm_v(l)%albedo ) ) THEN |
---|
[2696] | 1833 | ALLOCATE( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) ) |
---|
[2920] | 1834 | surf_usm_v(l)%albedo = albedo |
---|
| 1835 | ENDIF |
---|
[2696] | 1836 | ENDDO |
---|
[1496] | 1837 | ! |
---|
[2696] | 1838 | !-- Level 2 initialization of broadband albedo via given albedo_type. |
---|
[3351] | 1839 | !-- Only if albedo_type is non-zero. In case of urban surface and |
---|
| 1840 | !-- input data is read from ASCII file, albedo_type will be zero, so that |
---|
| 1841 | !-- albedo won't be overwritten. |
---|
[2696] | 1842 | DO m = 1, surf_lsm_h%ns |
---|
[2963] | 1843 | IF ( surf_lsm_h%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
| 1844 | surf_lsm_h%albedo(ind_veg_wall,m) = & |
---|
| 1845 | albedo_pars(2,surf_lsm_h%albedo_type(ind_veg_wall,m)) |
---|
| 1846 | IF ( surf_lsm_h%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
| 1847 | surf_lsm_h%albedo(ind_pav_green,m) = & |
---|
| 1848 | albedo_pars(2,surf_lsm_h%albedo_type(ind_pav_green,m)) |
---|
| 1849 | IF ( surf_lsm_h%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
| 1850 | surf_lsm_h%albedo(ind_wat_win,m) = & |
---|
| 1851 | albedo_pars(2,surf_lsm_h%albedo_type(ind_wat_win,m)) |
---|
[2696] | 1852 | ENDDO |
---|
| 1853 | DO m = 1, surf_usm_h%ns |
---|
[2963] | 1854 | IF ( surf_usm_h%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
| 1855 | surf_usm_h%albedo(ind_veg_wall,m) = & |
---|
| 1856 | albedo_pars(2,surf_usm_h%albedo_type(ind_veg_wall,m)) |
---|
| 1857 | IF ( surf_usm_h%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
| 1858 | surf_usm_h%albedo(ind_pav_green,m) = & |
---|
| 1859 | albedo_pars(2,surf_usm_h%albedo_type(ind_pav_green,m)) |
---|
| 1860 | IF ( surf_usm_h%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
| 1861 | surf_usm_h%albedo(ind_wat_win,m) = & |
---|
| 1862 | albedo_pars(2,surf_usm_h%albedo_type(ind_wat_win,m)) |
---|
[2696] | 1863 | ENDDO |
---|
| 1864 | |
---|
| 1865 | DO l = 0, 3 |
---|
| 1866 | DO m = 1, surf_lsm_v(l)%ns |
---|
[2963] | 1867 | IF ( surf_lsm_v(l)%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
| 1868 | surf_lsm_v(l)%albedo(ind_veg_wall,m) = & |
---|
| 1869 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_veg_wall,m)) |
---|
| 1870 | IF ( surf_lsm_v(l)%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
| 1871 | surf_lsm_v(l)%albedo(ind_pav_green,m) = & |
---|
| 1872 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_pav_green,m)) |
---|
| 1873 | IF ( surf_lsm_v(l)%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
| 1874 | surf_lsm_v(l)%albedo(ind_wat_win,m) = & |
---|
| 1875 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_wat_win,m)) |
---|
[2696] | 1876 | ENDDO |
---|
| 1877 | DO m = 1, surf_usm_v(l)%ns |
---|
[2963] | 1878 | IF ( surf_usm_v(l)%albedo_type(ind_veg_wall,m) /= 0 ) & |
---|
| 1879 | surf_usm_v(l)%albedo(ind_veg_wall,m) = & |
---|
| 1880 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_veg_wall,m)) |
---|
| 1881 | IF ( surf_usm_v(l)%albedo_type(ind_pav_green,m) /= 0 ) & |
---|
| 1882 | surf_usm_v(l)%albedo(ind_pav_green,m) = & |
---|
| 1883 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_pav_green,m)) |
---|
| 1884 | IF ( surf_usm_v(l)%albedo_type(ind_wat_win,m) /= 0 ) & |
---|
| 1885 | surf_usm_v(l)%albedo(ind_wat_win,m) = & |
---|
| 1886 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_wat_win,m)) |
---|
[2696] | 1887 | ENDDO |
---|
| 1888 | ENDDO |
---|
| 1889 | |
---|
[2328] | 1890 | ! |
---|
[2696] | 1891 | !-- Level 3 initialization at grid points where albedo type is zero. |
---|
| 1892 | !-- This case, albedo is taken from file. In case of constant radiation |
---|
| 1893 | !-- or clear sky, only broadband albedo is given. |
---|
| 1894 | IF ( albedo_pars_f%from_file ) THEN |
---|
[1585] | 1895 | ! |
---|
[2696] | 1896 | !-- Horizontal surfaces |
---|
| 1897 | DO m = 1, surf_lsm_h%ns |
---|
| 1898 | i = surf_lsm_h%i(m) |
---|
| 1899 | j = surf_lsm_h%j(m) |
---|
| 1900 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
[2963] | 1901 | IF ( surf_lsm_h%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
| 1902 | surf_lsm_h%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1903 | IF ( surf_lsm_h%albedo_type(ind_pav_green,m) == 0 ) & |
---|
| 1904 | surf_lsm_h%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1905 | IF ( surf_lsm_h%albedo_type(ind_wat_win,m) == 0 ) & |
---|
| 1906 | surf_lsm_h%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
[2696] | 1907 | ENDIF |
---|
| 1908 | ENDDO |
---|
| 1909 | DO m = 1, surf_usm_h%ns |
---|
| 1910 | i = surf_usm_h%i(m) |
---|
| 1911 | j = surf_usm_h%j(m) |
---|
| 1912 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
[2963] | 1913 | IF ( surf_usm_h%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
| 1914 | surf_usm_h%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1915 | IF ( surf_usm_h%albedo_type(ind_pav_green,m) == 0 ) & |
---|
| 1916 | surf_usm_h%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1917 | IF ( surf_usm_h%albedo_type(ind_wat_win,m) == 0 ) & |
---|
| 1918 | surf_usm_h%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
[2696] | 1919 | ENDIF |
---|
| 1920 | ENDDO |
---|
| 1921 | ! |
---|
| 1922 | !-- Vertical surfaces |
---|
| 1923 | DO l = 0, 3 |
---|
| 1924 | |
---|
| 1925 | ioff = surf_lsm_v(l)%ioff |
---|
| 1926 | joff = surf_lsm_v(l)%joff |
---|
| 1927 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 1928 | i = surf_lsm_v(l)%i(m) + ioff |
---|
| 1929 | j = surf_lsm_v(l)%j(m) + joff |
---|
| 1930 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
[2963] | 1931 | IF ( surf_lsm_v(l)%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
| 1932 | surf_lsm_v(l)%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1933 | IF ( surf_lsm_v(l)%albedo_type(ind_pav_green,m) == 0 ) & |
---|
| 1934 | surf_lsm_v(l)%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1935 | IF ( surf_lsm_v(l)%albedo_type(ind_wat_win,m) == 0 ) & |
---|
| 1936 | surf_lsm_v(l)%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
[2696] | 1937 | ENDIF |
---|
| 1938 | ENDDO |
---|
| 1939 | |
---|
| 1940 | ioff = surf_usm_v(l)%ioff |
---|
| 1941 | joff = surf_usm_v(l)%joff |
---|
| 1942 | DO m = 1, surf_usm_h%ns |
---|
| 1943 | i = surf_usm_h%i(m) + joff |
---|
| 1944 | j = surf_usm_h%j(m) + joff |
---|
| 1945 | IF ( albedo_pars_f%pars_xy(0,j,i) /= albedo_pars_f%fill ) THEN |
---|
[2963] | 1946 | IF ( surf_usm_v(l)%albedo_type(ind_veg_wall,m) == 0 ) & |
---|
| 1947 | surf_usm_v(l)%albedo(ind_veg_wall,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1948 | IF ( surf_usm_v(l)%albedo_type(ind_pav_green,m) == 0 ) & |
---|
| 1949 | surf_usm_v(l)%albedo(ind_pav_green,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
| 1950 | IF ( surf_usm_v(l)%albedo_type(ind_wat_win,m) == 0 ) & |
---|
| 1951 | surf_lsm_v(l)%albedo(ind_wat_win,m) = albedo_pars_f%pars_xy(0,j,i) |
---|
[2696] | 1952 | ENDIF |
---|
| 1953 | ENDDO |
---|
| 1954 | ENDDO |
---|
| 1955 | |
---|
| 1956 | ENDIF |
---|
| 1957 | ! |
---|
[1585] | 1958 | !-- Initialization actions for RRTMG |
---|
| 1959 | ELSEIF ( radiation_scheme == 'rrtmg' ) THEN |
---|
| 1960 | #if defined ( __rrtmg ) |
---|
| 1961 | ! |
---|
[2753] | 1962 | !-- Allocate albedos for short/longwave radiation, horizontal surfaces |
---|
| 1963 | !-- for wall/green/window (USM) or vegetation/pavement/water surfaces |
---|
[2930] | 1964 | !-- (LSM). |
---|
[2753] | 1965 | ALLOCATE ( surf_lsm_h%aldif(0:2,1:surf_lsm_h%ns) ) |
---|
| 1966 | ALLOCATE ( surf_lsm_h%aldir(0:2,1:surf_lsm_h%ns) ) |
---|
| 1967 | ALLOCATE ( surf_lsm_h%asdif(0:2,1:surf_lsm_h%ns) ) |
---|
| 1968 | ALLOCATE ( surf_lsm_h%asdir(0:2,1:surf_lsm_h%ns) ) |
---|
| 1969 | ALLOCATE ( surf_lsm_h%rrtm_aldif(0:2,1:surf_lsm_h%ns) ) |
---|
| 1970 | ALLOCATE ( surf_lsm_h%rrtm_aldir(0:2,1:surf_lsm_h%ns) ) |
---|
| 1971 | ALLOCATE ( surf_lsm_h%rrtm_asdif(0:2,1:surf_lsm_h%ns) ) |
---|
| 1972 | ALLOCATE ( surf_lsm_h%rrtm_asdir(0:2,1:surf_lsm_h%ns) ) |
---|
[2696] | 1973 | |
---|
[2753] | 1974 | ALLOCATE ( surf_usm_h%aldif(0:2,1:surf_usm_h%ns) ) |
---|
| 1975 | ALLOCATE ( surf_usm_h%aldir(0:2,1:surf_usm_h%ns) ) |
---|
| 1976 | ALLOCATE ( surf_usm_h%asdif(0:2,1:surf_usm_h%ns) ) |
---|
| 1977 | ALLOCATE ( surf_usm_h%asdir(0:2,1:surf_usm_h%ns) ) |
---|
| 1978 | ALLOCATE ( surf_usm_h%rrtm_aldif(0:2,1:surf_usm_h%ns) ) |
---|
| 1979 | ALLOCATE ( surf_usm_h%rrtm_aldir(0:2,1:surf_usm_h%ns) ) |
---|
| 1980 | ALLOCATE ( surf_usm_h%rrtm_asdif(0:2,1:surf_usm_h%ns) ) |
---|
| 1981 | ALLOCATE ( surf_usm_h%rrtm_asdir(0:2,1:surf_usm_h%ns) ) |
---|
[2696] | 1982 | |
---|
| 1983 | ! |
---|
| 1984 | !-- Allocate broadband albedo (temporary for the current radiation |
---|
| 1985 | !-- implementations) |
---|
| 1986 | IF ( .NOT. ALLOCATED(surf_lsm_h%albedo) ) & |
---|
| 1987 | ALLOCATE( surf_lsm_h%albedo(0:2,1:surf_lsm_h%ns) ) |
---|
| 1988 | IF ( .NOT. ALLOCATED(surf_usm_h%albedo) ) & |
---|
| 1989 | ALLOCATE( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) ) |
---|
| 1990 | |
---|
| 1991 | ! |
---|
| 1992 | !-- Allocate albedos for short/longwave radiation, vertical surfaces |
---|
| 1993 | DO l = 0, 3 |
---|
| 1994 | |
---|
[2753] | 1995 | ALLOCATE ( surf_lsm_v(l)%aldif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 1996 | ALLOCATE ( surf_lsm_v(l)%aldir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 1997 | ALLOCATE ( surf_lsm_v(l)%asdif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 1998 | ALLOCATE ( surf_lsm_v(l)%asdir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
[2696] | 1999 | |
---|
[2753] | 2000 | ALLOCATE ( surf_lsm_v(l)%rrtm_aldif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 2001 | ALLOCATE ( surf_lsm_v(l)%rrtm_aldir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 2002 | ALLOCATE ( surf_lsm_v(l)%rrtm_asdif(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 2003 | ALLOCATE ( surf_lsm_v(l)%rrtm_asdir(0:2,1:surf_lsm_v(l)%ns) ) |
---|
[2696] | 2004 | |
---|
[2753] | 2005 | ALLOCATE ( surf_usm_v(l)%aldif(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2006 | ALLOCATE ( surf_usm_v(l)%aldir(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2007 | ALLOCATE ( surf_usm_v(l)%asdif(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2008 | ALLOCATE ( surf_usm_v(l)%asdir(0:2,1:surf_usm_v(l)%ns) ) |
---|
[2696] | 2009 | |
---|
[2753] | 2010 | ALLOCATE ( surf_usm_v(l)%rrtm_aldif(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2011 | ALLOCATE ( surf_usm_v(l)%rrtm_aldir(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2012 | ALLOCATE ( surf_usm_v(l)%rrtm_asdif(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2013 | ALLOCATE ( surf_usm_v(l)%rrtm_asdir(0:2,1:surf_usm_v(l)%ns) ) |
---|
[2696] | 2014 | ! |
---|
| 2015 | !-- Allocate broadband albedo (temporary for the current radiation |
---|
| 2016 | !-- implementations) |
---|
| 2017 | IF ( .NOT. ALLOCATED( surf_lsm_v(l)%albedo ) ) & |
---|
| 2018 | ALLOCATE( surf_lsm_v(l)%albedo(0:2,1:surf_lsm_v(l)%ns) ) |
---|
| 2019 | IF ( .NOT. ALLOCATED( surf_usm_v(l)%albedo ) ) & |
---|
| 2020 | ALLOCATE( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) ) |
---|
| 2021 | |
---|
| 2022 | ENDDO |
---|
| 2023 | ! |
---|
| 2024 | !-- Level 1 initialization of spectral albedos via namelist |
---|
[2753] | 2025 | !-- paramters. Please note, this case all surface tiles are initialized |
---|
| 2026 | !-- the same. |
---|
[2696] | 2027 | IF ( surf_lsm_h%ns > 0 ) THEN |
---|
| 2028 | surf_lsm_h%aldif = albedo_lw_dif |
---|
| 2029 | surf_lsm_h%aldir = albedo_lw_dir |
---|
| 2030 | surf_lsm_h%asdif = albedo_sw_dif |
---|
| 2031 | surf_lsm_h%asdir = albedo_sw_dir |
---|
| 2032 | surf_lsm_h%albedo = albedo_sw_dif |
---|
| 2033 | ENDIF |
---|
| 2034 | IF ( surf_usm_h%ns > 0 ) THEN |
---|
[3351] | 2035 | IF ( surf_usm_h%albedo_from_ascii ) THEN |
---|
| 2036 | surf_usm_h%aldif = surf_usm_h%albedo |
---|
| 2037 | surf_usm_h%aldir = surf_usm_h%albedo |
---|
| 2038 | surf_usm_h%asdif = surf_usm_h%albedo |
---|
| 2039 | surf_usm_h%asdir = surf_usm_h%albedo |
---|
| 2040 | ELSE |
---|
| 2041 | surf_usm_h%aldif = albedo_lw_dif |
---|
| 2042 | surf_usm_h%aldir = albedo_lw_dir |
---|
| 2043 | surf_usm_h%asdif = albedo_sw_dif |
---|
| 2044 | surf_usm_h%asdir = albedo_sw_dir |
---|
| 2045 | surf_usm_h%albedo = albedo_sw_dif |
---|
| 2046 | ENDIF |
---|
[2696] | 2047 | ENDIF |
---|
| 2048 | |
---|
| 2049 | DO l = 0, 3 |
---|
| 2050 | |
---|
| 2051 | IF ( surf_lsm_v(l)%ns > 0 ) THEN |
---|
| 2052 | surf_lsm_v(l)%aldif = albedo_lw_dif |
---|
| 2053 | surf_lsm_v(l)%aldir = albedo_lw_dir |
---|
| 2054 | surf_lsm_v(l)%asdif = albedo_sw_dif |
---|
| 2055 | surf_lsm_v(l)%asdir = albedo_sw_dir |
---|
| 2056 | surf_lsm_v(l)%albedo = albedo_sw_dif |
---|
[1585] | 2057 | ENDIF |
---|
[2696] | 2058 | |
---|
| 2059 | IF ( surf_usm_v(l)%ns > 0 ) THEN |
---|
[3351] | 2060 | IF ( surf_usm_v(l)%albedo_from_ascii ) THEN |
---|
| 2061 | surf_usm_v(l)%aldif = surf_usm_v(l)%albedo |
---|
| 2062 | surf_usm_v(l)%aldir = surf_usm_v(l)%albedo |
---|
| 2063 | surf_usm_v(l)%asdif = surf_usm_v(l)%albedo |
---|
| 2064 | surf_usm_v(l)%asdir = surf_usm_v(l)%albedo |
---|
| 2065 | ELSE |
---|
| 2066 | surf_usm_v(l)%aldif = albedo_lw_dif |
---|
| 2067 | surf_usm_v(l)%aldir = albedo_lw_dir |
---|
| 2068 | surf_usm_v(l)%asdif = albedo_sw_dif |
---|
| 2069 | surf_usm_v(l)%asdir = albedo_sw_dir |
---|
| 2070 | ENDIF |
---|
[2696] | 2071 | ENDIF |
---|
| 2072 | ENDDO |
---|
| 2073 | |
---|
| 2074 | ! |
---|
| 2075 | !-- Level 2 initialization of spectral albedos via albedo_type. |
---|
[2753] | 2076 | !-- Please note, for natural- and urban-type surfaces, a tile approach |
---|
| 2077 | !-- is applied so that the resulting albedo is calculated via the weighted |
---|
| 2078 | !-- average of respective surface fractions. |
---|
[2696] | 2079 | DO m = 1, surf_lsm_h%ns |
---|
| 2080 | ! |
---|
[2753] | 2081 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
| 2082 | DO ind_type = 0, 2 |
---|
| 2083 | IF ( surf_lsm_h%albedo_type(ind_type,m) /= 0 ) THEN |
---|
| 2084 | surf_lsm_h%aldif(ind_type,m) = & |
---|
[2696] | 2085 | albedo_pars(0,surf_lsm_h%albedo_type(ind_type,m)) |
---|
[2753] | 2086 | surf_lsm_h%asdif(ind_type,m) = & |
---|
[2696] | 2087 | albedo_pars(1,surf_lsm_h%albedo_type(ind_type,m)) |
---|
[2753] | 2088 | surf_lsm_h%aldir(ind_type,m) = & |
---|
[2696] | 2089 | albedo_pars(0,surf_lsm_h%albedo_type(ind_type,m)) |
---|
[2753] | 2090 | surf_lsm_h%asdir(ind_type,m) = & |
---|
[2696] | 2091 | albedo_pars(1,surf_lsm_h%albedo_type(ind_type,m)) |
---|
[2753] | 2092 | surf_lsm_h%albedo(ind_type,m) = & |
---|
[2696] | 2093 | albedo_pars(2,surf_lsm_h%albedo_type(ind_type,m)) |
---|
[2753] | 2094 | ENDIF |
---|
| 2095 | ENDDO |
---|
[2696] | 2096 | |
---|
| 2097 | ENDDO |
---|
| 2098 | ! |
---|
[3351] | 2099 | !-- For urban surface only if albedo has not been already initialized |
---|
| 2100 | !-- in the urban-surface model via the ASCII file. |
---|
| 2101 | IF ( .NOT. surf_usm_h%albedo_from_ascii ) THEN |
---|
| 2102 | DO m = 1, surf_usm_h%ns |
---|
| 2103 | ! |
---|
| 2104 | !-- Spectral albedos for wall/green/window surfaces |
---|
| 2105 | DO ind_type = 0, 2 |
---|
| 2106 | IF ( surf_usm_h%albedo_type(ind_type,m) /= 0 ) THEN |
---|
| 2107 | surf_usm_h%aldif(ind_type,m) = & |
---|
[2753] | 2108 | albedo_pars(0,surf_usm_h%albedo_type(ind_type,m)) |
---|
[3351] | 2109 | surf_usm_h%asdif(ind_type,m) = & |
---|
[2753] | 2110 | albedo_pars(1,surf_usm_h%albedo_type(ind_type,m)) |
---|
[3351] | 2111 | surf_usm_h%aldir(ind_type,m) = & |
---|
[2753] | 2112 | albedo_pars(0,surf_usm_h%albedo_type(ind_type,m)) |
---|
[3351] | 2113 | surf_usm_h%asdir(ind_type,m) = & |
---|
[2753] | 2114 | albedo_pars(1,surf_usm_h%albedo_type(ind_type,m)) |
---|
[3351] | 2115 | surf_usm_h%albedo(ind_type,m) = & |
---|
[2753] | 2116 | albedo_pars(2,surf_usm_h%albedo_type(ind_type,m)) |
---|
[3351] | 2117 | ENDIF |
---|
| 2118 | ENDDO |
---|
| 2119 | |
---|
[2753] | 2120 | ENDDO |
---|
[3351] | 2121 | ENDIF |
---|
[2753] | 2122 | |
---|
[2696] | 2123 | DO l = 0, 3 |
---|
[2753] | 2124 | |
---|
[2696] | 2125 | DO m = 1, surf_lsm_v(l)%ns |
---|
[2753] | 2126 | ! |
---|
| 2127 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
| 2128 | DO ind_type = 0, 2 |
---|
| 2129 | IF ( surf_lsm_v(l)%albedo_type(ind_type,m) /= 0 ) THEN |
---|
| 2130 | surf_lsm_v(l)%aldif(ind_type,m) = & |
---|
[2696] | 2131 | albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
[2753] | 2132 | surf_lsm_v(l)%asdif(ind_type,m) = & |
---|
[2696] | 2133 | albedo_pars(1,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
[2753] | 2134 | surf_lsm_v(l)%aldir(ind_type,m) = & |
---|
[2696] | 2135 | albedo_pars(0,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
[2753] | 2136 | surf_lsm_v(l)%asdir(ind_type,m) = & |
---|
[2696] | 2137 | albedo_pars(1,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
[2753] | 2138 | surf_lsm_v(l)%albedo(ind_type,m) = & |
---|
[2696] | 2139 | albedo_pars(2,surf_lsm_v(l)%albedo_type(ind_type,m)) |
---|
[2753] | 2140 | ENDIF |
---|
| 2141 | ENDDO |
---|
| 2142 | ENDDO |
---|
[2696] | 2143 | ! |
---|
[3351] | 2144 | !-- For urban surface only if albedo has not been already initialized |
---|
| 2145 | !-- in the urban-surface model via the ASCII file. |
---|
| 2146 | IF ( .NOT. surf_usm_v(l)%albedo_from_ascii ) THEN |
---|
| 2147 | DO m = 1, surf_usm_v(l)%ns |
---|
| 2148 | ! |
---|
| 2149 | !-- Spectral albedos for wall/green/window surfaces |
---|
| 2150 | DO ind_type = 0, 2 |
---|
| 2151 | IF ( surf_usm_v(l)%albedo_type(ind_type,m) /= 0 ) THEN |
---|
| 2152 | surf_usm_v(l)%aldif(ind_type,m) = & |
---|
[2753] | 2153 | albedo_pars(0,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
[3351] | 2154 | surf_usm_v(l)%asdif(ind_type,m) = & |
---|
[2753] | 2155 | albedo_pars(1,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
[3351] | 2156 | surf_usm_v(l)%aldir(ind_type,m) = & |
---|
[2753] | 2157 | albedo_pars(0,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
[3351] | 2158 | surf_usm_v(l)%asdir(ind_type,m) = & |
---|
[2753] | 2159 | albedo_pars(1,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
[3351] | 2160 | surf_usm_v(l)%albedo(ind_type,m) = & |
---|
[2753] | 2161 | albedo_pars(2,surf_usm_v(l)%albedo_type(ind_type,m)) |
---|
[3351] | 2162 | ENDIF |
---|
| 2163 | ENDDO |
---|
| 2164 | |
---|
[2753] | 2165 | ENDDO |
---|
[3351] | 2166 | ENDIF |
---|
[2696] | 2167 | ENDDO |
---|
| 2168 | ! |
---|
| 2169 | !-- Level 3 initialization at grid points where albedo type is zero. |
---|
| 2170 | !-- This case, spectral albedos are taken from file if available |
---|
| 2171 | IF ( albedo_pars_f%from_file ) THEN |
---|
| 2172 | ! |
---|
| 2173 | !-- Horizontal |
---|
| 2174 | DO m = 1, surf_lsm_h%ns |
---|
| 2175 | i = surf_lsm_h%i(m) |
---|
| 2176 | j = surf_lsm_h%j(m) |
---|
[2753] | 2177 | ! |
---|
| 2178 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
| 2179 | DO ind_type = 0, 2 |
---|
| 2180 | IF ( surf_lsm_h%albedo_type(ind_type,m) == 0 ) THEN |
---|
| 2181 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
| 2182 | surf_lsm_h%albedo(ind_type,m) = & |
---|
| 2183 | albedo_pars_f%pars_xy(1,j,i) |
---|
| 2184 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
| 2185 | surf_lsm_h%aldir(ind_type,m) = & |
---|
| 2186 | albedo_pars_f%pars_xy(1,j,i) |
---|
| 2187 | IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill )& |
---|
| 2188 | surf_lsm_h%aldif(ind_type,m) = & |
---|
| 2189 | albedo_pars_f%pars_xy(2,j,i) |
---|
| 2190 | IF ( albedo_pars_f%pars_xy(3,j,i) /= albedo_pars_f%fill )& |
---|
| 2191 | surf_lsm_h%asdir(ind_type,m) = & |
---|
| 2192 | albedo_pars_f%pars_xy(3,j,i) |
---|
| 2193 | IF ( albedo_pars_f%pars_xy(4,j,i) /= albedo_pars_f%fill )& |
---|
| 2194 | surf_lsm_h%asdif(ind_type,m) = & |
---|
| 2195 | albedo_pars_f%pars_xy(4,j,i) |
---|
| 2196 | ENDIF |
---|
| 2197 | ENDDO |
---|
[2696] | 2198 | ENDDO |
---|
| 2199 | ! |
---|
[3351] | 2200 | !-- For urban surface only if albedo has not been already initialized |
---|
| 2201 | !-- in the urban-surface model via the ASCII file. |
---|
| 2202 | IF ( .NOT. surf_usm_h%albedo_from_ascii ) THEN |
---|
| 2203 | DO m = 1, surf_usm_h%ns |
---|
| 2204 | i = surf_usm_h%i(m) |
---|
| 2205 | j = surf_usm_h%j(m) |
---|
| 2206 | ! |
---|
| 2207 | !-- Spectral albedos for wall/green/window surfaces |
---|
| 2208 | DO ind_type = 0, 2 |
---|
| 2209 | IF ( surf_usm_h%albedo_type(ind_type,m) == 0 ) THEN |
---|
| 2210 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
| 2211 | surf_usm_h%albedo(ind_type,m) = & |
---|
[2753] | 2212 | albedo_pars_f%pars_xy(1,j,i) |
---|
[3351] | 2213 | IF ( albedo_pars_f%pars_xy(1,j,i) /= albedo_pars_f%fill )& |
---|
| 2214 | surf_usm_h%aldir(ind_type,m) = & |
---|
[2753] | 2215 | albedo_pars_f%pars_xy(1,j,i) |
---|
[3351] | 2216 | IF ( albedo_pars_f%pars_xy(2,j,i) /= albedo_pars_f%fill )& |
---|
| 2217 | surf_usm_h%aldif(ind_type,m) = & |
---|
[2753] | 2218 | albedo_pars_f%pars_xy(2,j,i) |
---|
[3351] | 2219 | IF ( albedo_pars_f%pars_xy(3,j,i) /= albedo_pars_f%fill )& |
---|
| 2220 | surf_usm_h%asdir(ind_type,m) = & |
---|
[2753] | 2221 | albedo_pars_f%pars_xy(3,j,i) |
---|
[3351] | 2222 | IF ( albedo_pars_f%pars_xy(4,j,i) /= albedo_pars_f%fill )& |
---|
| 2223 | surf_usm_h%asdif(ind_type,m) = & |
---|
[2753] | 2224 | albedo_pars_f%pars_xy(4,j,i) |
---|
[3351] | 2225 | ENDIF |
---|
| 2226 | ENDDO |
---|
| 2227 | |
---|
[2753] | 2228 | ENDDO |
---|
[3351] | 2229 | ENDIF |
---|
[2696] | 2230 | ! |
---|
| 2231 | !-- Vertical |
---|
| 2232 | DO l = 0, 3 |
---|
| 2233 | ioff = surf_lsm_v(l)%ioff |
---|
| 2234 | joff = surf_lsm_v(l)%joff |
---|
[2753] | 2235 | |
---|
[2696] | 2236 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 2237 | i = surf_lsm_v(l)%i(m) |
---|
| 2238 | j = surf_lsm_v(l)%j(m) |
---|
[2753] | 2239 | ! |
---|
| 2240 | !-- Spectral albedos for vegetation/pavement/water surfaces |
---|
| 2241 | DO ind_type = 0, 2 |
---|
| 2242 | IF ( surf_lsm_v(l)%albedo_type(ind_type,m) == 0 ) THEN |
---|
| 2243 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
| 2244 | albedo_pars_f%fill ) & |
---|
| 2245 | surf_lsm_v(l)%albedo(ind_type,m) = & |
---|
[2696] | 2246 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
[2753] | 2247 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
| 2248 | albedo_pars_f%fill ) & |
---|
| 2249 | surf_lsm_v(l)%aldir(ind_type,m) = & |
---|
[2696] | 2250 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
[2753] | 2251 | IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= & |
---|
| 2252 | albedo_pars_f%fill ) & |
---|
| 2253 | surf_lsm_v(l)%aldif(ind_type,m) = & |
---|
[2696] | 2254 | albedo_pars_f%pars_xy(2,j+joff,i+ioff) |
---|
[2753] | 2255 | IF ( albedo_pars_f%pars_xy(3,j+joff,i+ioff) /= & |
---|
| 2256 | albedo_pars_f%fill ) & |
---|
| 2257 | surf_lsm_v(l)%asdir(ind_type,m) = & |
---|
[2696] | 2258 | albedo_pars_f%pars_xy(3,j+joff,i+ioff) |
---|
[2753] | 2259 | IF ( albedo_pars_f%pars_xy(4,j+joff,i+ioff) /= & |
---|
| 2260 | albedo_pars_f%fill ) & |
---|
| 2261 | surf_lsm_v(l)%asdif(ind_type,m) = & |
---|
[2696] | 2262 | albedo_pars_f%pars_xy(4,j+joff,i+ioff) |
---|
[2753] | 2263 | ENDIF |
---|
| 2264 | ENDDO |
---|
[2696] | 2265 | ENDDO |
---|
[3351] | 2266 | ! |
---|
| 2267 | !-- For urban surface only if albedo has not been already initialized |
---|
| 2268 | !-- in the urban-surface model via the ASCII file. |
---|
| 2269 | IF ( .NOT. surf_usm_v(l)%albedo_from_ascii ) THEN |
---|
| 2270 | ioff = surf_usm_v(l)%ioff |
---|
| 2271 | joff = surf_usm_v(l)%joff |
---|
[2696] | 2272 | |
---|
[3351] | 2273 | DO m = 1, surf_usm_v(l)%ns |
---|
| 2274 | i = surf_usm_v(l)%i(m) |
---|
| 2275 | j = surf_usm_v(l)%j(m) |
---|
| 2276 | ! |
---|
| 2277 | !-- Spectral albedos for wall/green/window surfaces |
---|
| 2278 | DO ind_type = 0, 2 |
---|
| 2279 | IF ( surf_usm_v(l)%albedo_type(ind_type,m) == 0 ) THEN |
---|
| 2280 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
| 2281 | albedo_pars_f%fill ) & |
---|
| 2282 | surf_usm_v(l)%albedo(ind_type,m) = & |
---|
| 2283 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
| 2284 | IF ( albedo_pars_f%pars_xy(1,j+joff,i+ioff) /= & |
---|
| 2285 | albedo_pars_f%fill ) & |
---|
| 2286 | surf_usm_v(l)%aldir(ind_type,m) = & |
---|
| 2287 | albedo_pars_f%pars_xy(1,j+joff,i+ioff) |
---|
| 2288 | IF ( albedo_pars_f%pars_xy(2,j+joff,i+ioff) /= & |
---|
| 2289 | albedo_pars_f%fill ) & |
---|
| 2290 | surf_usm_v(l)%aldif(ind_type,m) = & |
---|
| 2291 | albedo_pars_f%pars_xy(2,j+joff,i+ioff) |
---|
| 2292 | IF ( albedo_pars_f%pars_xy(3,j+joff,i+ioff) /= & |
---|
| 2293 | albedo_pars_f%fill ) & |
---|
| 2294 | surf_usm_v(l)%asdir(ind_type,m) = & |
---|
| 2295 | albedo_pars_f%pars_xy(3,j+joff,i+ioff) |
---|
| 2296 | IF ( albedo_pars_f%pars_xy(4,j+joff,i+ioff) /= & |
---|
| 2297 | albedo_pars_f%fill ) & |
---|
| 2298 | surf_usm_v(l)%asdif(ind_type,m) = & |
---|
| 2299 | albedo_pars_f%pars_xy(4,j+joff,i+ioff) |
---|
| 2300 | ENDIF |
---|
| 2301 | ENDDO |
---|
[2753] | 2302 | |
---|
| 2303 | ENDDO |
---|
[3351] | 2304 | ENDIF |
---|
[2696] | 2305 | ENDDO |
---|
| 2306 | |
---|
[1585] | 2307 | ENDIF |
---|
| 2308 | |
---|
| 2309 | ! |
---|
| 2310 | !-- Calculate initial values of current (cosine of) the zenith angle and |
---|
| 2311 | !-- whether the sun is up |
---|
| 2312 | CALL calc_zenith |
---|
| 2313 | ! |
---|
[2696] | 2314 | !-- Calculate initial surface albedo for different surfaces |
---|
[1585] | 2315 | IF ( .NOT. constant_albedo ) THEN |
---|
[3524] | 2316 | #if defined( __netcdf ) |
---|
[2696] | 2317 | ! |
---|
[2930] | 2318 | !-- Horizontally aligned natural and urban surfaces |
---|
[2696] | 2319 | CALL calc_albedo( surf_lsm_h ) |
---|
| 2320 | CALL calc_albedo( surf_usm_h ) |
---|
| 2321 | ! |
---|
[2930] | 2322 | !-- Vertically aligned natural and urban surfaces |
---|
[2696] | 2323 | DO l = 0, 3 |
---|
| 2324 | CALL calc_albedo( surf_lsm_v(l) ) |
---|
| 2325 | CALL calc_albedo( surf_usm_v(l) ) |
---|
| 2326 | ENDDO |
---|
[3524] | 2327 | #endif |
---|
[1585] | 2328 | ELSE |
---|
[2696] | 2329 | ! |
---|
| 2330 | !-- Initialize sun-inclination independent spectral albedos |
---|
| 2331 | !-- Horizontal surfaces |
---|
| 2332 | IF ( surf_lsm_h%ns > 0 ) THEN |
---|
| 2333 | surf_lsm_h%rrtm_aldir = surf_lsm_h%aldir |
---|
| 2334 | surf_lsm_h%rrtm_asdir = surf_lsm_h%asdir |
---|
| 2335 | surf_lsm_h%rrtm_aldif = surf_lsm_h%aldif |
---|
| 2336 | surf_lsm_h%rrtm_asdif = surf_lsm_h%asdif |
---|
| 2337 | ENDIF |
---|
| 2338 | IF ( surf_usm_h%ns > 0 ) THEN |
---|
| 2339 | surf_usm_h%rrtm_aldir = surf_usm_h%aldir |
---|
| 2340 | surf_usm_h%rrtm_asdir = surf_usm_h%asdir |
---|
| 2341 | surf_usm_h%rrtm_aldif = surf_usm_h%aldif |
---|
| 2342 | surf_usm_h%rrtm_asdif = surf_usm_h%asdif |
---|
| 2343 | ENDIF |
---|
| 2344 | ! |
---|
| 2345 | !-- Vertical surfaces |
---|
| 2346 | DO l = 0, 3 |
---|
| 2347 | IF ( surf_lsm_v(l)%ns > 0 ) THEN |
---|
| 2348 | surf_lsm_v(l)%rrtm_aldir = surf_lsm_v(l)%aldir |
---|
| 2349 | surf_lsm_v(l)%rrtm_asdir = surf_lsm_v(l)%asdir |
---|
| 2350 | surf_lsm_v(l)%rrtm_aldif = surf_lsm_v(l)%aldif |
---|
| 2351 | surf_lsm_v(l)%rrtm_asdif = surf_lsm_v(l)%asdif |
---|
| 2352 | ENDIF |
---|
| 2353 | IF ( surf_usm_v(l)%ns > 0 ) THEN |
---|
| 2354 | surf_usm_v(l)%rrtm_aldir = surf_usm_v(l)%aldir |
---|
| 2355 | surf_usm_v(l)%rrtm_asdir = surf_usm_v(l)%asdir |
---|
| 2356 | surf_usm_v(l)%rrtm_aldif = surf_usm_v(l)%aldif |
---|
| 2357 | surf_usm_v(l)%rrtm_asdif = surf_usm_v(l)%asdif |
---|
| 2358 | ENDIF |
---|
| 2359 | ENDDO |
---|
| 2360 | |
---|
[1585] | 2361 | ENDIF |
---|
| 2362 | |
---|
| 2363 | ! |
---|
| 2364 | !-- Allocate 3d arrays of radiative fluxes and heating rates |
---|
| 2365 | IF ( .NOT. ALLOCATED ( rad_sw_in ) ) THEN |
---|
| 2366 | ALLOCATE ( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2367 | rad_sw_in = 0.0_wp |
---|
| 2368 | ENDIF |
---|
| 2369 | |
---|
| 2370 | IF ( .NOT. ALLOCATED ( rad_sw_in_av ) ) THEN |
---|
| 2371 | ALLOCATE ( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2372 | ENDIF |
---|
| 2373 | |
---|
| 2374 | IF ( .NOT. ALLOCATED ( rad_sw_out ) ) THEN |
---|
| 2375 | ALLOCATE ( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1691] | 2376 | rad_sw_out = 0.0_wp |
---|
[1585] | 2377 | ENDIF |
---|
| 2378 | |
---|
| 2379 | IF ( .NOT. ALLOCATED ( rad_sw_out_av ) ) THEN |
---|
| 2380 | ALLOCATE ( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2381 | ENDIF |
---|
| 2382 | |
---|
[1691] | 2383 | IF ( .NOT. ALLOCATED ( rad_sw_hr ) ) THEN |
---|
| 2384 | ALLOCATE ( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2385 | rad_sw_hr = 0.0_wp |
---|
| 2386 | ENDIF |
---|
[1585] | 2387 | |
---|
[1691] | 2388 | IF ( .NOT. ALLOCATED ( rad_sw_hr_av ) ) THEN |
---|
| 2389 | ALLOCATE ( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2390 | rad_sw_hr_av = 0.0_wp |
---|
| 2391 | ENDIF |
---|
| 2392 | |
---|
| 2393 | IF ( .NOT. ALLOCATED ( rad_sw_cs_hr ) ) THEN |
---|
| 2394 | ALLOCATE ( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2395 | rad_sw_cs_hr = 0.0_wp |
---|
| 2396 | ENDIF |
---|
| 2397 | |
---|
| 2398 | IF ( .NOT. ALLOCATED ( rad_sw_cs_hr_av ) ) THEN |
---|
| 2399 | ALLOCATE ( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2400 | rad_sw_cs_hr_av = 0.0_wp |
---|
| 2401 | ENDIF |
---|
| 2402 | |
---|
[1585] | 2403 | IF ( .NOT. ALLOCATED ( rad_lw_in ) ) THEN |
---|
| 2404 | ALLOCATE ( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2405 | rad_lw_in = 0.0_wp |
---|
| 2406 | ENDIF |
---|
| 2407 | |
---|
| 2408 | IF ( .NOT. ALLOCATED ( rad_lw_in_av ) ) THEN |
---|
| 2409 | ALLOCATE ( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2410 | ENDIF |
---|
| 2411 | |
---|
| 2412 | IF ( .NOT. ALLOCATED ( rad_lw_out ) ) THEN |
---|
| 2413 | ALLOCATE ( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2414 | rad_lw_out = 0.0_wp |
---|
| 2415 | ENDIF |
---|
| 2416 | |
---|
| 2417 | IF ( .NOT. ALLOCATED ( rad_lw_out_av ) ) THEN |
---|
| 2418 | ALLOCATE ( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2419 | ENDIF |
---|
| 2420 | |
---|
[1691] | 2421 | IF ( .NOT. ALLOCATED ( rad_lw_hr ) ) THEN |
---|
| 2422 | ALLOCATE ( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2423 | rad_lw_hr = 0.0_wp |
---|
| 2424 | ENDIF |
---|
| 2425 | |
---|
| 2426 | IF ( .NOT. ALLOCATED ( rad_lw_hr_av ) ) THEN |
---|
| 2427 | ALLOCATE ( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2428 | rad_lw_hr_av = 0.0_wp |
---|
| 2429 | ENDIF |
---|
| 2430 | |
---|
| 2431 | IF ( .NOT. ALLOCATED ( rad_lw_cs_hr ) ) THEN |
---|
| 2432 | ALLOCATE ( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2433 | rad_lw_cs_hr = 0.0_wp |
---|
| 2434 | ENDIF |
---|
| 2435 | |
---|
| 2436 | IF ( .NOT. ALLOCATED ( rad_lw_cs_hr_av ) ) THEN |
---|
| 2437 | ALLOCATE ( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2438 | rad_lw_cs_hr_av = 0.0_wp |
---|
| 2439 | ENDIF |
---|
| 2440 | |
---|
| 2441 | ALLOCATE ( rad_sw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2442 | ALLOCATE ( rad_sw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1585] | 2443 | rad_sw_cs_in = 0.0_wp |
---|
| 2444 | rad_sw_cs_out = 0.0_wp |
---|
| 2445 | |
---|
[1691] | 2446 | ALLOCATE ( rad_lw_cs_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 2447 | ALLOCATE ( rad_lw_cs_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1585] | 2448 | rad_lw_cs_in = 0.0_wp |
---|
| 2449 | rad_lw_cs_out = 0.0_wp |
---|
| 2450 | |
---|
| 2451 | ! |
---|
[2696] | 2452 | !-- Allocate 1-element array for surface temperature |
---|
| 2453 | !-- (RRTMG anticipates an array as passed argument). |
---|
[1585] | 2454 | ALLOCATE ( rrtm_tsfc(1) ) |
---|
[2696] | 2455 | ! |
---|
| 2456 | !-- Allocate surface emissivity. |
---|
| 2457 | !-- Values will be given directly before calling rrtm_lw. |
---|
| 2458 | ALLOCATE ( rrtm_emis(0:0,1:nbndlw+1) ) |
---|
[1585] | 2459 | |
---|
| 2460 | ! |
---|
| 2461 | !-- Initialize RRTMG |
---|
[3274] | 2462 | IF ( lw_radiation ) CALL rrtmg_lw_ini ( c_p ) |
---|
| 2463 | IF ( sw_radiation ) CALL rrtmg_sw_ini ( c_p ) |
---|
[1585] | 2464 | |
---|
| 2465 | ! |
---|
| 2466 | !-- Set input files for RRTMG |
---|
| 2467 | INQUIRE(FILE="RAD_SND_DATA", EXIST=snd_exists) |
---|
| 2468 | IF ( .NOT. snd_exists ) THEN |
---|
| 2469 | rrtm_input_file = "rrtmg_lw.nc" |
---|
| 2470 | ENDIF |
---|
| 2471 | |
---|
| 2472 | ! |
---|
| 2473 | !-- Read vertical layers for RRTMG from sounding data |
---|
| 2474 | !-- The routine provides nzt_rad, hyp_snd(1:nzt_rad), |
---|
| 2475 | !-- t_snd(nzt+2:nzt_rad), rrtm_play(1:nzt_rad), rrtm_plev(1_nzt_rad+1), |
---|
| 2476 | !-- rrtm_tlay(nzt+2:nzt_rad), rrtm_tlev(nzt+2:nzt_rad+1) |
---|
| 2477 | CALL read_sounding_data |
---|
| 2478 | |
---|
| 2479 | ! |
---|
| 2480 | !-- Read trace gas profiles from file. This routine provides |
---|
| 2481 | !-- the rrtm_ arrays (1:nzt_rad+1) |
---|
| 2482 | CALL read_trace_gas_data |
---|
| 2483 | #endif |
---|
[1551] | 2484 | ENDIF |
---|
[1585] | 2485 | |
---|
[1551] | 2486 | ! |
---|
[1585] | 2487 | !-- Perform user actions if required |
---|
| 2488 | CALL user_init_radiation |
---|
| 2489 | |
---|
| 2490 | ! |
---|
| 2491 | !-- Calculate radiative fluxes at model start |
---|
[2995] | 2492 | SELECT CASE ( TRIM( radiation_scheme ) ) |
---|
[1853] | 2493 | |
---|
[2995] | 2494 | CASE ( 'rrtmg' ) |
---|
| 2495 | CALL radiation_rrtmg |
---|
[1853] | 2496 | |
---|
[2995] | 2497 | CASE ( 'clear-sky' ) |
---|
| 2498 | CALL radiation_clearsky |
---|
[1585] | 2499 | |
---|
[2995] | 2500 | CASE ( 'constant' ) |
---|
| 2501 | CALL radiation_constant |
---|
| 2502 | |
---|
| 2503 | CASE DEFAULT |
---|
| 2504 | |
---|
| 2505 | END SELECT |
---|
| 2506 | |
---|
[1496] | 2507 | RETURN |
---|
| 2508 | |
---|
[1826] | 2509 | END SUBROUTINE radiation_init |
---|
[1496] | 2510 | |
---|
| 2511 | |
---|
| 2512 | !------------------------------------------------------------------------------! |
---|
| 2513 | ! Description: |
---|
| 2514 | ! ------------ |
---|
[1682] | 2515 | !> A simple clear sky radiation model |
---|
[1496] | 2516 | !------------------------------------------------------------------------------! |
---|
[1551] | 2517 | SUBROUTINE radiation_clearsky |
---|
[1496] | 2518 | |
---|
[1585] | 2519 | |
---|
[1496] | 2520 | IMPLICIT NONE |
---|
| 2521 | |
---|
[2696] | 2522 | INTEGER(iwp) :: l !< running index for surface orientation |
---|
| 2523 | REAL(wp) :: pt1 !< potential temperature at first grid level or mean value at urban layer top |
---|
| 2524 | REAL(wp) :: pt1_l !< potential temperature at first grid level or mean value at urban layer top at local subdomain |
---|
| 2525 | REAL(wp) :: ql1 !< liquid water mixing ratio at first grid level or mean value at urban layer top |
---|
| 2526 | REAL(wp) :: ql1_l !< liquid water mixing ratio at first grid level or mean value at urban layer top at local subdomain |
---|
| 2527 | |
---|
| 2528 | TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine |
---|
| 2529 | |
---|
[1496] | 2530 | ! |
---|
[1585] | 2531 | !-- Calculate current zenith angle |
---|
| 2532 | CALL calc_zenith |
---|
| 2533 | |
---|
| 2534 | ! |
---|
| 2535 | !-- Calculate sky transmissivity |
---|
| 2536 | sky_trans = 0.6_wp + 0.2_wp * zenith(0) |
---|
[2995] | 2537 | |
---|
[1585] | 2538 | ! |
---|
[2696] | 2539 | !-- Calculate value of the Exner function at model surface |
---|
[1585] | 2540 | ! |
---|
[2696] | 2541 | !-- In case averaged radiation is used, calculate mean temperature and |
---|
| 2542 | !-- liquid water mixing ratio at the urban-layer top. |
---|
[3337] | 2543 | IF ( average_radiation ) THEN |
---|
[2696] | 2544 | pt1 = 0.0_wp |
---|
[3274] | 2545 | IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = 0.0_wp |
---|
[2696] | 2546 | |
---|
| 2547 | pt1_l = SUM( pt(nzut,nys:nyn,nxl:nxr) ) |
---|
[3274] | 2548 | IF ( bulk_cloud_model .OR. cloud_droplets ) ql1_l = SUM( ql(nzut,nys:nyn,nxl:nxr) ) |
---|
[2696] | 2549 | |
---|
| 2550 | #if defined( __parallel ) |
---|
| 2551 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 2552 | CALL MPI_ALLREDUCE( pt1_l, pt1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 2553 | IF ( ierr /= 0 ) THEN |
---|
| 2554 | WRITE(9,*) 'Error MPI_AllReduce1:', ierr, pt1_l, pt1 |
---|
| 2555 | FLUSH(9) |
---|
| 2556 | ENDIF |
---|
| 2557 | |
---|
| 2558 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
| 2559 | CALL MPI_ALLREDUCE( ql1_l, ql1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 2560 | IF ( ierr /= 0 ) THEN |
---|
| 2561 | WRITE(9,*) 'Error MPI_AllReduce2:', ierr, ql1_l, ql1 |
---|
| 2562 | FLUSH(9) |
---|
| 2563 | ENDIF |
---|
| 2564 | ENDIF |
---|
[2696] | 2565 | #else |
---|
| 2566 | pt1 = pt1_l |
---|
[3274] | 2567 | IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = ql1_l |
---|
[2696] | 2568 | #endif |
---|
[3274] | 2569 | |
---|
| 2570 | IF ( bulk_cloud_model .OR. cloud_droplets ) pt1 = pt1 + lv_d_cp / exner(nzut) * ql1 |
---|
[2232] | 2571 | ! |
---|
[2696] | 2572 | !-- Finally, divide by number of grid points |
---|
| 2573 | pt1 = pt1 / REAL( ( nx + 1 ) * ( ny + 1 ), KIND=wp ) |
---|
| 2574 | ENDIF |
---|
| 2575 | ! |
---|
| 2576 | !-- Call clear-sky calculation for each surface orientation. |
---|
| 2577 | !-- First, horizontal surfaces |
---|
| 2578 | surf => surf_lsm_h |
---|
| 2579 | CALL radiation_clearsky_surf |
---|
| 2580 | surf => surf_usm_h |
---|
| 2581 | CALL radiation_clearsky_surf |
---|
| 2582 | ! |
---|
| 2583 | !-- Vertical surfaces |
---|
| 2584 | DO l = 0, 3 |
---|
| 2585 | surf => surf_lsm_v(l) |
---|
| 2586 | CALL radiation_clearsky_surf |
---|
| 2587 | surf => surf_usm_v(l) |
---|
| 2588 | CALL radiation_clearsky_surf |
---|
| 2589 | ENDDO |
---|
[1691] | 2590 | |
---|
[2696] | 2591 | CONTAINS |
---|
[1691] | 2592 | |
---|
[2696] | 2593 | SUBROUTINE radiation_clearsky_surf |
---|
[1585] | 2594 | |
---|
[2696] | 2595 | IMPLICIT NONE |
---|
| 2596 | |
---|
| 2597 | INTEGER(iwp) :: i !< index x-direction |
---|
| 2598 | INTEGER(iwp) :: j !< index y-direction |
---|
| 2599 | INTEGER(iwp) :: k !< index z-direction |
---|
| 2600 | INTEGER(iwp) :: m !< running index for surface elements |
---|
| 2601 | |
---|
| 2602 | IF ( surf%ns < 1 ) RETURN |
---|
| 2603 | |
---|
| 2604 | ! |
---|
| 2605 | !-- Calculate radiation fluxes and net radiation (rad_net) assuming |
---|
| 2606 | !-- homogeneous urban radiation conditions. |
---|
| 2607 | IF ( average_radiation ) THEN |
---|
| 2608 | |
---|
| 2609 | k = nzut |
---|
[2723] | 2610 | |
---|
[2696] | 2611 | surf%rad_sw_in = solar_constant * sky_trans * zenith(0) |
---|
| 2612 | surf%rad_sw_out = albedo_urb * surf%rad_sw_in |
---|
| 2613 | |
---|
[3274] | 2614 | surf%rad_lw_in = 0.8_wp * sigma_sb * (pt1 * exner(k+1))**4 |
---|
[2696] | 2615 | |
---|
| 2616 | surf%rad_lw_out = emissivity_urb * sigma_sb * (t_rad_urb)**4 & |
---|
| 2617 | + (1.0_wp - emissivity_urb) * surf%rad_lw_in |
---|
| 2618 | |
---|
| 2619 | surf%rad_net = surf%rad_sw_in - surf%rad_sw_out & |
---|
| 2620 | + surf%rad_lw_in - surf%rad_lw_out |
---|
| 2621 | |
---|
| 2622 | surf%rad_lw_out_change_0 = 3.0_wp * emissivity_urb * sigma_sb & |
---|
| 2623 | * (t_rad_urb)**3 |
---|
| 2624 | |
---|
| 2625 | ! |
---|
| 2626 | !-- Calculate radiation fluxes and net radiation (rad_net) for each surface |
---|
| 2627 | !-- element. |
---|
[1691] | 2628 | ELSE |
---|
| 2629 | |
---|
[2696] | 2630 | DO m = 1, surf%ns |
---|
| 2631 | i = surf%i(m) |
---|
| 2632 | j = surf%j(m) |
---|
| 2633 | k = surf%k(m) |
---|
[1691] | 2634 | |
---|
[2995] | 2635 | surf%rad_sw_in(m) = solar_constant * sky_trans * zenith(0) |
---|
| 2636 | |
---|
[2696] | 2637 | ! |
---|
| 2638 | !-- Weighted average according to surface fraction. |
---|
[2723] | 2639 | !-- ATTENTION: when radiation interactions are switched on the |
---|
| 2640 | !-- calculated fluxes below are not actually used as they are |
---|
| 2641 | !-- overwritten in radiation_interaction. |
---|
[2963] | 2642 | surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
| 2643 | surf%albedo(ind_veg_wall,m) & |
---|
| 2644 | + surf%frac(ind_pav_green,m) * & |
---|
| 2645 | surf%albedo(ind_pav_green,m) & |
---|
| 2646 | + surf%frac(ind_wat_win,m) * & |
---|
| 2647 | surf%albedo(ind_wat_win,m) ) & |
---|
[2930] | 2648 | * surf%rad_sw_in(m) |
---|
[1976] | 2649 | |
---|
[2963] | 2650 | surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
| 2651 | surf%emissivity(ind_veg_wall,m) & |
---|
| 2652 | + surf%frac(ind_pav_green,m) * & |
---|
| 2653 | surf%emissivity(ind_pav_green,m) & |
---|
| 2654 | + surf%frac(ind_wat_win,m) * & |
---|
| 2655 | surf%emissivity(ind_wat_win,m) & |
---|
[2930] | 2656 | ) & |
---|
| 2657 | * sigma_sb & |
---|
[3274] | 2658 | * ( surf%pt_surface(m) * exner(nzb) )**4 |
---|
[1585] | 2659 | |
---|
[2930] | 2660 | surf%rad_lw_out_change_0(m) = & |
---|
[2963] | 2661 | ( surf%frac(ind_veg_wall,m) * & |
---|
| 2662 | surf%emissivity(ind_veg_wall,m) & |
---|
| 2663 | + surf%frac(ind_pav_green,m) * & |
---|
| 2664 | surf%emissivity(ind_pav_green,m) & |
---|
| 2665 | + surf%frac(ind_wat_win,m) * & |
---|
| 2666 | surf%emissivity(ind_wat_win,m) & |
---|
[2930] | 2667 | ) * 3.0_wp * sigma_sb & |
---|
[3274] | 2668 | * ( surf%pt_surface(m) * exner(nzb) )** 3 |
---|
[2696] | 2669 | |
---|
| 2670 | |
---|
[3274] | 2671 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
| 2672 | pt1 = pt(k,j,i) + lv_d_cp / exner(k) * ql(k,j,i) |
---|
| 2673 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * (pt1 * exner(k))**4 |
---|
[2696] | 2674 | ELSE |
---|
[3274] | 2675 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * (pt(k,j,i) * exner(k))**4 |
---|
[2696] | 2676 | ENDIF |
---|
| 2677 | |
---|
[2930] | 2678 | surf%rad_net(m) = surf%rad_sw_in(m) - surf%rad_sw_out(m) & |
---|
[2696] | 2679 | + surf%rad_lw_in(m) - surf%rad_lw_out(m) |
---|
| 2680 | |
---|
| 2681 | ENDDO |
---|
| 2682 | |
---|
| 2683 | ENDIF |
---|
| 2684 | |
---|
[2920] | 2685 | ! |
---|
| 2686 | !-- Fill out values in radiation arrays |
---|
| 2687 | DO m = 1, surf%ns |
---|
| 2688 | i = surf%i(m) |
---|
| 2689 | j = surf%j(m) |
---|
| 2690 | rad_sw_in(0,j,i) = surf%rad_sw_in(m) |
---|
| 2691 | rad_sw_out(0,j,i) = surf%rad_sw_out(m) |
---|
| 2692 | rad_lw_in(0,j,i) = surf%rad_lw_in(m) |
---|
| 2693 | rad_lw_out(0,j,i) = surf%rad_lw_out(m) |
---|
| 2694 | ENDDO |
---|
[2995] | 2695 | |
---|
[2696] | 2696 | END SUBROUTINE radiation_clearsky_surf |
---|
| 2697 | |
---|
[1585] | 2698 | END SUBROUTINE radiation_clearsky |
---|
| 2699 | |
---|
| 2700 | |
---|
| 2701 | !------------------------------------------------------------------------------! |
---|
| 2702 | ! Description: |
---|
| 2703 | ! ------------ |
---|
[1853] | 2704 | !> This scheme keeps the prescribed net radiation constant during the run |
---|
| 2705 | !------------------------------------------------------------------------------! |
---|
| 2706 | SUBROUTINE radiation_constant |
---|
| 2707 | |
---|
| 2708 | |
---|
| 2709 | IMPLICIT NONE |
---|
| 2710 | |
---|
[2696] | 2711 | INTEGER(iwp) :: l !< running index for surface orientation |
---|
[1853] | 2712 | |
---|
[2696] | 2713 | REAL(wp) :: pt1 !< potential temperature at first grid level or mean value at urban layer top |
---|
| 2714 | REAL(wp) :: pt1_l !< potential temperature at first grid level or mean value at urban layer top at local subdomain |
---|
| 2715 | REAL(wp) :: ql1 !< liquid water mixing ratio at first grid level or mean value at urban layer top |
---|
| 2716 | REAL(wp) :: ql1_l !< liquid water mixing ratio at first grid level or mean value at urban layer top at local subdomain |
---|
| 2717 | |
---|
[3274] | 2718 | TYPE(surf_type), POINTER :: surf !< pointer on respective surface type, used to generalize routine |
---|
[2696] | 2719 | |
---|
[1853] | 2720 | ! |
---|
[2696] | 2721 | !-- In case averaged radiation is used, calculate mean temperature and |
---|
| 2722 | !-- liquid water mixing ratio at the urban-layer top. |
---|
| 2723 | IF ( average_radiation ) THEN |
---|
| 2724 | pt1 = 0.0_wp |
---|
[3274] | 2725 | IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = 0.0_wp |
---|
[2696] | 2726 | |
---|
| 2727 | pt1_l = SUM( pt(nzut,nys:nyn,nxl:nxr) ) |
---|
[3274] | 2728 | IF ( bulk_cloud_model .OR. cloud_droplets ) ql1_l = SUM( ql(nzut,nys:nyn,nxl:nxr) ) |
---|
[2696] | 2729 | |
---|
| 2730 | #if defined( __parallel ) |
---|
| 2731 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 2732 | CALL MPI_ALLREDUCE( pt1_l, pt1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 2733 | IF ( ierr /= 0 ) THEN |
---|
| 2734 | WRITE(9,*) 'Error MPI_AllReduce3:', ierr, pt1_l, pt1 |
---|
| 2735 | FLUSH(9) |
---|
| 2736 | ENDIF |
---|
| 2737 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[2696] | 2738 | CALL MPI_ALLREDUCE( ql1_l, ql1, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 2739 | IF ( ierr /= 0 ) THEN |
---|
| 2740 | WRITE(9,*) 'Error MPI_AllReduce4:', ierr, ql1_l, ql1 |
---|
| 2741 | FLUSH(9) |
---|
| 2742 | ENDIF |
---|
| 2743 | ENDIF |
---|
[2696] | 2744 | #else |
---|
| 2745 | pt1 = pt1_l |
---|
[3274] | 2746 | IF ( bulk_cloud_model .OR. cloud_droplets ) ql1 = ql1_l |
---|
[2696] | 2747 | #endif |
---|
[3274] | 2748 | IF ( bulk_cloud_model .OR. cloud_droplets ) pt1 = pt1 + lv_d_cp / exner(nzut+1) * ql1 |
---|
[2232] | 2749 | ! |
---|
[2696] | 2750 | !-- Finally, divide by number of grid points |
---|
| 2751 | pt1 = pt1 / REAL( ( nx + 1 ) * ( ny + 1 ), KIND=wp ) |
---|
| 2752 | ENDIF |
---|
[1853] | 2753 | |
---|
[2696] | 2754 | ! |
---|
| 2755 | !-- First, horizontal surfaces |
---|
| 2756 | surf => surf_lsm_h |
---|
| 2757 | CALL radiation_constant_surf |
---|
| 2758 | surf => surf_usm_h |
---|
| 2759 | CALL radiation_constant_surf |
---|
| 2760 | ! |
---|
| 2761 | !-- Vertical surfaces |
---|
| 2762 | DO l = 0, 3 |
---|
| 2763 | surf => surf_lsm_v(l) |
---|
| 2764 | CALL radiation_constant_surf |
---|
| 2765 | surf => surf_usm_v(l) |
---|
| 2766 | CALL radiation_constant_surf |
---|
| 2767 | ENDDO |
---|
[1976] | 2768 | |
---|
[2696] | 2769 | CONTAINS |
---|
[1976] | 2770 | |
---|
[2696] | 2771 | SUBROUTINE radiation_constant_surf |
---|
| 2772 | |
---|
| 2773 | IMPLICIT NONE |
---|
| 2774 | |
---|
| 2775 | INTEGER(iwp) :: i !< index x-direction |
---|
| 2776 | INTEGER(iwp) :: ioff !< offset between surface element and adjacent grid point along x |
---|
| 2777 | INTEGER(iwp) :: j !< index y-direction |
---|
| 2778 | INTEGER(iwp) :: joff !< offset between surface element and adjacent grid point along y |
---|
| 2779 | INTEGER(iwp) :: k !< index z-direction |
---|
| 2780 | INTEGER(iwp) :: koff !< offset between surface element and adjacent grid point along z |
---|
| 2781 | INTEGER(iwp) :: m !< running index for surface elements |
---|
| 2782 | |
---|
| 2783 | IF ( surf%ns < 1 ) RETURN |
---|
| 2784 | |
---|
| 2785 | !-- Calculate homogenoeus urban radiation fluxes |
---|
| 2786 | IF ( average_radiation ) THEN |
---|
| 2787 | |
---|
| 2788 | surf%rad_net = net_radiation |
---|
| 2789 | |
---|
[3274] | 2790 | surf%rad_lw_in = 0.8_wp * sigma_sb * (pt1 * exner(nzut+1))**4 |
---|
[2696] | 2791 | |
---|
| 2792 | surf%rad_lw_out = emissivity_urb * sigma_sb * (t_rad_urb)**4 & |
---|
[3230] | 2793 | + ( 1.0_wp - emissivity_urb ) & ! shouldn't be this a bulk value -- emissivity_urb? |
---|
[2696] | 2794 | * surf%rad_lw_in |
---|
| 2795 | |
---|
| 2796 | surf%rad_lw_out_change_0 = 3.0_wp * emissivity_urb * sigma_sb & |
---|
| 2797 | * t_rad_urb**3 |
---|
| 2798 | |
---|
| 2799 | surf%rad_sw_in = ( surf%rad_net - surf%rad_lw_in & |
---|
| 2800 | + surf%rad_lw_out ) & |
---|
| 2801 | / ( 1.0_wp - albedo_urb ) |
---|
| 2802 | |
---|
| 2803 | surf%rad_sw_out = albedo_urb * surf%rad_sw_in |
---|
| 2804 | |
---|
| 2805 | ! |
---|
| 2806 | !-- Calculate radiation fluxes for each surface element |
---|
[1976] | 2807 | ELSE |
---|
[2696] | 2808 | ! |
---|
| 2809 | !-- Determine index offset between surface element and adjacent |
---|
| 2810 | !-- atmospheric grid point |
---|
| 2811 | ioff = surf%ioff |
---|
| 2812 | joff = surf%joff |
---|
| 2813 | koff = surf%koff |
---|
[1976] | 2814 | |
---|
[2696] | 2815 | ! |
---|
| 2816 | !-- Prescribe net radiation and estimate the remaining radiative fluxes |
---|
| 2817 | DO m = 1, surf%ns |
---|
| 2818 | i = surf%i(m) |
---|
| 2819 | j = surf%j(m) |
---|
| 2820 | k = surf%k(m) |
---|
[1853] | 2821 | |
---|
[2696] | 2822 | surf%rad_net(m) = net_radiation |
---|
[1976] | 2823 | |
---|
[3274] | 2824 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
| 2825 | pt1 = pt(k,j,i) + lv_d_cp / exner(k) * ql(k,j,i) |
---|
| 2826 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * (pt1 * exner(k))**4 |
---|
[2696] | 2827 | ELSE |
---|
[2930] | 2828 | surf%rad_lw_in(m) = 0.8_wp * sigma_sb * & |
---|
[3274] | 2829 | ( pt(k,j,i) * exner(k) )**4 |
---|
[2696] | 2830 | ENDIF |
---|
[1853] | 2831 | |
---|
[2696] | 2832 | ! |
---|
| 2833 | !-- Weighted average according to surface fraction. |
---|
[2963] | 2834 | surf%rad_lw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
| 2835 | surf%emissivity(ind_veg_wall,m) & |
---|
| 2836 | + surf%frac(ind_pav_green,m) * & |
---|
| 2837 | surf%emissivity(ind_pav_green,m) & |
---|
| 2838 | + surf%frac(ind_wat_win,m) * & |
---|
| 2839 | surf%emissivity(ind_wat_win,m) & |
---|
[2930] | 2840 | ) & |
---|
| 2841 | * sigma_sb & |
---|
[3274] | 2842 | * ( surf%pt_surface(m) * exner(nzb) )**4 |
---|
[2696] | 2843 | |
---|
[2930] | 2844 | surf%rad_sw_in(m) = ( surf%rad_net(m) - surf%rad_lw_in(m) & |
---|
| 2845 | + surf%rad_lw_out(m) ) & |
---|
| 2846 | / ( 1.0_wp - & |
---|
[2963] | 2847 | ( surf%frac(ind_veg_wall,m) * & |
---|
| 2848 | surf%albedo(ind_veg_wall,m) & |
---|
| 2849 | + surf%frac(ind_pav_green,m) * & |
---|
| 2850 | surf%albedo(ind_pav_green,m) & |
---|
| 2851 | + surf%frac(ind_wat_win,m) * & |
---|
| 2852 | surf%albedo(ind_wat_win,m) ) & |
---|
[2930] | 2853 | ) |
---|
[2696] | 2854 | |
---|
[2963] | 2855 | surf%rad_sw_out(m) = ( surf%frac(ind_veg_wall,m) * & |
---|
| 2856 | surf%albedo(ind_veg_wall,m) & |
---|
| 2857 | + surf%frac(ind_pav_green,m) * & |
---|
| 2858 | surf%albedo(ind_pav_green,m) & |
---|
| 2859 | + surf%frac(ind_wat_win,m) * & |
---|
| 2860 | surf%albedo(ind_wat_win,m) ) & |
---|
[2930] | 2861 | * surf%rad_sw_in(m) |
---|
[2696] | 2862 | |
---|
| 2863 | ENDDO |
---|
| 2864 | |
---|
| 2865 | ENDIF |
---|
| 2866 | |
---|
[2920] | 2867 | ! |
---|
| 2868 | !-- Fill out values in radiation arrays |
---|
| 2869 | DO m = 1, surf%ns |
---|
| 2870 | i = surf%i(m) |
---|
| 2871 | j = surf%j(m) |
---|
| 2872 | rad_sw_in(0,j,i) = surf%rad_sw_in(m) |
---|
| 2873 | rad_sw_out(0,j,i) = surf%rad_sw_out(m) |
---|
| 2874 | rad_lw_in(0,j,i) = surf%rad_lw_in(m) |
---|
| 2875 | rad_lw_out(0,j,i) = surf%rad_lw_out(m) |
---|
| 2876 | ENDDO |
---|
| 2877 | |
---|
[2696] | 2878 | END SUBROUTINE radiation_constant_surf |
---|
| 2879 | |
---|
| 2880 | |
---|
[1853] | 2881 | END SUBROUTINE radiation_constant |
---|
| 2882 | |
---|
| 2883 | !------------------------------------------------------------------------------! |
---|
| 2884 | ! Description: |
---|
| 2885 | ! ------------ |
---|
[1826] | 2886 | !> Header output for radiation model |
---|
| 2887 | !------------------------------------------------------------------------------! |
---|
| 2888 | SUBROUTINE radiation_header ( io ) |
---|
| 2889 | |
---|
| 2890 | |
---|
| 2891 | IMPLICIT NONE |
---|
| 2892 | |
---|
| 2893 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
| 2894 | |
---|
| 2895 | |
---|
| 2896 | |
---|
| 2897 | ! |
---|
| 2898 | !-- Write radiation model header |
---|
| 2899 | WRITE( io, 3 ) |
---|
| 2900 | |
---|
| 2901 | IF ( radiation_scheme == "constant" ) THEN |
---|
| 2902 | WRITE( io, 4 ) net_radiation |
---|
| 2903 | ELSEIF ( radiation_scheme == "clear-sky" ) THEN |
---|
| 2904 | WRITE( io, 5 ) |
---|
| 2905 | ELSEIF ( radiation_scheme == "rrtmg" ) THEN |
---|
| 2906 | WRITE( io, 6 ) |
---|
| 2907 | IF ( .NOT. lw_radiation ) WRITE( io, 10 ) |
---|
| 2908 | IF ( .NOT. sw_radiation ) WRITE( io, 11 ) |
---|
| 2909 | ENDIF |
---|
| 2910 | |
---|
[2696] | 2911 | IF ( albedo_type_f%from_file .OR. vegetation_type_f%from_file .OR. & |
---|
| 2912 | pavement_type_f%from_file .OR. water_type_f%from_file .OR. & |
---|
| 2913 | building_type_f%from_file ) THEN |
---|
| 2914 | WRITE( io, 13 ) |
---|
| 2915 | ELSE |
---|
| 2916 | IF ( albedo_type == 0 ) THEN |
---|
| 2917 | WRITE( io, 7 ) albedo |
---|
| 2918 | ELSE |
---|
| 2919 | WRITE( io, 8 ) TRIM( albedo_type_name(albedo_type) ) |
---|
| 2920 | ENDIF |
---|
[1826] | 2921 | ENDIF |
---|
| 2922 | IF ( constant_albedo ) THEN |
---|
| 2923 | WRITE( io, 9 ) |
---|
| 2924 | ENDIF |
---|
| 2925 | |
---|
| 2926 | WRITE( io, 12 ) dt_radiation |
---|
| 2927 | |
---|
| 2928 | |
---|
| 2929 | 3 FORMAT (//' Radiation model information:'/ & |
---|
| 2930 | ' ----------------------------'/) |
---|
[2299] | 2931 | 4 FORMAT (' --> Using constant net radiation: net_radiation = ', F6.2, & |
---|
[1826] | 2932 | // 'W/m**2') |
---|
[2299] | 2933 | 5 FORMAT (' --> Simple radiation scheme for clear sky is used (no clouds,',& |
---|
[1826] | 2934 | ' default)') |
---|
| 2935 | 6 FORMAT (' --> RRTMG scheme is used') |
---|
| 2936 | 7 FORMAT (/' User-specific surface albedo: albedo =', F6.3) |
---|
| 2937 | 8 FORMAT (/' Albedo is set for land surface type: ', A) |
---|
| 2938 | 9 FORMAT (/' --> Albedo is fixed during the run') |
---|
| 2939 | 10 FORMAT (/' --> Longwave radiation is disabled') |
---|
| 2940 | 11 FORMAT (/' --> Shortwave radiation is disabled.') |
---|
| 2941 | 12 FORMAT (' Timestep: dt_radiation = ', F6.2, ' s') |
---|
[3241] | 2942 | 13 FORMAT (/' Albedo is set individually for each xy-location, according ', & |
---|
[2696] | 2943 | 'to given surface type.') |
---|
[1826] | 2944 | |
---|
| 2945 | |
---|
| 2946 | END SUBROUTINE radiation_header |
---|
| 2947 | |
---|
| 2948 | |
---|
| 2949 | !------------------------------------------------------------------------------! |
---|
| 2950 | ! Description: |
---|
| 2951 | ! ------------ |
---|
[2932] | 2952 | !> Parin for &radiation_parameters for radiation model |
---|
[1826] | 2953 | !------------------------------------------------------------------------------! |
---|
| 2954 | SUBROUTINE radiation_parin |
---|
| 2955 | |
---|
| 2956 | |
---|
| 2957 | IMPLICIT NONE |
---|
| 2958 | |
---|
| 2959 | CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file |
---|
| 2960 | |
---|
[3449] | 2961 | NAMELIST /radiation_par/ albedo, albedo_lw_dif, albedo_lw_dir, & |
---|
| 2962 | albedo_sw_dif, albedo_sw_dir, albedo_type, & |
---|
| 2963 | constant_albedo, dt_radiation, emissivity, & |
---|
| 2964 | lw_radiation, max_raytracing_dist, & |
---|
[3464] | 2965 | min_irrf_value, mrt_geom_human, & |
---|
| 2966 | mrt_include_sw, mrt_nlevels, & |
---|
[3449] | 2967 | mrt_skip_roof, net_radiation, nrefsteps, & |
---|
| 2968 | plant_lw_interact, rad_angular_discretization,& |
---|
| 2969 | radiation_interactions_on, radiation_scheme, & |
---|
| 2970 | raytrace_discrete_azims, & |
---|
| 2971 | raytrace_discrete_elevs, raytrace_mpi_rma, & |
---|
| 2972 | skip_time_do_radiation, surface_reflections, & |
---|
| 2973 | svfnorm_report_thresh, sw_radiation, & |
---|
| 2974 | unscheduled_radiation_calls |
---|
| 2975 | |
---|
[2932] | 2976 | |
---|
[3449] | 2977 | NAMELIST /radiation_parameters/ albedo, albedo_lw_dif, albedo_lw_dir, & |
---|
| 2978 | albedo_sw_dif, albedo_sw_dir, albedo_type, & |
---|
| 2979 | constant_albedo, dt_radiation, emissivity, & |
---|
| 2980 | lw_radiation, max_raytracing_dist, & |
---|
[3464] | 2981 | min_irrf_value, mrt_geom_human, & |
---|
| 2982 | mrt_include_sw, mrt_nlevels, & |
---|
[3449] | 2983 | mrt_skip_roof, net_radiation, nrefsteps, & |
---|
| 2984 | plant_lw_interact, rad_angular_discretization,& |
---|
| 2985 | radiation_interactions_on, radiation_scheme, & |
---|
| 2986 | raytrace_discrete_azims, & |
---|
| 2987 | raytrace_discrete_elevs, raytrace_mpi_rma, & |
---|
| 2988 | skip_time_do_radiation, surface_reflections, & |
---|
| 2989 | svfnorm_report_thresh, sw_radiation, & |
---|
| 2990 | unscheduled_radiation_calls |
---|
[2932] | 2991 | |
---|
[1826] | 2992 | line = ' ' |
---|
| 2993 | |
---|
| 2994 | ! |
---|
[2932] | 2995 | !-- Try to find radiation model namelist |
---|
[1826] | 2996 | REWIND ( 11 ) |
---|
| 2997 | line = ' ' |
---|
[3248] | 2998 | DO WHILE ( INDEX( line, '&radiation_parameters' ) == 0 ) |
---|
[3246] | 2999 | READ ( 11, '(A)', END=12 ) line |
---|
[1826] | 3000 | ENDDO |
---|
| 3001 | BACKSPACE ( 11 ) |
---|
| 3002 | |
---|
| 3003 | ! |
---|
| 3004 | !-- Read user-defined namelist |
---|
[3246] | 3005 | READ ( 11, radiation_parameters, ERR = 10 ) |
---|
[2932] | 3006 | |
---|
| 3007 | ! |
---|
| 3008 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 3009 | radiation = .TRUE. |
---|
[3246] | 3010 | |
---|
| 3011 | GOTO 14 |
---|
| 3012 | |
---|
| 3013 | 10 BACKSPACE( 11 ) |
---|
[3248] | 3014 | READ( 11 , '(A)') line |
---|
| 3015 | CALL parin_fail_message( 'radiation_parameters', line ) |
---|
[2932] | 3016 | ! |
---|
| 3017 | !-- Try to find old namelist |
---|
[3246] | 3018 | 12 REWIND ( 11 ) |
---|
[2932] | 3019 | line = ' ' |
---|
[3248] | 3020 | DO WHILE ( INDEX( line, '&radiation_par' ) == 0 ) |
---|
[3246] | 3021 | READ ( 11, '(A)', END=14 ) line |
---|
[2932] | 3022 | ENDDO |
---|
| 3023 | BACKSPACE ( 11 ) |
---|
| 3024 | |
---|
| 3025 | ! |
---|
| 3026 | !-- Read user-defined namelist |
---|
[3246] | 3027 | READ ( 11, radiation_par, ERR = 13, END = 14 ) |
---|
| 3028 | |
---|
[2932] | 3029 | message_string = 'namelist radiation_par is deprecated and will be ' // & |
---|
[3046] | 3030 | 'removed in near future. Please use namelist ' // & |
---|
[2932] | 3031 | 'radiation_parameters instead' |
---|
| 3032 | CALL message( 'radiation_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
[1826] | 3033 | |
---|
| 3034 | ! |
---|
| 3035 | !-- Set flag that indicates that the radiation model is switched on |
---|
| 3036 | radiation = .TRUE. |
---|
| 3037 | |
---|
[2977] | 3038 | IF ( .NOT. radiation_interactions_on .AND. surface_reflections ) THEN |
---|
| 3039 | message_string = 'surface_reflections is allowed only when ' // & |
---|
| 3040 | 'radiation_interactions_on is set to TRUE' |
---|
[3046] | 3041 | CALL message( 'radiation_parin', 'PA0293',1, 2, 0, 6, 0 ) |
---|
[2977] | 3042 | ENDIF |
---|
| 3043 | |
---|
[3246] | 3044 | GOTO 14 |
---|
| 3045 | |
---|
| 3046 | 13 BACKSPACE( 11 ) |
---|
[3248] | 3047 | READ( 11 , '(A)') line |
---|
| 3048 | CALL parin_fail_message( 'radiation_par', line ) |
---|
[3246] | 3049 | |
---|
| 3050 | 14 CONTINUE |
---|
[2932] | 3051 | |
---|
[1826] | 3052 | END SUBROUTINE radiation_parin |
---|
| 3053 | |
---|
| 3054 | |
---|
| 3055 | !------------------------------------------------------------------------------! |
---|
| 3056 | ! Description: |
---|
| 3057 | ! ------------ |
---|
[1682] | 3058 | !> Implementation of the RRTMG radiation_scheme |
---|
[1585] | 3059 | !------------------------------------------------------------------------------! |
---|
| 3060 | SUBROUTINE radiation_rrtmg |
---|
| 3061 | |
---|
[3241] | 3062 | #if defined ( __rrtmg ) |
---|
[1585] | 3063 | USE indices, & |
---|
| 3064 | ONLY: nbgp |
---|
| 3065 | |
---|
| 3066 | USE particle_attributes, & |
---|
| 3067 | ONLY: grid_particles, number_of_particles, particles, & |
---|
| 3068 | particle_advection_start, prt_count |
---|
| 3069 | |
---|
| 3070 | IMPLICIT NONE |
---|
| 3071 | |
---|
| 3072 | |
---|
[2696] | 3073 | INTEGER(iwp) :: i, j, k, l, m, n !< loop indices |
---|
| 3074 | INTEGER(iwp) :: k_topo !< topography top index |
---|
[1585] | 3075 | |
---|
[2547] | 3076 | REAL(wp) :: nc_rad, & !< number concentration of cloud droplets |
---|
| 3077 | s_r2, & !< weighted sum over all droplets with r^2 |
---|
| 3078 | s_r3 !< weighted sum over all droplets with r^3 |
---|
[1585] | 3079 | |
---|
[2696] | 3080 | REAL(wp), DIMENSION(0:nzt+1) :: pt_av, q_av, ql_av |
---|
[1585] | 3081 | ! |
---|
[2696] | 3082 | !-- Just dummy arguments |
---|
| 3083 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: rrtm_lw_taucld_dum, & |
---|
| 3084 | rrtm_lw_tauaer_dum, & |
---|
| 3085 | rrtm_sw_taucld_dum, & |
---|
| 3086 | rrtm_sw_ssacld_dum, & |
---|
| 3087 | rrtm_sw_asmcld_dum, & |
---|
| 3088 | rrtm_sw_fsfcld_dum, & |
---|
| 3089 | rrtm_sw_tauaer_dum, & |
---|
| 3090 | rrtm_sw_ssaaer_dum, & |
---|
| 3091 | rrtm_sw_asmaer_dum, & |
---|
| 3092 | rrtm_sw_ecaer_dum |
---|
| 3093 | |
---|
| 3094 | ! |
---|
[1585] | 3095 | !-- Calculate current (cosine of) zenith angle and whether the sun is up |
---|
| 3096 | CALL calc_zenith |
---|
| 3097 | ! |
---|
[2696] | 3098 | !-- Calculate surface albedo. In case average radiation is applied, |
---|
| 3099 | !-- this is not required. |
---|
[3524] | 3100 | #if defined( __netcdf ) |
---|
[1585] | 3101 | IF ( .NOT. constant_albedo ) THEN |
---|
[2696] | 3102 | ! |
---|
| 3103 | !-- Horizontally aligned default, natural and urban surfaces |
---|
| 3104 | CALL calc_albedo( surf_lsm_h ) |
---|
| 3105 | CALL calc_albedo( surf_usm_h ) |
---|
| 3106 | ! |
---|
| 3107 | !-- Vertically aligned default, natural and urban surfaces |
---|
| 3108 | DO l = 0, 3 |
---|
| 3109 | CALL calc_albedo( surf_lsm_v(l) ) |
---|
| 3110 | CALL calc_albedo( surf_usm_v(l) ) |
---|
| 3111 | ENDDO |
---|
[1585] | 3112 | ENDIF |
---|
[3524] | 3113 | #endif |
---|
[1585] | 3114 | |
---|
| 3115 | ! |
---|
| 3116 | !-- Prepare input data for RRTMG |
---|
| 3117 | |
---|
| 3118 | ! |
---|
| 3119 | !-- In case of large scale forcing with surface data, calculate new pressure |
---|
| 3120 | !-- profile. nzt_rad might be modified by these calls and all required arrays |
---|
| 3121 | !-- will then be re-allocated |
---|
[1691] | 3122 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[1585] | 3123 | CALL read_sounding_data |
---|
| 3124 | CALL read_trace_gas_data |
---|
| 3125 | ENDIF |
---|
[2696] | 3126 | |
---|
| 3127 | |
---|
| 3128 | IF ( average_radiation ) THEN |
---|
| 3129 | |
---|
| 3130 | rrtm_asdir(1) = albedo_urb |
---|
| 3131 | rrtm_asdif(1) = albedo_urb |
---|
| 3132 | rrtm_aldir(1) = albedo_urb |
---|
| 3133 | rrtm_aldif(1) = albedo_urb |
---|
| 3134 | |
---|
| 3135 | rrtm_emis = emissivity_urb |
---|
[1585] | 3136 | ! |
---|
[2696] | 3137 | !-- Calculate mean pt profile. Actually, only one height level is required. |
---|
| 3138 | CALL calc_mean_profile( pt, 4 ) |
---|
| 3139 | pt_av = hom(:, 1, 4, 0) |
---|
[3117] | 3140 | |
---|
| 3141 | IF ( humidity ) THEN |
---|
| 3142 | CALL calc_mean_profile( q, 41 ) |
---|
| 3143 | q_av = hom(:, 1, 41, 0) |
---|
| 3144 | ENDIF |
---|
[1585] | 3145 | ! |
---|
[2696] | 3146 | !-- Prepare profiles of temperature and H2O volume mixing ratio |
---|
| 3147 | rrtm_tlev(0,nzb+1) = t_rad_urb |
---|
[1585] | 3148 | |
---|
[3274] | 3149 | IF ( bulk_cloud_model ) THEN |
---|
[3117] | 3150 | |
---|
[2696] | 3151 | CALL calc_mean_profile( ql, 54 ) |
---|
| 3152 | ! average ql is now in hom(:, 1, 54, 0) |
---|
| 3153 | ql_av = hom(:, 1, 54, 0) |
---|
| 3154 | |
---|
| 3155 | DO k = nzb+1, nzt+1 |
---|
| 3156 | rrtm_tlay(0,k) = pt_av(k) * ( (hyp(k) ) / 100000._wp & |
---|
[3274] | 3157 | )**.286_wp + lv_d_cp * ql_av(k) |
---|
[2696] | 3158 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q_av(k) - ql_av(k)) |
---|
| 3159 | ENDDO |
---|
| 3160 | ELSE |
---|
| 3161 | DO k = nzb+1, nzt+1 |
---|
| 3162 | rrtm_tlay(0,k) = pt_av(k) * ( (hyp(k) ) / 100000._wp & |
---|
| 3163 | )**.286_wp |
---|
[3117] | 3164 | ENDDO |
---|
| 3165 | |
---|
| 3166 | IF ( humidity ) THEN |
---|
| 3167 | DO k = nzb+1, nzt+1 |
---|
| 3168 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q_av(k) |
---|
| 3169 | ENDDO |
---|
| 3170 | ELSE |
---|
| 3171 | rrtm_h2ovmr(0,nzb+1:nzt+1) = 0.0_wp |
---|
| 3172 | ENDIF |
---|
[2696] | 3173 | ENDIF |
---|
[1585] | 3174 | |
---|
[2696] | 3175 | ! |
---|
| 3176 | !-- Avoid temperature/humidity jumps at the top of the LES domain by |
---|
| 3177 | !-- linear interpolation from nzt+2 to nzt+7 |
---|
| 3178 | DO k = nzt+2, nzt+7 |
---|
| 3179 | rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) & |
---|
| 3180 | + ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) & |
---|
| 3181 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) & |
---|
| 3182 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
| 3183 | |
---|
| 3184 | rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) & |
---|
| 3185 | + ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )& |
---|
| 3186 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )& |
---|
| 3187 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
| 3188 | |
---|
| 3189 | ENDDO |
---|
| 3190 | |
---|
| 3191 | !-- Linear interpolate to zw grid |
---|
| 3192 | DO k = nzb+2, nzt+8 |
---|
| 3193 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - & |
---|
| 3194 | rrtm_tlay(0,k-1)) & |
---|
| 3195 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
| 3196 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
| 3197 | ENDDO |
---|
| 3198 | |
---|
| 3199 | |
---|
| 3200 | ! |
---|
| 3201 | !-- Calculate liquid water path and cloud fraction for each column. |
---|
| 3202 | !-- Note that LWP is required in g/m² instead of kg/kg m. |
---|
| 3203 | rrtm_cldfr = 0.0_wp |
---|
| 3204 | rrtm_reliq = 0.0_wp |
---|
| 3205 | rrtm_cliqwp = 0.0_wp |
---|
| 3206 | rrtm_icld = 0 |
---|
| 3207 | |
---|
[3274] | 3208 | IF ( bulk_cloud_model ) THEN |
---|
[2696] | 3209 | DO k = nzb+1, nzt+1 |
---|
[3233] | 3210 | rrtm_cliqwp(0,k) = ql_av(k) * 1000._wp * & |
---|
[2696] | 3211 | (rrtm_plev(0,k) - rrtm_plev(0,k+1)) & |
---|
| 3212 | * 100._wp / g |
---|
| 3213 | |
---|
| 3214 | IF ( rrtm_cliqwp(0,k) > 0._wp ) THEN |
---|
| 3215 | rrtm_cldfr(0,k) = 1._wp |
---|
| 3216 | IF ( rrtm_icld == 0 ) rrtm_icld = 1 |
---|
| 3217 | |
---|
| 3218 | ! |
---|
| 3219 | !-- Calculate cloud droplet effective radius |
---|
[3233] | 3220 | rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql_av(k) & |
---|
| 3221 | * rho_surface & |
---|
| 3222 | / ( 4.0_wp * pi * nc_const * rho_l ) & |
---|
| 3223 | )**0.33333333333333_wp & |
---|
| 3224 | * EXP( LOG( sigma_gc )**2 ) |
---|
[2696] | 3225 | ! |
---|
| 3226 | !-- Limit effective radius |
---|
| 3227 | IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN |
---|
| 3228 | rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp) |
---|
| 3229 | rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp) |
---|
| 3230 | ENDIF |
---|
| 3231 | ENDIF |
---|
| 3232 | ENDDO |
---|
| 3233 | ENDIF |
---|
| 3234 | |
---|
| 3235 | ! |
---|
| 3236 | !-- Set surface temperature |
---|
| 3237 | rrtm_tsfc = t_rad_urb |
---|
[3117] | 3238 | |
---|
[3226] | 3239 | IF ( lw_radiation ) THEN |
---|
| 3240 | |
---|
[2696] | 3241 | CALL rrtmg_lw( 1, nzt_rad , rrtm_icld , rrtm_idrv ,& |
---|
| 3242 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
| 3243 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
| 3244 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_cfc11vmr ,& |
---|
| 3245 | rrtm_cfc12vmr , rrtm_cfc22vmr, rrtm_ccl4vmr , rrtm_emis ,& |
---|
| 3246 | rrtm_inflglw , rrtm_iceflglw, rrtm_liqflglw, rrtm_cldfr ,& |
---|
| 3247 | rrtm_lw_taucld , rrtm_cicewp , rrtm_cliqwp , rrtm_reice ,& |
---|
| 3248 | rrtm_reliq , rrtm_lw_tauaer, & |
---|
| 3249 | rrtm_lwuflx , rrtm_lwdflx , rrtm_lwhr , & |
---|
| 3250 | rrtm_lwuflxc , rrtm_lwdflxc , rrtm_lwhrc , & |
---|
| 3251 | rrtm_lwuflx_dt , rrtm_lwuflxc_dt ) |
---|
| 3252 | |
---|
| 3253 | ! |
---|
| 3254 | !-- Save fluxes |
---|
| 3255 | DO k = nzb, nzt+1 |
---|
| 3256 | rad_lw_in(k,:,:) = rrtm_lwdflx(0,k) |
---|
| 3257 | rad_lw_out(k,:,:) = rrtm_lwuflx(0,k) |
---|
| 3258 | ENDDO |
---|
[3272] | 3259 | rad_lw_in_diff(:,:) = rad_lw_in(0,:,:) |
---|
[2696] | 3260 | ! |
---|
[3170] | 3261 | !-- Save heating rates (convert from K/d to K/h). |
---|
| 3262 | !-- Further, even though an aggregated radiation is computed, map |
---|
| 3263 | !-- signle-column profiles on top of any topography, in order to |
---|
| 3264 | !-- obtain correct near surface radiation heating/cooling rates. |
---|
| 3265 | DO i = nxl, nxr |
---|
| 3266 | DO j = nys, nyn |
---|
| 3267 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
| 3268 | DO k = k_topo+1, nzt+1 |
---|
[3178] | 3269 | rad_lw_hr(k,j,i) = rrtm_lwhr(0,k-k_topo) * d_hours_day |
---|
| 3270 | rad_lw_cs_hr(k,j,i) = rrtm_lwhrc(0,k-k_topo) * d_hours_day |
---|
[3170] | 3271 | ENDDO |
---|
| 3272 | ENDDO |
---|
[2696] | 3273 | ENDDO |
---|
| 3274 | |
---|
| 3275 | ENDIF |
---|
| 3276 | |
---|
| 3277 | IF ( sw_radiation .AND. sun_up ) THEN |
---|
[3272] | 3278 | CALL rrtmg_sw( 1, nzt_rad , rrtm_icld , rrtm_iaer ,& |
---|
| 3279 | rrtm_play , rrtm_plev , rrtm_tlay , rrtm_tlev ,& |
---|
| 3280 | rrtm_tsfc , rrtm_h2ovmr , rrtm_o3vmr , rrtm_co2vmr ,& |
---|
| 3281 | rrtm_ch4vmr , rrtm_n2ovmr , rrtm_o2vmr , rrtm_asdir ,& |
---|
| 3282 | rrtm_asdif , rrtm_aldir , rrtm_aldif , zenith ,& |
---|
| 3283 | 0.0_wp , day_of_year , solar_constant, rrtm_inflgsw ,& |
---|
| 3284 | rrtm_iceflgsw , rrtm_liqflgsw , rrtm_cldfr , rrtm_sw_taucld ,& |
---|
| 3285 | rrtm_sw_ssacld , rrtm_sw_asmcld, rrtm_sw_fsfcld, rrtm_cicewp ,& |
---|
| 3286 | rrtm_cliqwp , rrtm_reice , rrtm_reliq , rrtm_sw_tauaer ,& |
---|
| 3287 | rrtm_sw_ssaaer , rrtm_sw_asmaer, rrtm_sw_ecaer , rrtm_swuflx ,& |
---|
| 3288 | rrtm_swdflx , rrtm_swhr , rrtm_swuflxc , rrtm_swdflxc ,& |
---|
| 3289 | rrtm_swhrc , rrtm_dirdflux , rrtm_difdflux ) |
---|
[2696] | 3290 | |
---|
[1585] | 3291 | ! |
---|
[3272] | 3292 | !-- Save fluxes: |
---|
| 3293 | !-- - whole domain |
---|
[2696] | 3294 | DO k = nzb, nzt+1 |
---|
| 3295 | rad_sw_in(k,:,:) = rrtm_swdflx(0,k) |
---|
| 3296 | rad_sw_out(k,:,:) = rrtm_swuflx(0,k) |
---|
| 3297 | ENDDO |
---|
[3272] | 3298 | !-- - direct and diffuse SW at urban-surface-layer (required by RTM) |
---|
| 3299 | rad_sw_in_dir(:,:) = rrtm_dirdflux(0,nzb) |
---|
| 3300 | rad_sw_in_diff(:,:) = rrtm_difdflux(0,nzb) |
---|
[1585] | 3301 | |
---|
[2696] | 3302 | ! |
---|
| 3303 | !-- Save heating rates (convert from K/d to K/s) |
---|
| 3304 | DO k = nzb+1, nzt+1 |
---|
| 3305 | rad_sw_hr(k,:,:) = rrtm_swhr(0,k) * d_hours_day |
---|
| 3306 | rad_sw_cs_hr(k,:,:) = rrtm_swhrc(0,k) * d_hours_day |
---|
| 3307 | ENDDO |
---|
| 3308 | ! |
---|
[3172] | 3309 | !-- Solar radiation is zero during night |
---|
| 3310 | ELSE |
---|
[3175] | 3311 | rad_sw_in = 0.0_wp |
---|
| 3312 | rad_sw_out = 0.0_wp |
---|
[3272] | 3313 | rad_sw_in_dir(:,:) = 0.0_wp |
---|
| 3314 | rad_sw_in_diff(:,:) = 0.0_wp |
---|
[2696] | 3315 | ENDIF |
---|
| 3316 | ! |
---|
| 3317 | !-- RRTMG is called for each (j,i) grid point separately, starting at the |
---|
[3272] | 3318 | !-- highest topography level. Here no RTM is used since average_radiation is false |
---|
[2696] | 3319 | ELSE |
---|
| 3320 | ! |
---|
| 3321 | !-- Loop over all grid points |
---|
| 3322 | DO i = nxl, nxr |
---|
| 3323 | DO j = nys, nyn |
---|
| 3324 | |
---|
| 3325 | ! |
---|
| 3326 | !-- Prepare profiles of temperature and H2O volume mixing ratio |
---|
[3156] | 3327 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
[3274] | 3328 | rrtm_tlev(0,nzb+1) = surf_lsm_h%pt_surface(m) * exner(nzb) |
---|
[3156] | 3329 | ENDDO |
---|
| 3330 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
[3274] | 3331 | rrtm_tlev(0,nzb+1) = surf_usm_h%pt_surface(m) * exner(nzb) |
---|
[3156] | 3332 | ENDDO |
---|
[2696] | 3333 | |
---|
| 3334 | |
---|
[3274] | 3335 | IF ( bulk_cloud_model ) THEN |
---|
[2696] | 3336 | DO k = nzb+1, nzt+1 |
---|
[3274] | 3337 | rrtm_tlay(0,k) = pt(k,j,i) * exner(k) & |
---|
| 3338 | + lv_d_cp * ql(k,j,i) |
---|
[2696] | 3339 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * (q(k,j,i) - ql(k,j,i)) |
---|
| 3340 | ENDDO |
---|
[3233] | 3341 | ELSEIF ( cloud_droplets ) THEN |
---|
| 3342 | DO k = nzb+1, nzt+1 |
---|
[3274] | 3343 | rrtm_tlay(0,k) = pt(k,j,i) * exner(k) & |
---|
| 3344 | + lv_d_cp * ql(k,j,i) |
---|
[3233] | 3345 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q(k,j,i) |
---|
| 3346 | ENDDO |
---|
[2696] | 3347 | ELSE |
---|
| 3348 | DO k = nzb+1, nzt+1 |
---|
[3274] | 3349 | rrtm_tlay(0,k) = pt(k,j,i) * exner(k) |
---|
[2696] | 3350 | ENDDO |
---|
[3117] | 3351 | |
---|
| 3352 | IF ( humidity ) THEN |
---|
| 3353 | DO k = nzb+1, nzt+1 |
---|
| 3354 | rrtm_h2ovmr(0,k) = mol_mass_air_d_wv * q(k,j,i) |
---|
| 3355 | ENDDO |
---|
| 3356 | ELSE |
---|
| 3357 | rrtm_h2ovmr(0,nzb+1:nzt+1) = 0.0_wp |
---|
| 3358 | ENDIF |
---|
[2696] | 3359 | ENDIF |
---|
| 3360 | |
---|
| 3361 | ! |
---|
| 3362 | !-- Avoid temperature/humidity jumps at the top of the LES domain by |
---|
| 3363 | !-- linear interpolation from nzt+2 to nzt+7 |
---|
| 3364 | DO k = nzt+2, nzt+7 |
---|
| 3365 | rrtm_tlay(0,k) = rrtm_tlay(0,nzt+1) & |
---|
| 3366 | + ( rrtm_tlay(0,nzt+8) - rrtm_tlay(0,nzt+1) ) & |
---|
| 3367 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) ) & |
---|
| 3368 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
| 3369 | |
---|
| 3370 | rrtm_h2ovmr(0,k) = rrtm_h2ovmr(0,nzt+1) & |
---|
[1585] | 3371 | + ( rrtm_h2ovmr(0,nzt+8) - rrtm_h2ovmr(0,nzt+1) )& |
---|
| 3372 | / ( rrtm_play(0,nzt+8) - rrtm_play(0,nzt+1) )& |
---|
[2696] | 3373 | * ( rrtm_play(0,k) - rrtm_play(0,nzt+1) ) |
---|
[1585] | 3374 | |
---|
[2696] | 3375 | ENDDO |
---|
[1585] | 3376 | |
---|
[2696] | 3377 | !-- Linear interpolate to zw grid |
---|
| 3378 | DO k = nzb+2, nzt+8 |
---|
| 3379 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) - & |
---|
| 3380 | rrtm_tlay(0,k-1)) & |
---|
| 3381 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
| 3382 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
| 3383 | ENDDO |
---|
[1585] | 3384 | |
---|
| 3385 | |
---|
| 3386 | ! |
---|
[2696] | 3387 | !-- Calculate liquid water path and cloud fraction for each column. |
---|
| 3388 | !-- Note that LWP is required in g/m² instead of kg/kg m. |
---|
| 3389 | rrtm_cldfr = 0.0_wp |
---|
| 3390 | rrtm_reliq = 0.0_wp |
---|
| 3391 | rrtm_cliqwp = 0.0_wp |
---|
| 3392 | rrtm_icld = 0 |
---|
[1585] | 3393 | |
---|
[3274] | 3394 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[2696] | 3395 | DO k = nzb+1, nzt+1 |
---|
| 3396 | rrtm_cliqwp(0,k) = ql(k,j,i) * 1000.0_wp * & |
---|
| 3397 | (rrtm_plev(0,k) - rrtm_plev(0,k+1)) & |
---|
| 3398 | * 100.0_wp / g |
---|
[1585] | 3399 | |
---|
[2696] | 3400 | IF ( rrtm_cliqwp(0,k) > 0.0_wp ) THEN |
---|
| 3401 | rrtm_cldfr(0,k) = 1.0_wp |
---|
| 3402 | IF ( rrtm_icld == 0 ) rrtm_icld = 1 |
---|
[1585] | 3403 | |
---|
| 3404 | ! |
---|
[2696] | 3405 | !-- Calculate cloud droplet effective radius |
---|
[3274] | 3406 | IF ( bulk_cloud_model ) THEN |
---|
[2604] | 3407 | ! |
---|
[2696] | 3408 | !-- Calculete effective droplet radius. In case of using |
---|
| 3409 | !-- cloud_scheme = 'morrison' and a non reasonable number |
---|
| 3410 | !-- of cloud droplets the inital aerosol number |
---|
| 3411 | !-- concentration is considered. |
---|
| 3412 | IF ( microphysics_morrison ) THEN |
---|
| 3413 | IF ( nc(k,j,i) > 1.0E-20_wp ) THEN |
---|
| 3414 | nc_rad = nc(k,j,i) |
---|
| 3415 | ELSE |
---|
| 3416 | nc_rad = na_init |
---|
| 3417 | ENDIF |
---|
[2604] | 3418 | ELSE |
---|
[2696] | 3419 | nc_rad = nc_const |
---|
| 3420 | ENDIF |
---|
[2604] | 3421 | |
---|
[2696] | 3422 | rrtm_reliq(0,k) = 1.0E6_wp * ( 3.0_wp * ql(k,j,i) & |
---|
| 3423 | * rho_surface & |
---|
| 3424 | / ( 4.0_wp * pi * nc_rad * rho_l ) & |
---|
| 3425 | )**0.33333333333333_wp & |
---|
| 3426 | * EXP( LOG( sigma_gc )**2 ) |
---|
[1585] | 3427 | |
---|
[2696] | 3428 | ELSEIF ( cloud_droplets ) THEN |
---|
| 3429 | number_of_particles = prt_count(k,j,i) |
---|
[1585] | 3430 | |
---|
[2696] | 3431 | IF (number_of_particles <= 0) CYCLE |
---|
| 3432 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
| 3433 | s_r2 = 0.0_wp |
---|
| 3434 | s_r3 = 0.0_wp |
---|
[1585] | 3435 | |
---|
[2696] | 3436 | DO n = 1, number_of_particles |
---|
| 3437 | IF ( particles(n)%particle_mask ) THEN |
---|
| 3438 | s_r2 = s_r2 + particles(n)%radius**2 * & |
---|
| 3439 | particles(n)%weight_factor |
---|
| 3440 | s_r3 = s_r3 + particles(n)%radius**3 * & |
---|
| 3441 | particles(n)%weight_factor |
---|
| 3442 | ENDIF |
---|
| 3443 | ENDDO |
---|
[1585] | 3444 | |
---|
[2696] | 3445 | IF ( s_r2 > 0.0_wp ) rrtm_reliq(0,k) = s_r3 / s_r2 |
---|
[1585] | 3446 | |
---|
[2696] | 3447 | ENDIF |
---|
| 3448 | |
---|
| 3449 | ! |
---|
| 3450 | !-- Limit effective radius |
---|
| 3451 | IF ( rrtm_reliq(0,k) > 0.0_wp ) THEN |
---|
| 3452 | rrtm_reliq(0,k) = MAX(rrtm_reliq(0,k),2.5_wp) |
---|
| 3453 | rrtm_reliq(0,k) = MIN(rrtm_reliq(0,k),60.0_wp) |
---|
| 3454 | ENDIF |
---|
[2242] | 3455 | ENDIF |
---|
[2696] | 3456 | ENDDO |
---|
| 3457 | ENDIF |
---|
[1585] | 3458 | |
---|
| 3459 | ! |
---|
[2696] | 3460 | !-- Write surface emissivity and surface temperature at current |
---|
| 3461 | !-- surface element on RRTMG-shaped array. |
---|
| 3462 | !-- Please note, as RRTMG is a single column model, surface attributes |
---|
| 3463 | !-- are only obtained from horizontally aligned surfaces (for |
---|
| 3464 | !-- simplicity). Taking surface attributes from horizontal and |
---|
| 3465 | !-- vertical walls would lead to multiple solutions. |
---|
| 3466 | !-- Moreover, for natural- and urban-type surfaces, several surface |
---|
| 3467 | !-- classes can exist at a surface element next to each other. |
---|
| 3468 | !-- To obtain bulk parameters, apply a weighted average for these |
---|
| 3469 | !-- surfaces. |
---|
| 3470 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
[2963] | 3471 | rrtm_emis = surf_lsm_h%frac(ind_veg_wall,m) * & |
---|
| 3472 | surf_lsm_h%emissivity(ind_veg_wall,m) + & |
---|
| 3473 | surf_lsm_h%frac(ind_pav_green,m) * & |
---|
| 3474 | surf_lsm_h%emissivity(ind_pav_green,m) + & |
---|
| 3475 | surf_lsm_h%frac(ind_wat_win,m) * & |
---|
| 3476 | surf_lsm_h%emissivity(ind_wat_win,m) |
---|
[3274] | 3477 | rrtm_tsfc = surf_lsm_h%pt_surface(m) * exner(nzb) |
---|
[2696] | 3478 | ENDDO |
---|
| 3479 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
[2963] | 3480 | rrtm_emis = surf_usm_h%frac(ind_veg_wall,m) * & |
---|
| 3481 | surf_usm_h%emissivity(ind_veg_wall,m) + & |
---|
| 3482 | surf_usm_h%frac(ind_pav_green,m) * & |
---|
| 3483 | surf_usm_h%emissivity(ind_pav_green,m) + & |
---|
| 3484 | surf_usm_h%frac(ind_wat_win,m) * & |
---|
| 3485 | surf_usm_h%emissivity(ind_wat_win,m) |
---|
[3274] | 3486 | rrtm_tsfc = surf_usm_h%pt_surface(m) * exner(nzb) |
---|
[2696] | 3487 | ENDDO |
---|
[1585] | 3488 | ! |
---|
[2696] | 3489 | !-- Obtain topography top index (lower bound of RRTMG) |
---|
[2698] | 3490 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
[1585] | 3491 | |
---|
[2696] | 3492 | IF ( lw_radiation ) THEN |
---|
[2328] | 3493 | ! |
---|
[2696] | 3494 | !-- Due to technical reasons, copy optical depth to dummy arguments |
---|
| 3495 | !-- which are allocated on the exact size as the rrtmg_lw is called. |
---|
| 3496 | !-- As one dimesion is allocated with zero size, compiler complains |
---|
| 3497 | !-- that rank of the array does not match that of the |
---|
| 3498 | !-- assumed-shaped arguments in the RRTMG library. In order to |
---|
| 3499 | !-- avoid this, write to dummy arguments and give pass the entire |
---|
| 3500 | !-- dummy array. Seems to be the only existing work-around. |
---|
| 3501 | ALLOCATE( rrtm_lw_taucld_dum(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
| 3502 | ALLOCATE( rrtm_lw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1) ) |
---|
[2328] | 3503 | |
---|
[2696] | 3504 | rrtm_lw_taucld_dum = & |
---|
| 3505 | rrtm_lw_taucld(1:nbndlw+1,0:0,k_topo+1:nzt_rad+1) |
---|
| 3506 | rrtm_lw_tauaer_dum = & |
---|
| 3507 | rrtm_lw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndlw+1) |
---|
[1585] | 3508 | |
---|
[2696] | 3509 | CALL rrtmg_lw( 1, & |
---|
| 3510 | nzt_rad-k_topo, & |
---|
| 3511 | rrtm_icld, & |
---|
| 3512 | rrtm_idrv, & |
---|
| 3513 | rrtm_play(:,k_topo+1:nzt_rad+1), & |
---|
| 3514 | rrtm_plev(:,k_topo+1:nzt_rad+2), & |
---|
| 3515 | rrtm_tlay(:,k_topo+1:nzt_rad+1), & |
---|
| 3516 | rrtm_tlev(:,k_topo+1:nzt_rad+2), & |
---|
| 3517 | rrtm_tsfc, & |
---|
| 3518 | rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3519 | rrtm_o3vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3520 | rrtm_co2vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3521 | rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3522 | rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3523 | rrtm_o2vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3524 | rrtm_cfc11vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3525 | rrtm_cfc12vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3526 | rrtm_cfc22vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3527 | rrtm_ccl4vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3528 | rrtm_emis, & |
---|
| 3529 | rrtm_inflglw, & |
---|
| 3530 | rrtm_iceflglw, & |
---|
| 3531 | rrtm_liqflglw, & |
---|
| 3532 | rrtm_cldfr(:,k_topo+1:nzt_rad+1), & |
---|
| 3533 | rrtm_lw_taucld_dum, & |
---|
| 3534 | rrtm_cicewp(:,k_topo+1:nzt_rad+1), & |
---|
| 3535 | rrtm_cliqwp(:,k_topo+1:nzt_rad+1), & |
---|
| 3536 | rrtm_reice(:,k_topo+1:nzt_rad+1), & |
---|
| 3537 | rrtm_reliq(:,k_topo+1:nzt_rad+1), & |
---|
| 3538 | rrtm_lw_tauaer_dum, & |
---|
| 3539 | rrtm_lwuflx(:,k_topo:nzt_rad+1), & |
---|
| 3540 | rrtm_lwdflx(:,k_topo:nzt_rad+1), & |
---|
| 3541 | rrtm_lwhr(:,k_topo+1:nzt_rad+1), & |
---|
| 3542 | rrtm_lwuflxc(:,k_topo:nzt_rad+1), & |
---|
| 3543 | rrtm_lwdflxc(:,k_topo:nzt_rad+1), & |
---|
| 3544 | rrtm_lwhrc(:,k_topo+1:nzt_rad+1), & |
---|
| 3545 | rrtm_lwuflx_dt(:,k_topo:nzt_rad+1), & |
---|
| 3546 | rrtm_lwuflxc_dt(:,k_topo:nzt_rad+1) ) |
---|
| 3547 | |
---|
| 3548 | DEALLOCATE ( rrtm_lw_taucld_dum ) |
---|
| 3549 | DEALLOCATE ( rrtm_lw_tauaer_dum ) |
---|
[1691] | 3550 | ! |
---|
[2696] | 3551 | !-- Save fluxes |
---|
| 3552 | DO k = k_topo, nzt+1 |
---|
| 3553 | rad_lw_in(k,j,i) = rrtm_lwdflx(0,k) |
---|
| 3554 | rad_lw_out(k,j,i) = rrtm_lwuflx(0,k) |
---|
| 3555 | ENDDO |
---|
[1585] | 3556 | |
---|
[1691] | 3557 | ! |
---|
[2696] | 3558 | !-- Save heating rates (convert from K/d to K/h) |
---|
| 3559 | DO k = k_topo+1, nzt+1 |
---|
[3178] | 3560 | rad_lw_hr(k,j,i) = rrtm_lwhr(0,k-k_topo) * d_hours_day |
---|
| 3561 | rad_lw_cs_hr(k,j,i) = rrtm_lwhrc(0,k-k_topo) * d_hours_day |
---|
[2696] | 3562 | ENDDO |
---|
[1585] | 3563 | |
---|
[1709] | 3564 | ! |
---|
[2696] | 3565 | !-- Save surface radiative fluxes and change in LW heating rate |
---|
| 3566 | !-- onto respective surface elements |
---|
| 3567 | !-- Horizontal surfaces |
---|
| 3568 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 3569 | surf_lsm_h%end_index(j,i) |
---|
| 3570 | surf_lsm_h%rad_lw_in(m) = rrtm_lwdflx(0,k_topo) |
---|
| 3571 | surf_lsm_h%rad_lw_out(m) = rrtm_lwuflx(0,k_topo) |
---|
| 3572 | surf_lsm_h%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k_topo) |
---|
| 3573 | ENDDO |
---|
| 3574 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 3575 | surf_usm_h%end_index(j,i) |
---|
| 3576 | surf_usm_h%rad_lw_in(m) = rrtm_lwdflx(0,k_topo) |
---|
| 3577 | surf_usm_h%rad_lw_out(m) = rrtm_lwuflx(0,k_topo) |
---|
| 3578 | surf_usm_h%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k_topo) |
---|
| 3579 | ENDDO |
---|
| 3580 | ! |
---|
| 3581 | !-- Vertical surfaces. Fluxes are obtain at vertical level of the |
---|
| 3582 | !-- respective surface element |
---|
| 3583 | DO l = 0, 3 |
---|
| 3584 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
| 3585 | surf_lsm_v(l)%end_index(j,i) |
---|
| 3586 | k = surf_lsm_v(l)%k(m) |
---|
| 3587 | surf_lsm_v(l)%rad_lw_in(m) = rrtm_lwdflx(0,k) |
---|
| 3588 | surf_lsm_v(l)%rad_lw_out(m) = rrtm_lwuflx(0,k) |
---|
| 3589 | surf_lsm_v(l)%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k) |
---|
| 3590 | ENDDO |
---|
| 3591 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
| 3592 | surf_usm_v(l)%end_index(j,i) |
---|
| 3593 | k = surf_usm_v(l)%k(m) |
---|
| 3594 | surf_usm_v(l)%rad_lw_in(m) = rrtm_lwdflx(0,k) |
---|
| 3595 | surf_usm_v(l)%rad_lw_out(m) = rrtm_lwuflx(0,k) |
---|
| 3596 | surf_usm_v(l)%rad_lw_out_change_0(m) = rrtm_lwuflx_dt(0,k) |
---|
| 3597 | ENDDO |
---|
| 3598 | ENDDO |
---|
[1709] | 3599 | |
---|
[2696] | 3600 | ENDIF |
---|
[1585] | 3601 | |
---|
[2696] | 3602 | IF ( sw_radiation .AND. sun_up ) THEN |
---|
[1691] | 3603 | ! |
---|
[2696] | 3604 | !-- Get albedo for direct/diffusive long/shortwave radiation at |
---|
| 3605 | !-- current (y,x)-location from surface variables. |
---|
| 3606 | !-- Only obtain it from horizontal surfaces, as RRTMG is a single |
---|
| 3607 | !-- column model |
---|
| 3608 | !-- (Please note, only one loop will entered, controlled by |
---|
| 3609 | !-- start-end index.) |
---|
| 3610 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 3611 | surf_lsm_h%end_index(j,i) |
---|
[2753] | 3612 | rrtm_asdir(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
| 3613 | surf_lsm_h%rrtm_asdir(:,m) ) |
---|
| 3614 | rrtm_asdif(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
| 3615 | surf_lsm_h%rrtm_asdif(:,m) ) |
---|
| 3616 | rrtm_aldir(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
| 3617 | surf_lsm_h%rrtm_aldir(:,m) ) |
---|
| 3618 | rrtm_aldif(1) = SUM( surf_lsm_h%frac(:,m) * & |
---|
| 3619 | surf_lsm_h%rrtm_aldif(:,m) ) |
---|
[2696] | 3620 | ENDDO |
---|
| 3621 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 3622 | surf_usm_h%end_index(j,i) |
---|
[2753] | 3623 | rrtm_asdir(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
| 3624 | surf_usm_h%rrtm_asdir(:,m) ) |
---|
| 3625 | rrtm_asdif(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
| 3626 | surf_usm_h%rrtm_asdif(:,m) ) |
---|
| 3627 | rrtm_aldir(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
| 3628 | surf_usm_h%rrtm_aldir(:,m) ) |
---|
| 3629 | rrtm_aldif(1) = SUM( surf_usm_h%frac(:,m) * & |
---|
| 3630 | surf_usm_h%rrtm_aldif(:,m) ) |
---|
[2696] | 3631 | ENDDO |
---|
[1691] | 3632 | ! |
---|
[2696] | 3633 | !-- Due to technical reasons, copy optical depths and other |
---|
| 3634 | !-- to dummy arguments which are allocated on the exact size as the |
---|
| 3635 | !-- rrtmg_sw is called. |
---|
| 3636 | !-- As one dimesion is allocated with zero size, compiler complains |
---|
| 3637 | !-- that rank of the array does not match that of the |
---|
| 3638 | !-- assumed-shaped arguments in the RRTMG library. In order to |
---|
| 3639 | !-- avoid this, write to dummy arguments and give pass the entire |
---|
| 3640 | !-- dummy array. Seems to be the only existing work-around. |
---|
| 3641 | ALLOCATE( rrtm_sw_taucld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
| 3642 | ALLOCATE( rrtm_sw_ssacld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
| 3643 | ALLOCATE( rrtm_sw_asmcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
| 3644 | ALLOCATE( rrtm_sw_fsfcld_dum(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) ) |
---|
| 3645 | ALLOCATE( rrtm_sw_tauaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) ) |
---|
| 3646 | ALLOCATE( rrtm_sw_ssaaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) ) |
---|
| 3647 | ALLOCATE( rrtm_sw_asmaer_dum(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) ) |
---|
| 3648 | ALLOCATE( rrtm_sw_ecaer_dum(0:0,k_topo+1:nzt_rad+1,1:naerec+1) ) |
---|
| 3649 | |
---|
| 3650 | rrtm_sw_taucld_dum = rrtm_sw_taucld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
| 3651 | rrtm_sw_ssacld_dum = rrtm_sw_ssacld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
| 3652 | rrtm_sw_asmcld_dum = rrtm_sw_asmcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
| 3653 | rrtm_sw_fsfcld_dum = rrtm_sw_fsfcld(1:nbndsw+1,0:0,k_topo+1:nzt_rad+1) |
---|
| 3654 | rrtm_sw_tauaer_dum = rrtm_sw_tauaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) |
---|
| 3655 | rrtm_sw_ssaaer_dum = rrtm_sw_ssaaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) |
---|
| 3656 | rrtm_sw_asmaer_dum = rrtm_sw_asmaer(0:0,k_topo+1:nzt_rad+1,1:nbndsw+1) |
---|
| 3657 | rrtm_sw_ecaer_dum = rrtm_sw_ecaer(0:0,k_topo+1:nzt_rad+1,1:naerec+1) |
---|
[1691] | 3658 | |
---|
[2696] | 3659 | CALL rrtmg_sw( 1, & |
---|
| 3660 | nzt_rad-k_topo, & |
---|
| 3661 | rrtm_icld, & |
---|
| 3662 | rrtm_iaer, & |
---|
| 3663 | rrtm_play(:,k_topo+1:nzt_rad+1), & |
---|
| 3664 | rrtm_plev(:,k_topo+1:nzt_rad+2), & |
---|
| 3665 | rrtm_tlay(:,k_topo+1:nzt_rad+1), & |
---|
| 3666 | rrtm_tlev(:,k_topo+1:nzt_rad+2), & |
---|
| 3667 | rrtm_tsfc, & |
---|
| 3668 | rrtm_h2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3669 | rrtm_o3vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3670 | rrtm_co2vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3671 | rrtm_ch4vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3672 | rrtm_n2ovmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3673 | rrtm_o2vmr(:,k_topo+1:nzt_rad+1), & |
---|
| 3674 | rrtm_asdir, & |
---|
| 3675 | rrtm_asdif, & |
---|
| 3676 | rrtm_aldir, & |
---|
| 3677 | rrtm_aldif, & |
---|
| 3678 | zenith, & |
---|
| 3679 | 0.0_wp, & |
---|
| 3680 | day_of_year, & |
---|
| 3681 | solar_constant, & |
---|
| 3682 | rrtm_inflgsw, & |
---|
| 3683 | rrtm_iceflgsw, & |
---|
| 3684 | rrtm_liqflgsw, & |
---|
| 3685 | rrtm_cldfr(:,k_topo+1:nzt_rad+1), & |
---|
| 3686 | rrtm_sw_taucld_dum, & |
---|
| 3687 | rrtm_sw_ssacld_dum, & |
---|
| 3688 | rrtm_sw_asmcld_dum, & |
---|
| 3689 | rrtm_sw_fsfcld_dum, & |
---|
| 3690 | rrtm_cicewp(:,k_topo+1:nzt_rad+1), & |
---|
| 3691 | rrtm_cliqwp(:,k_topo+1:nzt_rad+1), & |
---|
| 3692 | rrtm_reice(:,k_topo+1:nzt_rad+1), & |
---|
| 3693 | rrtm_reliq(:,k_topo+1:nzt_rad+1), & |
---|
| 3694 | rrtm_sw_tauaer_dum, & |
---|
| 3695 | rrtm_sw_ssaaer_dum, & |
---|
| 3696 | rrtm_sw_asmaer_dum, & |
---|
| 3697 | rrtm_sw_ecaer_dum, & |
---|
| 3698 | rrtm_swuflx(:,k_topo:nzt_rad+1), & |
---|
| 3699 | rrtm_swdflx(:,k_topo:nzt_rad+1), & |
---|
| 3700 | rrtm_swhr(:,k_topo+1:nzt_rad+1), & |
---|
| 3701 | rrtm_swuflxc(:,k_topo:nzt_rad+1), & |
---|
| 3702 | rrtm_swdflxc(:,k_topo:nzt_rad+1), & |
---|
[3272] | 3703 | rrtm_swhrc(:,k_topo+1:nzt_rad+1), & |
---|
| 3704 | rrtm_dirdflux(:,k_topo:nzt_rad+1), & |
---|
| 3705 | rrtm_difdflux(:,k_topo:nzt_rad+1) ) |
---|
[1585] | 3706 | |
---|
[2696] | 3707 | DEALLOCATE( rrtm_sw_taucld_dum ) |
---|
| 3708 | DEALLOCATE( rrtm_sw_ssacld_dum ) |
---|
| 3709 | DEALLOCATE( rrtm_sw_asmcld_dum ) |
---|
| 3710 | DEALLOCATE( rrtm_sw_fsfcld_dum ) |
---|
| 3711 | DEALLOCATE( rrtm_sw_tauaer_dum ) |
---|
| 3712 | DEALLOCATE( rrtm_sw_ssaaer_dum ) |
---|
| 3713 | DEALLOCATE( rrtm_sw_asmaer_dum ) |
---|
| 3714 | DEALLOCATE( rrtm_sw_ecaer_dum ) |
---|
[1585] | 3715 | ! |
---|
[2696] | 3716 | !-- Save fluxes |
---|
| 3717 | DO k = nzb, nzt+1 |
---|
| 3718 | rad_sw_in(k,j,i) = rrtm_swdflx(0,k) |
---|
| 3719 | rad_sw_out(k,j,i) = rrtm_swuflx(0,k) |
---|
| 3720 | ENDDO |
---|
| 3721 | ! |
---|
| 3722 | !-- Save heating rates (convert from K/d to K/s) |
---|
| 3723 | DO k = nzb+1, nzt+1 |
---|
| 3724 | rad_sw_hr(k,j,i) = rrtm_swhr(0,k) * d_hours_day |
---|
| 3725 | rad_sw_cs_hr(k,j,i) = rrtm_swhrc(0,k) * d_hours_day |
---|
| 3726 | ENDDO |
---|
[1585] | 3727 | |
---|
[2696] | 3728 | ! |
---|
| 3729 | !-- Save surface radiative fluxes onto respective surface elements |
---|
| 3730 | !-- Horizontal surfaces |
---|
| 3731 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 3732 | surf_lsm_h%end_index(j,i) |
---|
| 3733 | surf_lsm_h%rad_sw_in(m) = rrtm_swdflx(0,k_topo) |
---|
| 3734 | surf_lsm_h%rad_sw_out(m) = rrtm_swuflx(0,k_topo) |
---|
| 3735 | ENDDO |
---|
| 3736 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 3737 | surf_usm_h%end_index(j,i) |
---|
| 3738 | surf_usm_h%rad_sw_in(m) = rrtm_swdflx(0,k_topo) |
---|
| 3739 | surf_usm_h%rad_sw_out(m) = rrtm_swuflx(0,k_topo) |
---|
| 3740 | ENDDO |
---|
| 3741 | ! |
---|
| 3742 | !-- Vertical surfaces. Fluxes are obtain at respective vertical |
---|
| 3743 | !-- level of the surface element |
---|
| 3744 | DO l = 0, 3 |
---|
| 3745 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
| 3746 | surf_lsm_v(l)%end_index(j,i) |
---|
| 3747 | k = surf_lsm_v(l)%k(m) |
---|
| 3748 | surf_lsm_v(l)%rad_sw_in(m) = rrtm_swdflx(0,k) |
---|
| 3749 | surf_lsm_v(l)%rad_sw_out(m) = rrtm_swuflx(0,k) |
---|
| 3750 | ENDDO |
---|
| 3751 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
| 3752 | surf_usm_v(l)%end_index(j,i) |
---|
| 3753 | k = surf_usm_v(l)%k(m) |
---|
| 3754 | surf_usm_v(l)%rad_sw_in(m) = rrtm_swdflx(0,k) |
---|
| 3755 | surf_usm_v(l)%rad_sw_out(m) = rrtm_swuflx(0,k) |
---|
| 3756 | ENDDO |
---|
| 3757 | ENDDO |
---|
[3172] | 3758 | ! |
---|
| 3759 | !-- Solar radiation is zero during night |
---|
| 3760 | ELSE |
---|
[3175] | 3761 | rad_sw_in = 0.0_wp |
---|
| 3762 | rad_sw_out = 0.0_wp |
---|
[3272] | 3763 | !-- !!!!!!!! ATTENSION !!!!!!!!!!!!!!! |
---|
| 3764 | !-- Surface radiative fluxes should be also set to zero here |
---|
| 3765 | !-- Save surface radiative fluxes onto respective surface elements |
---|
| 3766 | !-- Horizontal surfaces |
---|
| 3767 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 3768 | surf_lsm_h%end_index(j,i) |
---|
| 3769 | surf_lsm_h%rad_sw_in(m) = 0.0_wp |
---|
| 3770 | surf_lsm_h%rad_sw_out(m) = 0.0_wp |
---|
| 3771 | ENDDO |
---|
| 3772 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 3773 | surf_usm_h%end_index(j,i) |
---|
| 3774 | surf_usm_h%rad_sw_in(m) = 0.0_wp |
---|
| 3775 | surf_usm_h%rad_sw_out(m) = 0.0_wp |
---|
| 3776 | ENDDO |
---|
| 3777 | ! |
---|
| 3778 | !-- Vertical surfaces. Fluxes are obtain at respective vertical |
---|
| 3779 | !-- level of the surface element |
---|
| 3780 | DO l = 0, 3 |
---|
| 3781 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
| 3782 | surf_lsm_v(l)%end_index(j,i) |
---|
| 3783 | k = surf_lsm_v(l)%k(m) |
---|
| 3784 | surf_lsm_v(l)%rad_sw_in(m) = 0.0_wp |
---|
| 3785 | surf_lsm_v(l)%rad_sw_out(m) = 0.0_wp |
---|
| 3786 | ENDDO |
---|
| 3787 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
| 3788 | surf_usm_v(l)%end_index(j,i) |
---|
| 3789 | k = surf_usm_v(l)%k(m) |
---|
| 3790 | surf_usm_v(l)%rad_sw_in(m) = 0.0_wp |
---|
| 3791 | surf_usm_v(l)%rad_sw_out(m) = 0.0_wp |
---|
| 3792 | ENDDO |
---|
| 3793 | ENDDO |
---|
[2696] | 3794 | ENDIF |
---|
| 3795 | |
---|
| 3796 | ENDDO |
---|
[1585] | 3797 | ENDDO |
---|
[2696] | 3798 | |
---|
| 3799 | ENDIF |
---|
| 3800 | ! |
---|
| 3801 | !-- Finally, calculate surface net radiation for surface elements. |
---|
[3272] | 3802 | IF ( .NOT. radiation_interactions ) THEN |
---|
| 3803 | !-- First, for horizontal surfaces |
---|
| 3804 | DO m = 1, surf_lsm_h%ns |
---|
| 3805 | surf_lsm_h%rad_net(m) = surf_lsm_h%rad_sw_in(m) & |
---|
| 3806 | - surf_lsm_h%rad_sw_out(m) & |
---|
| 3807 | + surf_lsm_h%rad_lw_in(m) & |
---|
| 3808 | - surf_lsm_h%rad_lw_out(m) |
---|
| 3809 | ENDDO |
---|
| 3810 | DO m = 1, surf_usm_h%ns |
---|
| 3811 | surf_usm_h%rad_net(m) = surf_usm_h%rad_sw_in(m) & |
---|
| 3812 | - surf_usm_h%rad_sw_out(m) & |
---|
| 3813 | + surf_usm_h%rad_lw_in(m) & |
---|
| 3814 | - surf_usm_h%rad_lw_out(m) |
---|
| 3815 | ENDDO |
---|
[2696] | 3816 | ! |
---|
[3272] | 3817 | !-- Vertical surfaces. |
---|
| 3818 | !-- Todo: weight with azimuth and zenith angle according to their orientation! |
---|
| 3819 | DO l = 0, 3 |
---|
| 3820 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 3821 | surf_lsm_v(l)%rad_net(m) = surf_lsm_v(l)%rad_sw_in(m) & |
---|
| 3822 | - surf_lsm_v(l)%rad_sw_out(m) & |
---|
| 3823 | + surf_lsm_v(l)%rad_lw_in(m) & |
---|
| 3824 | - surf_lsm_v(l)%rad_lw_out(m) |
---|
| 3825 | ENDDO |
---|
| 3826 | DO m = 1, surf_usm_v(l)%ns |
---|
| 3827 | surf_usm_v(l)%rad_net(m) = surf_usm_v(l)%rad_sw_in(m) & |
---|
| 3828 | - surf_usm_v(l)%rad_sw_out(m) & |
---|
| 3829 | + surf_usm_v(l)%rad_lw_in(m) & |
---|
| 3830 | - surf_usm_v(l)%rad_lw_out(m) |
---|
| 3831 | ENDDO |
---|
[2696] | 3832 | ENDDO |
---|
[3272] | 3833 | ENDIF |
---|
[1585] | 3834 | |
---|
[2696] | 3835 | |
---|
[1585] | 3836 | CALL exchange_horiz( rad_lw_in, nbgp ) |
---|
| 3837 | CALL exchange_horiz( rad_lw_out, nbgp ) |
---|
[1691] | 3838 | CALL exchange_horiz( rad_lw_hr, nbgp ) |
---|
| 3839 | CALL exchange_horiz( rad_lw_cs_hr, nbgp ) |
---|
| 3840 | |
---|
[1585] | 3841 | CALL exchange_horiz( rad_sw_in, nbgp ) |
---|
| 3842 | CALL exchange_horiz( rad_sw_out, nbgp ) |
---|
[1691] | 3843 | CALL exchange_horiz( rad_sw_hr, nbgp ) |
---|
| 3844 | CALL exchange_horiz( rad_sw_cs_hr, nbgp ) |
---|
| 3845 | |
---|
[1585] | 3846 | #endif |
---|
| 3847 | |
---|
| 3848 | END SUBROUTINE radiation_rrtmg |
---|
| 3849 | |
---|
| 3850 | |
---|
| 3851 | !------------------------------------------------------------------------------! |
---|
| 3852 | ! Description: |
---|
| 3853 | ! ------------ |
---|
[1682] | 3854 | !> Calculate the cosine of the zenith angle (variable is called zenith) |
---|
[1585] | 3855 | !------------------------------------------------------------------------------! |
---|
| 3856 | SUBROUTINE calc_zenith |
---|
| 3857 | |
---|
| 3858 | IMPLICIT NONE |
---|
| 3859 | |
---|
[1682] | 3860 | REAL(wp) :: declination, & !< solar declination angle |
---|
| 3861 | hour_angle !< solar hour angle |
---|
[1585] | 3862 | ! |
---|
[1496] | 3863 | !-- Calculate current day and time based on the initial values and simulation |
---|
| 3864 | !-- time |
---|
[2544] | 3865 | CALL calc_date_and_time |
---|
[1496] | 3866 | |
---|
| 3867 | ! |
---|
| 3868 | !-- Calculate solar declination and hour angle |
---|
[2544] | 3869 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day_of_year, KIND=wp) - decl_3) ) |
---|
[1496] | 3870 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
| 3871 | |
---|
| 3872 | ! |
---|
[2007] | 3873 | !-- Calculate cosine of solar zenith angle |
---|
[2299] | 3874 | zenith(0) = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
[1496] | 3875 | * COS(hour_angle) |
---|
[1585] | 3876 | zenith(0) = MAX(0.0_wp,zenith(0)) |
---|
[1496] | 3877 | |
---|
| 3878 | ! |
---|
[2007] | 3879 | !-- Calculate solar directional vector |
---|
| 3880 | IF ( sun_direction ) THEN |
---|
[2299] | 3881 | |
---|
| 3882 | ! |
---|
[2007] | 3883 | !-- Direction in longitudes equals to sin(solar_azimuth) * sin(zenith) |
---|
| 3884 | sun_dir_lon(0) = -SIN(hour_angle) * COS(declination) |
---|
[2299] | 3885 | |
---|
| 3886 | ! |
---|
[2007] | 3887 | !-- Direction in latitues equals to cos(solar_azimuth) * sin(zenith) |
---|
| 3888 | sun_dir_lat(0) = SIN(declination) * COS(lat) - COS(hour_angle) & |
---|
| 3889 | * COS(declination) * SIN(lat) |
---|
| 3890 | ENDIF |
---|
| 3891 | |
---|
| 3892 | ! |
---|
[1585] | 3893 | !-- Check if the sun is up (otheriwse shortwave calculations can be skipped) |
---|
[1691] | 3894 | IF ( zenith(0) > 0.0_wp ) THEN |
---|
[1585] | 3895 | sun_up = .TRUE. |
---|
| 3896 | ELSE |
---|
| 3897 | sun_up = .FALSE. |
---|
| 3898 | END IF |
---|
[1496] | 3899 | |
---|
[1585] | 3900 | END SUBROUTINE calc_zenith |
---|
| 3901 | |
---|
[1606] | 3902 | #if defined ( __rrtmg ) && defined ( __netcdf ) |
---|
[1585] | 3903 | !------------------------------------------------------------------------------! |
---|
| 3904 | ! Description: |
---|
| 3905 | ! ------------ |
---|
[1682] | 3906 | !> Calculates surface albedo components based on Briegleb (1992) and |
---|
| 3907 | !> Briegleb et al. (1986) |
---|
[1585] | 3908 | !------------------------------------------------------------------------------! |
---|
[2696] | 3909 | SUBROUTINE calc_albedo( surf ) |
---|
[1585] | 3910 | |
---|
| 3911 | IMPLICIT NONE |
---|
| 3912 | |
---|
[2753] | 3913 | INTEGER(iwp) :: ind_type !< running index surface tiles |
---|
| 3914 | INTEGER(iwp) :: m !< running index surface elements |
---|
[2696] | 3915 | |
---|
| 3916 | TYPE(surf_type) :: surf !< treated surfaces |
---|
| 3917 | |
---|
[2753] | 3918 | IF ( sun_up .AND. .NOT. average_radiation ) THEN |
---|
[2696] | 3919 | |
---|
| 3920 | DO m = 1, surf%ns |
---|
[1496] | 3921 | ! |
---|
[2753] | 3922 | !-- Loop over surface elements |
---|
| 3923 | DO ind_type = 0, SIZE( surf%albedo_type, 1 ) - 1 |
---|
| 3924 | |
---|
[1585] | 3925 | ! |
---|
[2753] | 3926 | !-- Ocean |
---|
| 3927 | IF ( surf%albedo_type(ind_type,m) == 1 ) THEN |
---|
| 3928 | surf%rrtm_aldir(ind_type,m) = 0.026_wp / & |
---|
| 3929 | ( zenith(0)**1.7_wp + 0.065_wp )& |
---|
| 3930 | + 0.15_wp * ( zenith(0) - 0.1_wp ) & |
---|
| 3931 | * ( zenith(0) - 0.5_wp ) & |
---|
| 3932 | * ( zenith(0) - 1.0_wp ) |
---|
| 3933 | surf%rrtm_asdir(ind_type,m) = surf%rrtm_aldir(ind_type,m) |
---|
| 3934 | ! |
---|
| 3935 | !-- Snow |
---|
| 3936 | ELSEIF ( surf%albedo_type(ind_type,m) == 16 ) THEN |
---|
| 3937 | IF ( zenith(0) < 0.5_wp ) THEN |
---|
| 3938 | surf%rrtm_aldir(ind_type,m) = & |
---|
| 3939 | 0.5_wp * ( 1.0_wp - surf%aldif(ind_type,m) ) & |
---|
| 3940 | * ( 3.0_wp / ( 1.0_wp + 4.0_wp & |
---|
| 3941 | * zenith(0) ) ) - 1.0_wp |
---|
| 3942 | surf%rrtm_asdir(ind_type,m) = & |
---|
| 3943 | 0.5_wp * ( 1.0_wp - surf%asdif(ind_type,m) ) & |
---|
| 3944 | * ( 3.0_wp / ( 1.0_wp + 4.0_wp & |
---|
| 3945 | * zenith(0) ) ) - 1.0_wp |
---|
[1496] | 3946 | |
---|
[2753] | 3947 | surf%rrtm_aldir(ind_type,m) = & |
---|
| 3948 | MIN(0.98_wp, surf%rrtm_aldir(ind_type,m)) |
---|
| 3949 | surf%rrtm_asdir(ind_type,m) = & |
---|
| 3950 | MIN(0.98_wp, surf%rrtm_asdir(ind_type,m)) |
---|
| 3951 | ELSE |
---|
| 3952 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
| 3953 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
| 3954 | ENDIF |
---|
[1496] | 3955 | ! |
---|
[2753] | 3956 | !-- Sea ice |
---|
| 3957 | ELSEIF ( surf%albedo_type(ind_type,m) == 15 ) THEN |
---|
| 3958 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
| 3959 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
[1788] | 3960 | |
---|
[1585] | 3961 | ! |
---|
[2753] | 3962 | !-- Asphalt |
---|
| 3963 | ELSEIF ( surf%albedo_type(ind_type,m) == 17 ) THEN |
---|
| 3964 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
| 3965 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
[2328] | 3966 | |
---|
[2696] | 3967 | |
---|
[1788] | 3968 | ! |
---|
[2753] | 3969 | !-- Bare soil |
---|
| 3970 | ELSEIF ( surf%albedo_type(ind_type,m) == 18 ) THEN |
---|
| 3971 | surf%rrtm_aldir(ind_type,m) = surf%aldif(ind_type,m) |
---|
| 3972 | surf%rrtm_asdir(ind_type,m) = surf%asdif(ind_type,m) |
---|
[2696] | 3973 | |
---|
[2328] | 3974 | ! |
---|
[2753] | 3975 | !-- Land surfaces |
---|
| 3976 | ELSE |
---|
| 3977 | SELECT CASE ( surf%albedo_type(ind_type,m) ) |
---|
[1496] | 3978 | |
---|
[1585] | 3979 | ! |
---|
[2753] | 3980 | !-- Surface types with strong zenith dependence |
---|
| 3981 | CASE ( 1, 2, 3, 4, 11, 12, 13 ) |
---|
| 3982 | surf%rrtm_aldir(ind_type,m) = & |
---|
| 3983 | surf%aldif(ind_type,m) * 1.4_wp / & |
---|
| 3984 | ( 1.0_wp + 0.8_wp * zenith(0) ) |
---|
| 3985 | surf%rrtm_asdir(ind_type,m) = & |
---|
| 3986 | surf%asdif(ind_type,m) * 1.4_wp / & |
---|
| 3987 | ( 1.0_wp + 0.8_wp * zenith(0) ) |
---|
[1585] | 3988 | ! |
---|
[2753] | 3989 | !-- Surface types with weak zenith dependence |
---|
| 3990 | CASE ( 5, 6, 7, 8, 9, 10, 14 ) |
---|
| 3991 | surf%rrtm_aldir(ind_type,m) = & |
---|
| 3992 | surf%aldif(ind_type,m) * 1.1_wp / & |
---|
| 3993 | ( 1.0_wp + 0.2_wp * zenith(0) ) |
---|
| 3994 | surf%rrtm_asdir(ind_type,m) = & |
---|
| 3995 | surf%asdif(ind_type,m) * 1.1_wp / & |
---|
| 3996 | ( 1.0_wp + 0.2_wp * zenith(0) ) |
---|
[1496] | 3997 | |
---|
[2753] | 3998 | CASE DEFAULT |
---|
[1585] | 3999 | |
---|
[2753] | 4000 | END SELECT |
---|
| 4001 | ENDIF |
---|
[1585] | 4002 | ! |
---|
[2753] | 4003 | !-- Diffusive albedo is taken from Table 2 |
---|
| 4004 | surf%rrtm_aldif(ind_type,m) = surf%aldif(ind_type,m) |
---|
| 4005 | surf%rrtm_asdif(ind_type,m) = surf%asdif(ind_type,m) |
---|
| 4006 | ENDDO |
---|
[2696] | 4007 | ENDDO |
---|
| 4008 | ! |
---|
| 4009 | !-- Set albedo in case of average radiation |
---|
| 4010 | ELSEIF ( sun_up .AND. average_radiation ) THEN |
---|
| 4011 | surf%rrtm_asdir = albedo_urb |
---|
| 4012 | surf%rrtm_asdif = albedo_urb |
---|
| 4013 | surf%rrtm_aldir = albedo_urb |
---|
| 4014 | surf%rrtm_aldif = albedo_urb |
---|
| 4015 | ! |
---|
| 4016 | !-- Darkness |
---|
[1585] | 4017 | ELSE |
---|
[2696] | 4018 | surf%rrtm_aldir = 0.0_wp |
---|
| 4019 | surf%rrtm_asdir = 0.0_wp |
---|
| 4020 | surf%rrtm_aldif = 0.0_wp |
---|
| 4021 | surf%rrtm_asdif = 0.0_wp |
---|
| 4022 | ENDIF |
---|
[1585] | 4023 | |
---|
| 4024 | END SUBROUTINE calc_albedo |
---|
| 4025 | |
---|
| 4026 | !------------------------------------------------------------------------------! |
---|
| 4027 | ! Description: |
---|
| 4028 | ! ------------ |
---|
[1682] | 4029 | !> Read sounding data (pressure and temperature) from RADIATION_DATA. |
---|
[1585] | 4030 | !------------------------------------------------------------------------------! |
---|
| 4031 | SUBROUTINE read_sounding_data |
---|
| 4032 | |
---|
| 4033 | IMPLICIT NONE |
---|
| 4034 | |
---|
[1691] | 4035 | INTEGER(iwp) :: id, & !< NetCDF id of input file |
---|
| 4036 | id_dim_zrad, & !< pressure level id in the NetCDF file |
---|
| 4037 | id_var, & !< NetCDF variable id |
---|
| 4038 | k, & !< loop index |
---|
| 4039 | nz_snd, & !< number of vertical levels in the sounding data |
---|
| 4040 | nz_snd_start, & !< start vertical index for sounding data to be used |
---|
| 4041 | nz_snd_end !< end vertical index for souding data to be used |
---|
[1585] | 4042 | |
---|
[1691] | 4043 | REAL(wp) :: t_surface !< actual surface temperature |
---|
[1585] | 4044 | |
---|
[1691] | 4045 | REAL(wp), DIMENSION(:), ALLOCATABLE :: hyp_snd_tmp, & !< temporary hydrostatic pressure profile (sounding) |
---|
| 4046 | t_snd_tmp !< temporary temperature profile (sounding) |
---|
[1585] | 4047 | |
---|
| 4048 | ! |
---|
| 4049 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
| 4050 | !-- array as the others are automatically allocated). This is required |
---|
| 4051 | !-- because nzt_rad might change during the update |
---|
| 4052 | IF ( ALLOCATED ( hyp_snd ) ) THEN |
---|
| 4053 | DEALLOCATE( hyp_snd ) |
---|
| 4054 | DEALLOCATE( t_snd ) |
---|
| 4055 | DEALLOCATE ( rrtm_play ) |
---|
| 4056 | DEALLOCATE ( rrtm_plev ) |
---|
| 4057 | DEALLOCATE ( rrtm_tlay ) |
---|
| 4058 | DEALLOCATE ( rrtm_tlev ) |
---|
[1691] | 4059 | |
---|
[1585] | 4060 | DEALLOCATE ( rrtm_cicewp ) |
---|
| 4061 | DEALLOCATE ( rrtm_cldfr ) |
---|
| 4062 | DEALLOCATE ( rrtm_cliqwp ) |
---|
| 4063 | DEALLOCATE ( rrtm_reice ) |
---|
| 4064 | DEALLOCATE ( rrtm_reliq ) |
---|
| 4065 | DEALLOCATE ( rrtm_lw_taucld ) |
---|
| 4066 | DEALLOCATE ( rrtm_lw_tauaer ) |
---|
[1691] | 4067 | |
---|
[1585] | 4068 | DEALLOCATE ( rrtm_lwdflx ) |
---|
[1691] | 4069 | DEALLOCATE ( rrtm_lwdflxc ) |
---|
[1585] | 4070 | DEALLOCATE ( rrtm_lwuflx ) |
---|
[1691] | 4071 | DEALLOCATE ( rrtm_lwuflxc ) |
---|
| 4072 | DEALLOCATE ( rrtm_lwuflx_dt ) |
---|
| 4073 | DEALLOCATE ( rrtm_lwuflxc_dt ) |
---|
[1585] | 4074 | DEALLOCATE ( rrtm_lwhr ) |
---|
| 4075 | DEALLOCATE ( rrtm_lwhrc ) |
---|
[1691] | 4076 | |
---|
[1585] | 4077 | DEALLOCATE ( rrtm_sw_taucld ) |
---|
| 4078 | DEALLOCATE ( rrtm_sw_ssacld ) |
---|
| 4079 | DEALLOCATE ( rrtm_sw_asmcld ) |
---|
| 4080 | DEALLOCATE ( rrtm_sw_fsfcld ) |
---|
| 4081 | DEALLOCATE ( rrtm_sw_tauaer ) |
---|
| 4082 | DEALLOCATE ( rrtm_sw_ssaaer ) |
---|
| 4083 | DEALLOCATE ( rrtm_sw_asmaer ) |
---|
[1691] | 4084 | DEALLOCATE ( rrtm_sw_ecaer ) |
---|
| 4085 | |
---|
[1585] | 4086 | DEALLOCATE ( rrtm_swdflx ) |
---|
[1691] | 4087 | DEALLOCATE ( rrtm_swdflxc ) |
---|
[1585] | 4088 | DEALLOCATE ( rrtm_swuflx ) |
---|
[1691] | 4089 | DEALLOCATE ( rrtm_swuflxc ) |
---|
[1585] | 4090 | DEALLOCATE ( rrtm_swhr ) |
---|
| 4091 | DEALLOCATE ( rrtm_swhrc ) |
---|
[3272] | 4092 | DEALLOCATE ( rrtm_dirdflux ) |
---|
| 4093 | DEALLOCATE ( rrtm_difdflux ) |
---|
[1691] | 4094 | |
---|
[1585] | 4095 | ENDIF |
---|
| 4096 | |
---|
| 4097 | ! |
---|
| 4098 | !-- Open file for reading |
---|
| 4099 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
[1783] | 4100 | CALL netcdf_handle_error_rad( 'read_sounding_data', 549 ) |
---|
[1585] | 4101 | |
---|
| 4102 | ! |
---|
| 4103 | !-- Inquire dimension of z axis and save in nz_snd |
---|
| 4104 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim_zrad ) |
---|
| 4105 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim_zrad, len = nz_snd ) |
---|
[1783] | 4106 | CALL netcdf_handle_error_rad( 'read_sounding_data', 551 ) |
---|
[1585] | 4107 | |
---|
| 4108 | ! |
---|
| 4109 | ! !-- Allocate temporary array for storing pressure data |
---|
[1701] | 4110 | ALLOCATE( hyp_snd_tmp(1:nz_snd) ) |
---|
[1585] | 4111 | hyp_snd_tmp = 0.0_wp |
---|
| 4112 | |
---|
| 4113 | |
---|
| 4114 | !-- Read pressure from file |
---|
| 4115 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
[1691] | 4116 | nc_stat = NF90_GET_VAR( id, id_var, hyp_snd_tmp(:), start = (/1/), & |
---|
[1585] | 4117 | count = (/nz_snd/) ) |
---|
[1783] | 4118 | CALL netcdf_handle_error_rad( 'read_sounding_data', 552 ) |
---|
[1585] | 4119 | |
---|
| 4120 | ! |
---|
| 4121 | !-- Allocate temporary array for storing temperature data |
---|
[1701] | 4122 | ALLOCATE( t_snd_tmp(1:nz_snd) ) |
---|
[1585] | 4123 | t_snd_tmp = 0.0_wp |
---|
| 4124 | |
---|
| 4125 | ! |
---|
| 4126 | !-- Read temperature from file |
---|
| 4127 | nc_stat = NF90_INQ_VARID( id, "ReferenceTemperature", id_var ) |
---|
[1691] | 4128 | nc_stat = NF90_GET_VAR( id, id_var, t_snd_tmp(:), start = (/1/), & |
---|
[1585] | 4129 | count = (/nz_snd/) ) |
---|
[1783] | 4130 | CALL netcdf_handle_error_rad( 'read_sounding_data', 553 ) |
---|
[1585] | 4131 | |
---|
| 4132 | ! |
---|
| 4133 | !-- Calculate start of sounding data |
---|
| 4134 | nz_snd_start = nz_snd + 1 |
---|
[1701] | 4135 | nz_snd_end = nz_snd + 1 |
---|
[1585] | 4136 | |
---|
| 4137 | ! |
---|
| 4138 | !-- Start filling vertical dimension at 10hPa above the model domain (hyp is |
---|
| 4139 | !-- in Pa, hyp_snd in hPa). |
---|
| 4140 | DO k = 1, nz_snd |
---|
[1691] | 4141 | IF ( hyp_snd_tmp(k) < ( hyp(nzt+1) - 1000.0_wp) * 0.01_wp ) THEN |
---|
[1585] | 4142 | nz_snd_start = k |
---|
| 4143 | EXIT |
---|
| 4144 | END IF |
---|
| 4145 | END DO |
---|
| 4146 | |
---|
[1691] | 4147 | IF ( nz_snd_start <= nz_snd ) THEN |
---|
[1701] | 4148 | nz_snd_end = nz_snd |
---|
[1585] | 4149 | END IF |
---|
| 4150 | |
---|
| 4151 | |
---|
| 4152 | ! |
---|
| 4153 | !-- Calculate of total grid points for RRTMG calculations |
---|
[1701] | 4154 | nzt_rad = nzt + nz_snd_end - nz_snd_start + 1 |
---|
[1585] | 4155 | |
---|
| 4156 | ! |
---|
[3117] | 4157 | !-- Save data above LES domain in hyp_snd, t_snd |
---|
[1585] | 4158 | ALLOCATE( hyp_snd(nzb+1:nzt_rad) ) |
---|
| 4159 | ALLOCATE( t_snd(nzb+1:nzt_rad) ) |
---|
| 4160 | hyp_snd = 0.0_wp |
---|
| 4161 | t_snd = 0.0_wp |
---|
| 4162 | |
---|
[1757] | 4163 | hyp_snd(nzt+2:nzt_rad) = hyp_snd_tmp(nz_snd_start+1:nz_snd_end) |
---|
| 4164 | t_snd(nzt+2:nzt_rad) = t_snd_tmp(nz_snd_start+1:nz_snd_end) |
---|
[1585] | 4165 | |
---|
| 4166 | nc_stat = NF90_CLOSE( id ) |
---|
| 4167 | |
---|
| 4168 | ! |
---|
| 4169 | !-- Calculate pressure levels on zu and zw grid. Sounding data is added at |
---|
| 4170 | !-- top of the LES domain. This routine does not consider horizontal or |
---|
| 4171 | !-- vertical variability of pressure and temperature |
---|
| 4172 | ALLOCATE ( rrtm_play(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4173 | ALLOCATE ( rrtm_plev(0:0,nzb+1:nzt_rad+2) ) |
---|
| 4174 | |
---|
[3274] | 4175 | t_surface = pt_surface * exner(nzb) |
---|
[1585] | 4176 | DO k = nzb+1, nzt+1 |
---|
| 4177 | rrtm_play(0,k) = hyp(k) * 0.01_wp |
---|
[3274] | 4178 | rrtm_plev(0,k) = barometric_formula(zw(k-1), & |
---|
| 4179 | pt_surface * exner(nzb), & |
---|
| 4180 | surface_pressure ) |
---|
[1585] | 4181 | ENDDO |
---|
| 4182 | |
---|
| 4183 | DO k = nzt+2, nzt_rad |
---|
| 4184 | rrtm_play(0,k) = hyp_snd(k) |
---|
| 4185 | rrtm_plev(0,k) = 0.5_wp * ( rrtm_play(0,k) + rrtm_play(0,k-1) ) |
---|
| 4186 | ENDDO |
---|
| 4187 | rrtm_plev(0,nzt_rad+1) = MAX( 0.5 * hyp_snd(nzt_rad), & |
---|
| 4188 | 1.5 * hyp_snd(nzt_rad) & |
---|
| 4189 | - 0.5 * hyp_snd(nzt_rad-1) ) |
---|
| 4190 | rrtm_plev(0,nzt_rad+2) = MIN( 1.0E-4_wp, & |
---|
| 4191 | 0.25_wp * rrtm_plev(0,nzt_rad+1) ) |
---|
| 4192 | |
---|
| 4193 | rrtm_play(0,nzt_rad+1) = 0.5 * rrtm_plev(0,nzt_rad+1) |
---|
| 4194 | |
---|
| 4195 | ! |
---|
| 4196 | !-- Calculate temperature/humidity levels at top of the LES domain. |
---|
| 4197 | !-- Currently, the temperature is taken from sounding data (might lead to a |
---|
| 4198 | !-- temperature jump at interface. To do: Humidity is currently not |
---|
| 4199 | !-- calculated above the LES domain. |
---|
| 4200 | ALLOCATE ( rrtm_tlay(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4201 | ALLOCATE ( rrtm_tlev(0:0,nzb+1:nzt_rad+2) ) |
---|
| 4202 | |
---|
| 4203 | DO k = nzt+8, nzt_rad |
---|
| 4204 | rrtm_tlay(0,k) = t_snd(k) |
---|
| 4205 | ENDDO |
---|
[2299] | 4206 | rrtm_tlay(0,nzt_rad+1) = 2.0_wp * rrtm_tlay(0,nzt_rad) & |
---|
[1691] | 4207 | - rrtm_tlay(0,nzt_rad-1) |
---|
[1585] | 4208 | DO k = nzt+9, nzt_rad+1 |
---|
| 4209 | rrtm_tlev(0,k) = rrtm_tlay(0,k-1) + (rrtm_tlay(0,k) & |
---|
| 4210 | - rrtm_tlay(0,k-1)) & |
---|
| 4211 | / ( rrtm_play(0,k) - rrtm_play(0,k-1) ) & |
---|
| 4212 | * ( rrtm_plev(0,k) - rrtm_play(0,k-1) ) |
---|
| 4213 | ENDDO |
---|
| 4214 | |
---|
| 4215 | rrtm_tlev(0,nzt_rad+2) = 2.0_wp * rrtm_tlay(0,nzt_rad+1) & |
---|
| 4216 | - rrtm_tlev(0,nzt_rad) |
---|
| 4217 | ! |
---|
| 4218 | !-- Allocate remaining RRTMG arrays |
---|
| 4219 | ALLOCATE ( rrtm_cicewp(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4220 | ALLOCATE ( rrtm_cldfr(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4221 | ALLOCATE ( rrtm_cliqwp(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4222 | ALLOCATE ( rrtm_reice(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4223 | ALLOCATE ( rrtm_reliq(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4224 | ALLOCATE ( rrtm_lw_taucld(1:nbndlw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
| 4225 | ALLOCATE ( rrtm_lw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndlw+1) ) |
---|
| 4226 | ALLOCATE ( rrtm_sw_taucld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
| 4227 | ALLOCATE ( rrtm_sw_ssacld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
| 4228 | ALLOCATE ( rrtm_sw_asmcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
| 4229 | ALLOCATE ( rrtm_sw_fsfcld(1:nbndsw+1,0:0,nzb+1:nzt_rad+1) ) |
---|
| 4230 | ALLOCATE ( rrtm_sw_tauaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
| 4231 | ALLOCATE ( rrtm_sw_ssaaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
| 4232 | ALLOCATE ( rrtm_sw_asmaer(0:0,nzb+1:nzt_rad+1,1:nbndsw+1) ) |
---|
| 4233 | ALLOCATE ( rrtm_sw_ecaer(0:0,nzb+1:nzt_rad+1,1:naerec+1) ) |
---|
| 4234 | |
---|
| 4235 | ! |
---|
| 4236 | !-- The ice phase is currently not considered in PALM |
---|
| 4237 | rrtm_cicewp = 0.0_wp |
---|
| 4238 | rrtm_reice = 0.0_wp |
---|
| 4239 | |
---|
| 4240 | ! |
---|
| 4241 | !-- Set other parameters (move to NAMELIST parameters in the future) |
---|
| 4242 | rrtm_lw_tauaer = 0.0_wp |
---|
| 4243 | rrtm_lw_taucld = 0.0_wp |
---|
| 4244 | rrtm_sw_taucld = 0.0_wp |
---|
| 4245 | rrtm_sw_ssacld = 0.0_wp |
---|
| 4246 | rrtm_sw_asmcld = 0.0_wp |
---|
| 4247 | rrtm_sw_fsfcld = 0.0_wp |
---|
| 4248 | rrtm_sw_tauaer = 0.0_wp |
---|
| 4249 | rrtm_sw_ssaaer = 0.0_wp |
---|
| 4250 | rrtm_sw_asmaer = 0.0_wp |
---|
| 4251 | rrtm_sw_ecaer = 0.0_wp |
---|
| 4252 | |
---|
| 4253 | |
---|
| 4254 | ALLOCATE ( rrtm_swdflx(0:0,nzb:nzt_rad+1) ) |
---|
| 4255 | ALLOCATE ( rrtm_swuflx(0:0,nzb:nzt_rad+1) ) |
---|
| 4256 | ALLOCATE ( rrtm_swhr(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4257 | ALLOCATE ( rrtm_swuflxc(0:0,nzb:nzt_rad+1) ) |
---|
| 4258 | ALLOCATE ( rrtm_swdflxc(0:0,nzb:nzt_rad+1) ) |
---|
| 4259 | ALLOCATE ( rrtm_swhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
[3272] | 4260 | ALLOCATE ( rrtm_dirdflux(0:0,nzb:nzt_rad+1) ) |
---|
| 4261 | ALLOCATE ( rrtm_difdflux(0:0,nzb:nzt_rad+1) ) |
---|
[1585] | 4262 | |
---|
| 4263 | rrtm_swdflx = 0.0_wp |
---|
| 4264 | rrtm_swuflx = 0.0_wp |
---|
| 4265 | rrtm_swhr = 0.0_wp |
---|
| 4266 | rrtm_swuflxc = 0.0_wp |
---|
| 4267 | rrtm_swdflxc = 0.0_wp |
---|
| 4268 | rrtm_swhrc = 0.0_wp |
---|
[3272] | 4269 | rrtm_dirdflux = 0.0_wp |
---|
| 4270 | rrtm_difdflux = 0.0_wp |
---|
[1585] | 4271 | |
---|
| 4272 | ALLOCATE ( rrtm_lwdflx(0:0,nzb:nzt_rad+1) ) |
---|
| 4273 | ALLOCATE ( rrtm_lwuflx(0:0,nzb:nzt_rad+1) ) |
---|
| 4274 | ALLOCATE ( rrtm_lwhr(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4275 | ALLOCATE ( rrtm_lwuflxc(0:0,nzb:nzt_rad+1) ) |
---|
| 4276 | ALLOCATE ( rrtm_lwdflxc(0:0,nzb:nzt_rad+1) ) |
---|
| 4277 | ALLOCATE ( rrtm_lwhrc(0:0,nzb+1:nzt_rad+1) ) |
---|
| 4278 | |
---|
| 4279 | rrtm_lwdflx = 0.0_wp |
---|
| 4280 | rrtm_lwuflx = 0.0_wp |
---|
| 4281 | rrtm_lwhr = 0.0_wp |
---|
| 4282 | rrtm_lwuflxc = 0.0_wp |
---|
| 4283 | rrtm_lwdflxc = 0.0_wp |
---|
| 4284 | rrtm_lwhrc = 0.0_wp |
---|
| 4285 | |
---|
[1691] | 4286 | ALLOCATE ( rrtm_lwuflx_dt(0:0,nzb:nzt_rad+1) ) |
---|
| 4287 | ALLOCATE ( rrtm_lwuflxc_dt(0:0,nzb:nzt_rad+1) ) |
---|
[1585] | 4288 | |
---|
[1709] | 4289 | rrtm_lwuflx_dt = 0.0_wp |
---|
[1691] | 4290 | rrtm_lwuflxc_dt = 0.0_wp |
---|
| 4291 | |
---|
[1585] | 4292 | END SUBROUTINE read_sounding_data |
---|
| 4293 | |
---|
| 4294 | |
---|
| 4295 | !------------------------------------------------------------------------------! |
---|
| 4296 | ! Description: |
---|
| 4297 | ! ------------ |
---|
[1682] | 4298 | !> Read trace gas data from file |
---|
[1585] | 4299 | !------------------------------------------------------------------------------! |
---|
| 4300 | SUBROUTINE read_trace_gas_data |
---|
| 4301 | |
---|
| 4302 | USE rrsw_ncpar |
---|
| 4303 | |
---|
| 4304 | IMPLICIT NONE |
---|
| 4305 | |
---|
[3117] | 4306 | INTEGER(iwp), PARAMETER :: num_trace_gases = 10 !< number of trace gases (absorbers) |
---|
[1585] | 4307 | |
---|
[1691] | 4308 | CHARACTER(LEN=5), DIMENSION(num_trace_gases), PARAMETER :: & !< trace gas names |
---|
[1585] | 4309 | trace_names = (/'O3 ', 'CO2 ', 'CH4 ', 'N2O ', 'O2 ', & |
---|
[3137] | 4310 | 'CFC11', 'CFC12', 'CFC22', 'CCL4 ', 'H2O '/) |
---|
[1585] | 4311 | |
---|
[1691] | 4312 | INTEGER(iwp) :: id, & !< NetCDF id |
---|
| 4313 | k, & !< loop index |
---|
| 4314 | m, & !< loop index |
---|
| 4315 | n, & !< loop index |
---|
| 4316 | nabs, & !< number of absorbers |
---|
| 4317 | np, & !< number of pressure levels |
---|
| 4318 | id_abs, & !< NetCDF id of the respective absorber |
---|
| 4319 | id_dim, & !< NetCDF id of asborber's dimension |
---|
| 4320 | id_var !< NetCDf id ot the absorber |
---|
[1585] | 4321 | |
---|
| 4322 | REAL(wp) :: p_mls_l, p_mls_u, p_wgt_l, p_wgt_u, p_mls_m |
---|
| 4323 | |
---|
| 4324 | |
---|
[2299] | 4325 | REAL(wp), DIMENSION(:), ALLOCATABLE :: p_mls, & !< pressure levels for the absorbers |
---|
| 4326 | rrtm_play_tmp, & !< temporary array for pressure zu-levels |
---|
| 4327 | rrtm_plev_tmp, & !< temporary array for pressure zw-levels |
---|
| 4328 | trace_path_tmp !< temporary array for storing trace gas path data |
---|
[1585] | 4329 | |
---|
[1682] | 4330 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: trace_mls, & !< array for storing the absorber amounts |
---|
| 4331 | trace_mls_path, & !< array for storing trace gas path data |
---|
| 4332 | trace_mls_tmp !< temporary array for storing trace gas data |
---|
[1585] | 4333 | |
---|
| 4334 | |
---|
| 4335 | ! |
---|
| 4336 | !-- In case of updates, deallocate arrays first (sufficient to check one |
---|
| 4337 | !-- array as the others are automatically allocated) |
---|
| 4338 | IF ( ALLOCATED ( rrtm_o3vmr ) ) THEN |
---|
| 4339 | DEALLOCATE ( rrtm_o3vmr ) |
---|
| 4340 | DEALLOCATE ( rrtm_co2vmr ) |
---|
| 4341 | DEALLOCATE ( rrtm_ch4vmr ) |
---|
| 4342 | DEALLOCATE ( rrtm_n2ovmr ) |
---|
| 4343 | DEALLOCATE ( rrtm_o2vmr ) |
---|
| 4344 | DEALLOCATE ( rrtm_cfc11vmr ) |
---|
| 4345 | DEALLOCATE ( rrtm_cfc12vmr ) |
---|
| 4346 | DEALLOCATE ( rrtm_cfc22vmr ) |
---|
| 4347 | DEALLOCATE ( rrtm_ccl4vmr ) |
---|
[3117] | 4348 | DEALLOCATE ( rrtm_h2ovmr ) |
---|
[1585] | 4349 | ENDIF |
---|
| 4350 | |
---|
| 4351 | ! |
---|
| 4352 | !-- Allocate trace gas profiles |
---|
| 4353 | ALLOCATE ( rrtm_o3vmr(0:0,1:nzt_rad+1) ) |
---|
| 4354 | ALLOCATE ( rrtm_co2vmr(0:0,1:nzt_rad+1) ) |
---|
| 4355 | ALLOCATE ( rrtm_ch4vmr(0:0,1:nzt_rad+1) ) |
---|
| 4356 | ALLOCATE ( rrtm_n2ovmr(0:0,1:nzt_rad+1) ) |
---|
| 4357 | ALLOCATE ( rrtm_o2vmr(0:0,1:nzt_rad+1) ) |
---|
| 4358 | ALLOCATE ( rrtm_cfc11vmr(0:0,1:nzt_rad+1) ) |
---|
| 4359 | ALLOCATE ( rrtm_cfc12vmr(0:0,1:nzt_rad+1) ) |
---|
| 4360 | ALLOCATE ( rrtm_cfc22vmr(0:0,1:nzt_rad+1) ) |
---|
| 4361 | ALLOCATE ( rrtm_ccl4vmr(0:0,1:nzt_rad+1) ) |
---|
[3117] | 4362 | ALLOCATE ( rrtm_h2ovmr(0:0,1:nzt_rad+1) ) |
---|
[1585] | 4363 | |
---|
| 4364 | ! |
---|
| 4365 | !-- Open file for reading |
---|
| 4366 | nc_stat = NF90_OPEN( rrtm_input_file, NF90_NOWRITE, id ) |
---|
[1783] | 4367 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 549 ) |
---|
[1585] | 4368 | ! |
---|
| 4369 | !-- Inquire dimension ids and dimensions |
---|
| 4370 | nc_stat = NF90_INQ_DIMID( id, "Pressure", id_dim ) |
---|
[1783] | 4371 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4372 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = np) |
---|
[1783] | 4373 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4374 | |
---|
| 4375 | nc_stat = NF90_INQ_DIMID( id, "Absorber", id_dim ) |
---|
[1783] | 4376 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4377 | nc_stat = NF90_INQUIRE_DIMENSION( id, id_dim, len = nabs ) |
---|
[1783] | 4378 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4379 | |
---|
| 4380 | |
---|
| 4381 | ! |
---|
| 4382 | !-- Allocate pressure, and trace gas arrays |
---|
| 4383 | ALLOCATE( p_mls(1:np) ) |
---|
| 4384 | ALLOCATE( trace_mls(1:num_trace_gases,1:np) ) |
---|
| 4385 | ALLOCATE( trace_mls_tmp(1:nabs,1:np) ) |
---|
| 4386 | |
---|
| 4387 | |
---|
| 4388 | nc_stat = NF90_INQ_VARID( id, "Pressure", id_var ) |
---|
[1783] | 4389 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4390 | nc_stat = NF90_GET_VAR( id, id_var, p_mls ) |
---|
[1783] | 4391 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4392 | |
---|
| 4393 | nc_stat = NF90_INQ_VARID( id, "AbsorberAmountMLS", id_var ) |
---|
[1783] | 4394 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4395 | nc_stat = NF90_GET_VAR( id, id_var, trace_mls_tmp ) |
---|
[1783] | 4396 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 550 ) |
---|
[1585] | 4397 | |
---|
| 4398 | |
---|
| 4399 | ! |
---|
| 4400 | !-- Write absorber amounts (mls) to trace_mls |
---|
| 4401 | DO n = 1, num_trace_gases |
---|
| 4402 | CALL getAbsorberIndex( TRIM( trace_names(n) ), id_abs ) |
---|
| 4403 | |
---|
| 4404 | trace_mls(n,1:np) = trace_mls_tmp(id_abs,1:np) |
---|
| 4405 | |
---|
| 4406 | ! |
---|
| 4407 | !-- Replace missing values by zero |
---|
| 4408 | WHERE ( trace_mls(n,:) > 2.0_wp ) |
---|
| 4409 | trace_mls(n,:) = 0.0_wp |
---|
| 4410 | END WHERE |
---|
| 4411 | END DO |
---|
| 4412 | |
---|
| 4413 | DEALLOCATE ( trace_mls_tmp ) |
---|
| 4414 | |
---|
| 4415 | nc_stat = NF90_CLOSE( id ) |
---|
[1783] | 4416 | CALL netcdf_handle_error_rad( 'read_trace_gas_data', 551 ) |
---|
[1585] | 4417 | |
---|
| 4418 | ! |
---|
| 4419 | !-- Add extra pressure level for calculations of the trace gas paths |
---|
| 4420 | ALLOCATE ( rrtm_play_tmp(1:nzt_rad+1) ) |
---|
| 4421 | ALLOCATE ( rrtm_plev_tmp(1:nzt_rad+2) ) |
---|
| 4422 | |
---|
| 4423 | rrtm_play_tmp(1:nzt_rad) = rrtm_play(0,1:nzt_rad) |
---|
| 4424 | rrtm_plev_tmp(1:nzt_rad+1) = rrtm_plev(0,1:nzt_rad+1) |
---|
| 4425 | rrtm_play_tmp(nzt_rad+1) = rrtm_plev(0,nzt_rad+1) * 0.5_wp |
---|
| 4426 | rrtm_plev_tmp(nzt_rad+2) = MIN( 1.0E-4_wp, 0.25_wp & |
---|
| 4427 | * rrtm_plev(0,nzt_rad+1) ) |
---|
| 4428 | |
---|
| 4429 | ! |
---|
| 4430 | !-- Calculate trace gas path (zero at surface) with interpolation to the |
---|
| 4431 | !-- sounding levels |
---|
| 4432 | ALLOCATE ( trace_mls_path(1:nzt_rad+2,1:num_trace_gases) ) |
---|
| 4433 | |
---|
| 4434 | trace_mls_path(nzb+1,:) = 0.0_wp |
---|
| 4435 | |
---|
| 4436 | DO k = nzb+2, nzt_rad+2 |
---|
| 4437 | DO m = 1, num_trace_gases |
---|
| 4438 | trace_mls_path(k,m) = trace_mls_path(k-1,m) |
---|
| 4439 | |
---|
| 4440 | ! |
---|
| 4441 | !-- When the pressure level is higher than the trace gas pressure |
---|
| 4442 | !-- level, assume that |
---|
[1691] | 4443 | IF ( rrtm_plev_tmp(k-1) > p_mls(1) ) THEN |
---|
[1585] | 4444 | |
---|
| 4445 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,1) & |
---|
| 4446 | * ( rrtm_plev_tmp(k-1) & |
---|
| 4447 | - MAX( p_mls(1), rrtm_plev_tmp(k) ) & |
---|
| 4448 | ) / g |
---|
| 4449 | ENDIF |
---|
| 4450 | |
---|
| 4451 | ! |
---|
| 4452 | !-- Integrate for each sounding level from the contributing p_mls |
---|
| 4453 | !-- levels |
---|
| 4454 | DO n = 2, np |
---|
| 4455 | ! |
---|
| 4456 | !-- Limit p_mls so that it is within the model level |
---|
| 4457 | p_mls_u = MIN( rrtm_plev_tmp(k-1), & |
---|
| 4458 | MAX( rrtm_plev_tmp(k), p_mls(n) ) ) |
---|
| 4459 | p_mls_l = MIN( rrtm_plev_tmp(k-1), & |
---|
| 4460 | MAX( rrtm_plev_tmp(k), p_mls(n-1) ) ) |
---|
| 4461 | |
---|
[1691] | 4462 | IF ( p_mls_l > p_mls_u ) THEN |
---|
[1585] | 4463 | |
---|
| 4464 | ! |
---|
| 4465 | !-- Calculate weights for interpolation |
---|
| 4466 | p_mls_m = 0.5_wp * (p_mls_l + p_mls_u) |
---|
| 4467 | p_wgt_u = (p_mls(n-1) - p_mls_m) / (p_mls(n-1) - p_mls(n)) |
---|
| 4468 | p_wgt_l = (p_mls_m - p_mls(n)) / (p_mls(n-1) - p_mls(n)) |
---|
| 4469 | |
---|
| 4470 | ! |
---|
| 4471 | !-- Add level to trace gas path |
---|
| 4472 | trace_mls_path(k,m) = trace_mls_path(k,m) & |
---|
| 4473 | + ( p_wgt_u * trace_mls(m,n) & |
---|
| 4474 | + p_wgt_l * trace_mls(m,n-1) ) & |
---|
[1691] | 4475 | * (p_mls_l - p_mls_u) / g |
---|
[1585] | 4476 | ENDIF |
---|
| 4477 | ENDDO |
---|
| 4478 | |
---|
[1691] | 4479 | IF ( rrtm_plev_tmp(k) < p_mls(np) ) THEN |
---|
[1585] | 4480 | trace_mls_path(k,m) = trace_mls_path(k,m) + trace_mls(m,np) & |
---|
| 4481 | * ( MIN( rrtm_plev_tmp(k-1), p_mls(np) ) & |
---|
| 4482 | - rrtm_plev_tmp(k) & |
---|
| 4483 | ) / g |
---|
| 4484 | ENDIF |
---|
[1496] | 4485 | ENDDO |
---|
| 4486 | ENDDO |
---|
| 4487 | |
---|
| 4488 | |
---|
[1585] | 4489 | ! |
---|
| 4490 | !-- Prepare trace gas path profiles |
---|
| 4491 | ALLOCATE ( trace_path_tmp(1:nzt_rad+1) ) |
---|
[1496] | 4492 | |
---|
[1585] | 4493 | DO m = 1, num_trace_gases |
---|
| 4494 | |
---|
| 4495 | trace_path_tmp(1:nzt_rad+1) = ( trace_mls_path(2:nzt_rad+2,m) & |
---|
| 4496 | - trace_mls_path(1:nzt_rad+1,m) ) * g & |
---|
| 4497 | / ( rrtm_plev_tmp(1:nzt_rad+1) & |
---|
| 4498 | - rrtm_plev_tmp(2:nzt_rad+2) ) |
---|
| 4499 | |
---|
| 4500 | ! |
---|
| 4501 | !-- Save trace gas paths to the respective arrays |
---|
| 4502 | SELECT CASE ( TRIM( trace_names(m) ) ) |
---|
| 4503 | |
---|
| 4504 | CASE ( 'O3' ) |
---|
| 4505 | |
---|
| 4506 | rrtm_o3vmr(0,:) = trace_path_tmp(:) |
---|
| 4507 | |
---|
| 4508 | CASE ( 'CO2' ) |
---|
| 4509 | |
---|
| 4510 | rrtm_co2vmr(0,:) = trace_path_tmp(:) |
---|
| 4511 | |
---|
| 4512 | CASE ( 'CH4' ) |
---|
| 4513 | |
---|
| 4514 | rrtm_ch4vmr(0,:) = trace_path_tmp(:) |
---|
| 4515 | |
---|
| 4516 | CASE ( 'N2O' ) |
---|
| 4517 | |
---|
| 4518 | rrtm_n2ovmr(0,:) = trace_path_tmp(:) |
---|
| 4519 | |
---|
| 4520 | CASE ( 'O2' ) |
---|
| 4521 | |
---|
| 4522 | rrtm_o2vmr(0,:) = trace_path_tmp(:) |
---|
| 4523 | |
---|
| 4524 | CASE ( 'CFC11' ) |
---|
| 4525 | |
---|
| 4526 | rrtm_cfc11vmr(0,:) = trace_path_tmp(:) |
---|
| 4527 | |
---|
| 4528 | CASE ( 'CFC12' ) |
---|
| 4529 | |
---|
| 4530 | rrtm_cfc12vmr(0,:) = trace_path_tmp(:) |
---|
| 4531 | |
---|
| 4532 | CASE ( 'CFC22' ) |
---|
| 4533 | |
---|
| 4534 | rrtm_cfc22vmr(0,:) = trace_path_tmp(:) |
---|
| 4535 | |
---|
| 4536 | CASE ( 'CCL4' ) |
---|
| 4537 | |
---|
| 4538 | rrtm_ccl4vmr(0,:) = trace_path_tmp(:) |
---|
| 4539 | |
---|
[3117] | 4540 | CASE ( 'H2O' ) |
---|
| 4541 | |
---|
| 4542 | rrtm_h2ovmr(0,:) = trace_path_tmp(:) |
---|
| 4543 | |
---|
[1585] | 4544 | CASE DEFAULT |
---|
| 4545 | |
---|
| 4546 | END SELECT |
---|
| 4547 | |
---|
| 4548 | ENDDO |
---|
| 4549 | |
---|
| 4550 | DEALLOCATE ( trace_path_tmp ) |
---|
| 4551 | DEALLOCATE ( trace_mls_path ) |
---|
| 4552 | DEALLOCATE ( rrtm_play_tmp ) |
---|
| 4553 | DEALLOCATE ( rrtm_plev_tmp ) |
---|
| 4554 | DEALLOCATE ( trace_mls ) |
---|
| 4555 | DEALLOCATE ( p_mls ) |
---|
| 4556 | |
---|
| 4557 | END SUBROUTINE read_trace_gas_data |
---|
| 4558 | |
---|
[1826] | 4559 | |
---|
[1783] | 4560 | SUBROUTINE netcdf_handle_error_rad( routine_name, errno ) |
---|
| 4561 | |
---|
| 4562 | USE control_parameters, & |
---|
| 4563 | ONLY: message_string |
---|
| 4564 | |
---|
| 4565 | USE NETCDF |
---|
| 4566 | |
---|
| 4567 | USE pegrid |
---|
| 4568 | |
---|
| 4569 | IMPLICIT NONE |
---|
| 4570 | |
---|
| 4571 | CHARACTER(LEN=6) :: message_identifier |
---|
| 4572 | CHARACTER(LEN=*) :: routine_name |
---|
| 4573 | |
---|
| 4574 | INTEGER(iwp) :: errno |
---|
| 4575 | |
---|
| 4576 | IF ( nc_stat /= NF90_NOERR ) THEN |
---|
| 4577 | |
---|
| 4578 | WRITE( message_identifier, '(''NC'',I4.4)' ) errno |
---|
| 4579 | message_string = TRIM( NF90_STRERROR( nc_stat ) ) |
---|
| 4580 | |
---|
| 4581 | CALL message( routine_name, message_identifier, 2, 2, 0, 6, 1 ) |
---|
| 4582 | |
---|
| 4583 | ENDIF |
---|
| 4584 | |
---|
| 4585 | END SUBROUTINE netcdf_handle_error_rad |
---|
[1585] | 4586 | #endif |
---|
| 4587 | |
---|
| 4588 | |
---|
[1551] | 4589 | !------------------------------------------------------------------------------! |
---|
| 4590 | ! Description: |
---|
| 4591 | ! ------------ |
---|
[1682] | 4592 | !> Calculate temperature tendency due to radiative cooling/heating. |
---|
| 4593 | !> Cache-optimized version. |
---|
[1551] | 4594 | !------------------------------------------------------------------------------! |
---|
[1976] | 4595 | SUBROUTINE radiation_tendency_ij ( i, j, tend ) |
---|
[1496] | 4596 | |
---|
[1976] | 4597 | IMPLICIT NONE |
---|
[1585] | 4598 | |
---|
[1976] | 4599 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
[1585] | 4600 | |
---|
[1976] | 4601 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term |
---|
[1585] | 4602 | |
---|
[1976] | 4603 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
| 4604 | #if defined ( __rrtmg ) |
---|
[1585] | 4605 | ! |
---|
[1691] | 4606 | !-- Calculate tendency based on heating rate |
---|
[1585] | 4607 | DO k = nzb+1, nzt+1 |
---|
[1691] | 4608 | tend(k,j,i) = tend(k,j,i) + (rad_lw_hr(k,j,i) + rad_sw_hr(k,j,i)) & |
---|
[3274] | 4609 | * d_exner(k) * d_seconds_hour |
---|
[1585] | 4610 | ENDDO |
---|
| 4611 | #endif |
---|
[1976] | 4612 | ENDIF |
---|
[1585] | 4613 | |
---|
| 4614 | END SUBROUTINE radiation_tendency_ij |
---|
| 4615 | |
---|
| 4616 | |
---|
[1551] | 4617 | !------------------------------------------------------------------------------! |
---|
| 4618 | ! Description: |
---|
| 4619 | ! ------------ |
---|
[1682] | 4620 | !> Calculate temperature tendency due to radiative cooling/heating. |
---|
| 4621 | !> Vector-optimized version |
---|
[1551] | 4622 | !------------------------------------------------------------------------------! |
---|
[1976] | 4623 | SUBROUTINE radiation_tendency ( tend ) |
---|
[1551] | 4624 | |
---|
[1976] | 4625 | USE indices, & |
---|
| 4626 | ONLY: nxl, nxr, nyn, nys |
---|
[1585] | 4627 | |
---|
[1976] | 4628 | IMPLICIT NONE |
---|
[1585] | 4629 | |
---|
[1976] | 4630 | INTEGER(iwp) :: i, j, k !< loop indices |
---|
[1585] | 4631 | |
---|
[1976] | 4632 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: tend !< pt tendency term |
---|
[1585] | 4633 | |
---|
[1976] | 4634 | IF ( radiation_scheme == 'rrtmg' ) THEN |
---|
| 4635 | #if defined ( __rrtmg ) |
---|
[1691] | 4636 | ! |
---|
| 4637 | !-- Calculate tendency based on heating rate |
---|
[1585] | 4638 | DO i = nxl, nxr |
---|
| 4639 | DO j = nys, nyn |
---|
| 4640 | DO k = nzb+1, nzt+1 |
---|
[1691] | 4641 | tend(k,j,i) = tend(k,j,i) + ( rad_lw_hr(k,j,i) & |
---|
[3274] | 4642 | + rad_sw_hr(k,j,i) ) * d_exner(k) & |
---|
[1976] | 4643 | * d_seconds_hour |
---|
[1585] | 4644 | ENDDO |
---|
[1976] | 4645 | ENDDO |
---|
[1585] | 4646 | ENDDO |
---|
| 4647 | #endif |
---|
[1976] | 4648 | ENDIF |
---|
[1585] | 4649 | |
---|
| 4650 | |
---|
[1976] | 4651 | END SUBROUTINE radiation_tendency |
---|
| 4652 | |
---|
| 4653 | !------------------------------------------------------------------------------! |
---|
[2696] | 4654 | ! Description: |
---|
| 4655 | ! ------------ |
---|
| 4656 | !> This subroutine calculates interaction of the solar radiation |
---|
[2920] | 4657 | !> with urban and land surfaces and updates all surface heatfluxes. |
---|
| 4658 | !> It calculates also the required parameters for RRTMG lower BC. |
---|
| 4659 | !> |
---|
[2696] | 4660 | !> For more info. see Resler et al. 2017 |
---|
[2920] | 4661 | !> |
---|
| 4662 | !> The new version 2.0 was radically rewriten, the discretization scheme |
---|
| 4663 | !> has been changed. This new version significantly improves effectivity |
---|
| 4664 | !> of the paralelization and the scalability of the model. |
---|
[2696] | 4665 | !------------------------------------------------------------------------------! |
---|
[2920] | 4666 | |
---|
| 4667 | SUBROUTINE radiation_interaction |
---|
| 4668 | |
---|
| 4669 | IMPLICIT NONE |
---|
[3272] | 4670 | |
---|
| 4671 | INTEGER(iwp) :: i, j, k, kk, is, js, d, ku, refstep, m, mm, l, ll |
---|
[3241] | 4672 | INTEGER(iwp) :: isurf, isurfsrc, isvf, icsf, ipcgb |
---|
[3337] | 4673 | INTEGER(iwp) :: imrt, imrtf |
---|
[2920] | 4674 | INTEGER(iwp) :: isd !< solar direction number |
---|
[3172] | 4675 | INTEGER(iwp) :: pc_box_dimshift !< transform for best accuracy |
---|
| 4676 | INTEGER(iwp), DIMENSION(0:3) :: reorder = (/ 1, 0, 3, 2 /) |
---|
| 4677 | |
---|
[2920] | 4678 | REAL(wp), DIMENSION(3,3) :: mrot !< grid rotation matrix (zyx) |
---|
| 4679 | REAL(wp), DIMENSION(3,0:nsurf_type):: vnorm !< face direction normal vectors (zyx) |
---|
| 4680 | REAL(wp), DIMENSION(3) :: sunorig !< grid rotated solar direction unit vector (zyx) |
---|
| 4681 | REAL(wp), DIMENSION(3) :: sunorig_grid !< grid squashed solar direction unit vector (zyx) |
---|
| 4682 | REAL(wp), DIMENSION(0:nsurf_type) :: costheta !< direct irradiance factor of solar angle |
---|
[3014] | 4683 | REAL(wp), DIMENSION(nzub:nzut) :: pchf_prep !< precalculated factor for canopy temperature tendency |
---|
[2920] | 4684 | REAL(wp), PARAMETER :: alpha = 0._wp !< grid rotation (TODO: add to namelist or remove) |
---|
| 4685 | REAL(wp) :: pc_box_area, pc_abs_frac, pc_abs_eff |
---|
[3449] | 4686 | REAL(wp) :: asrc !< area of source face |
---|
| 4687 | REAL(wp) :: pcrad !< irradiance from plant canopy |
---|
[2920] | 4688 | REAL(wp) :: pabsswl = 0.0_wp !< total absorbed SW radiation energy in local processor (W) |
---|
| 4689 | REAL(wp) :: pabssw = 0.0_wp !< total absorbed SW radiation energy in all processors (W) |
---|
| 4690 | REAL(wp) :: pabslwl = 0.0_wp !< total absorbed LW radiation energy in local processor (W) |
---|
| 4691 | REAL(wp) :: pabslw = 0.0_wp !< total absorbed LW radiation energy in all processors (W) |
---|
| 4692 | REAL(wp) :: pemitlwl = 0.0_wp !< total emitted LW radiation energy in all processors (W) |
---|
| 4693 | REAL(wp) :: pemitlw = 0.0_wp !< total emitted LW radiation energy in all processors (W) |
---|
| 4694 | REAL(wp) :: pinswl = 0.0_wp !< total received SW radiation energy in local processor (W) |
---|
| 4695 | REAL(wp) :: pinsw = 0.0_wp !< total received SW radiation energy in all processor (W) |
---|
| 4696 | REAL(wp) :: pinlwl = 0.0_wp !< total received LW radiation energy in local processor (W) |
---|
| 4697 | REAL(wp) :: pinlw = 0.0_wp !< total received LW radiation energy in all processor (W) |
---|
| 4698 | REAL(wp) :: emiss_sum_surfl !< sum of emissisivity of surfaces in local processor |
---|
| 4699 | REAL(wp) :: emiss_sum_surf !< sum of emissisivity of surfaces in all processor |
---|
| 4700 | REAL(wp) :: area_surfl !< total area of surfaces in local processor |
---|
| 4701 | REAL(wp) :: area_surf !< total area of surfaces in all processor |
---|
[3117] | 4702 | REAL(wp) :: area_hor !< total horizontal area of domain in all processor |
---|
[2920] | 4703 | |
---|
| 4704 | #if ! defined( __nopointer ) |
---|
| 4705 | IF ( plant_canopy ) THEN |
---|
[3274] | 4706 | pchf_prep(:) = r_d * exner(nzub:nzut) & |
---|
| 4707 | / (c_p * hyp(nzub:nzut) * dx*dy*dz(1)) !< equals to 1 / (rho * c_p * Vbox * T) |
---|
[2920] | 4708 | ENDIF |
---|
| 4709 | #endif |
---|
| 4710 | sun_direction = .TRUE. |
---|
| 4711 | CALL calc_zenith !< required also for diffusion radiation |
---|
| 4712 | |
---|
| 4713 | !-- prepare rotated normal vectors and irradiance factor |
---|
| 4714 | vnorm(1,:) = kdir(:) |
---|
| 4715 | vnorm(2,:) = jdir(:) |
---|
| 4716 | vnorm(3,:) = idir(:) |
---|
| 4717 | mrot(1, :) = (/ 1._wp, 0._wp, 0._wp /) |
---|
| 4718 | mrot(2, :) = (/ 0._wp, COS(alpha), SIN(alpha) /) |
---|
| 4719 | mrot(3, :) = (/ 0._wp, -SIN(alpha), COS(alpha) /) |
---|
| 4720 | sunorig = (/ zenith(0), sun_dir_lat, sun_dir_lon /) |
---|
| 4721 | sunorig = MATMUL(mrot, sunorig) |
---|
| 4722 | DO d = 0, nsurf_type |
---|
| 4723 | costheta(d) = DOT_PRODUCT(sunorig, vnorm(:,d)) |
---|
| 4724 | ENDDO |
---|
| 4725 | |
---|
| 4726 | IF ( zenith(0) > 0 ) THEN |
---|
[3272] | 4727 | !-- now we will "squash" the sunorig vector by grid box size in |
---|
| 4728 | !-- each dimension, so that this new direction vector will allow us |
---|
| 4729 | !-- to traverse the ray path within grid coordinates directly |
---|
[3065] | 4730 | sunorig_grid = (/ sunorig(1)/dz(1), sunorig(2)/dy, sunorig(3)/dx /) |
---|
[3272] | 4731 | !-- sunorig_grid = sunorig_grid / norm2(sunorig_grid) |
---|
[2920] | 4732 | sunorig_grid = sunorig_grid / SQRT(SUM(sunorig_grid**2)) |
---|
| 4733 | |
---|
[2977] | 4734 | IF ( npcbl > 0 ) THEN |
---|
[3272] | 4735 | !-- precompute effective box depth with prototype Leaf Area Density |
---|
[2920] | 4736 | pc_box_dimshift = MAXLOC(ABS(sunorig), 1) - 1 |
---|
[3378] | 4737 | CALL box_absorb(CSHIFT((/dz(1),dy,dx/), pc_box_dimshift), & |
---|
[2920] | 4738 | 60, prototype_lad, & |
---|
| 4739 | CSHIFT(ABS(sunorig), pc_box_dimshift), & |
---|
| 4740 | pc_box_area, pc_abs_frac) |
---|
[3378] | 4741 | pc_box_area = pc_box_area * ABS(sunorig(pc_box_dimshift+1) & |
---|
| 4742 | / sunorig(1)) |
---|
[2920] | 4743 | pc_abs_eff = LOG(1._wp - pc_abs_frac) / prototype_lad |
---|
| 4744 | ENDIF |
---|
| 4745 | ENDIF |
---|
| 4746 | |
---|
[3272] | 4747 | !-- if radiation scheme is not RRTMG, split diffusion and direct part of the solar downward radiation |
---|
| 4748 | !-- comming from radiation model and store it in 2D arrays |
---|
| 4749 | IF ( radiation_scheme /= 'rrtmg' ) CALL calc_diffusion_radiation |
---|
[2920] | 4750 | |
---|
| 4751 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 4752 | !-- First pass: direct + diffuse irradiance + thermal |
---|
| 4753 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 4754 | surfinswdir = 0._wp !nsurfl |
---|
| 4755 | surfins = 0._wp !nsurfl |
---|
| 4756 | surfinl = 0._wp !nsurfl |
---|
| 4757 | surfoutsl(:) = 0.0_wp !start-end |
---|
| 4758 | surfoutll(:) = 0.0_wp !start-end |
---|
[3337] | 4759 | IF ( nmrtbl > 0 ) THEN |
---|
| 4760 | mrtinsw(:) = 0._wp |
---|
| 4761 | mrtinlw(:) = 0._wp |
---|
| 4762 | ENDIF |
---|
[3449] | 4763 | surfinlg(:) = 0._wp !global |
---|
[2920] | 4764 | |
---|
[3337] | 4765 | |
---|
[2920] | 4766 | !-- Set up thermal radiation from surfaces |
---|
| 4767 | !-- emiss_surf is defined only for surfaces for which energy balance is calculated |
---|
| 4768 | !-- Workaround: reorder surface data type back on 1D array including all surfaces, |
---|
| 4769 | !-- which implies to reorder horizontal and vertical surfaces |
---|
| 4770 | ! |
---|
| 4771 | !-- Horizontal walls |
---|
| 4772 | mm = 1 |
---|
| 4773 | DO i = nxl, nxr |
---|
| 4774 | DO j = nys, nyn |
---|
| 4775 | !-- urban |
---|
| 4776 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
| 4777 | surfoutll(mm) = SUM ( surf_usm_h%frac(:,m) * & |
---|
| 4778 | surf_usm_h%emissivity(:,m) ) & |
---|
| 4779 | * sigma_sb & |
---|
| 4780 | * surf_usm_h%pt_surface(m)**4 |
---|
| 4781 | albedo_surf(mm) = SUM ( surf_usm_h%frac(:,m) * & |
---|
| 4782 | surf_usm_h%albedo(:,m) ) |
---|
| 4783 | emiss_surf(mm) = SUM ( surf_usm_h%frac(:,m) * & |
---|
| 4784 | surf_usm_h%emissivity(:,m) ) |
---|
| 4785 | mm = mm + 1 |
---|
| 4786 | ENDDO |
---|
| 4787 | !-- land |
---|
| 4788 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
| 4789 | surfoutll(mm) = SUM ( surf_lsm_h%frac(:,m) * & |
---|
| 4790 | surf_lsm_h%emissivity(:,m) ) & |
---|
| 4791 | * sigma_sb & |
---|
| 4792 | * surf_lsm_h%pt_surface(m)**4 |
---|
| 4793 | albedo_surf(mm) = SUM ( surf_lsm_h%frac(:,m) * & |
---|
| 4794 | surf_lsm_h%albedo(:,m) ) |
---|
| 4795 | emiss_surf(mm) = SUM ( surf_lsm_h%frac(:,m) * & |
---|
| 4796 | surf_lsm_h%emissivity(:,m) ) |
---|
| 4797 | mm = mm + 1 |
---|
| 4798 | ENDDO |
---|
| 4799 | ENDDO |
---|
| 4800 | ENDDO |
---|
| 4801 | ! |
---|
| 4802 | !-- Vertical walls |
---|
| 4803 | DO i = nxl, nxr |
---|
| 4804 | DO j = nys, nyn |
---|
| 4805 | DO ll = 0, 3 |
---|
| 4806 | l = reorder(ll) |
---|
| 4807 | !-- urban |
---|
| 4808 | DO m = surf_usm_v(l)%start_index(j,i), & |
---|
| 4809 | surf_usm_v(l)%end_index(j,i) |
---|
| 4810 | surfoutll(mm) = SUM ( surf_usm_v(l)%frac(:,m) * & |
---|
| 4811 | surf_usm_v(l)%emissivity(:,m) ) & |
---|
| 4812 | * sigma_sb & |
---|
| 4813 | * surf_usm_v(l)%pt_surface(m)**4 |
---|
| 4814 | albedo_surf(mm) = SUM ( surf_usm_v(l)%frac(:,m) * & |
---|
| 4815 | surf_usm_v(l)%albedo(:,m) ) |
---|
| 4816 | emiss_surf(mm) = SUM ( surf_usm_v(l)%frac(:,m) * & |
---|
| 4817 | surf_usm_v(l)%emissivity(:,m) ) |
---|
| 4818 | mm = mm + 1 |
---|
| 4819 | ENDDO |
---|
| 4820 | !-- land |
---|
| 4821 | DO m = surf_lsm_v(l)%start_index(j,i), & |
---|
| 4822 | surf_lsm_v(l)%end_index(j,i) |
---|
| 4823 | surfoutll(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * & |
---|
| 4824 | surf_lsm_v(l)%emissivity(:,m) ) & |
---|
| 4825 | * sigma_sb & |
---|
| 4826 | * surf_lsm_v(l)%pt_surface(m)**4 |
---|
| 4827 | albedo_surf(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * & |
---|
| 4828 | surf_lsm_v(l)%albedo(:,m) ) |
---|
| 4829 | emiss_surf(mm) = SUM ( surf_lsm_v(l)%frac(:,m) * & |
---|
| 4830 | surf_lsm_v(l)%emissivity(:,m) ) |
---|
| 4831 | mm = mm + 1 |
---|
| 4832 | ENDDO |
---|
| 4833 | ENDDO |
---|
| 4834 | ENDDO |
---|
| 4835 | ENDDO |
---|
| 4836 | |
---|
| 4837 | #if defined( __parallel ) |
---|
| 4838 | !-- might be optimized and gather only values relevant for current processor |
---|
| 4839 | CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, & |
---|
| 4840 | surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) !nsurf global |
---|
[3337] | 4841 | IF ( ierr /= 0 ) THEN |
---|
| 4842 | WRITE(9,*) 'Error MPI_AllGatherv1:', ierr, SIZE(surfoutll), nsurfl, & |
---|
| 4843 | SIZE(surfoutl), nsurfs, surfstart |
---|
| 4844 | FLUSH(9) |
---|
| 4845 | ENDIF |
---|
[2920] | 4846 | #else |
---|
| 4847 | surfoutl(:) = surfoutll(:) !nsurf global |
---|
| 4848 | #endif |
---|
| 4849 | |
---|
[2977] | 4850 | IF ( surface_reflections) THEN |
---|
| 4851 | DO isvf = 1, nsvfl |
---|
| 4852 | isurf = svfsurf(1, isvf) |
---|
| 4853 | k = surfl(iz, isurf) |
---|
| 4854 | j = surfl(iy, isurf) |
---|
| 4855 | i = surfl(ix, isurf) |
---|
| 4856 | isurfsrc = svfsurf(2, isvf) |
---|
| 4857 | ! |
---|
| 4858 | !-- For surface-to-surface factors we calculate thermal radiation in 1st pass |
---|
[3449] | 4859 | IF ( plant_lw_interact ) THEN |
---|
| 4860 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * svf(2,isvf) * surfoutl(isurfsrc) |
---|
| 4861 | ELSE |
---|
| 4862 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
| 4863 | ENDIF |
---|
[2977] | 4864 | ENDDO |
---|
| 4865 | ENDIF |
---|
[3337] | 4866 | ! |
---|
| 4867 | !-- diffuse radiation using sky view factor |
---|
| 4868 | DO isurf = 1, nsurfl |
---|
| 4869 | j = surfl(iy, isurf) |
---|
| 4870 | i = surfl(ix, isurf) |
---|
| 4871 | surfinswdif(isurf) = rad_sw_in_diff(j,i) * skyvft(isurf) |
---|
[3449] | 4872 | IF ( plant_lw_interact ) THEN |
---|
| 4873 | surfinlwdif(isurf) = rad_lw_in_diff(j,i) * skyvft(isurf) |
---|
| 4874 | ELSE |
---|
| 4875 | surfinlwdif(isurf) = rad_lw_in_diff(j,i) * skyvf(isurf) |
---|
| 4876 | ENDIF |
---|
[3337] | 4877 | ENDDO |
---|
| 4878 | ! |
---|
| 4879 | !-- MRT diffuse irradiance |
---|
| 4880 | DO imrt = 1, nmrtbl |
---|
| 4881 | j = mrtbl(iy, imrt) |
---|
| 4882 | i = mrtbl(ix, imrt) |
---|
| 4883 | mrtinsw(imrt) = mrtskyt(imrt) * rad_sw_in_diff(j,i) |
---|
| 4884 | mrtinlw(imrt) = mrtsky(imrt) * rad_lw_in_diff(j,i) |
---|
| 4885 | ENDDO |
---|
[2920] | 4886 | |
---|
| 4887 | !-- direct radiation |
---|
| 4888 | IF ( zenith(0) > 0 ) THEN |
---|
| 4889 | !--Identify solar direction vector (discretized number) 1) |
---|
| 4890 | !-- |
---|
| 4891 | j = FLOOR(ACOS(zenith(0)) / pi * raytrace_discrete_elevs) |
---|
| 4892 | i = MODULO(NINT(ATAN2(sun_dir_lon(0), sun_dir_lat(0)) & |
---|
| 4893 | / (2._wp*pi) * raytrace_discrete_azims-.5_wp, iwp), & |
---|
| 4894 | raytrace_discrete_azims) |
---|
| 4895 | isd = dsidir_rev(j, i) |
---|
[3495] | 4896 | !-- TODO: check if isd = -1 to report that this solar position is not precalculated |
---|
[2920] | 4897 | DO isurf = 1, nsurfl |
---|
[3337] | 4898 | j = surfl(iy, isurf) |
---|
| 4899 | i = surfl(ix, isurf) |
---|
[3378] | 4900 | surfinswdir(isurf) = rad_sw_in_dir(j,i) * & |
---|
| 4901 | costheta(surfl(id, isurf)) * dsitrans(isurf, isd) / zenith(0) |
---|
[2920] | 4902 | ENDDO |
---|
[3337] | 4903 | ! |
---|
| 4904 | !-- MRT direct irradiance |
---|
| 4905 | DO imrt = 1, nmrtbl |
---|
| 4906 | j = mrtbl(iy, imrt) |
---|
| 4907 | i = mrtbl(ix, imrt) |
---|
| 4908 | mrtinsw(imrt) = mrtinsw(imrt) + mrtdsit(imrt, isd) * rad_sw_in_dir(j,i) & |
---|
| 4909 | / zenith(0) / 4._wp ! normal to sphere |
---|
| 4910 | ENDDO |
---|
[2920] | 4911 | ENDIF |
---|
[3337] | 4912 | ! |
---|
| 4913 | !-- MRT first pass thermal |
---|
| 4914 | DO imrtf = 1, nmrtf |
---|
| 4915 | imrt = mrtfsurf(1, imrtf) |
---|
| 4916 | isurfsrc = mrtfsurf(2, imrtf) |
---|
| 4917 | mrtinlw(imrt) = mrtinlw(imrt) + mrtf(imrtf) * surfoutl(isurfsrc) |
---|
| 4918 | ENDDO |
---|
[2920] | 4919 | |
---|
[2977] | 4920 | IF ( npcbl > 0 ) THEN |
---|
[2920] | 4921 | |
---|
| 4922 | pcbinswdir(:) = 0._wp |
---|
| 4923 | pcbinswdif(:) = 0._wp |
---|
[3449] | 4924 | pcbinlw(:) = 0._wp |
---|
[2920] | 4925 | ! |
---|
[3449] | 4926 | !-- pcsf first pass |
---|
[2920] | 4927 | DO icsf = 1, ncsfl |
---|
| 4928 | ipcgb = csfsurf(1, icsf) |
---|
| 4929 | i = pcbl(ix,ipcgb) |
---|
| 4930 | j = pcbl(iy,ipcgb) |
---|
| 4931 | k = pcbl(iz,ipcgb) |
---|
| 4932 | isurfsrc = csfsurf(2, icsf) |
---|
| 4933 | |
---|
| 4934 | IF ( isurfsrc == -1 ) THEN |
---|
[3449] | 4935 | ! |
---|
| 4936 | !-- Diffuse rad from sky. |
---|
| 4937 | pcbinswdif(ipcgb) = csf(1,icsf) * rad_sw_in_diff(j,i) |
---|
| 4938 | ! |
---|
| 4939 | !-- Absorbed diffuse LW from sky minus emitted to sky |
---|
| 4940 | IF ( plant_lw_interact ) THEN |
---|
| 4941 | pcbinlw(ipcgb) = csf(1,icsf) & |
---|
| 4942 | * (rad_lw_in_diff(j, i) & |
---|
| 4943 | - sigma_sb * (pt(k,j,i)*exner(k))**4) |
---|
| 4944 | ENDIF |
---|
| 4945 | ! |
---|
| 4946 | !-- Direct rad |
---|
| 4947 | IF ( zenith(0) > 0 ) THEN |
---|
| 4948 | !-- Estimate directed box absorption |
---|
| 4949 | pc_abs_frac = 1._wp - exp(pc_abs_eff * lad_s(k,j,i)) |
---|
| 4950 | ! |
---|
| 4951 | !-- isd has already been established, see 1) |
---|
| 4952 | pcbinswdir(ipcgb) = rad_sw_in_dir(j, i) * pc_box_area & |
---|
| 4953 | * pc_abs_frac * dsitransc(ipcgb, isd) |
---|
| 4954 | ENDIF |
---|
| 4955 | ELSE |
---|
| 4956 | IF ( plant_lw_interact ) THEN |
---|
| 4957 | ! |
---|
| 4958 | !-- Thermal emission from plan canopy towards respective face |
---|
| 4959 | pcrad = sigma_sb * (pt(k,j,i) * exner(k))**4 * csf(1,icsf) |
---|
| 4960 | surfinlg(isurfsrc) = surfinlg(isurfsrc) + pcrad |
---|
| 4961 | ! |
---|
| 4962 | !-- Remove the flux above + absorb LW from first pass from surfaces |
---|
| 4963 | asrc = facearea(surf(id, isurfsrc)) |
---|
| 4964 | pcbinlw(ipcgb) = pcbinlw(ipcgb) & |
---|
| 4965 | + (csf(1,icsf) * surfoutl(isurfsrc) & ! Absorb from first pass surf emit |
---|
| 4966 | - pcrad) & ! Remove emitted heatflux |
---|
| 4967 | * asrc |
---|
| 4968 | ENDIF |
---|
[2920] | 4969 | ENDIF |
---|
| 4970 | ENDDO |
---|
| 4971 | |
---|
| 4972 | pcbinsw(:) = pcbinswdir(:) + pcbinswdif(:) |
---|
| 4973 | ENDIF |
---|
[3449] | 4974 | |
---|
| 4975 | IF ( plant_lw_interact ) THEN |
---|
| 4976 | ! |
---|
| 4977 | !-- Exchange incoming lw radiation from plant canopy |
---|
| 4978 | #if defined( __parallel ) |
---|
| 4979 | CALL MPI_Allreduce(MPI_IN_PLACE, surfinlg, nsurf, MPI_REAL, MPI_SUM, comm2d, ierr) |
---|
| 4980 | IF ( ierr /= 0 ) THEN |
---|
| 4981 | WRITE (9,*) 'Error MPI_Allreduce:', ierr |
---|
| 4982 | FLUSH(9) |
---|
| 4983 | ENDIF |
---|
| 4984 | surfinl(:) = surfinl(:) + surfinlg(surfstart(myid)+1:surfstart(myid+1)) |
---|
| 4985 | #else |
---|
| 4986 | surfinl(:) = surfinl(:) + surfinlg(:) |
---|
| 4987 | #endif |
---|
| 4988 | ENDIF |
---|
| 4989 | |
---|
[2920] | 4990 | surfins = surfinswdir + surfinswdif |
---|
| 4991 | surfinl = surfinl + surfinlwdif |
---|
| 4992 | surfinsw = surfins |
---|
| 4993 | surfinlw = surfinl |
---|
| 4994 | surfoutsw = 0.0_wp |
---|
| 4995 | surfoutlw = surfoutll |
---|
[3117] | 4996 | surfemitlwl = surfoutll |
---|
[2920] | 4997 | |
---|
[2977] | 4998 | IF ( .NOT. surface_reflections ) THEN |
---|
| 4999 | ! |
---|
| 5000 | !-- Set nrefsteps to 0 to disable reflections |
---|
| 5001 | nrefsteps = 0 |
---|
| 5002 | surfoutsl = albedo_surf * surfins |
---|
| 5003 | surfoutll = (1._wp - emiss_surf) * surfinl |
---|
| 5004 | surfoutsw = surfoutsw + surfoutsl |
---|
| 5005 | surfoutlw = surfoutlw + surfoutll |
---|
| 5006 | ENDIF |
---|
| 5007 | |
---|
[2920] | 5008 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 5009 | !-- Next passes - reflections |
---|
| 5010 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 5011 | DO refstep = 1, nrefsteps |
---|
| 5012 | |
---|
| 5013 | surfoutsl = albedo_surf * surfins |
---|
| 5014 | !-- for non-transparent surfaces, longwave albedo is 1 - emissivity |
---|
| 5015 | surfoutll = (1._wp - emiss_surf) * surfinl |
---|
| 5016 | |
---|
| 5017 | #if defined( __parallel ) |
---|
| 5018 | CALL MPI_AllGatherv(surfoutsl, nsurfl, MPI_REAL, & |
---|
| 5019 | surfouts, nsurfs, surfstart, MPI_REAL, comm2d, ierr) |
---|
[3337] | 5020 | IF ( ierr /= 0 ) THEN |
---|
| 5021 | WRITE(9,*) 'Error MPI_AllGatherv2:', ierr, SIZE(surfoutsl), nsurfl, & |
---|
| 5022 | SIZE(surfouts), nsurfs, surfstart |
---|
| 5023 | FLUSH(9) |
---|
| 5024 | ENDIF |
---|
| 5025 | |
---|
[2920] | 5026 | CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, & |
---|
| 5027 | surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) |
---|
[3337] | 5028 | IF ( ierr /= 0 ) THEN |
---|
| 5029 | WRITE(9,*) 'Error MPI_AllGatherv3:', ierr, SIZE(surfoutll), nsurfl, & |
---|
| 5030 | SIZE(surfoutl), nsurfs, surfstart |
---|
| 5031 | FLUSH(9) |
---|
| 5032 | ENDIF |
---|
| 5033 | |
---|
[2920] | 5034 | #else |
---|
| 5035 | surfouts = surfoutsl |
---|
| 5036 | surfoutl = surfoutll |
---|
| 5037 | #endif |
---|
| 5038 | |
---|
| 5039 | !-- reset for next pass input |
---|
| 5040 | surfins = 0._wp |
---|
| 5041 | surfinl = 0._wp |
---|
| 5042 | |
---|
| 5043 | !-- reflected radiation |
---|
| 5044 | DO isvf = 1, nsvfl |
---|
| 5045 | isurf = svfsurf(1, isvf) |
---|
| 5046 | isurfsrc = svfsurf(2, isvf) |
---|
| 5047 | surfins(isurf) = surfins(isurf) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc) |
---|
[3449] | 5048 | IF ( plant_lw_interact ) THEN |
---|
| 5049 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * svf(2,isvf) * surfoutl(isurfsrc) |
---|
| 5050 | ELSE |
---|
| 5051 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
| 5052 | ENDIF |
---|
[2920] | 5053 | ENDDO |
---|
[3449] | 5054 | ! |
---|
| 5055 | !-- NOTE: PC absorbtion and MRT from reflected can both be done at once |
---|
| 5056 | !-- after all reflections if we do one more MPI_ALLGATHERV on surfout. |
---|
| 5057 | !-- Advantage: less local computation. Disadvantage: one more collective |
---|
| 5058 | !-- MPI call. |
---|
| 5059 | ! |
---|
| 5060 | !-- Radiation absorbed by plant canopy |
---|
| 5061 | DO icsf = 1, ncsfl |
---|
[2920] | 5062 | ipcgb = csfsurf(1, icsf) |
---|
| 5063 | isurfsrc = csfsurf(2, icsf) |
---|
| 5064 | IF ( isurfsrc == -1 ) CYCLE ! sky->face only in 1st pass, not here |
---|
[3449] | 5065 | ! |
---|
| 5066 | !-- Calculate source surface area. If the `surf' array is removed |
---|
| 5067 | !-- before timestepping starts (future version), then asrc must be |
---|
| 5068 | !-- stored within `csf' |
---|
| 5069 | asrc = facearea(surf(id, isurfsrc)) |
---|
| 5070 | pcbinsw(ipcgb) = pcbinsw(ipcgb) + csf(1,icsf) * surfouts(isurfsrc) * asrc |
---|
| 5071 | IF ( plant_lw_interact ) THEN |
---|
| 5072 | pcbinlw(ipcgb) = pcbinlw(ipcgb) + csf(1,icsf) * surfoutl(isurfsrc) * asrc |
---|
| 5073 | ENDIF |
---|
[2920] | 5074 | ENDDO |
---|
[3337] | 5075 | ! |
---|
| 5076 | !-- MRT reflected |
---|
| 5077 | DO imrtf = 1, nmrtf |
---|
| 5078 | imrt = mrtfsurf(1, imrtf) |
---|
| 5079 | isurfsrc = mrtfsurf(2, imrtf) |
---|
| 5080 | mrtinsw(imrt) = mrtinsw(imrt) + mrtft(imrtf) * surfouts(isurfsrc) |
---|
| 5081 | mrtinlw(imrt) = mrtinlw(imrt) + mrtf(imrtf) * surfoutl(isurfsrc) |
---|
| 5082 | ENDDO |
---|
[2920] | 5083 | |
---|
| 5084 | surfinsw = surfinsw + surfins |
---|
| 5085 | surfinlw = surfinlw + surfinl |
---|
| 5086 | surfoutsw = surfoutsw + surfoutsl |
---|
| 5087 | surfoutlw = surfoutlw + surfoutll |
---|
| 5088 | |
---|
[3337] | 5089 | ENDDO ! refstep |
---|
[2920] | 5090 | |
---|
| 5091 | !-- push heat flux absorbed by plant canopy to respective 3D arrays |
---|
[2977] | 5092 | IF ( npcbl > 0 ) THEN |
---|
[3014] | 5093 | pc_heating_rate(:,:,:) = 0.0_wp |
---|
[2920] | 5094 | DO ipcgb = 1, npcbl |
---|
| 5095 | j = pcbl(iy, ipcgb) |
---|
| 5096 | i = pcbl(ix, ipcgb) |
---|
| 5097 | k = pcbl(iz, ipcgb) |
---|
| 5098 | ! |
---|
[3449] | 5099 | !-- Following expression equals former kk = k - nzb_s_inner(j,i) |
---|
[2920] | 5100 | kk = k - get_topography_top_index_ji( j, i, 's' ) !- lad arrays are defined flat |
---|
| 5101 | pc_heating_rate(kk, j, i) = (pcbinsw(ipcgb) + pcbinlw(ipcgb)) & |
---|
| 5102 | * pchf_prep(k) * pt(k, j, i) !-- = dT/dt |
---|
[3449] | 5103 | ENDDO |
---|
[3014] | 5104 | |
---|
[3449] | 5105 | IF ( humidity .AND. plant_canopy_transpiration ) THEN |
---|
| 5106 | !-- Calculation of plant canopy transpiration rate and correspondidng latent heat rate |
---|
| 5107 | pc_transpiration_rate(:,:,:) = 0.0_wp |
---|
| 5108 | pc_latent_rate(:,:,:) = 0.0_wp |
---|
| 5109 | DO ipcgb = 1, npcbl |
---|
| 5110 | i = pcbl(ix, ipcgb) |
---|
| 5111 | j = pcbl(iy, ipcgb) |
---|
| 5112 | k = pcbl(iz, ipcgb) |
---|
| 5113 | kk = k - get_topography_top_index_ji( j, i, 's' ) !- lad arrays are defined flat |
---|
| 5114 | CALL pcm_calc_transpiration_rate( i, j, k, kk, pcbinsw(ipcgb), pcbinlw(ipcgb), & |
---|
| 5115 | pc_transpiration_rate(kk,j,i), pc_latent_rate(kk,j,i) ) |
---|
| 5116 | ENDDO |
---|
| 5117 | ENDIF |
---|
[2920] | 5118 | ENDIF |
---|
| 5119 | ! |
---|
[3337] | 5120 | !-- Calculate black body MRT (after all reflections) |
---|
| 5121 | IF ( nmrtbl > 0 ) THEN |
---|
| 5122 | IF ( mrt_include_sw ) THEN |
---|
| 5123 | mrt(:) = ((mrtinsw(:) + mrtinlw(:)) / sigma_sb) ** .25_wp |
---|
| 5124 | ELSE |
---|
| 5125 | mrt(:) = (mrtinlw(:) / sigma_sb) ** .25_wp |
---|
| 5126 | ENDIF |
---|
| 5127 | ENDIF |
---|
| 5128 | ! |
---|
[2920] | 5129 | !-- Transfer radiation arrays required for energy balance to the respective data types |
---|
| 5130 | DO i = 1, nsurfl |
---|
| 5131 | m = surfl(5,i) |
---|
| 5132 | ! |
---|
| 5133 | !-- (1) Urban surfaces |
---|
| 5134 | !-- upward-facing |
---|
| 5135 | IF ( surfl(1,i) == iup_u ) THEN |
---|
| 5136 | surf_usm_h%rad_sw_in(m) = surfinsw(i) |
---|
| 5137 | surf_usm_h%rad_sw_out(m) = surfoutsw(i) |
---|
| 5138 | surf_usm_h%rad_lw_in(m) = surfinlw(i) |
---|
| 5139 | surf_usm_h%rad_lw_out(m) = surfoutlw(i) |
---|
| 5140 | surf_usm_h%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5141 | surfinlw(i) - surfoutlw(i) |
---|
[3337] | 5142 | surf_usm_h%rad_net_l(m) = surf_usm_h%rad_net(m) |
---|
[2920] | 5143 | ! |
---|
| 5144 | !-- northward-facding |
---|
| 5145 | ELSEIF ( surfl(1,i) == inorth_u ) THEN |
---|
| 5146 | surf_usm_v(0)%rad_sw_in(m) = surfinsw(i) |
---|
| 5147 | surf_usm_v(0)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5148 | surf_usm_v(0)%rad_lw_in(m) = surfinlw(i) |
---|
| 5149 | surf_usm_v(0)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5150 | surf_usm_v(0)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5151 | surfinlw(i) - surfoutlw(i) |
---|
[3337] | 5152 | surf_usm_v(0)%rad_net_l(m) = surf_usm_v(0)%rad_net(m) |
---|
[2920] | 5153 | ! |
---|
| 5154 | !-- southward-facding |
---|
| 5155 | ELSEIF ( surfl(1,i) == isouth_u ) THEN |
---|
| 5156 | surf_usm_v(1)%rad_sw_in(m) = surfinsw(i) |
---|
| 5157 | surf_usm_v(1)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5158 | surf_usm_v(1)%rad_lw_in(m) = surfinlw(i) |
---|
| 5159 | surf_usm_v(1)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5160 | surf_usm_v(1)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5161 | surfinlw(i) - surfoutlw(i) |
---|
[3337] | 5162 | surf_usm_v(1)%rad_net_l(m) = surf_usm_v(1)%rad_net(m) |
---|
[2920] | 5163 | ! |
---|
| 5164 | !-- eastward-facing |
---|
| 5165 | ELSEIF ( surfl(1,i) == ieast_u ) THEN |
---|
| 5166 | surf_usm_v(2)%rad_sw_in(m) = surfinsw(i) |
---|
| 5167 | surf_usm_v(2)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5168 | surf_usm_v(2)%rad_lw_in(m) = surfinlw(i) |
---|
| 5169 | surf_usm_v(2)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5170 | surf_usm_v(2)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5171 | surfinlw(i) - surfoutlw(i) |
---|
[3337] | 5172 | surf_usm_v(2)%rad_net_l(m) = surf_usm_v(2)%rad_net(m) |
---|
[2920] | 5173 | ! |
---|
| 5174 | !-- westward-facding |
---|
| 5175 | ELSEIF ( surfl(1,i) == iwest_u ) THEN |
---|
| 5176 | surf_usm_v(3)%rad_sw_in(m) = surfinsw(i) |
---|
| 5177 | surf_usm_v(3)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5178 | surf_usm_v(3)%rad_lw_in(m) = surfinlw(i) |
---|
| 5179 | surf_usm_v(3)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5180 | surf_usm_v(3)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5181 | surfinlw(i) - surfoutlw(i) |
---|
[3337] | 5182 | surf_usm_v(3)%rad_net_l(m) = surf_usm_v(3)%rad_net(m) |
---|
[2920] | 5183 | ! |
---|
| 5184 | !-- (2) land surfaces |
---|
| 5185 | !-- upward-facing |
---|
| 5186 | ELSEIF ( surfl(1,i) == iup_l ) THEN |
---|
| 5187 | surf_lsm_h%rad_sw_in(m) = surfinsw(i) |
---|
| 5188 | surf_lsm_h%rad_sw_out(m) = surfoutsw(i) |
---|
| 5189 | surf_lsm_h%rad_lw_in(m) = surfinlw(i) |
---|
| 5190 | surf_lsm_h%rad_lw_out(m) = surfoutlw(i) |
---|
| 5191 | surf_lsm_h%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5192 | surfinlw(i) - surfoutlw(i) |
---|
| 5193 | ! |
---|
| 5194 | !-- northward-facding |
---|
| 5195 | ELSEIF ( surfl(1,i) == inorth_l ) THEN |
---|
| 5196 | surf_lsm_v(0)%rad_sw_in(m) = surfinsw(i) |
---|
| 5197 | surf_lsm_v(0)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5198 | surf_lsm_v(0)%rad_lw_in(m) = surfinlw(i) |
---|
| 5199 | surf_lsm_v(0)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5200 | surf_lsm_v(0)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5201 | surfinlw(i) - surfoutlw(i) |
---|
| 5202 | ! |
---|
| 5203 | !-- southward-facding |
---|
| 5204 | ELSEIF ( surfl(1,i) == isouth_l ) THEN |
---|
| 5205 | surf_lsm_v(1)%rad_sw_in(m) = surfinsw(i) |
---|
| 5206 | surf_lsm_v(1)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5207 | surf_lsm_v(1)%rad_lw_in(m) = surfinlw(i) |
---|
| 5208 | surf_lsm_v(1)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5209 | surf_lsm_v(1)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5210 | surfinlw(i) - surfoutlw(i) |
---|
| 5211 | ! |
---|
| 5212 | !-- eastward-facing |
---|
| 5213 | ELSEIF ( surfl(1,i) == ieast_l ) THEN |
---|
| 5214 | surf_lsm_v(2)%rad_sw_in(m) = surfinsw(i) |
---|
| 5215 | surf_lsm_v(2)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5216 | surf_lsm_v(2)%rad_lw_in(m) = surfinlw(i) |
---|
| 5217 | surf_lsm_v(2)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5218 | surf_lsm_v(2)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5219 | surfinlw(i) - surfoutlw(i) |
---|
| 5220 | ! |
---|
| 5221 | !-- westward-facing |
---|
| 5222 | ELSEIF ( surfl(1,i) == iwest_l ) THEN |
---|
| 5223 | surf_lsm_v(3)%rad_sw_in(m) = surfinsw(i) |
---|
| 5224 | surf_lsm_v(3)%rad_sw_out(m) = surfoutsw(i) |
---|
| 5225 | surf_lsm_v(3)%rad_lw_in(m) = surfinlw(i) |
---|
| 5226 | surf_lsm_v(3)%rad_lw_out(m) = surfoutlw(i) |
---|
| 5227 | surf_lsm_v(3)%rad_net(m) = surfinsw(i) - surfoutsw(i) + & |
---|
| 5228 | surfinlw(i) - surfoutlw(i) |
---|
| 5229 | ENDIF |
---|
| 5230 | |
---|
| 5231 | ENDDO |
---|
| 5232 | |
---|
| 5233 | DO m = 1, surf_usm_h%ns |
---|
| 5234 | surf_usm_h%surfhf(m) = surf_usm_h%rad_sw_in(m) + & |
---|
| 5235 | surf_usm_h%rad_lw_in(m) - & |
---|
| 5236 | surf_usm_h%rad_sw_out(m) - & |
---|
| 5237 | surf_usm_h%rad_lw_out(m) |
---|
| 5238 | ENDDO |
---|
| 5239 | DO m = 1, surf_lsm_h%ns |
---|
| 5240 | surf_lsm_h%surfhf(m) = surf_lsm_h%rad_sw_in(m) + & |
---|
| 5241 | surf_lsm_h%rad_lw_in(m) - & |
---|
| 5242 | surf_lsm_h%rad_sw_out(m) - & |
---|
| 5243 | surf_lsm_h%rad_lw_out(m) |
---|
| 5244 | ENDDO |
---|
| 5245 | |
---|
| 5246 | DO l = 0, 3 |
---|
| 5247 | !-- urban |
---|
| 5248 | DO m = 1, surf_usm_v(l)%ns |
---|
| 5249 | surf_usm_v(l)%surfhf(m) = surf_usm_v(l)%rad_sw_in(m) + & |
---|
| 5250 | surf_usm_v(l)%rad_lw_in(m) - & |
---|
| 5251 | surf_usm_v(l)%rad_sw_out(m) - & |
---|
| 5252 | surf_usm_v(l)%rad_lw_out(m) |
---|
| 5253 | ENDDO |
---|
| 5254 | !-- land |
---|
| 5255 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 5256 | surf_lsm_v(l)%surfhf(m) = surf_lsm_v(l)%rad_sw_in(m) + & |
---|
| 5257 | surf_lsm_v(l)%rad_lw_in(m) - & |
---|
| 5258 | surf_lsm_v(l)%rad_sw_out(m) - & |
---|
| 5259 | surf_lsm_v(l)%rad_lw_out(m) |
---|
| 5260 | |
---|
| 5261 | ENDDO |
---|
| 5262 | ENDDO |
---|
| 5263 | ! |
---|
| 5264 | !-- Calculate the average temperature, albedo, and emissivity for urban/land |
---|
| 5265 | !-- domain when using average_radiation in the respective radiation model |
---|
| 5266 | |
---|
[3117] | 5267 | !-- calculate horizontal area |
---|
| 5268 | ! !!! ATTENTION!!! uniform grid is assumed here |
---|
| 5269 | area_hor = (nx+1) * (ny+1) * dx * dy |
---|
[2920] | 5270 | ! |
---|
[2977] | 5271 | !-- absorbed/received SW & LW and emitted LW energy of all physical |
---|
| 5272 | !-- surfaces (land and urban) in local processor |
---|
| 5273 | pinswl = 0._wp |
---|
| 5274 | pinlwl = 0._wp |
---|
| 5275 | pabsswl = 0._wp |
---|
| 5276 | pabslwl = 0._wp |
---|
| 5277 | pemitlwl = 0._wp |
---|
| 5278 | emiss_sum_surfl = 0._wp |
---|
| 5279 | area_surfl = 0._wp |
---|
| 5280 | DO i = 1, nsurfl |
---|
| 5281 | d = surfl(id, i) |
---|
| 5282 | !-- received SW & LW |
---|
[3117] | 5283 | pinswl = pinswl + (surfinswdir(i) + surfinswdif(i)) * facearea(d) |
---|
| 5284 | pinlwl = pinlwl + surfinlwdif(i) * facearea(d) |
---|
[2977] | 5285 | !-- absorbed SW & LW |
---|
| 5286 | pabsswl = pabsswl + (1._wp - albedo_surf(i)) * & |
---|
| 5287 | surfinsw(i) * facearea(d) |
---|
| 5288 | pabslwl = pabslwl + emiss_surf(i) * surfinlw(i) * facearea(d) |
---|
| 5289 | !-- emitted LW |
---|
[3117] | 5290 | pemitlwl = pemitlwl + surfemitlwl(i) * facearea(d) |
---|
[2977] | 5291 | !-- emissivity and area sum |
---|
| 5292 | emiss_sum_surfl = emiss_sum_surfl + emiss_surf(i) * facearea(d) |
---|
| 5293 | area_surfl = area_surfl + facearea(d) |
---|
| 5294 | END DO |
---|
[2920] | 5295 | ! |
---|
[2977] | 5296 | !-- add the absorbed SW energy by plant canopy |
---|
| 5297 | IF ( npcbl > 0 ) THEN |
---|
| 5298 | pabsswl = pabsswl + SUM(pcbinsw) |
---|
| 5299 | pabslwl = pabslwl + SUM(pcbinlw) |
---|
[3117] | 5300 | pinswl = pinswl + SUM(pcbinswdir) + SUM(pcbinswdif) |
---|
[2977] | 5301 | ENDIF |
---|
[2920] | 5302 | ! |
---|
[2977] | 5303 | !-- gather all rad flux energy in all processors |
---|
[2920] | 5304 | #if defined( __parallel ) |
---|
[2977] | 5305 | CALL MPI_ALLREDUCE( pinswl, pinsw, 1, MPI_REAL, MPI_SUM, comm2d, ierr) |
---|
[3337] | 5306 | IF ( ierr /= 0 ) THEN |
---|
| 5307 | WRITE(9,*) 'Error MPI_AllReduce5:', ierr, pinswl, pinsw |
---|
| 5308 | FLUSH(9) |
---|
| 5309 | ENDIF |
---|
[2977] | 5310 | CALL MPI_ALLREDUCE( pinlwl, pinlw, 1, MPI_REAL, MPI_SUM, comm2d, ierr) |
---|
[3337] | 5311 | IF ( ierr /= 0 ) THEN |
---|
| 5312 | WRITE(9,*) 'Error MPI_AllReduce6:', ierr, pinlwl, pinlw |
---|
| 5313 | FLUSH(9) |
---|
| 5314 | ENDIF |
---|
[2977] | 5315 | CALL MPI_ALLREDUCE( pabsswl, pabssw, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 5316 | IF ( ierr /= 0 ) THEN |
---|
| 5317 | WRITE(9,*) 'Error MPI_AllReduce7:', ierr, pabsswl, pabssw |
---|
| 5318 | FLUSH(9) |
---|
| 5319 | ENDIF |
---|
[2977] | 5320 | CALL MPI_ALLREDUCE( pabslwl, pabslw, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 5321 | IF ( ierr /= 0 ) THEN |
---|
| 5322 | WRITE(9,*) 'Error MPI_AllReduce8:', ierr, pabslwl, pabslw |
---|
| 5323 | FLUSH(9) |
---|
| 5324 | ENDIF |
---|
[2977] | 5325 | CALL MPI_ALLREDUCE( pemitlwl, pemitlw, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 5326 | IF ( ierr /= 0 ) THEN |
---|
| 5327 | WRITE(9,*) 'Error MPI_AllReduce8:', ierr, pemitlwl, pemitlw |
---|
| 5328 | FLUSH(9) |
---|
| 5329 | ENDIF |
---|
[2977] | 5330 | CALL MPI_ALLREDUCE( emiss_sum_surfl, emiss_sum_surf, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 5331 | IF ( ierr /= 0 ) THEN |
---|
| 5332 | WRITE(9,*) 'Error MPI_AllReduce9:', ierr, emiss_sum_surfl, emiss_sum_surf |
---|
| 5333 | FLUSH(9) |
---|
| 5334 | ENDIF |
---|
[2977] | 5335 | CALL MPI_ALLREDUCE( area_surfl, area_surf, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3337] | 5336 | IF ( ierr /= 0 ) THEN |
---|
| 5337 | WRITE(9,*) 'Error MPI_AllReduce10:', ierr, area_surfl, area_surf |
---|
| 5338 | FLUSH(9) |
---|
| 5339 | ENDIF |
---|
[2920] | 5340 | #else |
---|
[2977] | 5341 | pinsw = pinswl |
---|
| 5342 | pinlw = pinlwl |
---|
| 5343 | pabssw = pabsswl |
---|
[3117] | 5344 | pabslw = pabslwl |
---|
| 5345 | pemitlw = pemitlwl |
---|
[2977] | 5346 | emiss_sum_surf = emiss_sum_surfl |
---|
| 5347 | area_surf = area_surfl |
---|
[2920] | 5348 | #endif |
---|
| 5349 | |
---|
[2977] | 5350 | !-- (1) albedo |
---|
[3117] | 5351 | IF ( pinsw /= 0.0_wp ) & |
---|
| 5352 | albedo_urb = (pinsw - pabssw) / pinsw |
---|
[2977] | 5353 | !-- (2) average emmsivity |
---|
[3117] | 5354 | IF ( area_surf /= 0.0_wp ) & |
---|
| 5355 | emissivity_urb = emiss_sum_surf / area_surf |
---|
[3172] | 5356 | ! |
---|
| 5357 | !-- Temporally comment out calculation of effective radiative temperature. |
---|
| 5358 | !-- See below for more explanation. |
---|
[2977] | 5359 | !-- (3) temperature |
---|
[3178] | 5360 | !-- first we calculate an effective horizontal area to account for |
---|
| 5361 | !-- the effect of vertical surfaces (which contributes to LW emission) |
---|
| 5362 | !-- We simply use the ratio of the total LW to the incoming LW flux |
---|
| 5363 | area_hor = pinlw/rad_lw_in_diff(nyn,nxl) |
---|
| 5364 | t_rad_urb = ( (pemitlw - pabslw + emissivity_urb*pinlw) / & |
---|
| 5365 | (emissivity_urb*sigma_sb * area_hor) )**0.25_wp |
---|
[3337] | 5366 | |
---|
[2920] | 5367 | CONTAINS |
---|
| 5368 | |
---|
| 5369 | !------------------------------------------------------------------------------! |
---|
| 5370 | !> Calculates radiation absorbed by box with given size and LAD. |
---|
| 5371 | !> |
---|
| 5372 | !> Simulates resol**2 rays (by equally spacing a bounding horizontal square |
---|
| 5373 | !> conatining all possible rays that would cross the box) and calculates |
---|
| 5374 | !> average transparency per ray. Returns fraction of absorbed radiation flux |
---|
| 5375 | !> and area for which this fraction is effective. |
---|
| 5376 | !------------------------------------------------------------------------------! |
---|
| 5377 | PURE SUBROUTINE box_absorb(boxsize, resol, dens, uvec, area, absorb) |
---|
| 5378 | IMPLICIT NONE |
---|
| 5379 | |
---|
| 5380 | REAL(wp), DIMENSION(3), INTENT(in) :: & |
---|
| 5381 | boxsize, & !< z, y, x size of box in m |
---|
| 5382 | uvec !< z, y, x unit vector of incoming flux |
---|
| 5383 | INTEGER(iwp), INTENT(in) :: & |
---|
| 5384 | resol !< No. of rays in x and y dimensions |
---|
| 5385 | REAL(wp), INTENT(in) :: & |
---|
| 5386 | dens !< box density (e.g. Leaf Area Density) |
---|
| 5387 | REAL(wp), INTENT(out) :: & |
---|
| 5388 | area, & !< horizontal area for flux absorbtion |
---|
| 5389 | absorb !< fraction of absorbed flux |
---|
| 5390 | REAL(wp) :: & |
---|
| 5391 | xshift, yshift, & |
---|
| 5392 | xmin, xmax, ymin, ymax, & |
---|
| 5393 | xorig, yorig, & |
---|
| 5394 | dx1, dy1, dz1, dx2, dy2, dz2, & |
---|
| 5395 | crdist, & |
---|
| 5396 | transp |
---|
| 5397 | INTEGER(iwp) :: & |
---|
| 5398 | i, j |
---|
| 5399 | |
---|
| 5400 | xshift = uvec(3) / uvec(1) * boxsize(1) |
---|
| 5401 | xmin = min(0._wp, -xshift) |
---|
| 5402 | xmax = boxsize(3) + max(0._wp, -xshift) |
---|
| 5403 | yshift = uvec(2) / uvec(1) * boxsize(1) |
---|
| 5404 | ymin = min(0._wp, -yshift) |
---|
| 5405 | ymax = boxsize(2) + max(0._wp, -yshift) |
---|
| 5406 | |
---|
| 5407 | transp = 0._wp |
---|
| 5408 | DO i = 1, resol |
---|
| 5409 | xorig = xmin + (xmax-xmin) * (i-.5_wp) / resol |
---|
| 5410 | DO j = 1, resol |
---|
| 5411 | yorig = ymin + (ymax-ymin) * (j-.5_wp) / resol |
---|
| 5412 | |
---|
| 5413 | dz1 = 0._wp |
---|
| 5414 | dz2 = boxsize(1)/uvec(1) |
---|
| 5415 | |
---|
| 5416 | IF ( uvec(2) > 0._wp ) THEN |
---|
| 5417 | dy1 = -yorig / uvec(2) !< crossing with y=0 |
---|
| 5418 | dy2 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2) |
---|
| 5419 | ELSE !uvec(2)==0 |
---|
| 5420 | dy1 = -huge(1._wp) |
---|
| 5421 | dy2 = huge(1._wp) |
---|
| 5422 | ENDIF |
---|
| 5423 | |
---|
| 5424 | IF ( uvec(3) > 0._wp ) THEN |
---|
| 5425 | dx1 = -xorig / uvec(3) !< crossing with x=0 |
---|
| 5426 | dx2 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3) |
---|
| 5427 | ELSE !uvec(3)==0 |
---|
| 5428 | dx1 = -huge(1._wp) |
---|
| 5429 | dx2 = huge(1._wp) |
---|
| 5430 | ENDIF |
---|
| 5431 | |
---|
| 5432 | crdist = max(0._wp, (min(dz2, dy2, dx2) - max(dz1, dy1, dx1))) |
---|
| 5433 | transp = transp + exp(-ext_coef * dens * crdist) |
---|
| 5434 | ENDDO |
---|
| 5435 | ENDDO |
---|
| 5436 | transp = transp / resol**2 |
---|
| 5437 | area = (boxsize(3)+xshift)*(boxsize(2)+yshift) |
---|
| 5438 | absorb = 1._wp - transp |
---|
| 5439 | |
---|
| 5440 | END SUBROUTINE box_absorb |
---|
| 5441 | |
---|
| 5442 | !------------------------------------------------------------------------------! |
---|
| 5443 | ! Description: |
---|
| 5444 | ! ------------ |
---|
| 5445 | !> This subroutine splits direct and diffusion dw radiation |
---|
| 5446 | !> It sould not be called in case the radiation model already does it |
---|
| 5447 | !> It follows <CITATION> |
---|
| 5448 | !------------------------------------------------------------------------------! |
---|
| 5449 | SUBROUTINE calc_diffusion_radiation |
---|
| 5450 | |
---|
| 5451 | REAL(wp), PARAMETER :: lowest_solarUp = 0.1_wp !< limit the sun elevation to protect stability of the calculation |
---|
| 5452 | INTEGER(iwp) :: i, j |
---|
| 5453 | REAL(wp) :: year_angle !< angle |
---|
| 5454 | REAL(wp) :: etr !< extraterestrial radiation |
---|
| 5455 | REAL(wp) :: corrected_solarUp !< corrected solar up radiation |
---|
| 5456 | REAL(wp) :: horizontalETR !< horizontal extraterestrial radiation |
---|
| 5457 | REAL(wp) :: clearnessIndex !< clearness index |
---|
| 5458 | REAL(wp) :: diff_frac !< diffusion fraction of the radiation |
---|
| 5459 | |
---|
| 5460 | |
---|
| 5461 | !-- Calculate current day and time based on the initial values and simulation time |
---|
| 5462 | year_angle = ( (day_of_year_init * 86400) + time_utc_init & |
---|
| 5463 | + time_since_reference_point ) * d_seconds_year & |
---|
| 5464 | * 2.0_wp * pi |
---|
| 5465 | |
---|
| 5466 | etr = solar_constant * (1.00011_wp + & |
---|
| 5467 | 0.034221_wp * cos(year_angle) + & |
---|
| 5468 | 0.001280_wp * sin(year_angle) + & |
---|
| 5469 | 0.000719_wp * cos(2.0_wp * year_angle) + & |
---|
| 5470 | 0.000077_wp * sin(2.0_wp * year_angle)) |
---|
| 5471 | |
---|
| 5472 | !-- |
---|
| 5473 | !-- Under a very low angle, we keep extraterestrial radiation at |
---|
| 5474 | !-- the last small value, therefore the clearness index will be pushed |
---|
| 5475 | !-- towards 0 while keeping full continuity. |
---|
| 5476 | !-- |
---|
| 5477 | IF ( zenith(0) <= lowest_solarUp ) THEN |
---|
| 5478 | corrected_solarUp = lowest_solarUp |
---|
| 5479 | ELSE |
---|
| 5480 | corrected_solarUp = zenith(0) |
---|
| 5481 | ENDIF |
---|
| 5482 | |
---|
| 5483 | horizontalETR = etr * corrected_solarUp |
---|
| 5484 | |
---|
| 5485 | DO i = nxl, nxr |
---|
| 5486 | DO j = nys, nyn |
---|
| 5487 | clearnessIndex = rad_sw_in(0,j,i) / horizontalETR |
---|
| 5488 | diff_frac = 1.0_wp / (1.0_wp + exp(-5.0033_wp + 8.6025_wp * clearnessIndex)) |
---|
| 5489 | rad_sw_in_diff(j,i) = rad_sw_in(0,j,i) * diff_frac |
---|
| 5490 | rad_sw_in_dir(j,i) = rad_sw_in(0,j,i) * (1.0_wp - diff_frac) |
---|
| 5491 | rad_lw_in_diff(j,i) = rad_lw_in(0,j,i) |
---|
| 5492 | ENDDO |
---|
| 5493 | ENDDO |
---|
| 5494 | |
---|
| 5495 | END SUBROUTINE calc_diffusion_radiation |
---|
| 5496 | |
---|
| 5497 | |
---|
| 5498 | END SUBROUTINE radiation_interaction |
---|
| 5499 | |
---|
| 5500 | !------------------------------------------------------------------------------! |
---|
| 5501 | ! Description: |
---|
| 5502 | ! ------------ |
---|
| 5503 | !> This subroutine initializes structures needed for radiative transfer |
---|
| 5504 | !> model. This model calculates transformation processes of the |
---|
| 5505 | !> radiation inside urban and land canopy layer. The module includes also |
---|
| 5506 | !> the interaction of the radiation with the resolved plant canopy. |
---|
| 5507 | !> |
---|
| 5508 | !> For more info. see Resler et al. 2017 |
---|
| 5509 | !> |
---|
| 5510 | !> The new version 2.0 was radically rewriten, the discretization scheme |
---|
| 5511 | !> has been changed. This new version significantly improves effectivity |
---|
| 5512 | !> of the paralelization and the scalability of the model. |
---|
| 5513 | !> |
---|
| 5514 | !------------------------------------------------------------------------------! |
---|
[2696] | 5515 | SUBROUTINE radiation_interaction_init |
---|
[2920] | 5516 | |
---|
[3065] | 5517 | USE control_parameters, & |
---|
| 5518 | ONLY: dz_stretch_level_start |
---|
| 5519 | |
---|
[2696] | 5520 | USE netcdf_data_input_mod, & |
---|
| 5521 | ONLY: leaf_area_density_f |
---|
| 5522 | |
---|
[2920] | 5523 | USE plant_canopy_model_mod, & |
---|
[3241] | 5524 | ONLY: pch_index, lad_s |
---|
[2920] | 5525 | |
---|
[2696] | 5526 | IMPLICIT NONE |
---|
| 5527 | |
---|
[3449] | 5528 | INTEGER(iwp) :: i, j, k, l, m, d |
---|
[2696] | 5529 | INTEGER(iwp) :: k_topo !< vertical index indicating topography top for given (j,i) |
---|
[3337] | 5530 | INTEGER(iwp) :: nzptl, nzubl, nzutl, isurf, ipcgb, imrt |
---|
[2920] | 5531 | REAL(wp) :: mrl |
---|
[3337] | 5532 | #if defined( __parallel ) |
---|
| 5533 | INTEGER(iwp), DIMENSION(:), POINTER :: gridsurf_rma !< fortran pointer, but lower bounds are 1 |
---|
| 5534 | TYPE(c_ptr) :: gridsurf_rma_p !< allocated c pointer |
---|
| 5535 | INTEGER(iwp) :: minfo !< MPI RMA window info handle |
---|
| 5536 | #endif |
---|
[2696] | 5537 | |
---|
[1976] | 5538 | ! |
---|
[3449] | 5539 | !-- precalculate face areas for different face directions using normal vector |
---|
| 5540 | DO d = 0, nsurf_type |
---|
| 5541 | facearea(d) = 1._wp |
---|
| 5542 | IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx |
---|
| 5543 | IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy |
---|
| 5544 | IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz(1) |
---|
| 5545 | ENDDO |
---|
| 5546 | ! |
---|
[2920] | 5547 | !-- Find nzub, nzut, nzu via wall_flag_0 array (nzb_s_inner will be |
---|
[2696] | 5548 | !-- removed later). The following contruct finds the lowest / largest index |
---|
[2920] | 5549 | !-- for any upward-facing wall (see bit 12). |
---|
[2696] | 5550 | nzubl = MINVAL( get_topography_top_index( 's' ) ) |
---|
| 5551 | nzutl = MAXVAL( get_topography_top_index( 's' ) ) |
---|
| 5552 | |
---|
| 5553 | nzubl = MAX( nzubl, nzb ) |
---|
| 5554 | |
---|
| 5555 | IF ( plant_canopy ) THEN |
---|
| 5556 | !-- allocate needed arrays |
---|
| 5557 | ALLOCATE( pct(nys:nyn,nxl:nxr) ) |
---|
| 5558 | ALLOCATE( pch(nys:nyn,nxl:nxr) ) |
---|
| 5559 | |
---|
| 5560 | !-- calculate plant canopy height |
---|
| 5561 | npcbl = 0 |
---|
| 5562 | pct = 0 |
---|
| 5563 | pch = 0 |
---|
| 5564 | DO i = nxl, nxr |
---|
| 5565 | DO j = nys, nyn |
---|
| 5566 | ! |
---|
| 5567 | !-- Find topography top index |
---|
[2698] | 5568 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
[2696] | 5569 | |
---|
| 5570 | DO k = nzt+1, 0, -1 |
---|
| 5571 | IF ( lad_s(k,j,i) /= 0.0_wp ) THEN |
---|
| 5572 | !-- we are at the top of the pcs |
---|
| 5573 | pct(j,i) = k + k_topo |
---|
| 5574 | pch(j,i) = k |
---|
| 5575 | npcbl = npcbl + pch(j,i) |
---|
| 5576 | EXIT |
---|
| 5577 | ENDIF |
---|
| 5578 | ENDDO |
---|
| 5579 | ENDDO |
---|
| 5580 | ENDDO |
---|
[2920] | 5581 | |
---|
[2696] | 5582 | nzutl = MAX( nzutl, MAXVAL( pct ) ) |
---|
[3014] | 5583 | nzptl = MAXVAL( pct ) |
---|
[2696] | 5584 | !-- code of plant canopy model uses parameter pch_index |
---|
| 5585 | !-- we need to setup it here to right value |
---|
| 5586 | !-- (pch_index, lad_s and other arrays in PCM are defined flat) |
---|
| 5587 | pch_index = MERGE( leaf_area_density_f%nz - 1, MAXVAL( pch ), & |
---|
[2920] | 5588 | leaf_area_density_f%from_file ) |
---|
[2696] | 5589 | |
---|
| 5590 | prototype_lad = MAXVAL( lad_s ) * .9_wp !< better be *1.0 if lad is either 0 or maxval(lad) everywhere |
---|
| 5591 | IF ( prototype_lad <= 0._wp ) prototype_lad = .3_wp |
---|
| 5592 | !WRITE(message_string, '(a,f6.3)') 'Precomputing effective box optical ' & |
---|
| 5593 | ! // 'depth using prototype leaf area density = ', prototype_lad |
---|
| 5594 | !CALL message('usm_init_urban_surface', 'PA0520', 0, 0, -1, 6, 0) |
---|
| 5595 | ENDIF |
---|
[2920] | 5596 | |
---|
[2696] | 5597 | nzutl = MIN( nzutl + nzut_free, nzt ) |
---|
| 5598 | |
---|
| 5599 | #if defined( __parallel ) |
---|
| 5600 | CALL MPI_AllReduce(nzubl, nzub, 1, MPI_INTEGER, MPI_MIN, comm2d, ierr ) |
---|
[3337] | 5601 | IF ( ierr /= 0 ) THEN |
---|
| 5602 | WRITE(9,*) 'Error MPI_AllReduce11:', ierr, nzubl, nzub |
---|
| 5603 | FLUSH(9) |
---|
| 5604 | ENDIF |
---|
[2696] | 5605 | CALL MPI_AllReduce(nzutl, nzut, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
[3337] | 5606 | IF ( ierr /= 0 ) THEN |
---|
| 5607 | WRITE(9,*) 'Error MPI_AllReduce12:', ierr, nzutl, nzut |
---|
| 5608 | FLUSH(9) |
---|
| 5609 | ENDIF |
---|
[3014] | 5610 | CALL MPI_AllReduce(nzptl, nzpt, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
[3337] | 5611 | IF ( ierr /= 0 ) THEN |
---|
| 5612 | WRITE(9,*) 'Error MPI_AllReduce13:', ierr, nzptl, nzpt |
---|
| 5613 | FLUSH(9) |
---|
| 5614 | ENDIF |
---|
[2696] | 5615 | #else |
---|
| 5616 | nzub = nzubl |
---|
| 5617 | nzut = nzutl |
---|
[3014] | 5618 | nzpt = nzptl |
---|
[2696] | 5619 | #endif |
---|
| 5620 | ! |
---|
[3065] | 5621 | !-- Stretching (non-uniform grid spacing) is not considered in the radiation |
---|
| 5622 | !-- model. Therefore, vertical stretching has to be applied above the area |
---|
| 5623 | !-- where the parts of the radiation model which assume constant grid spacing |
---|
| 5624 | !-- are active. ABS (...) is required because the default value of |
---|
| 5625 | !-- dz_stretch_level_start is -9999999.9_wp (negative). |
---|
| 5626 | IF ( ABS( dz_stretch_level_start(1) ) <= zw(nzut) ) THEN |
---|
| 5627 | WRITE( message_string, * ) 'The lowest level where vertical ', & |
---|
| 5628 | 'stretching is applied have to be ', & |
---|
| 5629 | 'greater than ', zw(nzut) |
---|
[3066] | 5630 | CALL message( 'radiation_interaction_init', 'PA0496', 1, 2, 0, 6, 0 ) |
---|
[3065] | 5631 | ENDIF |
---|
| 5632 | ! |
---|
[3014] | 5633 | !-- global number of urban and plant layers |
---|
[2696] | 5634 | nzu = nzut - nzub + 1 |
---|
[3014] | 5635 | nzp = nzpt - nzub + 1 |
---|
[2696] | 5636 | ! |
---|
[2920] | 5637 | !-- check max_raytracing_dist relative to urban surface layer height |
---|
[3122] | 5638 | mrl = 2.0_wp * nzu * dz(1) |
---|
[3378] | 5639 | !-- set max_raytracing_dist to double the urban surface layer height, if not set |
---|
[3122] | 5640 | IF ( max_raytracing_dist == -999.0_wp ) THEN |
---|
| 5641 | max_raytracing_dist = mrl |
---|
| 5642 | ENDIF |
---|
[3378] | 5643 | !-- check if max_raytracing_dist set too low (here we only warn the user. Other |
---|
| 5644 | ! option is to correct the value again to double the urban surface layer height) |
---|
| 5645 | IF ( max_raytracing_dist < mrl ) THEN |
---|
| 5646 | WRITE(message_string, '(a,f6.1)') 'Max_raytracing_dist is set less than ', & |
---|
| 5647 | 'double the urban surface layer height, i.e. ', mrl |
---|
| 5648 | CALL message('radiation_interaction_init', 'PA0521', 0, 0, -1, 6, 0) |
---|
| 5649 | ENDIF |
---|
[3014] | 5650 | ! IF ( max_raytracing_dist <= mrl ) THEN |
---|
| 5651 | ! IF ( max_raytracing_dist /= -999.0_wp ) THEN |
---|
| 5652 | ! !-- max_raytracing_dist too low |
---|
| 5653 | ! WRITE(message_string, '(a,f6.1)') 'Max_raytracing_dist too low, ' & |
---|
| 5654 | ! // 'override to value ', mrl |
---|
| 5655 | ! CALL message('radiation_interaction_init', 'PA0521', 0, 0, -1, 6, 0) |
---|
| 5656 | ! ENDIF |
---|
| 5657 | ! max_raytracing_dist = mrl |
---|
| 5658 | ! ENDIF |
---|
[2920] | 5659 | ! |
---|
[2696] | 5660 | !-- allocate urban surfaces grid |
---|
| 5661 | !-- calc number of surfaces in local proc |
---|
| 5662 | CALL location_message( ' calculation of indices for surfaces', .TRUE. ) |
---|
| 5663 | nsurfl = 0 |
---|
| 5664 | ! |
---|
| 5665 | !-- Number of horizontal surfaces including land- and roof surfaces in both USM and LSM. Note that |
---|
| 5666 | !-- All horizontal surface elements are already counted in surface_mod. |
---|
| 5667 | startland = 1 |
---|
| 5668 | nsurfl = surf_usm_h%ns + surf_lsm_h%ns |
---|
| 5669 | endland = nsurfl |
---|
| 5670 | nlands = endland - startland + 1 |
---|
| 5671 | |
---|
| 5672 | ! |
---|
[2920] | 5673 | !-- Number of vertical surfaces in both USM and LSM. Note that all vertical surface elements are |
---|
[2696] | 5674 | !-- already counted in surface_mod. |
---|
| 5675 | startwall = nsurfl+1 |
---|
| 5676 | DO i = 0,3 |
---|
| 5677 | nsurfl = nsurfl + surf_usm_v(i)%ns + surf_lsm_v(i)%ns |
---|
| 5678 | ENDDO |
---|
| 5679 | endwall = nsurfl |
---|
| 5680 | nwalls = endwall - startwall + 1 |
---|
| 5681 | |
---|
| 5682 | !-- fill gridpcbl and pcbl |
---|
[2977] | 5683 | IF ( npcbl > 0 ) THEN |
---|
[2696] | 5684 | ALLOCATE( pcbl(iz:ix, 1:npcbl) ) |
---|
[3014] | 5685 | ALLOCATE( gridpcbl(nzub:nzpt,nys:nyn,nxl:nxr) ) |
---|
[2920] | 5686 | pcbl = -1 |
---|
[2696] | 5687 | gridpcbl(:,:,:) = 0 |
---|
| 5688 | ipcgb = 0 |
---|
| 5689 | DO i = nxl, nxr |
---|
| 5690 | DO j = nys, nyn |
---|
| 5691 | ! |
---|
| 5692 | !-- Find topography top index |
---|
[2698] | 5693 | k_topo = get_topography_top_index_ji( j, i, 's' ) |
---|
[2696] | 5694 | |
---|
| 5695 | DO k = k_topo + 1, pct(j,i) |
---|
| 5696 | ipcgb = ipcgb + 1 |
---|
| 5697 | gridpcbl(k,j,i) = ipcgb |
---|
| 5698 | pcbl(:,ipcgb) = (/ k, j, i /) |
---|
| 5699 | ENDDO |
---|
| 5700 | ENDDO |
---|
| 5701 | ENDDO |
---|
| 5702 | ALLOCATE( pcbinsw( 1:npcbl ) ) |
---|
[2920] | 5703 | ALLOCATE( pcbinswdir( 1:npcbl ) ) |
---|
| 5704 | ALLOCATE( pcbinswdif( 1:npcbl ) ) |
---|
[2696] | 5705 | ALLOCATE( pcbinlw( 1:npcbl ) ) |
---|
| 5706 | ENDIF |
---|
| 5707 | |
---|
[2920] | 5708 | !-- fill surfl (the ordering of local surfaces given by the following |
---|
| 5709 | !-- cycles must not be altered, certain file input routines may depend |
---|
| 5710 | !-- on it) |
---|
[3337] | 5711 | ALLOCATE(surfl_l(5*nsurfl)) ! is it necessary to allocate it with (5,nsurfl)? |
---|
| 5712 | surfl(1:5,1:nsurfl) => surfl_l(1:5*nsurfl) |
---|
[2696] | 5713 | isurf = 0 |
---|
[3337] | 5714 | IF ( rad_angular_discretization ) THEN |
---|
| 5715 | ! |
---|
| 5716 | !-- Allocate and fill the reverse indexing array gridsurf |
---|
| 5717 | #if defined( __parallel ) |
---|
| 5718 | ! |
---|
| 5719 | !-- raytrace_mpi_rma is asserted |
---|
[2920] | 5720 | |
---|
[3337] | 5721 | CALL MPI_Info_create(minfo, ierr) |
---|
| 5722 | IF ( ierr /= 0 ) THEN |
---|
| 5723 | WRITE(9,*) 'Error MPI_Info_create1:', ierr |
---|
| 5724 | FLUSH(9) |
---|
| 5725 | ENDIF |
---|
| 5726 | CALL MPI_Info_set(minfo, 'accumulate_ordering', '', ierr) |
---|
| 5727 | IF ( ierr /= 0 ) THEN |
---|
| 5728 | WRITE(9,*) 'Error MPI_Info_set1:', ierr |
---|
| 5729 | FLUSH(9) |
---|
| 5730 | ENDIF |
---|
| 5731 | CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr) |
---|
| 5732 | IF ( ierr /= 0 ) THEN |
---|
| 5733 | WRITE(9,*) 'Error MPI_Info_set2:', ierr |
---|
| 5734 | FLUSH(9) |
---|
| 5735 | ENDIF |
---|
| 5736 | CALL MPI_Info_set(minfo, 'same_size', 'true', ierr) |
---|
| 5737 | IF ( ierr /= 0 ) THEN |
---|
| 5738 | WRITE(9,*) 'Error MPI_Info_set3:', ierr |
---|
| 5739 | FLUSH(9) |
---|
| 5740 | ENDIF |
---|
| 5741 | CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr) |
---|
| 5742 | IF ( ierr /= 0 ) THEN |
---|
| 5743 | WRITE(9,*) 'Error MPI_Info_set4:', ierr |
---|
| 5744 | FLUSH(9) |
---|
| 5745 | ENDIF |
---|
| 5746 | |
---|
| 5747 | CALL MPI_Win_allocate(INT(STORAGE_SIZE(1_iwp)/8*nsurf_type_u*nzu*nny*nnx, & |
---|
[3372] | 5748 | kind=MPI_ADDRESS_KIND), STORAGE_SIZE(1_iwp)/8, & |
---|
[3337] | 5749 | minfo, comm2d, gridsurf_rma_p, win_gridsurf, ierr) |
---|
| 5750 | IF ( ierr /= 0 ) THEN |
---|
| 5751 | WRITE(9,*) 'Error MPI_Win_allocate1:', ierr, & |
---|
| 5752 | INT(STORAGE_SIZE(1_iwp)/8*nsurf_type_u*nzu*nny*nnx,kind=MPI_ADDRESS_KIND), & |
---|
[3372] | 5753 | STORAGE_SIZE(1_iwp)/8, win_gridsurf |
---|
[3337] | 5754 | FLUSH(9) |
---|
| 5755 | ENDIF |
---|
| 5756 | |
---|
| 5757 | CALL MPI_Info_free(minfo, ierr) |
---|
| 5758 | IF ( ierr /= 0 ) THEN |
---|
| 5759 | WRITE(9,*) 'Error MPI_Info_free1:', ierr |
---|
| 5760 | FLUSH(9) |
---|
| 5761 | ENDIF |
---|
| 5762 | |
---|
| 5763 | ! |
---|
| 5764 | !-- On Intel compilers, calling c_f_pointer to transform a C pointer |
---|
| 5765 | !-- directly to a multi-dimensional Fotran pointer leads to strange |
---|
| 5766 | !-- errors on dimension boundaries. However, transforming to a 1D |
---|
| 5767 | !-- pointer and then redirecting a multidimensional pointer to it works |
---|
| 5768 | !-- fine. |
---|
| 5769 | CALL c_f_pointer(gridsurf_rma_p, gridsurf_rma, (/ nsurf_type_u*nzu*nny*nnx /)) |
---|
| 5770 | gridsurf(0:nsurf_type_u-1, nzub:nzut, nys:nyn, nxl:nxr) => & |
---|
| 5771 | gridsurf_rma(1:nsurf_type_u*nzu*nny*nnx) |
---|
| 5772 | #else |
---|
| 5773 | ALLOCATE(gridsurf(0:nsurf_type_u-1,nzub:nzut,nys:nyn,nxl:nxr) ) |
---|
| 5774 | #endif |
---|
| 5775 | gridsurf(:,:,:,:) = -999 |
---|
| 5776 | ENDIF |
---|
| 5777 | |
---|
[2696] | 5778 | !-- add horizontal surface elements (land and urban surfaces) |
---|
| 5779 | !-- TODO: add urban overhanging surfaces (idown_u) |
---|
| 5780 | DO i = nxl, nxr |
---|
| 5781 | DO j = nys, nyn |
---|
| 5782 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
| 5783 | k = surf_usm_h%k(m) |
---|
| 5784 | isurf = isurf + 1 |
---|
| 5785 | surfl(:,isurf) = (/iup_u,k,j,i,m/) |
---|
[3337] | 5786 | IF ( rad_angular_discretization ) THEN |
---|
| 5787 | gridsurf(iup_u,k,j,i) = isurf |
---|
| 5788 | ENDIF |
---|
[2696] | 5789 | ENDDO |
---|
| 5790 | |
---|
| 5791 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
| 5792 | k = surf_lsm_h%k(m) |
---|
| 5793 | isurf = isurf + 1 |
---|
| 5794 | surfl(:,isurf) = (/iup_l,k,j,i,m/) |
---|
[3337] | 5795 | IF ( rad_angular_discretization ) THEN |
---|
| 5796 | gridsurf(iup_u,k,j,i) = isurf |
---|
| 5797 | ENDIF |
---|
[2696] | 5798 | ENDDO |
---|
[2920] | 5799 | |
---|
[2696] | 5800 | ENDDO |
---|
| 5801 | ENDDO |
---|
| 5802 | |
---|
| 5803 | !-- add vertical surface elements (land and urban surfaces) |
---|
[2920] | 5804 | !-- TODO: remove the hard coding of l = 0 to l = idirection |
---|
[2696] | 5805 | DO i = nxl, nxr |
---|
| 5806 | DO j = nys, nyn |
---|
| 5807 | l = 0 |
---|
| 5808 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
| 5809 | k = surf_usm_v(l)%k(m) |
---|
[3337] | 5810 | isurf = isurf + 1 |
---|
[2696] | 5811 | surfl(:,isurf) = (/inorth_u,k,j,i,m/) |
---|
[3337] | 5812 | IF ( rad_angular_discretization ) THEN |
---|
| 5813 | gridsurf(inorth_u,k,j,i) = isurf |
---|
| 5814 | ENDIF |
---|
[2696] | 5815 | ENDDO |
---|
| 5816 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
| 5817 | k = surf_lsm_v(l)%k(m) |
---|
[3337] | 5818 | isurf = isurf + 1 |
---|
[2696] | 5819 | surfl(:,isurf) = (/inorth_l,k,j,i,m/) |
---|
[3337] | 5820 | IF ( rad_angular_discretization ) THEN |
---|
| 5821 | gridsurf(inorth_u,k,j,i) = isurf |
---|
| 5822 | ENDIF |
---|
[2696] | 5823 | ENDDO |
---|
| 5824 | |
---|
| 5825 | l = 1 |
---|
| 5826 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
| 5827 | k = surf_usm_v(l)%k(m) |
---|
[3337] | 5828 | isurf = isurf + 1 |
---|
[2696] | 5829 | surfl(:,isurf) = (/isouth_u,k,j,i,m/) |
---|
[3337] | 5830 | IF ( rad_angular_discretization ) THEN |
---|
| 5831 | gridsurf(isouth_u,k,j,i) = isurf |
---|
| 5832 | ENDIF |
---|
[2696] | 5833 | ENDDO |
---|
| 5834 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
| 5835 | k = surf_lsm_v(l)%k(m) |
---|
[3337] | 5836 | isurf = isurf + 1 |
---|
[2696] | 5837 | surfl(:,isurf) = (/isouth_l,k,j,i,m/) |
---|
[3337] | 5838 | IF ( rad_angular_discretization ) THEN |
---|
| 5839 | gridsurf(isouth_u,k,j,i) = isurf |
---|
| 5840 | ENDIF |
---|
[2696] | 5841 | ENDDO |
---|
| 5842 | |
---|
| 5843 | l = 2 |
---|
| 5844 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
| 5845 | k = surf_usm_v(l)%k(m) |
---|
[3337] | 5846 | isurf = isurf + 1 |
---|
[2696] | 5847 | surfl(:,isurf) = (/ieast_u,k,j,i,m/) |
---|
[3337] | 5848 | IF ( rad_angular_discretization ) THEN |
---|
| 5849 | gridsurf(ieast_u,k,j,i) = isurf |
---|
| 5850 | ENDIF |
---|
[2696] | 5851 | ENDDO |
---|
| 5852 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
| 5853 | k = surf_lsm_v(l)%k(m) |
---|
[3337] | 5854 | isurf = isurf + 1 |
---|
[2696] | 5855 | surfl(:,isurf) = (/ieast_l,k,j,i,m/) |
---|
[3337] | 5856 | IF ( rad_angular_discretization ) THEN |
---|
| 5857 | gridsurf(ieast_u,k,j,i) = isurf |
---|
| 5858 | ENDIF |
---|
[2696] | 5859 | ENDDO |
---|
| 5860 | |
---|
| 5861 | l = 3 |
---|
| 5862 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
| 5863 | k = surf_usm_v(l)%k(m) |
---|
[3337] | 5864 | isurf = isurf + 1 |
---|
[2696] | 5865 | surfl(:,isurf) = (/iwest_u,k,j,i,m/) |
---|
[3337] | 5866 | IF ( rad_angular_discretization ) THEN |
---|
| 5867 | gridsurf(iwest_u,k,j,i) = isurf |
---|
| 5868 | ENDIF |
---|
[2696] | 5869 | ENDDO |
---|
| 5870 | DO m = surf_lsm_v(l)%start_index(j,i), surf_lsm_v(l)%end_index(j,i) |
---|
| 5871 | k = surf_lsm_v(l)%k(m) |
---|
[3337] | 5872 | isurf = isurf + 1 |
---|
[2696] | 5873 | surfl(:,isurf) = (/iwest_l,k,j,i,m/) |
---|
[3337] | 5874 | IF ( rad_angular_discretization ) THEN |
---|
| 5875 | gridsurf(iwest_u,k,j,i) = isurf |
---|
| 5876 | ENDIF |
---|
[2696] | 5877 | ENDDO |
---|
| 5878 | ENDDO |
---|
| 5879 | ENDDO |
---|
[3337] | 5880 | ! |
---|
| 5881 | !-- Add local MRT boxes for specified number of levels |
---|
| 5882 | nmrtbl = 0 |
---|
| 5883 | IF ( mrt_nlevels > 0 ) THEN |
---|
| 5884 | DO i = nxl, nxr |
---|
| 5885 | DO j = nys, nyn |
---|
| 5886 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
| 5887 | ! |
---|
| 5888 | !-- Skip roof if requested |
---|
| 5889 | IF ( mrt_skip_roof .AND. surf_usm_h%isroof_surf(m) ) CYCLE |
---|
| 5890 | ! |
---|
| 5891 | !-- Cycle over specified no of levels |
---|
| 5892 | nmrtbl = nmrtbl + mrt_nlevels |
---|
| 5893 | ENDDO |
---|
| 5894 | ! |
---|
| 5895 | !-- Dtto for LSM |
---|
| 5896 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
| 5897 | nmrtbl = nmrtbl + mrt_nlevels |
---|
| 5898 | ENDDO |
---|
| 5899 | ENDDO |
---|
| 5900 | ENDDO |
---|
[2696] | 5901 | |
---|
[3337] | 5902 | ALLOCATE( mrtbl(iz:ix,nmrtbl), mrtsky(nmrtbl), mrtskyt(nmrtbl), & |
---|
| 5903 | mrtinsw(nmrtbl), mrtinlw(nmrtbl), mrt(nmrtbl) ) |
---|
| 5904 | |
---|
| 5905 | imrt = 0 |
---|
| 5906 | DO i = nxl, nxr |
---|
| 5907 | DO j = nys, nyn |
---|
| 5908 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
[2696] | 5909 | ! |
---|
[3337] | 5910 | !-- Skip roof if requested |
---|
| 5911 | IF ( mrt_skip_roof .AND. surf_usm_h%isroof_surf(m) ) CYCLE |
---|
| 5912 | ! |
---|
| 5913 | !-- Cycle over specified no of levels |
---|
| 5914 | l = surf_usm_h%k(m) |
---|
| 5915 | DO k = l, l + mrt_nlevels - 1 |
---|
| 5916 | imrt = imrt + 1 |
---|
| 5917 | mrtbl(:,imrt) = (/k,j,i/) |
---|
| 5918 | ENDDO |
---|
| 5919 | ENDDO |
---|
| 5920 | ! |
---|
| 5921 | !-- Dtto for LSM |
---|
| 5922 | DO m = surf_lsm_h%start_index(j,i), surf_lsm_h%end_index(j,i) |
---|
| 5923 | l = surf_lsm_h%k(m) |
---|
| 5924 | DO k = l, l + mrt_nlevels - 1 |
---|
| 5925 | imrt = imrt + 1 |
---|
| 5926 | mrtbl(:,imrt) = (/k,j,i/) |
---|
| 5927 | ENDDO |
---|
| 5928 | ENDDO |
---|
| 5929 | ENDDO |
---|
| 5930 | ENDDO |
---|
| 5931 | ENDIF |
---|
| 5932 | |
---|
| 5933 | ! |
---|
[2920] | 5934 | !-- broadband albedo of the land, roof and wall surface |
---|
| 5935 | !-- for domain border and sky set artifically to 1.0 |
---|
| 5936 | !-- what allows us to calculate heat flux leaving over |
---|
| 5937 | !-- side and top borders of the domain |
---|
| 5938 | ALLOCATE ( albedo_surf(nsurfl) ) |
---|
| 5939 | albedo_surf = 1.0_wp |
---|
[2696] | 5940 | ! |
---|
[2920] | 5941 | !-- Also allocate further array for emissivity with identical order of |
---|
| 5942 | !-- surface elements as radiation arrays. |
---|
| 5943 | ALLOCATE ( emiss_surf(nsurfl) ) |
---|
[2696] | 5944 | |
---|
| 5945 | |
---|
| 5946 | ! |
---|
| 5947 | !-- global array surf of indices of surfaces and displacement index array surfstart |
---|
| 5948 | ALLOCATE(nsurfs(0:numprocs-1)) |
---|
[2920] | 5949 | |
---|
[2696] | 5950 | #if defined( __parallel ) |
---|
| 5951 | CALL MPI_Allgather(nsurfl,1,MPI_INTEGER,nsurfs,1,MPI_INTEGER,comm2d,ierr) |
---|
[3337] | 5952 | IF ( ierr /= 0 ) THEN |
---|
| 5953 | WRITE(9,*) 'Error MPI_AllGather1:', ierr, nsurfl, nsurfs |
---|
| 5954 | FLUSH(9) |
---|
| 5955 | ENDIF |
---|
| 5956 | |
---|
[2696] | 5957 | #else |
---|
| 5958 | nsurfs(0) = nsurfl |
---|
| 5959 | #endif |
---|
| 5960 | ALLOCATE(surfstart(0:numprocs)) |
---|
| 5961 | k = 0 |
---|
| 5962 | DO i=0,numprocs-1 |
---|
| 5963 | surfstart(i) = k |
---|
| 5964 | k = k+nsurfs(i) |
---|
| 5965 | ENDDO |
---|
| 5966 | surfstart(numprocs) = k |
---|
| 5967 | nsurf = k |
---|
[3337] | 5968 | ALLOCATE(surf_l(5*nsurf)) |
---|
| 5969 | surf(1:5,1:nsurf) => surf_l(1:5*nsurf) |
---|
[2920] | 5970 | |
---|
[2696] | 5971 | #if defined( __parallel ) |
---|
[3337] | 5972 | CALL MPI_AllGatherv(surfl_l, nsurfl*5, MPI_INTEGER, surf_l, nsurfs*5, & |
---|
[2920] | 5973 | surfstart(0:numprocs-1)*5, MPI_INTEGER, comm2d, ierr) |
---|
[3337] | 5974 | IF ( ierr /= 0 ) THEN |
---|
| 5975 | WRITE(9,*) 'Error MPI_AllGatherv4:', ierr, SIZE(surfl_l), nsurfl*5, & |
---|
| 5976 | SIZE(surf_l), nsurfs*5, surfstart(0:numprocs-1)*5 |
---|
| 5977 | FLUSH(9) |
---|
| 5978 | ENDIF |
---|
[2696] | 5979 | #else |
---|
| 5980 | surf = surfl |
---|
| 5981 | #endif |
---|
| 5982 | |
---|
| 5983 | !-- |
---|
| 5984 | !-- allocation of the arrays for direct and diffusion radiation |
---|
| 5985 | CALL location_message( ' allocation of radiation arrays', .TRUE. ) |
---|
| 5986 | !-- rad_sw_in, rad_lw_in are computed in radiation model, |
---|
| 5987 | !-- splitting of direct and diffusion part is done |
---|
[2920] | 5988 | !-- in calc_diffusion_radiation for now |
---|
[2696] | 5989 | |
---|
| 5990 | ALLOCATE( rad_sw_in_dir(nysg:nyng,nxlg:nxrg) ) |
---|
| 5991 | ALLOCATE( rad_sw_in_diff(nysg:nyng,nxlg:nxrg) ) |
---|
| 5992 | ALLOCATE( rad_lw_in_diff(nysg:nyng,nxlg:nxrg) ) |
---|
| 5993 | rad_sw_in_dir = 0.0_wp |
---|
| 5994 | rad_sw_in_diff = 0.0_wp |
---|
[2920] | 5995 | rad_lw_in_diff = 0.0_wp |
---|
| 5996 | |
---|
[2696] | 5997 | !-- allocate radiation arrays |
---|
| 5998 | ALLOCATE( surfins(nsurfl) ) |
---|
| 5999 | ALLOCATE( surfinl(nsurfl) ) |
---|
| 6000 | ALLOCATE( surfinsw(nsurfl) ) |
---|
| 6001 | ALLOCATE( surfinlw(nsurfl) ) |
---|
| 6002 | ALLOCATE( surfinswdir(nsurfl) ) |
---|
| 6003 | ALLOCATE( surfinswdif(nsurfl) ) |
---|
| 6004 | ALLOCATE( surfinlwdif(nsurfl) ) |
---|
[2920] | 6005 | ALLOCATE( surfoutsl(nsurfl) ) |
---|
| 6006 | ALLOCATE( surfoutll(nsurfl) ) |
---|
| 6007 | ALLOCATE( surfoutsw(nsurfl) ) |
---|
| 6008 | ALLOCATE( surfoutlw(nsurfl) ) |
---|
| 6009 | ALLOCATE( surfouts(nsurf) ) |
---|
| 6010 | ALLOCATE( surfoutl(nsurf) ) |
---|
[3449] | 6011 | ALLOCATE( surfinlg(nsurf) ) |
---|
[2920] | 6012 | ALLOCATE( skyvf(nsurfl) ) |
---|
| 6013 | ALLOCATE( skyvft(nsurfl) ) |
---|
[3117] | 6014 | ALLOCATE( surfemitlwl(nsurfl) ) |
---|
[2696] | 6015 | |
---|
| 6016 | ! |
---|
| 6017 | !-- In case of average_radiation, aggregated surface albedo and emissivity, |
---|
[2920] | 6018 | !-- also set initial value for t_rad_urb. |
---|
| 6019 | !-- For now set an arbitrary initial value. |
---|
[2696] | 6020 | IF ( average_radiation ) THEN |
---|
[3117] | 6021 | albedo_urb = 0.1_wp |
---|
| 6022 | emissivity_urb = 0.9_wp |
---|
[2920] | 6023 | t_rad_urb = pt_surface |
---|
| 6024 | ENDIF |
---|
[2696] | 6025 | |
---|
| 6026 | END SUBROUTINE radiation_interaction_init |
---|
| 6027 | |
---|
| 6028 | !------------------------------------------------------------------------------! |
---|
| 6029 | ! Description: |
---|
| 6030 | ! ------------ |
---|
[2920] | 6031 | !> Calculates shape view factors (SVF), plant sink canopy factors (PCSF), |
---|
| 6032 | !> sky-view factors, discretized path for direct solar radiation, MRT factors |
---|
| 6033 | !> and other preprocessed data needed for radiation_interaction. |
---|
[2696] | 6034 | !------------------------------------------------------------------------------! |
---|
| 6035 | SUBROUTINE radiation_calc_svf |
---|
[2920] | 6036 | |
---|
[2696] | 6037 | IMPLICIT NONE |
---|
| 6038 | |
---|
[3241] | 6039 | INTEGER(iwp) :: i, j, k, d, ip, jp |
---|
[3337] | 6040 | INTEGER(iwp) :: isvf, ksvf, icsf, kcsf, npcsfl, isvf_surflt, imrt, imrtf, ipcgb |
---|
[3241] | 6041 | INTEGER(iwp) :: sd, td |
---|
[2920] | 6042 | INTEGER(iwp) :: iaz, izn !< azimuth, zenith counters |
---|
| 6043 | INTEGER(iwp) :: naz, nzn !< azimuth, zenith num of steps |
---|
| 6044 | REAL(wp) :: az0, zn0 !< starting azimuth/zenith |
---|
| 6045 | REAL(wp) :: azs, zns !< azimuth/zenith cycle step |
---|
| 6046 | REAL(wp) :: az1, az2 !< relative azimuth of section borders |
---|
| 6047 | REAL(wp) :: azmid !< ray (center) azimuth |
---|
[3449] | 6048 | REAL(wp) :: yxlen !< |yxdir| |
---|
[3226] | 6049 | REAL(wp), DIMENSION(2) :: yxdir !< y,x *unit* vector of ray direction (in grid units) |
---|
[2920] | 6050 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zdirs !< directions in z (tangent of elevation) |
---|
[3449] | 6051 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zcent !< zenith angle centers |
---|
[2920] | 6052 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zbdry !< zenith angle boundaries |
---|
| 6053 | REAL(wp), DIMENSION(:), ALLOCATABLE :: vffrac !< view factor fractions for individual rays |
---|
[3337] | 6054 | REAL(wp), DIMENSION(:), ALLOCATABLE :: vffrac0 !< dtto (original values) |
---|
[2920] | 6055 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ztransp !< array of transparency in z steps |
---|
[3337] | 6056 | INTEGER(iwp) :: lowest_free_ray !< index into zdirs |
---|
| 6057 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: itarget !< face indices of detected obstacles |
---|
| 6058 | INTEGER(iwp) :: itarg0, itarg1 |
---|
| 6059 | |
---|
| 6060 | INTEGER(iwp) :: udim |
---|
| 6061 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET:: nzterrl_l |
---|
| 6062 | INTEGER(iwp), DIMENSION(:,:), POINTER :: nzterrl |
---|
| 6063 | REAL(wp), DIMENSION(:), ALLOCATABLE,TARGET:: csflt_l, pcsflt_l |
---|
| 6064 | REAL(wp), DIMENSION(:,:), POINTER :: csflt, pcsflt |
---|
| 6065 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE,TARGET:: kcsflt_l,kpcsflt_l |
---|
| 6066 | INTEGER(iwp), DIMENSION(:,:), POINTER :: kcsflt,kpcsflt |
---|
[2920] | 6067 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: icsflt,dcsflt,ipcsflt,dpcsflt |
---|
| 6068 | REAL(wp), DIMENSION(3) :: uv |
---|
| 6069 | LOGICAL :: visible |
---|
| 6070 | REAL(wp), DIMENSION(3) :: sa, ta !< real coordinates z,y,x of source and target |
---|
[3449] | 6071 | REAL(wp) :: difvf !< differential view factor |
---|
[2920] | 6072 | REAL(wp) :: transparency, rirrf, sqdist, svfsum |
---|
| 6073 | INTEGER(iwp) :: isurflt, isurfs, isurflt_prev |
---|
| 6074 | INTEGER(idp) :: ray_skip_maxdist, ray_skip_minval !< skipped raytracing counts |
---|
| 6075 | INTEGER(iwp) :: max_track_len !< maximum 2d track length |
---|
[3337] | 6076 | INTEGER(iwp) :: minfo |
---|
| 6077 | REAL(wp), DIMENSION(:), POINTER :: lad_s_rma !< fortran 1D pointer |
---|
[2920] | 6078 | TYPE(c_ptr) :: lad_s_rma_p !< allocated c pointer |
---|
[2696] | 6079 | #if defined( __parallel ) |
---|
[2920] | 6080 | INTEGER(kind=MPI_ADDRESS_KIND) :: size_lad_rma |
---|
[2696] | 6081 | #endif |
---|
| 6082 | ! |
---|
[2920] | 6083 | INTEGER(iwp), DIMENSION(0:svfnorm_report_num) :: svfnorm_counts |
---|
[3337] | 6084 | CHARACTER(200) :: msg |
---|
[2920] | 6085 | |
---|
[2696] | 6086 | !-- calculation of the SVF |
---|
| 6087 | CALL location_message( ' calculation of SVF and CSF', .TRUE. ) |
---|
[3337] | 6088 | CALL radiation_write_debug_log('Start calculation of SVF and CSF') |
---|
[2920] | 6089 | |
---|
[2696] | 6090 | !-- initialize variables and temporary arrays for calculation of svf and csf |
---|
| 6091 | nsvfl = 0 |
---|
| 6092 | ncsfl = 0 |
---|
| 6093 | nsvfla = gasize |
---|
| 6094 | msvf = 1 |
---|
| 6095 | ALLOCATE( asvf1(nsvfla) ) |
---|
| 6096 | asvf => asvf1 |
---|
| 6097 | IF ( plant_canopy ) THEN |
---|
| 6098 | ncsfla = gasize |
---|
| 6099 | mcsf = 1 |
---|
| 6100 | ALLOCATE( acsf1(ncsfla) ) |
---|
| 6101 | acsf => acsf1 |
---|
| 6102 | ENDIF |
---|
[3337] | 6103 | nmrtf = 0 |
---|
| 6104 | IF ( mrt_nlevels > 0 ) THEN |
---|
| 6105 | nmrtfa = gasize |
---|
| 6106 | mmrtf = 1 |
---|
| 6107 | ALLOCATE ( amrtf1(nmrtfa) ) |
---|
| 6108 | amrtf => amrtf1 |
---|
| 6109 | ENDIF |
---|
[2920] | 6110 | ray_skip_maxdist = 0 |
---|
| 6111 | ray_skip_minval = 0 |
---|
[2696] | 6112 | |
---|
| 6113 | !-- initialize temporary terrain and plant canopy height arrays (global 2D array!) |
---|
| 6114 | ALLOCATE( nzterr(0:(nx+1)*(ny+1)-1) ) |
---|
| 6115 | #if defined( __parallel ) |
---|
[3337] | 6116 | !ALLOCATE( nzterrl(nys:nyn,nxl:nxr) ) |
---|
| 6117 | ALLOCATE( nzterrl_l((nyn-nys+1)*(nxr-nxl+1)) ) |
---|
| 6118 | nzterrl(nys:nyn,nxl:nxr) => nzterrl_l(1:(nyn-nys+1)*(nxr-nxl+1)) |
---|
[2696] | 6119 | nzterrl = get_topography_top_index( 's' ) |
---|
[3337] | 6120 | CALL MPI_AllGather( nzterrl_l, nnx*nny, MPI_INTEGER, & |
---|
[2696] | 6121 | nzterr, nnx*nny, MPI_INTEGER, comm2d, ierr ) |
---|
[3337] | 6122 | IF ( ierr /= 0 ) THEN |
---|
| 6123 | WRITE(9,*) 'Error MPI_AllGather1:', ierr, SIZE(nzterrl_l), nnx*nny, & |
---|
| 6124 | SIZE(nzterr), nnx*nny |
---|
| 6125 | FLUSH(9) |
---|
| 6126 | ENDIF |
---|
| 6127 | DEALLOCATE(nzterrl_l) |
---|
[2696] | 6128 | #else |
---|
| 6129 | nzterr = RESHAPE( get_topography_top_index( 's' ), (/(nx+1)*(ny+1)/) ) |
---|
| 6130 | #endif |
---|
| 6131 | IF ( plant_canopy ) THEN |
---|
| 6132 | ALLOCATE( plantt(0:(nx+1)*(ny+1)-1) ) |
---|
[3014] | 6133 | maxboxesg = nx + ny + nzp + 1 |
---|
[2920] | 6134 | max_track_len = nx + ny + 1 |
---|
[2696] | 6135 | !-- temporary arrays storing values for csf calculation during raytracing |
---|
| 6136 | ALLOCATE( boxes(3, maxboxesg) ) |
---|
| 6137 | ALLOCATE( crlens(maxboxesg) ) |
---|
| 6138 | |
---|
| 6139 | #if defined( __parallel ) |
---|
[2920] | 6140 | CALL MPI_AllGather( pct, nnx*nny, MPI_INTEGER, & |
---|
[2696] | 6141 | plantt, nnx*nny, MPI_INTEGER, comm2d, ierr ) |
---|
[3337] | 6142 | IF ( ierr /= 0 ) THEN |
---|
| 6143 | WRITE(9,*) 'Error MPI_AllGather2:', ierr, SIZE(pct), nnx*nny, & |
---|
| 6144 | SIZE(plantt), nnx*nny |
---|
| 6145 | FLUSH(9) |
---|
| 6146 | ENDIF |
---|
| 6147 | |
---|
[2696] | 6148 | !-- temporary arrays storing values for csf calculation during raytracing |
---|
| 6149 | ALLOCATE( lad_ip(maxboxesg) ) |
---|
| 6150 | ALLOCATE( lad_disp(maxboxesg) ) |
---|
| 6151 | |
---|
[3337] | 6152 | IF ( raytrace_mpi_rma ) THEN |
---|
[2696] | 6153 | ALLOCATE( lad_s_ray(maxboxesg) ) |
---|
| 6154 | |
---|
| 6155 | ! set conditions for RMA communication |
---|
| 6156 | CALL MPI_Info_create(minfo, ierr) |
---|
[3337] | 6157 | IF ( ierr /= 0 ) THEN |
---|
| 6158 | WRITE(9,*) 'Error MPI_Info_create2:', ierr |
---|
| 6159 | FLUSH(9) |
---|
| 6160 | ENDIF |
---|
[2696] | 6161 | CALL MPI_Info_set(minfo, 'accumulate_ordering', '', ierr) |
---|
[3337] | 6162 | IF ( ierr /= 0 ) THEN |
---|
| 6163 | WRITE(9,*) 'Error MPI_Info_set5:', ierr |
---|
| 6164 | FLUSH(9) |
---|
| 6165 | ENDIF |
---|
[2696] | 6166 | CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr) |
---|
[3337] | 6167 | IF ( ierr /= 0 ) THEN |
---|
| 6168 | WRITE(9,*) 'Error MPI_Info_set6:', ierr |
---|
| 6169 | FLUSH(9) |
---|
| 6170 | ENDIF |
---|
[2696] | 6171 | CALL MPI_Info_set(minfo, 'same_size', 'true', ierr) |
---|
[3337] | 6172 | IF ( ierr /= 0 ) THEN |
---|
| 6173 | WRITE(9,*) 'Error MPI_Info_set7:', ierr |
---|
| 6174 | FLUSH(9) |
---|
| 6175 | ENDIF |
---|
[2696] | 6176 | CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr) |
---|
[3337] | 6177 | IF ( ierr /= 0 ) THEN |
---|
| 6178 | WRITE(9,*) 'Error MPI_Info_set8:', ierr |
---|
| 6179 | FLUSH(9) |
---|
| 6180 | ENDIF |
---|
[2696] | 6181 | |
---|
| 6182 | !-- Allocate and initialize the MPI RMA window |
---|
| 6183 | !-- must be in accordance with allocation of lad_s in plant_canopy_model |
---|
| 6184 | !-- optimization of memory should be done |
---|
[2809] | 6185 | !-- Argument X of function STORAGE_SIZE(X) needs arbitrary REAL(wp) value, set to 1.0_wp for now |
---|
[3014] | 6186 | size_lad_rma = STORAGE_SIZE(1.0_wp)/8*nnx*nny*nzp |
---|
[2809] | 6187 | CALL MPI_Win_allocate(size_lad_rma, STORAGE_SIZE(1.0_wp)/8, minfo, comm2d, & |
---|
[2696] | 6188 | lad_s_rma_p, win_lad, ierr) |
---|
[3337] | 6189 | IF ( ierr /= 0 ) THEN |
---|
| 6190 | WRITE(9,*) 'Error MPI_Win_allocate2:', ierr, size_lad_rma, & |
---|
| 6191 | STORAGE_SIZE(1.0_wp)/8, win_lad |
---|
| 6192 | FLUSH(9) |
---|
| 6193 | ENDIF |
---|
| 6194 | CALL c_f_pointer(lad_s_rma_p, lad_s_rma, (/ nzp*nny*nnx /)) |
---|
| 6195 | sub_lad(nzub:nzpt, nys:nyn, nxl:nxr) => lad_s_rma(1:nzp*nny*nnx) |
---|
[2696] | 6196 | ELSE |
---|
[3014] | 6197 | ALLOCATE(sub_lad(nzub:nzpt, nys:nyn, nxl:nxr)) |
---|
[2696] | 6198 | ENDIF |
---|
| 6199 | #else |
---|
| 6200 | plantt = RESHAPE( pct(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) ) |
---|
[3014] | 6201 | ALLOCATE(sub_lad(nzub:nzpt, nys:nyn, nxl:nxr)) |
---|
[2696] | 6202 | #endif |
---|
[2920] | 6203 | plantt_max = MAXVAL(plantt) |
---|
| 6204 | ALLOCATE( rt2_track(2, max_track_len), rt2_track_lad(nzub:plantt_max, max_track_len), & |
---|
| 6205 | rt2_track_dist(0:max_track_len), rt2_dist(plantt_max-nzub+2) ) |
---|
| 6206 | |
---|
| 6207 | sub_lad(:,:,:) = 0._wp |
---|
[2696] | 6208 | DO i = nxl, nxr |
---|
| 6209 | DO j = nys, nyn |
---|
[2698] | 6210 | k = get_topography_top_index_ji( j, i, 's' ) |
---|
[2696] | 6211 | |
---|
[3014] | 6212 | sub_lad(k:nzpt, j, i) = lad_s(0:nzpt-k, j, i) |
---|
[2696] | 6213 | ENDDO |
---|
| 6214 | ENDDO |
---|
| 6215 | |
---|
| 6216 | #if defined( __parallel ) |
---|
[3337] | 6217 | IF ( raytrace_mpi_rma ) THEN |
---|
[2696] | 6218 | CALL MPI_Info_free(minfo, ierr) |
---|
[3337] | 6219 | IF ( ierr /= 0 ) THEN |
---|
| 6220 | WRITE(9,*) 'Error MPI_Info_free2:', ierr |
---|
| 6221 | FLUSH(9) |
---|
| 6222 | ENDIF |
---|
[2696] | 6223 | CALL MPI_Win_lock_all(0, win_lad, ierr) |
---|
[3337] | 6224 | IF ( ierr /= 0 ) THEN |
---|
| 6225 | WRITE(9,*) 'Error MPI_Win_lock_all1:', ierr, win_lad |
---|
| 6226 | FLUSH(9) |
---|
| 6227 | ENDIF |
---|
| 6228 | |
---|
[2696] | 6229 | ELSE |
---|
[3014] | 6230 | ALLOCATE( sub_lad_g(0:(nx+1)*(ny+1)*nzp-1) ) |
---|
| 6231 | CALL MPI_AllGather( sub_lad, nnx*nny*nzp, MPI_REAL, & |
---|
| 6232 | sub_lad_g, nnx*nny*nzp, MPI_REAL, comm2d, ierr ) |
---|
[3337] | 6233 | IF ( ierr /= 0 ) THEN |
---|
| 6234 | WRITE(9,*) 'Error MPI_AllGather3:', ierr, SIZE(sub_lad), & |
---|
| 6235 | nnx*nny*nzp, SIZE(sub_lad_g), nnx*nny*nzp |
---|
| 6236 | FLUSH(9) |
---|
| 6237 | ENDIF |
---|
[2696] | 6238 | ENDIF |
---|
| 6239 | #endif |
---|
| 6240 | ENDIF |
---|
| 6241 | |
---|
[3337] | 6242 | !-- prepare the MPI_Win for collecting the surface indices |
---|
| 6243 | !-- from the reverse index arrays gridsurf from processors of target surfaces |
---|
| 6244 | #if defined( __parallel ) |
---|
| 6245 | IF ( rad_angular_discretization ) THEN |
---|
| 6246 | ! |
---|
| 6247 | !-- raytrace_mpi_rma is asserted |
---|
| 6248 | CALL MPI_Win_lock_all(0, win_gridsurf, ierr) |
---|
| 6249 | IF ( ierr /= 0 ) THEN |
---|
| 6250 | WRITE(9,*) 'Error MPI_Win_lock_all2:', ierr, win_gridsurf |
---|
| 6251 | FLUSH(9) |
---|
| 6252 | ENDIF |
---|
| 6253 | ENDIF |
---|
| 6254 | #endif |
---|
[2696] | 6255 | |
---|
| 6256 | |
---|
[2920] | 6257 | !--Directions opposite to face normals are not even calculated, |
---|
| 6258 | !--they must be preset to 0 |
---|
| 6259 | !-- |
---|
| 6260 | dsitrans(:,:) = 0._wp |
---|
| 6261 | |
---|
[2696] | 6262 | DO isurflt = 1, nsurfl |
---|
| 6263 | !-- determine face centers |
---|
| 6264 | td = surfl(id, isurflt) |
---|
| 6265 | ta = (/ REAL(surfl(iz, isurflt), wp) - 0.5_wp * kdir(td), & |
---|
| 6266 | REAL(surfl(iy, isurflt), wp) - 0.5_wp * jdir(td), & |
---|
| 6267 | REAL(surfl(ix, isurflt), wp) - 0.5_wp * idir(td) /) |
---|
[2920] | 6268 | |
---|
| 6269 | !--Calculate sky view factor and raytrace DSI paths |
---|
| 6270 | skyvf(isurflt) = 0._wp |
---|
| 6271 | skyvft(isurflt) = 0._wp |
---|
| 6272 | |
---|
| 6273 | !--Select a proper half-sphere for 2D raytracing |
---|
| 6274 | SELECT CASE ( td ) |
---|
| 6275 | CASE ( iup_u, iup_l ) |
---|
| 6276 | az0 = 0._wp |
---|
| 6277 | naz = raytrace_discrete_azims |
---|
| 6278 | azs = 2._wp * pi / REAL(naz, wp) |
---|
| 6279 | zn0 = 0._wp |
---|
| 6280 | nzn = raytrace_discrete_elevs / 2 |
---|
| 6281 | zns = pi / 2._wp / REAL(nzn, wp) |
---|
| 6282 | CASE ( isouth_u, isouth_l ) |
---|
| 6283 | az0 = pi / 2._wp |
---|
| 6284 | naz = raytrace_discrete_azims / 2 |
---|
| 6285 | azs = pi / REAL(naz, wp) |
---|
| 6286 | zn0 = 0._wp |
---|
| 6287 | nzn = raytrace_discrete_elevs |
---|
| 6288 | zns = pi / REAL(nzn, wp) |
---|
| 6289 | CASE ( inorth_u, inorth_l ) |
---|
| 6290 | az0 = - pi / 2._wp |
---|
| 6291 | naz = raytrace_discrete_azims / 2 |
---|
| 6292 | azs = pi / REAL(naz, wp) |
---|
| 6293 | zn0 = 0._wp |
---|
| 6294 | nzn = raytrace_discrete_elevs |
---|
| 6295 | zns = pi / REAL(nzn, wp) |
---|
| 6296 | CASE ( iwest_u, iwest_l ) |
---|
| 6297 | az0 = pi |
---|
| 6298 | naz = raytrace_discrete_azims / 2 |
---|
| 6299 | azs = pi / REAL(naz, wp) |
---|
| 6300 | zn0 = 0._wp |
---|
| 6301 | nzn = raytrace_discrete_elevs |
---|
| 6302 | zns = pi / REAL(nzn, wp) |
---|
| 6303 | CASE ( ieast_u, ieast_l ) |
---|
| 6304 | az0 = 0._wp |
---|
| 6305 | naz = raytrace_discrete_azims / 2 |
---|
| 6306 | azs = pi / REAL(naz, wp) |
---|
| 6307 | zn0 = 0._wp |
---|
| 6308 | nzn = raytrace_discrete_elevs |
---|
| 6309 | zns = pi / REAL(nzn, wp) |
---|
| 6310 | CASE DEFAULT |
---|
[3046] | 6311 | WRITE(message_string, *) 'ERROR: the surface type ', td, & |
---|
| 6312 | ' is not supported for calculating',& |
---|
| 6313 | ' SVF' |
---|
[2932] | 6314 | CALL message( 'radiation_calc_svf', 'PA0488', 1, 2, 0, 6, 0 ) |
---|
[2920] | 6315 | END SELECT |
---|
| 6316 | |
---|
[3449] | 6317 | ALLOCATE ( zdirs(1:nzn), zcent(1:nzn), zbdry(0:nzn), vffrac(1:nzn*naz), & |
---|
[3337] | 6318 | ztransp(1:nzn*naz), itarget(1:nzn*naz) ) !FIXME allocate itarget only |
---|
| 6319 | !in case of rad_angular_discretization |
---|
| 6320 | |
---|
| 6321 | itarg0 = 1 |
---|
| 6322 | itarg1 = nzn |
---|
[3449] | 6323 | zcent(:) = (/( zn0+(REAL(izn,wp)-.5_wp)*zns, izn=1, nzn )/) |
---|
[2920] | 6324 | zbdry(:) = (/( zn0+REAL(izn,wp)*zns, izn=0, nzn )/) |
---|
| 6325 | IF ( td == iup_u .OR. td == iup_l ) THEN |
---|
[3337] | 6326 | vffrac(1:nzn) = (COS(2 * zbdry(0:nzn-1)) - COS(2 * zbdry(1:nzn))) / 2._wp / REAL(naz, wp) |
---|
| 6327 | ! |
---|
| 6328 | !-- For horizontal target, vf fractions are constant per azimuth |
---|
| 6329 | DO iaz = 1, naz-1 |
---|
| 6330 | vffrac(iaz*nzn+1:(iaz+1)*nzn) = vffrac(1:nzn) |
---|
| 6331 | ENDDO |
---|
| 6332 | !-- sum of whole vffrac equals 1, verified |
---|
[2920] | 6333 | ENDIF |
---|
[3337] | 6334 | ! |
---|
| 6335 | !-- Calculate sky-view factor and direct solar visibility using 2D raytracing |
---|
[2920] | 6336 | DO iaz = 1, naz |
---|
| 6337 | azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs |
---|
| 6338 | IF ( td /= iup_u .AND. td /= iup_l ) THEN |
---|
| 6339 | az2 = REAL(iaz, wp) * azs - pi/2._wp |
---|
| 6340 | az1 = az2 - azs |
---|
| 6341 | !TODO precalculate after 1st line |
---|
[3337] | 6342 | vffrac(itarg0:itarg1) = (SIN(az2) - SIN(az1)) & |
---|
[2920] | 6343 | * (zbdry(1:nzn) - zbdry(0:nzn-1) & |
---|
| 6344 | + SIN(zbdry(0:nzn-1))*COS(zbdry(0:nzn-1)) & |
---|
| 6345 | - SIN(zbdry(1:nzn))*COS(zbdry(1:nzn))) & |
---|
| 6346 | / (2._wp * pi) |
---|
[3337] | 6347 | !-- sum of whole vffrac equals 1, verified |
---|
[2920] | 6348 | ENDIF |
---|
[3449] | 6349 | yxdir(:) = (/ COS(azmid) / dy, SIN(azmid) / dx /) |
---|
| 6350 | yxlen = SQRT(SUM(yxdir(:)**2)) |
---|
| 6351 | zdirs(:) = COS(zcent(:)) / (dz(1) * yxlen * SIN(zcent(:))) |
---|
| 6352 | yxdir(:) = yxdir(:) / yxlen |
---|
| 6353 | |
---|
[3337] | 6354 | CALL raytrace_2d(ta, yxdir, nzn, zdirs, & |
---|
| 6355 | surfstart(myid) + isurflt, facearea(td), & |
---|
| 6356 | vffrac(itarg0:itarg1), .TRUE., .TRUE., & |
---|
| 6357 | .FALSE., lowest_free_ray, & |
---|
| 6358 | ztransp(itarg0:itarg1), & |
---|
[3449] | 6359 | itarget(itarg0:itarg1)) |
---|
| 6360 | |
---|
[3337] | 6361 | skyvf(isurflt) = skyvf(isurflt) + & |
---|
| 6362 | SUM(vffrac(itarg0:itarg0+lowest_free_ray-1)) |
---|
| 6363 | skyvft(isurflt) = skyvft(isurflt) + & |
---|
| 6364 | SUM(ztransp(itarg0:itarg0+lowest_free_ray-1) & |
---|
| 6365 | * vffrac(itarg0:itarg0+lowest_free_ray-1)) |
---|
[2920] | 6366 | |
---|
[3337] | 6367 | !-- Save direct solar transparency |
---|
[2920] | 6368 | j = MODULO(NINT(azmid/ & |
---|
| 6369 | (2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), & |
---|
| 6370 | raytrace_discrete_azims) |
---|
| 6371 | |
---|
| 6372 | DO k = 1, raytrace_discrete_elevs/2 |
---|
| 6373 | i = dsidir_rev(k-1, j) |
---|
[3337] | 6374 | IF ( i /= -1 .AND. k <= lowest_free_ray ) & |
---|
| 6375 | dsitrans(isurflt, i) = ztransp(itarg0+k-1) |
---|
[2920] | 6376 | ENDDO |
---|
[3337] | 6377 | |
---|
[3378] | 6378 | ! |
---|
| 6379 | !-- Advance itarget indices |
---|
[3337] | 6380 | itarg0 = itarg1 + 1 |
---|
| 6381 | itarg1 = itarg1 + nzn |
---|
[2920] | 6382 | ENDDO |
---|
| 6383 | |
---|
[3337] | 6384 | IF ( rad_angular_discretization ) THEN |
---|
| 6385 | !-- sort itarget by face id |
---|
| 6386 | CALL quicksort_itarget(itarget,vffrac,ztransp,1,nzn*naz) |
---|
[2977] | 6387 | ! |
---|
[3337] | 6388 | !-- find the first valid position |
---|
| 6389 | itarg0 = 1 |
---|
| 6390 | DO WHILE ( itarg0 <= nzn*naz ) |
---|
| 6391 | IF ( itarget(itarg0) /= -1 ) EXIT |
---|
| 6392 | itarg0 = itarg0 + 1 |
---|
| 6393 | ENDDO |
---|
| 6394 | |
---|
| 6395 | DO i = itarg0, nzn*naz |
---|
| 6396 | ! |
---|
| 6397 | !-- For duplicate values, only sum up vf fraction value |
---|
| 6398 | IF ( i < nzn*naz ) THEN |
---|
| 6399 | IF ( itarget(i+1) == itarget(i) ) THEN |
---|
| 6400 | vffrac(i+1) = vffrac(i+1) + vffrac(i) |
---|
| 6401 | CYCLE |
---|
| 6402 | ENDIF |
---|
| 6403 | ENDIF |
---|
| 6404 | ! |
---|
| 6405 | !-- write to the svf array |
---|
| 6406 | nsvfl = nsvfl + 1 |
---|
| 6407 | !-- check dimmension of asvf array and enlarge it if needed |
---|
| 6408 | IF ( nsvfla < nsvfl ) THEN |
---|
| 6409 | k = CEILING(REAL(nsvfla, kind=wp) * grow_factor) |
---|
| 6410 | IF ( msvf == 0 ) THEN |
---|
| 6411 | msvf = 1 |
---|
| 6412 | ALLOCATE( asvf1(k) ) |
---|
| 6413 | asvf => asvf1 |
---|
| 6414 | asvf1(1:nsvfla) = asvf2 |
---|
| 6415 | DEALLOCATE( asvf2 ) |
---|
| 6416 | ELSE |
---|
| 6417 | msvf = 0 |
---|
| 6418 | ALLOCATE( asvf2(k) ) |
---|
| 6419 | asvf => asvf2 |
---|
| 6420 | asvf2(1:nsvfla) = asvf1 |
---|
| 6421 | DEALLOCATE( asvf1 ) |
---|
| 6422 | ENDIF |
---|
| 6423 | |
---|
| 6424 | WRITE (msg,'(A,3I12)') 'Grow asvf:',nsvfl,nsvfla,k |
---|
| 6425 | CALL radiation_write_debug_log( msg ) |
---|
| 6426 | |
---|
| 6427 | nsvfla = k |
---|
| 6428 | ENDIF |
---|
| 6429 | !-- write svf values into the array |
---|
| 6430 | asvf(nsvfl)%isurflt = isurflt |
---|
| 6431 | asvf(nsvfl)%isurfs = itarget(i) |
---|
| 6432 | asvf(nsvfl)%rsvf = vffrac(i) |
---|
| 6433 | asvf(nsvfl)%rtransp = ztransp(i) |
---|
| 6434 | END DO |
---|
| 6435 | |
---|
| 6436 | ENDIF ! rad_angular_discretization |
---|
| 6437 | |
---|
[3449] | 6438 | DEALLOCATE ( zdirs, zcent, zbdry, vffrac, ztransp, itarget ) !FIXME itarget shall be allocated only |
---|
[3337] | 6439 | !in case of rad_angular_discretization |
---|
| 6440 | ! |
---|
[2977] | 6441 | !-- Following calculations only required for surface_reflections |
---|
[3337] | 6442 | IF ( surface_reflections .AND. .NOT. rad_angular_discretization ) THEN |
---|
[2920] | 6443 | |
---|
[2977] | 6444 | DO isurfs = 1, nsurf |
---|
| 6445 | IF ( .NOT. surface_facing(surfl(ix, isurflt), surfl(iy, isurflt), & |
---|
| 6446 | surfl(iz, isurflt), surfl(id, isurflt), & |
---|
| 6447 | surf(ix, isurfs), surf(iy, isurfs), & |
---|
| 6448 | surf(iz, isurfs), surf(id, isurfs)) ) THEN |
---|
| 6449 | CYCLE |
---|
| 6450 | ENDIF |
---|
[2696] | 6451 | |
---|
[2977] | 6452 | sd = surf(id, isurfs) |
---|
| 6453 | sa = (/ REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd), & |
---|
| 6454 | REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd), & |
---|
| 6455 | REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) /) |
---|
[2696] | 6456 | |
---|
[2977] | 6457 | !-- unit vector source -> target |
---|
[3065] | 6458 | uv = (/ (ta(1)-sa(1))*dz(1), (ta(2)-sa(2))*dy, (ta(3)-sa(3))*dx /) |
---|
[2977] | 6459 | sqdist = SUM(uv(:)**2) |
---|
| 6460 | uv = uv / SQRT(sqdist) |
---|
[2920] | 6461 | |
---|
[2977] | 6462 | !-- reject raytracing above max distance |
---|
| 6463 | IF ( SQRT(sqdist) > max_raytracing_dist ) THEN |
---|
| 6464 | ray_skip_maxdist = ray_skip_maxdist + 1 |
---|
| 6465 | CYCLE |
---|
| 6466 | ENDIF |
---|
| 6467 | |
---|
[3449] | 6468 | difvf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & ! cosine of source normal and direction |
---|
| 6469 | * dot_product((/ kdir(td), jdir(td), idir(td) /), -uv) & ! cosine of target normal and reverse direction |
---|
| 6470 | / (pi * sqdist) ! square of distance between centers |
---|
| 6471 | ! |
---|
[2977] | 6472 | !-- irradiance factor (our unshaded shape view factor) = view factor per differential target area * source area |
---|
[3449] | 6473 | rirrf = difvf * facearea(sd) |
---|
[2696] | 6474 | |
---|
[2977] | 6475 | !-- reject raytracing for potentially too small view factor values |
---|
| 6476 | IF ( rirrf < min_irrf_value ) THEN |
---|
| 6477 | ray_skip_minval = ray_skip_minval + 1 |
---|
| 6478 | CYCLE |
---|
| 6479 | ENDIF |
---|
[2696] | 6480 | |
---|
[2977] | 6481 | !-- raytrace + process plant canopy sinks within |
---|
[3449] | 6482 | CALL raytrace(sa, ta, isurfs, difvf, facearea(td), .TRUE., & |
---|
[3337] | 6483 | visible, transparency) |
---|
[2920] | 6484 | |
---|
[2977] | 6485 | IF ( .NOT. visible ) CYCLE |
---|
| 6486 | ! rsvf = rirrf * transparency |
---|
[2696] | 6487 | |
---|
[2977] | 6488 | !-- write to the svf array |
---|
| 6489 | nsvfl = nsvfl + 1 |
---|
| 6490 | !-- check dimmension of asvf array and enlarge it if needed |
---|
| 6491 | IF ( nsvfla < nsvfl ) THEN |
---|
[3337] | 6492 | k = CEILING(REAL(nsvfla, kind=wp) * grow_factor) |
---|
[2977] | 6493 | IF ( msvf == 0 ) THEN |
---|
[2696] | 6494 | msvf = 1 |
---|
| 6495 | ALLOCATE( asvf1(k) ) |
---|
| 6496 | asvf => asvf1 |
---|
| 6497 | asvf1(1:nsvfla) = asvf2 |
---|
| 6498 | DEALLOCATE( asvf2 ) |
---|
[2977] | 6499 | ELSE |
---|
[2696] | 6500 | msvf = 0 |
---|
| 6501 | ALLOCATE( asvf2(k) ) |
---|
| 6502 | asvf => asvf2 |
---|
| 6503 | asvf2(1:nsvfla) = asvf1 |
---|
| 6504 | DEALLOCATE( asvf1 ) |
---|
[2977] | 6505 | ENDIF |
---|
[2920] | 6506 | |
---|
[3337] | 6507 | WRITE(msg,'(A,3I12)') 'Grow asvf:',nsvfl,nsvfla,k |
---|
| 6508 | CALL radiation_write_debug_log( msg ) |
---|
[2977] | 6509 | |
---|
| 6510 | nsvfla = k |
---|
| 6511 | ENDIF |
---|
| 6512 | !-- write svf values into the array |
---|
| 6513 | asvf(nsvfl)%isurflt = isurflt |
---|
| 6514 | asvf(nsvfl)%isurfs = isurfs |
---|
| 6515 | asvf(nsvfl)%rsvf = rirrf !we postopne multiplication by transparency |
---|
| 6516 | asvf(nsvfl)%rtransp = transparency !a.k.a. Direct Irradiance Factor |
---|
| 6517 | ENDDO |
---|
| 6518 | ENDIF |
---|
[2696] | 6519 | ENDDO |
---|
| 6520 | |
---|
[3337] | 6521 | !-- |
---|
| 6522 | !-- Raytrace to canopy boxes to fill dsitransc TODO optimize |
---|
| 6523 | dsitransc(:,:) = 0._wp |
---|
[2920] | 6524 | az0 = 0._wp |
---|
| 6525 | naz = raytrace_discrete_azims |
---|
| 6526 | azs = 2._wp * pi / REAL(naz, wp) |
---|
| 6527 | zn0 = 0._wp |
---|
| 6528 | nzn = raytrace_discrete_elevs / 2 |
---|
| 6529 | zns = pi / 2._wp / REAL(nzn, wp) |
---|
[3449] | 6530 | ALLOCATE ( zdirs(1:nzn), zcent(1:nzn), vffrac(1:nzn), ztransp(1:nzn), & |
---|
[3337] | 6531 | itarget(1:nzn) ) |
---|
[3449] | 6532 | zcent(:) = (/( zn0+(REAL(izn,wp)-.5_wp)*zns, izn=1, nzn )/) |
---|
[2920] | 6533 | vffrac(:) = 0._wp |
---|
| 6534 | |
---|
[3337] | 6535 | DO ipcgb = 1, npcbl |
---|
[2920] | 6536 | ta = (/ REAL(pcbl(iz, ipcgb), wp), & |
---|
| 6537 | REAL(pcbl(iy, ipcgb), wp), & |
---|
| 6538 | REAL(pcbl(ix, ipcgb), wp) /) |
---|
[3337] | 6539 | !-- Calculate direct solar visibility using 2D raytracing |
---|
| 6540 | DO iaz = 1, naz |
---|
[2920] | 6541 | azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs |
---|
[3449] | 6542 | yxdir(:) = (/ COS(azmid) / dy, SIN(azmid) / dx /) |
---|
| 6543 | yxlen = SQRT(SUM(yxdir(:)**2)) |
---|
| 6544 | zdirs(:) = COS(zcent(:)) / (dz(1) * yxlen * SIN(zcent(:))) |
---|
| 6545 | yxdir(:) = yxdir(:) / yxlen |
---|
[3337] | 6546 | CALL raytrace_2d(ta, yxdir, nzn, zdirs, & |
---|
| 6547 | -999, -999._wp, vffrac, .FALSE., .FALSE., .TRUE., & |
---|
[3449] | 6548 | lowest_free_ray, ztransp, itarget) |
---|
[2920] | 6549 | |
---|
[3337] | 6550 | !-- Save direct solar transparency |
---|
[2920] | 6551 | j = MODULO(NINT(azmid/ & |
---|
| 6552 | (2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), & |
---|
| 6553 | raytrace_discrete_azims) |
---|
[3337] | 6554 | DO k = 1, raytrace_discrete_elevs/2 |
---|
[2920] | 6555 | i = dsidir_rev(k-1, j) |
---|
[3337] | 6556 | IF ( i /= -1 .AND. k <= lowest_free_ray ) & |
---|
| 6557 | dsitransc(ipcgb, i) = ztransp(k) |
---|
[2920] | 6558 | ENDDO |
---|
| 6559 | ENDDO |
---|
| 6560 | ENDDO |
---|
[3449] | 6561 | DEALLOCATE ( zdirs, zcent, vffrac, ztransp, itarget ) |
---|
[3337] | 6562 | !-- |
---|
| 6563 | !-- Raytrace to MRT boxes |
---|
| 6564 | IF ( nmrtbl > 0 ) THEN |
---|
| 6565 | mrtdsit(:,:) = 0._wp |
---|
| 6566 | mrtsky(:) = 0._wp |
---|
| 6567 | mrtskyt(:) = 0._wp |
---|
| 6568 | az0 = 0._wp |
---|
| 6569 | naz = raytrace_discrete_azims |
---|
| 6570 | azs = 2._wp * pi / REAL(naz, wp) |
---|
| 6571 | zn0 = 0._wp |
---|
| 6572 | nzn = raytrace_discrete_elevs |
---|
| 6573 | zns = pi / REAL(nzn, wp) |
---|
[3449] | 6574 | ALLOCATE ( zdirs(1:nzn), zcent(1:nzn), zbdry(0:nzn), vffrac(1:nzn*naz), vffrac0(1:nzn), & |
---|
[3337] | 6575 | ztransp(1:nzn*naz), itarget(1:nzn*naz) ) !FIXME allocate itarget only |
---|
| 6576 | !in case of rad_angular_discretization |
---|
[2920] | 6577 | |
---|
[3449] | 6578 | zcent(:) = (/( zn0+(REAL(izn,wp)-.5_wp)*zns, izn=1, nzn )/) |
---|
[3337] | 6579 | zbdry(:) = (/( zn0+REAL(izn,wp)*zns, izn=0, nzn )/) |
---|
| 6580 | vffrac0(:) = (COS(zbdry(0:nzn-1)) - COS(zbdry(1:nzn))) / 2._wp / REAL(naz, wp) |
---|
[3464] | 6581 | ! |
---|
| 6582 | !--Modify direction weights to simulate human body (lower weight for top-down) |
---|
| 6583 | IF ( mrt_geom_human ) THEN |
---|
| 6584 | vffrac0(:) = vffrac0(:) * MAX(0._wp, SIN(zcent(:))*0.88_wp + COS(zcent(:))*0.12_wp) |
---|
| 6585 | vffrac0(:) = vffrac0(:) / (SUM(vffrac0) * REAL(naz, wp)) |
---|
| 6586 | ENDIF |
---|
[2920] | 6587 | |
---|
[3337] | 6588 | DO imrt = 1, nmrtbl |
---|
| 6589 | ta = (/ REAL(mrtbl(iz, imrt), wp), & |
---|
| 6590 | REAL(mrtbl(iy, imrt), wp), & |
---|
| 6591 | REAL(mrtbl(ix, imrt), wp) /) |
---|
| 6592 | ! |
---|
| 6593 | !-- vf fractions are constant per azimuth |
---|
| 6594 | DO iaz = 0, naz-1 |
---|
| 6595 | vffrac(iaz*nzn+1:(iaz+1)*nzn) = vffrac0(:) |
---|
| 6596 | ENDDO |
---|
| 6597 | !-- sum of whole vffrac equals 1, verified |
---|
| 6598 | itarg0 = 1 |
---|
| 6599 | itarg1 = nzn |
---|
| 6600 | ! |
---|
| 6601 | !-- Calculate sky-view factor and direct solar visibility using 2D raytracing |
---|
| 6602 | DO iaz = 1, naz |
---|
| 6603 | azmid = az0 + (REAL(iaz, wp) - .5_wp) * azs |
---|
[3449] | 6604 | yxdir(:) = (/ COS(azmid) / dy, SIN(azmid) / dx /) |
---|
| 6605 | yxlen = SQRT(SUM(yxdir(:)**2)) |
---|
| 6606 | zdirs(:) = COS(zcent(:)) / (dz(1) * yxlen * SIN(zcent(:))) |
---|
| 6607 | yxdir(:) = yxdir(:) / yxlen |
---|
| 6608 | |
---|
| 6609 | CALL raytrace_2d(ta, yxdir, nzn, zdirs, & |
---|
[3337] | 6610 | -999, -999._wp, vffrac(itarg0:itarg1), .TRUE., & |
---|
| 6611 | .FALSE., .TRUE., lowest_free_ray, & |
---|
| 6612 | ztransp(itarg0:itarg1), & |
---|
[3449] | 6613 | itarget(itarg0:itarg1)) |
---|
[3337] | 6614 | |
---|
| 6615 | !-- Sky view factors for MRT |
---|
| 6616 | mrtsky(imrt) = mrtsky(imrt) + & |
---|
| 6617 | SUM(vffrac(itarg0:itarg0+lowest_free_ray-1)) |
---|
| 6618 | mrtskyt(imrt) = mrtskyt(imrt) + & |
---|
| 6619 | SUM(ztransp(itarg0:itarg0+lowest_free_ray-1) & |
---|
| 6620 | * vffrac(itarg0:itarg0+lowest_free_ray-1)) |
---|
| 6621 | !-- Direct solar transparency for MRT |
---|
| 6622 | j = MODULO(NINT(azmid/ & |
---|
| 6623 | (2._wp*pi)*raytrace_discrete_azims-.5_wp, iwp), & |
---|
| 6624 | raytrace_discrete_azims) |
---|
| 6625 | DO k = 1, raytrace_discrete_elevs/2 |
---|
| 6626 | i = dsidir_rev(k-1, j) |
---|
| 6627 | IF ( i /= -1 .AND. k <= lowest_free_ray ) & |
---|
| 6628 | mrtdsit(imrt, i) = ztransp(itarg0+k-1) |
---|
| 6629 | ENDDO |
---|
| 6630 | ! |
---|
| 6631 | !-- Advance itarget indices |
---|
| 6632 | itarg0 = itarg1 + 1 |
---|
| 6633 | itarg1 = itarg1 + nzn |
---|
| 6634 | ENDDO |
---|
| 6635 | |
---|
| 6636 | !-- sort itarget by face id |
---|
| 6637 | CALL quicksort_itarget(itarget,vffrac,ztransp,1,nzn*naz) |
---|
| 6638 | ! |
---|
| 6639 | !-- find the first valid position |
---|
| 6640 | itarg0 = 1 |
---|
| 6641 | DO WHILE ( itarg0 <= nzn*naz ) |
---|
| 6642 | IF ( itarget(itarg0) /= -1 ) EXIT |
---|
| 6643 | itarg0 = itarg0 + 1 |
---|
| 6644 | ENDDO |
---|
| 6645 | |
---|
| 6646 | DO i = itarg0, nzn*naz |
---|
| 6647 | ! |
---|
| 6648 | !-- For duplicate values, only sum up vf fraction value |
---|
| 6649 | IF ( i < nzn*naz ) THEN |
---|
| 6650 | IF ( itarget(i+1) == itarget(i) ) THEN |
---|
| 6651 | vffrac(i+1) = vffrac(i+1) + vffrac(i) |
---|
| 6652 | CYCLE |
---|
| 6653 | ENDIF |
---|
| 6654 | ENDIF |
---|
| 6655 | ! |
---|
| 6656 | !-- write to the mrtf array |
---|
| 6657 | nmrtf = nmrtf + 1 |
---|
| 6658 | !-- check dimmension of mrtf array and enlarge it if needed |
---|
| 6659 | IF ( nmrtfa < nmrtf ) THEN |
---|
| 6660 | k = CEILING(REAL(nmrtfa, kind=wp) * grow_factor) |
---|
| 6661 | IF ( mmrtf == 0 ) THEN |
---|
| 6662 | mmrtf = 1 |
---|
| 6663 | ALLOCATE( amrtf1(k) ) |
---|
| 6664 | amrtf => amrtf1 |
---|
| 6665 | amrtf1(1:nmrtfa) = amrtf2 |
---|
| 6666 | DEALLOCATE( amrtf2 ) |
---|
| 6667 | ELSE |
---|
| 6668 | mmrtf = 0 |
---|
| 6669 | ALLOCATE( amrtf2(k) ) |
---|
| 6670 | amrtf => amrtf2 |
---|
| 6671 | amrtf2(1:nmrtfa) = amrtf1 |
---|
| 6672 | DEALLOCATE( amrtf1 ) |
---|
| 6673 | ENDIF |
---|
| 6674 | |
---|
| 6675 | WRITE (msg,'(A,3I12)') 'Grow amrtf:', nmrtf, nmrtfa, k |
---|
| 6676 | CALL radiation_write_debug_log( msg ) |
---|
| 6677 | |
---|
| 6678 | nmrtfa = k |
---|
| 6679 | ENDIF |
---|
| 6680 | !-- write mrtf values into the array |
---|
| 6681 | amrtf(nmrtf)%isurflt = imrt |
---|
| 6682 | amrtf(nmrtf)%isurfs = itarget(i) |
---|
| 6683 | amrtf(nmrtf)%rsvf = vffrac(i) |
---|
| 6684 | amrtf(nmrtf)%rtransp = ztransp(i) |
---|
| 6685 | ENDDO ! itarg |
---|
| 6686 | |
---|
| 6687 | ENDDO ! imrt |
---|
[3449] | 6688 | DEALLOCATE ( zdirs, zcent, zbdry, vffrac, vffrac0, ztransp, itarget ) |
---|
[3337] | 6689 | ! |
---|
| 6690 | !-- Move MRT factors to final arrays |
---|
| 6691 | ALLOCATE ( mrtf(nmrtf), mrtft(nmrtf), mrtfsurf(2,nmrtf) ) |
---|
| 6692 | DO imrtf = 1, nmrtf |
---|
| 6693 | mrtf(imrtf) = amrtf(imrtf)%rsvf |
---|
| 6694 | mrtft(imrtf) = amrtf(imrtf)%rsvf * amrtf(imrtf)%rtransp |
---|
| 6695 | mrtfsurf(:,imrtf) = (/amrtf(imrtf)%isurflt, amrtf(imrtf)%isurfs /) |
---|
| 6696 | ENDDO |
---|
| 6697 | IF ( ALLOCATED(amrtf1) ) DEALLOCATE( amrtf1 ) |
---|
| 6698 | IF ( ALLOCATED(amrtf2) ) DEALLOCATE( amrtf2 ) |
---|
| 6699 | ENDIF ! nmrtbl > 0 |
---|
| 6700 | |
---|
| 6701 | IF ( rad_angular_discretization ) THEN |
---|
| 6702 | #if defined( __parallel ) |
---|
| 6703 | !-- finalize MPI_RMA communication established to get global index of the surface from grid indices |
---|
| 6704 | !-- flush all MPI window pending requests |
---|
| 6705 | CALL MPI_Win_flush_all(win_gridsurf, ierr) |
---|
| 6706 | IF ( ierr /= 0 ) THEN |
---|
| 6707 | WRITE(9,*) 'Error MPI_Win_flush_all1:', ierr, win_gridsurf |
---|
| 6708 | FLUSH(9) |
---|
| 6709 | ENDIF |
---|
| 6710 | !-- unlock MPI window |
---|
| 6711 | CALL MPI_Win_unlock_all(win_gridsurf, ierr) |
---|
| 6712 | IF ( ierr /= 0 ) THEN |
---|
| 6713 | WRITE(9,*) 'Error MPI_Win_unlock_all1:', ierr, win_gridsurf |
---|
| 6714 | FLUSH(9) |
---|
| 6715 | ENDIF |
---|
| 6716 | !-- free MPI window |
---|
| 6717 | CALL MPI_Win_free(win_gridsurf, ierr) |
---|
| 6718 | IF ( ierr /= 0 ) THEN |
---|
| 6719 | WRITE(9,*) 'Error MPI_Win_free1:', ierr, win_gridsurf |
---|
| 6720 | FLUSH(9) |
---|
| 6721 | ENDIF |
---|
| 6722 | #else |
---|
| 6723 | DEALLOCATE ( gridsurf ) |
---|
| 6724 | #endif |
---|
| 6725 | ENDIF |
---|
| 6726 | |
---|
| 6727 | CALL radiation_write_debug_log( 'End of calculation SVF' ) |
---|
| 6728 | WRITE(msg, *) 'Raytracing skipped for maximum distance of ', & |
---|
| 6729 | max_raytracing_dist, ' m on ', ray_skip_maxdist, ' pairs.' |
---|
| 6730 | CALL radiation_write_debug_log( msg ) |
---|
| 6731 | WRITE(msg, *) 'Raytracing skipped for minimum potential value of ', & |
---|
| 6732 | min_irrf_value , ' on ', ray_skip_minval, ' pairs.' |
---|
| 6733 | CALL radiation_write_debug_log( msg ) |
---|
| 6734 | |
---|
[2696] | 6735 | CALL location_message( ' waiting for completion of SVF and CSF calculation in all processes', .TRUE. ) |
---|
| 6736 | !-- deallocate temporary global arrays |
---|
| 6737 | DEALLOCATE(nzterr) |
---|
| 6738 | |
---|
| 6739 | IF ( plant_canopy ) THEN |
---|
| 6740 | !-- finalize mpi_rma communication and deallocate temporary arrays |
---|
| 6741 | #if defined( __parallel ) |
---|
[3337] | 6742 | IF ( raytrace_mpi_rma ) THEN |
---|
[2696] | 6743 | CALL MPI_Win_flush_all(win_lad, ierr) |
---|
[3337] | 6744 | IF ( ierr /= 0 ) THEN |
---|
| 6745 | WRITE(9,*) 'Error MPI_Win_flush_all2:', ierr, win_lad |
---|
| 6746 | FLUSH(9) |
---|
| 6747 | ENDIF |
---|
[2696] | 6748 | !-- unlock MPI window |
---|
| 6749 | CALL MPI_Win_unlock_all(win_lad, ierr) |
---|
[3337] | 6750 | IF ( ierr /= 0 ) THEN |
---|
| 6751 | WRITE(9,*) 'Error MPI_Win_unlock_all2:', ierr, win_lad |
---|
| 6752 | FLUSH(9) |
---|
| 6753 | ENDIF |
---|
[2696] | 6754 | !-- free MPI window |
---|
| 6755 | CALL MPI_Win_free(win_lad, ierr) |
---|
[3337] | 6756 | IF ( ierr /= 0 ) THEN |
---|
| 6757 | WRITE(9,*) 'Error MPI_Win_free2:', ierr, win_lad |
---|
| 6758 | FLUSH(9) |
---|
| 6759 | ENDIF |
---|
[2696] | 6760 | !-- deallocate temporary arrays storing values for csf calculation during raytracing |
---|
| 6761 | DEALLOCATE( lad_s_ray ) |
---|
[3337] | 6762 | !-- sub_lad is the pointer to lad_s_rma in case of raytrace_mpi_rma |
---|
[2696] | 6763 | !-- and must not be deallocated here |
---|
| 6764 | ELSE |
---|
[2920] | 6765 | DEALLOCATE(sub_lad) |
---|
| 6766 | DEALLOCATE(sub_lad_g) |
---|
[2696] | 6767 | ENDIF |
---|
| 6768 | #else |
---|
[2920] | 6769 | DEALLOCATE(sub_lad) |
---|
[2696] | 6770 | #endif |
---|
| 6771 | DEALLOCATE( boxes ) |
---|
| 6772 | DEALLOCATE( crlens ) |
---|
| 6773 | DEALLOCATE( plantt ) |
---|
[2920] | 6774 | DEALLOCATE( rt2_track, rt2_track_lad, rt2_track_dist, rt2_dist ) |
---|
[2696] | 6775 | ENDIF |
---|
| 6776 | |
---|
| 6777 | CALL location_message( ' calculation of the complete SVF array', .TRUE. ) |
---|
| 6778 | |
---|
[3337] | 6779 | IF ( rad_angular_discretization ) THEN |
---|
| 6780 | CALL radiation_write_debug_log( 'Load svf from the structure array to plain arrays' ) |
---|
| 6781 | ALLOCATE( svf(ndsvf,nsvfl) ) |
---|
| 6782 | ALLOCATE( svfsurf(idsvf,nsvfl) ) |
---|
[2696] | 6783 | |
---|
[3337] | 6784 | DO isvf = 1, nsvfl |
---|
| 6785 | svf(:, isvf) = (/ asvf(isvf)%rsvf, asvf(isvf)%rtransp /) |
---|
| 6786 | svfsurf(:, isvf) = (/ asvf(isvf)%isurflt, asvf(isvf)%isurfs /) |
---|
| 6787 | ENDDO |
---|
| 6788 | ELSE |
---|
| 6789 | CALL radiation_write_debug_log( 'Start SVF sort' ) |
---|
| 6790 | !-- sort svf ( a version of quicksort ) |
---|
| 6791 | CALL quicksort_svf(asvf,1,nsvfl) |
---|
[2920] | 6792 | |
---|
[3337] | 6793 | !< load svf from the structure array to plain arrays |
---|
| 6794 | CALL radiation_write_debug_log( 'Load svf from the structure array to plain arrays' ) |
---|
| 6795 | ALLOCATE( svf(ndsvf,nsvfl) ) |
---|
| 6796 | ALLOCATE( svfsurf(idsvf,nsvfl) ) |
---|
| 6797 | svfnorm_counts(:) = 0._wp |
---|
| 6798 | isurflt_prev = -1 |
---|
| 6799 | ksvf = 1 |
---|
| 6800 | svfsum = 0._wp |
---|
| 6801 | DO isvf = 1, nsvfl |
---|
| 6802 | !-- normalize svf per target face |
---|
| 6803 | IF ( asvf(ksvf)%isurflt /= isurflt_prev ) THEN |
---|
| 6804 | IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN |
---|
| 6805 | !< update histogram of logged svf normalization values |
---|
| 6806 | i = searchsorted(svfnorm_report_thresh, svfsum / (1._wp-skyvf(isurflt_prev))) |
---|
| 6807 | svfnorm_counts(i) = svfnorm_counts(i) + 1 |
---|
[2696] | 6808 | |
---|
[3337] | 6809 | svf(1, isvf_surflt:isvf-1) = svf(1, isvf_surflt:isvf-1) / svfsum * (1._wp-skyvf(isurflt_prev)) |
---|
| 6810 | ENDIF |
---|
| 6811 | isurflt_prev = asvf(ksvf)%isurflt |
---|
| 6812 | isvf_surflt = isvf |
---|
| 6813 | svfsum = asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp |
---|
| 6814 | ELSE |
---|
| 6815 | svfsum = svfsum + asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp |
---|
| 6816 | ENDIF |
---|
[2696] | 6817 | |
---|
[3337] | 6818 | svf(:, isvf) = (/ asvf(ksvf)%rsvf, asvf(ksvf)%rtransp /) |
---|
| 6819 | svfsurf(:, isvf) = (/ asvf(ksvf)%isurflt, asvf(ksvf)%isurfs /) |
---|
[2696] | 6820 | |
---|
[3337] | 6821 | !-- next element |
---|
| 6822 | ksvf = ksvf + 1 |
---|
| 6823 | ENDDO |
---|
[2920] | 6824 | |
---|
[3337] | 6825 | IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN |
---|
| 6826 | i = searchsorted(svfnorm_report_thresh, svfsum / (1._wp-skyvf(isurflt_prev))) |
---|
| 6827 | svfnorm_counts(i) = svfnorm_counts(i) + 1 |
---|
[2696] | 6828 | |
---|
[3337] | 6829 | svf(1, isvf_surflt:nsvfl) = svf(1, isvf_surflt:nsvfl) / svfsum * (1._wp-skyvf(isurflt_prev)) |
---|
| 6830 | ENDIF |
---|
| 6831 | WRITE(9, *) 'SVF normalization histogram:', svfnorm_counts, & |
---|
| 6832 | 'on thresholds:', svfnorm_report_thresh(1:svfnorm_report_num), '(val < thresh <= val)' |
---|
| 6833 | !TODO we should be able to deallocate skyvf, from now on we only need skyvft |
---|
| 6834 | ENDIF ! rad_angular_discretization |
---|
| 6835 | |
---|
[2696] | 6836 | !-- deallocate temporary asvf array |
---|
| 6837 | !-- DEALLOCATE(asvf) - ifort has a problem with deallocation of allocatable target |
---|
| 6838 | !-- via pointing pointer - we need to test original targets |
---|
| 6839 | IF ( ALLOCATED(asvf1) ) THEN |
---|
| 6840 | DEALLOCATE(asvf1) |
---|
| 6841 | ENDIF |
---|
| 6842 | IF ( ALLOCATED(asvf2) ) THEN |
---|
| 6843 | DEALLOCATE(asvf2) |
---|
| 6844 | ENDIF |
---|
| 6845 | |
---|
| 6846 | npcsfl = 0 |
---|
| 6847 | IF ( plant_canopy ) THEN |
---|
| 6848 | |
---|
| 6849 | CALL location_message( ' calculation of the complete CSF array', .TRUE. ) |
---|
[3337] | 6850 | CALL radiation_write_debug_log( 'Calculation of the complete CSF array' ) |
---|
[2696] | 6851 | !-- sort and merge csf for the last time, keeping the array size to minimum |
---|
| 6852 | CALL merge_and_grow_csf(-1) |
---|
| 6853 | |
---|
| 6854 | !-- aggregate csb among processors |
---|
| 6855 | !-- allocate necessary arrays |
---|
[3337] | 6856 | udim = max(ncsfl,1) |
---|
| 6857 | ALLOCATE( csflt_l(ndcsf*udim) ) |
---|
| 6858 | csflt(1:ndcsf,1:udim) => csflt_l(1:ndcsf*udim) |
---|
| 6859 | ALLOCATE( kcsflt_l(kdcsf*udim) ) |
---|
| 6860 | kcsflt(1:kdcsf,1:udim) => kcsflt_l(1:kdcsf*udim) |
---|
[2696] | 6861 | ALLOCATE( icsflt(0:numprocs-1) ) |
---|
| 6862 | ALLOCATE( dcsflt(0:numprocs-1) ) |
---|
| 6863 | ALLOCATE( ipcsflt(0:numprocs-1) ) |
---|
| 6864 | ALLOCATE( dpcsflt(0:numprocs-1) ) |
---|
| 6865 | |
---|
| 6866 | !-- fill out arrays of csf values and |
---|
| 6867 | !-- arrays of number of elements and displacements |
---|
| 6868 | !-- for particular precessors |
---|
| 6869 | icsflt = 0 |
---|
| 6870 | dcsflt = 0 |
---|
| 6871 | ip = -1 |
---|
| 6872 | j = -1 |
---|
| 6873 | d = 0 |
---|
| 6874 | DO kcsf = 1, ncsfl |
---|
| 6875 | j = j+1 |
---|
| 6876 | IF ( acsf(kcsf)%ip /= ip ) THEN |
---|
| 6877 | !-- new block of the processor |
---|
| 6878 | !-- number of elements of previous block |
---|
| 6879 | IF ( ip>=0) icsflt(ip) = j |
---|
| 6880 | d = d+j |
---|
| 6881 | !-- blank blocks |
---|
| 6882 | DO jp = ip+1, acsf(kcsf)%ip-1 |
---|
| 6883 | !-- number of elements is zero, displacement is equal to previous |
---|
| 6884 | icsflt(jp) = 0 |
---|
| 6885 | dcsflt(jp) = d |
---|
| 6886 | ENDDO |
---|
| 6887 | !-- the actual block |
---|
| 6888 | ip = acsf(kcsf)%ip |
---|
| 6889 | dcsflt(ip) = d |
---|
| 6890 | j = 0 |
---|
| 6891 | ENDIF |
---|
[3449] | 6892 | csflt(1,kcsf) = acsf(kcsf)%rcvf |
---|
[2696] | 6893 | !-- fill out integer values of itz,ity,itx,isurfs |
---|
| 6894 | kcsflt(1,kcsf) = acsf(kcsf)%itz |
---|
| 6895 | kcsflt(2,kcsf) = acsf(kcsf)%ity |
---|
| 6896 | kcsflt(3,kcsf) = acsf(kcsf)%itx |
---|
| 6897 | kcsflt(4,kcsf) = acsf(kcsf)%isurfs |
---|
| 6898 | ENDDO |
---|
| 6899 | !-- last blank blocks at the end of array |
---|
| 6900 | j = j+1 |
---|
| 6901 | IF ( ip>=0 ) icsflt(ip) = j |
---|
| 6902 | d = d+j |
---|
| 6903 | DO jp = ip+1, numprocs-1 |
---|
| 6904 | !-- number of elements is zero, displacement is equal to previous |
---|
| 6905 | icsflt(jp) = 0 |
---|
| 6906 | dcsflt(jp) = d |
---|
| 6907 | ENDDO |
---|
| 6908 | |
---|
| 6909 | !-- deallocate temporary acsf array |
---|
| 6910 | !-- DEALLOCATE(acsf) - ifort has a problem with deallocation of allocatable target |
---|
| 6911 | !-- via pointing pointer - we need to test original targets |
---|
| 6912 | IF ( ALLOCATED(acsf1) ) THEN |
---|
| 6913 | DEALLOCATE(acsf1) |
---|
| 6914 | ENDIF |
---|
| 6915 | IF ( ALLOCATED(acsf2) ) THEN |
---|
| 6916 | DEALLOCATE(acsf2) |
---|
| 6917 | ENDIF |
---|
| 6918 | |
---|
| 6919 | #if defined( __parallel ) |
---|
| 6920 | !-- scatter and gather the number of elements to and from all processor |
---|
| 6921 | !-- and calculate displacements |
---|
[3337] | 6922 | CALL radiation_write_debug_log( 'Scatter and gather the number of elements to and from all processor' ) |
---|
[2696] | 6923 | CALL MPI_AlltoAll(icsflt,1,MPI_INTEGER,ipcsflt,1,MPI_INTEGER,comm2d, ierr) |
---|
[3337] | 6924 | IF ( ierr /= 0 ) THEN |
---|
| 6925 | WRITE(9,*) 'Error MPI_AlltoAll1:', ierr, SIZE(icsflt), SIZE(ipcsflt) |
---|
| 6926 | FLUSH(9) |
---|
| 6927 | ENDIF |
---|
| 6928 | |
---|
[2696] | 6929 | npcsfl = SUM(ipcsflt) |
---|
| 6930 | d = 0 |
---|
| 6931 | DO i = 0, numprocs-1 |
---|
| 6932 | dpcsflt(i) = d |
---|
| 6933 | d = d + ipcsflt(i) |
---|
| 6934 | ENDDO |
---|
[2920] | 6935 | |
---|
[2696] | 6936 | !-- exchange csf fields between processors |
---|
[3337] | 6937 | CALL radiation_write_debug_log( 'Exchange csf fields between processors' ) |
---|
| 6938 | udim = max(npcsfl,1) |
---|
| 6939 | ALLOCATE( pcsflt_l(ndcsf*udim) ) |
---|
| 6940 | pcsflt(1:ndcsf,1:udim) => pcsflt_l(1:ndcsf*udim) |
---|
| 6941 | ALLOCATE( kpcsflt_l(kdcsf*udim) ) |
---|
| 6942 | kpcsflt(1:kdcsf,1:udim) => kpcsflt_l(1:kdcsf*udim) |
---|
| 6943 | CALL MPI_AlltoAllv(csflt_l, ndcsf*icsflt, ndcsf*dcsflt, MPI_REAL, & |
---|
| 6944 | pcsflt_l, ndcsf*ipcsflt, ndcsf*dpcsflt, MPI_REAL, comm2d, ierr) |
---|
| 6945 | IF ( ierr /= 0 ) THEN |
---|
| 6946 | WRITE(9,*) 'Error MPI_AlltoAllv1:', ierr, SIZE(ipcsflt), ndcsf*icsflt, & |
---|
| 6947 | ndcsf*dcsflt, SIZE(pcsflt_l),ndcsf*ipcsflt, ndcsf*dpcsflt |
---|
| 6948 | FLUSH(9) |
---|
| 6949 | ENDIF |
---|
| 6950 | |
---|
| 6951 | CALL MPI_AlltoAllv(kcsflt_l, kdcsf*icsflt, kdcsf*dcsflt, MPI_INTEGER, & |
---|
| 6952 | kpcsflt_l, kdcsf*ipcsflt, kdcsf*dpcsflt, MPI_INTEGER, comm2d, ierr) |
---|
| 6953 | IF ( ierr /= 0 ) THEN |
---|
| 6954 | WRITE(9,*) 'Error MPI_AlltoAllv2:', ierr, SIZE(kcsflt_l),kdcsf*icsflt, & |
---|
| 6955 | kdcsf*dcsflt, SIZE(kpcsflt_l), kdcsf*ipcsflt, kdcsf*dpcsflt |
---|
| 6956 | FLUSH(9) |
---|
| 6957 | ENDIF |
---|
[2696] | 6958 | |
---|
| 6959 | #else |
---|
| 6960 | npcsfl = ncsfl |
---|
| 6961 | ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) |
---|
| 6962 | ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) |
---|
| 6963 | pcsflt = csflt |
---|
| 6964 | kpcsflt = kcsflt |
---|
| 6965 | #endif |
---|
| 6966 | |
---|
| 6967 | !-- deallocate temporary arrays |
---|
[3337] | 6968 | DEALLOCATE( csflt_l ) |
---|
| 6969 | DEALLOCATE( kcsflt_l ) |
---|
[2696] | 6970 | DEALLOCATE( icsflt ) |
---|
| 6971 | DEALLOCATE( dcsflt ) |
---|
| 6972 | DEALLOCATE( ipcsflt ) |
---|
| 6973 | DEALLOCATE( dpcsflt ) |
---|
| 6974 | |
---|
| 6975 | !-- sort csf ( a version of quicksort ) |
---|
[3337] | 6976 | CALL radiation_write_debug_log( 'Sort csf' ) |
---|
[2696] | 6977 | CALL quicksort_csf2(kpcsflt, pcsflt, 1, npcsfl) |
---|
| 6978 | |
---|
| 6979 | !-- aggregate canopy sink factor records with identical box & source |
---|
| 6980 | !-- againg across all values from all processors |
---|
[3337] | 6981 | CALL radiation_write_debug_log( 'Aggregate canopy sink factor records with identical box' ) |
---|
[2920] | 6982 | |
---|
[2696] | 6983 | IF ( npcsfl > 0 ) THEN |
---|
| 6984 | icsf = 1 !< reading index |
---|
| 6985 | kcsf = 1 !< writing index |
---|
| 6986 | DO while (icsf < npcsfl) |
---|
| 6987 | !-- here kpcsf(kcsf) already has values from kpcsf(icsf) |
---|
| 6988 | IF ( kpcsflt(3,icsf) == kpcsflt(3,icsf+1) .AND. & |
---|
| 6989 | kpcsflt(2,icsf) == kpcsflt(2,icsf+1) .AND. & |
---|
| 6990 | kpcsflt(1,icsf) == kpcsflt(1,icsf+1) .AND. & |
---|
| 6991 | kpcsflt(4,icsf) == kpcsflt(4,icsf+1) ) THEN |
---|
[3337] | 6992 | |
---|
[2696] | 6993 | pcsflt(1,kcsf) = pcsflt(1,kcsf) + pcsflt(1,icsf+1) |
---|
| 6994 | |
---|
| 6995 | !-- advance reading index, keep writing index |
---|
| 6996 | icsf = icsf + 1 |
---|
| 6997 | ELSE |
---|
| 6998 | !-- not identical, just advance and copy |
---|
| 6999 | icsf = icsf + 1 |
---|
| 7000 | kcsf = kcsf + 1 |
---|
| 7001 | kpcsflt(:,kcsf) = kpcsflt(:,icsf) |
---|
| 7002 | pcsflt(:,kcsf) = pcsflt(:,icsf) |
---|
| 7003 | ENDIF |
---|
| 7004 | ENDDO |
---|
| 7005 | !-- last written item is now also the last item in valid part of array |
---|
| 7006 | npcsfl = kcsf |
---|
| 7007 | ENDIF |
---|
| 7008 | |
---|
| 7009 | ncsfl = npcsfl |
---|
| 7010 | IF ( ncsfl > 0 ) THEN |
---|
| 7011 | ALLOCATE( csf(ndcsf,ncsfl) ) |
---|
| 7012 | ALLOCATE( csfsurf(idcsf,ncsfl) ) |
---|
| 7013 | DO icsf = 1, ncsfl |
---|
| 7014 | csf(:,icsf) = pcsflt(:,icsf) |
---|
| 7015 | csfsurf(1,icsf) = gridpcbl(kpcsflt(1,icsf),kpcsflt(2,icsf),kpcsflt(3,icsf)) |
---|
| 7016 | csfsurf(2,icsf) = kpcsflt(4,icsf) |
---|
| 7017 | ENDDO |
---|
| 7018 | ENDIF |
---|
| 7019 | |
---|
| 7020 | !-- deallocation of temporary arrays |
---|
[3337] | 7021 | IF ( npcbl > 0 ) DEALLOCATE( gridpcbl ) |
---|
| 7022 | DEALLOCATE( pcsflt_l ) |
---|
| 7023 | DEALLOCATE( kpcsflt_l ) |
---|
| 7024 | CALL radiation_write_debug_log( 'End of aggregate csf' ) |
---|
[2696] | 7025 | |
---|
| 7026 | ENDIF |
---|
[2920] | 7027 | |
---|
[2967] | 7028 | #if defined( __parallel ) |
---|
[2920] | 7029 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[2967] | 7030 | #endif |
---|
[3337] | 7031 | CALL radiation_write_debug_log( 'End of radiation_calc_svf (after mpi_barrier)' ) |
---|
[2920] | 7032 | |
---|
[2696] | 7033 | RETURN |
---|
| 7034 | |
---|
[3241] | 7035 | ! WRITE( message_string, * ) & |
---|
| 7036 | ! 'I/O error when processing shape view factors / ', & |
---|
| 7037 | ! 'plant canopy sink factors / direct irradiance factors.' |
---|
| 7038 | ! CALL message( 'init_urban_surface', 'PA0502', 2, 2, 0, 6, 0 ) |
---|
[2920] | 7039 | |
---|
[2696] | 7040 | END SUBROUTINE radiation_calc_svf |
---|
| 7041 | |
---|
[2920] | 7042 | |
---|
[2696] | 7043 | !------------------------------------------------------------------------------! |
---|
| 7044 | ! Description: |
---|
| 7045 | ! ------------ |
---|
| 7046 | !> Raytracing for detecting obstacles and calculating compound canopy sink |
---|
| 7047 | !> factors. (A simple obstacle detection would only need to process faces in |
---|
| 7048 | !> 3 dimensions without any ordering.) |
---|
| 7049 | !> Assumtions: |
---|
| 7050 | !> ----------- |
---|
| 7051 | !> 1. The ray always originates from a face midpoint (only one coordinate equals |
---|
| 7052 | !> *.5, i.e. wall) and doesn't travel parallel to the surface (that would mean |
---|
| 7053 | !> shape factor=0). Therefore, the ray may never travel exactly along a face |
---|
| 7054 | !> or an edge. |
---|
| 7055 | !> 2. From grid bottom to urban surface top the grid has to be *equidistant* |
---|
| 7056 | !> within each of the dimensions, including vertical (but the resolution |
---|
| 7057 | !> doesn't need to be the same in all three dimensions). |
---|
| 7058 | !------------------------------------------------------------------------------! |
---|
[3449] | 7059 | SUBROUTINE raytrace(src, targ, isrc, difvf, atarg, create_csf, visible, transparency) |
---|
[2696] | 7060 | IMPLICIT NONE |
---|
| 7061 | |
---|
| 7062 | REAL(wp), DIMENSION(3), INTENT(in) :: src, targ !< real coordinates z,y,x |
---|
| 7063 | INTEGER(iwp), INTENT(in) :: isrc !< index of source face for csf |
---|
[3449] | 7064 | REAL(wp), INTENT(in) :: difvf !< differential view factor for csf |
---|
[2696] | 7065 | REAL(wp), INTENT(in) :: atarg !< target surface area for csf |
---|
| 7066 | LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing |
---|
| 7067 | LOGICAL, INTENT(out) :: visible |
---|
| 7068 | REAL(wp), INTENT(out) :: transparency !< along whole path |
---|
[3241] | 7069 | INTEGER(iwp) :: i, k, d |
---|
[2696] | 7070 | INTEGER(iwp) :: seldim !< dimension to be incremented |
---|
| 7071 | INTEGER(iwp) :: ncsb !< no of written plant canopy sinkboxes |
---|
| 7072 | INTEGER(iwp) :: maxboxes !< max no of gridboxes visited |
---|
| 7073 | REAL(wp) :: distance !< euclidean along path |
---|
| 7074 | REAL(wp) :: crlen !< length of gridbox crossing |
---|
| 7075 | REAL(wp) :: lastdist !< beginning of current crossing |
---|
| 7076 | REAL(wp) :: nextdist !< end of current crossing |
---|
| 7077 | REAL(wp) :: realdist !< distance in meters per unit distance |
---|
| 7078 | REAL(wp) :: crmid !< midpoint of crossing |
---|
| 7079 | REAL(wp) :: cursink !< sink factor for current canopy box |
---|
| 7080 | REAL(wp), DIMENSION(3) :: delta !< path vector |
---|
| 7081 | REAL(wp), DIMENSION(3) :: uvect !< unit vector |
---|
| 7082 | REAL(wp), DIMENSION(3) :: dimnextdist !< distance for each dimension increments |
---|
| 7083 | INTEGER(iwp), DIMENSION(3) :: box !< gridbox being crossed |
---|
| 7084 | INTEGER(iwp), DIMENSION(3) :: dimnext !< next dimension increments along path |
---|
| 7085 | INTEGER(iwp), DIMENSION(3) :: dimdelta !< dimension direction = +- 1 |
---|
| 7086 | INTEGER(iwp) :: px, py !< number of processors in x and y dir before |
---|
| 7087 | !< the processor in the question |
---|
| 7088 | INTEGER(iwp) :: ip !< number of processor where gridbox reside |
---|
| 7089 | INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array |
---|
[3528] | 7090 | |
---|
| 7091 | REAL(wp) :: eps = 1E-10_wp !< epsilon for value comparison |
---|
| 7092 | REAL(wp) :: lad_s_target !< recieved lad_s of particular grid box |
---|
[2696] | 7093 | |
---|
| 7094 | ! |
---|
| 7095 | !-- Maximum number of gridboxes visited equals to maximum number of boundaries crossed in each dimension plus one. That's also |
---|
| 7096 | !-- the maximum number of plant canopy boxes written. We grow the acsf array accordingly using exponential factor. |
---|
[2920] | 7097 | maxboxes = SUM(ABS(NINT(targ, iwp) - NINT(src, iwp))) + 1 |
---|
[2696] | 7098 | IF ( plant_canopy .AND. ncsfl + maxboxes > ncsfla ) THEN |
---|
| 7099 | !-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1) |
---|
| 7100 | !-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) & |
---|
| 7101 | !-- / log(grow_factor)), kind=wp)) |
---|
| 7102 | !-- or use this code to simply always keep some extra space after growing |
---|
| 7103 | k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor) |
---|
| 7104 | |
---|
| 7105 | CALL merge_and_grow_csf(k) |
---|
| 7106 | ENDIF |
---|
| 7107 | |
---|
| 7108 | transparency = 1._wp |
---|
| 7109 | ncsb = 0 |
---|
| 7110 | |
---|
| 7111 | delta(:) = targ(:) - src(:) |
---|
| 7112 | distance = SQRT(SUM(delta(:)**2)) |
---|
| 7113 | IF ( distance == 0._wp ) THEN |
---|
| 7114 | visible = .TRUE. |
---|
| 7115 | RETURN |
---|
| 7116 | ENDIF |
---|
| 7117 | uvect(:) = delta(:) / distance |
---|
[3065] | 7118 | realdist = SQRT(SUM( (uvect(:)*(/dz(1),dy,dx/))**2 )) |
---|
[2696] | 7119 | |
---|
| 7120 | lastdist = 0._wp |
---|
| 7121 | |
---|
| 7122 | !-- Since all face coordinates have values *.5 and we'd like to use |
---|
| 7123 | !-- integers, all these have .5 added |
---|
| 7124 | DO d = 1, 3 |
---|
| 7125 | IF ( uvect(d) == 0._wp ) THEN |
---|
| 7126 | dimnext(d) = 999999999 |
---|
| 7127 | dimdelta(d) = 999999999 |
---|
| 7128 | dimnextdist(d) = 1.0E20_wp |
---|
| 7129 | ELSE IF ( uvect(d) > 0._wp ) THEN |
---|
| 7130 | dimnext(d) = CEILING(src(d) + .5_wp) |
---|
| 7131 | dimdelta(d) = 1 |
---|
| 7132 | dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) |
---|
| 7133 | ELSE |
---|
| 7134 | dimnext(d) = FLOOR(src(d) + .5_wp) |
---|
| 7135 | dimdelta(d) = -1 |
---|
| 7136 | dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) |
---|
| 7137 | ENDIF |
---|
| 7138 | ENDDO |
---|
| 7139 | |
---|
| 7140 | DO |
---|
| 7141 | !-- along what dimension will the next wall crossing be? |
---|
| 7142 | seldim = minloc(dimnextdist, 1) |
---|
| 7143 | nextdist = dimnextdist(seldim) |
---|
| 7144 | IF ( nextdist > distance ) nextdist = distance |
---|
| 7145 | |
---|
| 7146 | crlen = nextdist - lastdist |
---|
| 7147 | IF ( crlen > .001_wp ) THEN |
---|
| 7148 | crmid = (lastdist + nextdist) * .5_wp |
---|
[2920] | 7149 | box = NINT(src(:) + uvect(:) * crmid, iwp) |
---|
[2696] | 7150 | |
---|
| 7151 | !-- calculate index of the grid with global indices (box(2),box(3)) |
---|
| 7152 | !-- in the array nzterr and plantt and id of the coresponding processor |
---|
| 7153 | px = box(3)/nnx |
---|
| 7154 | py = box(2)/nny |
---|
| 7155 | ip = px*pdims(2)+py |
---|
| 7156 | ig = ip*nnx*nny + (box(3)-px*nnx)*nny + box(2)-py*nny |
---|
| 7157 | IF ( box(1) <= nzterr(ig) ) THEN |
---|
| 7158 | visible = .FALSE. |
---|
| 7159 | RETURN |
---|
| 7160 | ENDIF |
---|
| 7161 | |
---|
| 7162 | IF ( plant_canopy ) THEN |
---|
| 7163 | IF ( box(1) <= plantt(ig) ) THEN |
---|
| 7164 | ncsb = ncsb + 1 |
---|
| 7165 | boxes(:,ncsb) = box |
---|
| 7166 | crlens(ncsb) = crlen |
---|
| 7167 | #if defined( __parallel ) |
---|
| 7168 | lad_ip(ncsb) = ip |
---|
[3014] | 7169 | lad_disp(ncsb) = (box(3)-px*nnx)*(nny*nzp) + (box(2)-py*nny)*nzp + box(1)-nzub |
---|
[2696] | 7170 | #endif |
---|
| 7171 | ENDIF |
---|
| 7172 | ENDIF |
---|
| 7173 | ENDIF |
---|
| 7174 | |
---|
[3528] | 7175 | IF ( ABS(distance - nextdist) < eps ) EXIT |
---|
[2696] | 7176 | lastdist = nextdist |
---|
| 7177 | dimnext(seldim) = dimnext(seldim) + dimdelta(seldim) |
---|
| 7178 | dimnextdist(seldim) = (dimnext(seldim) - .5_wp - src(seldim)) / uvect(seldim) |
---|
| 7179 | ENDDO |
---|
| 7180 | |
---|
| 7181 | IF ( plant_canopy ) THEN |
---|
| 7182 | #if defined( __parallel ) |
---|
[3337] | 7183 | IF ( raytrace_mpi_rma ) THEN |
---|
[2696] | 7184 | !-- send requests for lad_s to appropriate processor |
---|
[3337] | 7185 | CALL cpu_log( log_point_s(77), 'rad_rma_lad', 'start' ) |
---|
[2696] | 7186 | DO i = 1, ncsb |
---|
| 7187 | CALL MPI_Get(lad_s_ray(i), 1, MPI_REAL, lad_ip(i), lad_disp(i), & |
---|
| 7188 | 1, MPI_REAL, win_lad, ierr) |
---|
| 7189 | IF ( ierr /= 0 ) THEN |
---|
[3337] | 7190 | WRITE(9,*) 'Error MPI_Get1:', ierr, lad_s_ray(i), & |
---|
| 7191 | lad_ip(i), lad_disp(i), win_lad |
---|
| 7192 | FLUSH(9) |
---|
[2696] | 7193 | ENDIF |
---|
| 7194 | ENDDO |
---|
| 7195 | |
---|
| 7196 | !-- wait for all pending local requests complete |
---|
| 7197 | CALL MPI_Win_flush_local_all(win_lad, ierr) |
---|
| 7198 | IF ( ierr /= 0 ) THEN |
---|
[3337] | 7199 | WRITE(9,*) 'Error MPI_Win_flush_local_all1:', ierr, win_lad |
---|
| 7200 | FLUSH(9) |
---|
[2696] | 7201 | ENDIF |
---|
[3337] | 7202 | CALL cpu_log( log_point_s(77), 'rad_rma_lad', 'stop' ) |
---|
[2696] | 7203 | |
---|
| 7204 | ENDIF |
---|
| 7205 | #endif |
---|
| 7206 | |
---|
| 7207 | !-- calculate csf and transparency |
---|
| 7208 | DO i = 1, ncsb |
---|
| 7209 | #if defined( __parallel ) |
---|
[3337] | 7210 | IF ( raytrace_mpi_rma ) THEN |
---|
[2696] | 7211 | lad_s_target = lad_s_ray(i) |
---|
| 7212 | ELSE |
---|
[3014] | 7213 | lad_s_target = sub_lad_g(lad_ip(i)*nnx*nny*nzp + lad_disp(i)) |
---|
[2696] | 7214 | ENDIF |
---|
| 7215 | #else |
---|
[2920] | 7216 | lad_s_target = sub_lad(boxes(1,i),boxes(2,i),boxes(3,i)) |
---|
[2696] | 7217 | #endif |
---|
| 7218 | cursink = 1._wp - exp(-ext_coef * lad_s_target * crlens(i)*realdist) |
---|
| 7219 | |
---|
| 7220 | IF ( create_csf ) THEN |
---|
| 7221 | !-- write svf values into the array |
---|
| 7222 | ncsfl = ncsfl + 1 |
---|
| 7223 | acsf(ncsfl)%ip = lad_ip(i) |
---|
| 7224 | acsf(ncsfl)%itx = boxes(3,i) |
---|
| 7225 | acsf(ncsfl)%ity = boxes(2,i) |
---|
| 7226 | acsf(ncsfl)%itz = boxes(1,i) |
---|
| 7227 | acsf(ncsfl)%isurfs = isrc |
---|
[3449] | 7228 | acsf(ncsfl)%rcvf = cursink*transparency*difvf*atarg |
---|
[2696] | 7229 | ENDIF !< create_csf |
---|
| 7230 | |
---|
| 7231 | transparency = transparency * (1._wp - cursink) |
---|
| 7232 | |
---|
| 7233 | ENDDO |
---|
| 7234 | ENDIF |
---|
| 7235 | |
---|
| 7236 | visible = .TRUE. |
---|
| 7237 | |
---|
| 7238 | END SUBROUTINE raytrace |
---|
[2920] | 7239 | |
---|
| 7240 | |
---|
| 7241 | !------------------------------------------------------------------------------! |
---|
| 7242 | ! Description: |
---|
| 7243 | ! ------------ |
---|
| 7244 | !> A new, more efficient version of ray tracing algorithm that processes a whole |
---|
| 7245 | !> arc instead of a single ray. |
---|
| 7246 | !> |
---|
| 7247 | !> In all comments, horizon means tangent of horizon angle, i.e. |
---|
| 7248 | !> vertical_delta / horizontal_distance |
---|
| 7249 | !------------------------------------------------------------------------------! |
---|
[3337] | 7250 | SUBROUTINE raytrace_2d(origin, yxdir, nrays, zdirs, iorig, aorig, vffrac, & |
---|
| 7251 | calc_svf, create_csf, skip_1st_pcb, & |
---|
| 7252 | lowest_free_ray, transparency, itarget) |
---|
[2920] | 7253 | IMPLICIT NONE |
---|
[2696] | 7254 | |
---|
[2920] | 7255 | REAL(wp), DIMENSION(3), INTENT(IN) :: origin !< z,y,x coordinates of ray origin |
---|
| 7256 | REAL(wp), DIMENSION(2), INTENT(IN) :: yxdir !< y,x *unit* vector of ray direction (in grid units) |
---|
[3337] | 7257 | INTEGER(iwp) :: nrays !< number of rays (z directions) to raytrace |
---|
| 7258 | REAL(wp), DIMENSION(nrays), INTENT(IN) :: zdirs !< list of z directions to raytrace (z/hdist, grid, zenith->nadir) |
---|
[2920] | 7259 | INTEGER(iwp), INTENT(in) :: iorig !< index of origin face for csf |
---|
| 7260 | REAL(wp), INTENT(in) :: aorig !< origin face area for csf |
---|
[3337] | 7261 | REAL(wp), DIMENSION(nrays), INTENT(in) :: vffrac !< view factor fractions of each ray for csf |
---|
| 7262 | LOGICAL, INTENT(in) :: calc_svf !< whether to calculate SFV (identify obstacle surfaces) |
---|
| 7263 | LOGICAL, INTENT(in) :: create_csf !< whether to create canopy sink factors |
---|
[2920] | 7264 | LOGICAL, INTENT(in) :: skip_1st_pcb !< whether to skip first plant canopy box during raytracing |
---|
[3337] | 7265 | INTEGER(iwp), INTENT(out) :: lowest_free_ray !< index into zdirs |
---|
| 7266 | REAL(wp), DIMENSION(nrays), INTENT(OUT) :: transparency !< transparencies of zdirs paths |
---|
| 7267 | INTEGER(iwp), DIMENSION(nrays), INTENT(OUT) :: itarget !< global indices of target faces for zdirs |
---|
| 7268 | |
---|
| 7269 | INTEGER(iwp), DIMENSION(nrays) :: target_procs |
---|
| 7270 | REAL(wp) :: horizon !< highest horizon found after raytracing (z/hdist) |
---|
[2920] | 7271 | INTEGER(iwp) :: i, k, l, d |
---|
| 7272 | INTEGER(iwp) :: seldim !< dimension to be incremented |
---|
| 7273 | REAL(wp), DIMENSION(2) :: yxorigin !< horizontal copy of origin (y,x) |
---|
| 7274 | REAL(wp) :: distance !< euclidean along path |
---|
| 7275 | REAL(wp) :: lastdist !< beginning of current crossing |
---|
| 7276 | REAL(wp) :: nextdist !< end of current crossing |
---|
| 7277 | REAL(wp) :: crmid !< midpoint of crossing |
---|
| 7278 | REAL(wp) :: horz_entry !< horizon at entry to column |
---|
| 7279 | REAL(wp) :: horz_exit !< horizon at exit from column |
---|
| 7280 | REAL(wp) :: bdydim !< boundary for current dimension |
---|
| 7281 | REAL(wp), DIMENSION(2) :: crossdist !< distances to boundary for dimensions |
---|
| 7282 | REAL(wp), DIMENSION(2) :: dimnextdist !< distance for each dimension increments |
---|
| 7283 | INTEGER(iwp), DIMENSION(2) :: column !< grid column being crossed |
---|
| 7284 | INTEGER(iwp), DIMENSION(2) :: dimnext !< next dimension increments along path |
---|
| 7285 | INTEGER(iwp), DIMENSION(2) :: dimdelta !< dimension direction = +- 1 |
---|
| 7286 | INTEGER(iwp) :: px, py !< number of processors in x and y dir before |
---|
| 7287 | !< the processor in the question |
---|
| 7288 | INTEGER(iwp) :: ip !< number of processor where gridbox reside |
---|
| 7289 | INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array |
---|
| 7290 | INTEGER(iwp) :: wcount !< RMA window item count |
---|
| 7291 | INTEGER(iwp) :: maxboxes !< max no of CSF created |
---|
| 7292 | INTEGER(iwp) :: nly !< maximum plant canopy height |
---|
| 7293 | INTEGER(iwp) :: ntrack |
---|
[3528] | 7294 | |
---|
[2920] | 7295 | INTEGER(iwp) :: zb0 |
---|
| 7296 | INTEGER(iwp) :: zb1 |
---|
| 7297 | INTEGER(iwp) :: nz |
---|
| 7298 | INTEGER(iwp) :: iz |
---|
| 7299 | INTEGER(iwp) :: zsgn |
---|
[3337] | 7300 | INTEGER(iwp) :: lowest_lad !< lowest column cell for which we need LAD |
---|
| 7301 | INTEGER(iwp) :: lastdir !< wall direction before hitting this column |
---|
| 7302 | INTEGER(iwp), DIMENSION(2) :: lastcolumn |
---|
[2696] | 7303 | |
---|
[2967] | 7304 | #if defined( __parallel ) |
---|
| 7305 | INTEGER(MPI_ADDRESS_KIND) :: wdisp !< RMA window displacement |
---|
| 7306 | #endif |
---|
[2920] | 7307 | |
---|
[3528] | 7308 | REAL(wp) :: eps = 1E-10_wp !< epsilon for value comparison |
---|
| 7309 | REAL(wp) :: zbottom, ztop !< urban surface boundary in real numbers |
---|
| 7310 | REAL(wp) :: zorig !< z coordinate of ray column entry |
---|
| 7311 | REAL(wp) :: zexit !< z coordinate of ray column exit |
---|
| 7312 | REAL(wp) :: qdist !< ratio of real distance to z coord difference |
---|
| 7313 | REAL(wp) :: dxxyy !< square of real horizontal distance |
---|
| 7314 | REAL(wp) :: curtrans !< transparency of current PC box crossing |
---|
| 7315 | |
---|
| 7316 | |
---|
| 7317 | |
---|
[2920] | 7318 | yxorigin(:) = origin(2:3) |
---|
| 7319 | transparency(:) = 1._wp !-- Pre-set the all rays to transparent before reducing |
---|
| 7320 | horizon = -HUGE(1._wp) |
---|
[3337] | 7321 | lowest_free_ray = nrays |
---|
| 7322 | IF ( rad_angular_discretization .AND. calc_svf ) THEN |
---|
| 7323 | ALLOCATE(target_surfl(nrays)) |
---|
| 7324 | target_surfl(:) = -1 |
---|
| 7325 | lastdir = -999 |
---|
| 7326 | lastcolumn(:) = -999 |
---|
| 7327 | ENDIF |
---|
[2920] | 7328 | |
---|
[3337] | 7329 | !-- Determine distance to boundary (in 2D xy) |
---|
[2920] | 7330 | IF ( yxdir(1) > 0._wp ) THEN |
---|
| 7331 | bdydim = ny + .5_wp !< north global boundary |
---|
| 7332 | crossdist(1) = (bdydim - yxorigin(1)) / yxdir(1) |
---|
| 7333 | ELSEIF ( yxdir(1) == 0._wp ) THEN |
---|
| 7334 | crossdist(1) = HUGE(1._wp) |
---|
| 7335 | ELSE |
---|
| 7336 | bdydim = -.5_wp !< south global boundary |
---|
| 7337 | crossdist(1) = (bdydim - yxorigin(1)) / yxdir(1) |
---|
| 7338 | ENDIF |
---|
| 7339 | |
---|
| 7340 | IF ( yxdir(2) >= 0._wp ) THEN |
---|
| 7341 | bdydim = nx + .5_wp !< east global boundary |
---|
| 7342 | crossdist(2) = (bdydim - yxorigin(2)) / yxdir(2) |
---|
| 7343 | ELSEIF ( yxdir(2) == 0._wp ) THEN |
---|
| 7344 | crossdist(2) = HUGE(1._wp) |
---|
| 7345 | ELSE |
---|
| 7346 | bdydim = -.5_wp !< west global boundary |
---|
| 7347 | crossdist(2) = (bdydim - yxorigin(2)) / yxdir(2) |
---|
| 7348 | ENDIF |
---|
| 7349 | distance = minval(crossdist, 1) |
---|
| 7350 | |
---|
| 7351 | IF ( plant_canopy ) THEN |
---|
| 7352 | rt2_track_dist(0) = 0._wp |
---|
| 7353 | rt2_track_lad(:,:) = 0._wp |
---|
| 7354 | nly = plantt_max - nzub + 1 |
---|
| 7355 | ENDIF |
---|
| 7356 | |
---|
| 7357 | lastdist = 0._wp |
---|
| 7358 | |
---|
| 7359 | !-- Since all face coordinates have values *.5 and we'd like to use |
---|
| 7360 | !-- integers, all these have .5 added |
---|
[3337] | 7361 | DO d = 1, 2 |
---|
[2920] | 7362 | IF ( yxdir(d) == 0._wp ) THEN |
---|
| 7363 | dimnext(d) = HUGE(1_iwp) |
---|
| 7364 | dimdelta(d) = HUGE(1_iwp) |
---|
| 7365 | dimnextdist(d) = HUGE(1._wp) |
---|
| 7366 | ELSE IF ( yxdir(d) > 0._wp ) THEN |
---|
| 7367 | dimnext(d) = FLOOR(yxorigin(d) + .5_wp) + 1 |
---|
| 7368 | dimdelta(d) = 1 |
---|
| 7369 | dimnextdist(d) = (dimnext(d) - .5_wp - yxorigin(d)) / yxdir(d) |
---|
| 7370 | ELSE |
---|
| 7371 | dimnext(d) = CEILING(yxorigin(d) + .5_wp) - 1 |
---|
| 7372 | dimdelta(d) = -1 |
---|
| 7373 | dimnextdist(d) = (dimnext(d) - .5_wp - yxorigin(d)) / yxdir(d) |
---|
| 7374 | ENDIF |
---|
| 7375 | ENDDO |
---|
| 7376 | |
---|
| 7377 | ntrack = 0 |
---|
| 7378 | DO |
---|
| 7379 | !-- along what dimension will the next wall crossing be? |
---|
| 7380 | seldim = minloc(dimnextdist, 1) |
---|
| 7381 | nextdist = dimnextdist(seldim) |
---|
[3337] | 7382 | IF ( nextdist > distance ) nextdist = distance |
---|
[2920] | 7383 | |
---|
| 7384 | IF ( nextdist > lastdist ) THEN |
---|
| 7385 | ntrack = ntrack + 1 |
---|
| 7386 | crmid = (lastdist + nextdist) * .5_wp |
---|
[3337] | 7387 | column = NINT(yxorigin(:) + yxdir(:) * crmid, iwp) |
---|
[2920] | 7388 | |
---|
| 7389 | !-- calculate index of the grid with global indices (column(1),column(2)) |
---|
| 7390 | !-- in the array nzterr and plantt and id of the coresponding processor |
---|
| 7391 | px = column(2)/nnx |
---|
| 7392 | py = column(1)/nny |
---|
| 7393 | ip = px*pdims(2)+py |
---|
| 7394 | ig = ip*nnx*nny + (column(2)-px*nnx)*nny + column(1)-py*nny |
---|
| 7395 | |
---|
| 7396 | IF ( lastdist == 0._wp ) THEN |
---|
| 7397 | horz_entry = -HUGE(1._wp) |
---|
| 7398 | ELSE |
---|
[3337] | 7399 | horz_entry = (REAL(nzterr(ig), wp) + .5_wp - origin(1)) / lastdist |
---|
[2920] | 7400 | ENDIF |
---|
[3337] | 7401 | horz_exit = (REAL(nzterr(ig), wp) + .5_wp - origin(1)) / nextdist |
---|
| 7402 | |
---|
| 7403 | IF ( rad_angular_discretization .AND. calc_svf ) THEN |
---|
| 7404 | ! |
---|
| 7405 | !-- Identify vertical obstacles hit by rays in current column |
---|
| 7406 | DO WHILE ( lowest_free_ray > 0 ) |
---|
| 7407 | IF ( zdirs(lowest_free_ray) > horz_entry ) EXIT |
---|
| 7408 | ! |
---|
| 7409 | !-- This may only happen after 1st column, so lastdir and lastcolumn are valid |
---|
| 7410 | CALL request_itarget(lastdir, & |
---|
| 7411 | CEILING(-0.5_wp + origin(1) + zdirs(lowest_free_ray)*lastdist), & |
---|
| 7412 | lastcolumn(1), lastcolumn(2), & |
---|
| 7413 | target_surfl(lowest_free_ray), target_procs(lowest_free_ray)) |
---|
| 7414 | lowest_free_ray = lowest_free_ray - 1 |
---|
| 7415 | ENDDO |
---|
| 7416 | ! |
---|
| 7417 | !-- Identify horizontal obstacles hit by rays in current column |
---|
| 7418 | DO WHILE ( lowest_free_ray > 0 ) |
---|
| 7419 | IF ( zdirs(lowest_free_ray) > horz_exit ) EXIT |
---|
| 7420 | CALL request_itarget(iup_u, nzterr(ig)+1, column(1), column(2), & |
---|
| 7421 | target_surfl(lowest_free_ray), & |
---|
| 7422 | target_procs(lowest_free_ray)) |
---|
| 7423 | lowest_free_ray = lowest_free_ray - 1 |
---|
| 7424 | ENDDO |
---|
| 7425 | ENDIF |
---|
| 7426 | |
---|
[2920] | 7427 | horizon = MAX(horizon, horz_entry, horz_exit) |
---|
| 7428 | |
---|
| 7429 | IF ( plant_canopy ) THEN |
---|
| 7430 | rt2_track(:, ntrack) = column(:) |
---|
| 7431 | rt2_track_dist(ntrack) = nextdist |
---|
| 7432 | ENDIF |
---|
| 7433 | ENDIF |
---|
| 7434 | |
---|
[3528] | 7435 | IF ( ABS(distance - nextdist) < eps ) EXIT |
---|
[3337] | 7436 | |
---|
| 7437 | IF ( rad_angular_discretization .AND. calc_svf ) THEN |
---|
| 7438 | ! |
---|
| 7439 | !-- Save wall direction of coming building column (= this air column) |
---|
| 7440 | IF ( seldim == 1 ) THEN |
---|
| 7441 | IF ( dimdelta(seldim) == 1 ) THEN |
---|
| 7442 | lastdir = isouth_u |
---|
| 7443 | ELSE |
---|
| 7444 | lastdir = inorth_u |
---|
| 7445 | ENDIF |
---|
| 7446 | ELSE |
---|
| 7447 | IF ( dimdelta(seldim) == 1 ) THEN |
---|
| 7448 | lastdir = iwest_u |
---|
| 7449 | ELSE |
---|
| 7450 | lastdir = ieast_u |
---|
| 7451 | ENDIF |
---|
| 7452 | ENDIF |
---|
| 7453 | lastcolumn = column |
---|
| 7454 | ENDIF |
---|
[2920] | 7455 | lastdist = nextdist |
---|
| 7456 | dimnext(seldim) = dimnext(seldim) + dimdelta(seldim) |
---|
| 7457 | dimnextdist(seldim) = (dimnext(seldim) - .5_wp - yxorigin(seldim)) / yxdir(seldim) |
---|
| 7458 | ENDDO |
---|
| 7459 | |
---|
| 7460 | IF ( plant_canopy ) THEN |
---|
[3337] | 7461 | !-- Request LAD WHERE applicable |
---|
| 7462 | !-- |
---|
[2920] | 7463 | #if defined( __parallel ) |
---|
[3337] | 7464 | IF ( raytrace_mpi_rma ) THEN |
---|
[2920] | 7465 | !-- send requests for lad_s to appropriate processor |
---|
| 7466 | !CALL cpu_log( log_point_s(77), 'usm_init_rma', 'start' ) |
---|
[3337] | 7467 | DO i = 1, ntrack |
---|
[2920] | 7468 | px = rt2_track(2,i)/nnx |
---|
| 7469 | py = rt2_track(1,i)/nny |
---|
| 7470 | ip = px*pdims(2)+py |
---|
| 7471 | ig = ip*nnx*nny + (rt2_track(2,i)-px*nnx)*nny + rt2_track(1,i)-py*nny |
---|
[3337] | 7472 | |
---|
| 7473 | IF ( rad_angular_discretization .AND. calc_svf ) THEN |
---|
| 7474 | ! |
---|
| 7475 | !-- For fixed view resolution, we need plant canopy even for rays |
---|
| 7476 | !-- to opposing surfaces |
---|
| 7477 | lowest_lad = nzterr(ig) + 1 |
---|
| 7478 | ELSE |
---|
| 7479 | ! |
---|
| 7480 | !-- We only need LAD for rays directed above horizon (to sky) |
---|
| 7481 | lowest_lad = CEILING( -0.5_wp + origin(1) + & |
---|
| 7482 | MIN( horizon * rt2_track_dist(i-1), & ! entry |
---|
| 7483 | horizon * rt2_track_dist(i) ) ) ! exit |
---|
| 7484 | ENDIF |
---|
| 7485 | ! |
---|
| 7486 | !-- Skip asking for LAD where all plant canopy is under requested level |
---|
| 7487 | IF ( plantt(ig) < lowest_lad ) CYCLE |
---|
| 7488 | |
---|
| 7489 | wdisp = (rt2_track(2,i)-px*nnx)*(nny*nzp) + (rt2_track(1,i)-py*nny)*nzp + lowest_lad-nzub |
---|
| 7490 | wcount = plantt(ig)-lowest_lad+1 |
---|
[2920] | 7491 | ! TODO send request ASAP - even during raytracing |
---|
[3337] | 7492 | CALL MPI_Get(rt2_track_lad(lowest_lad:plantt(ig), i), wcount, MPI_REAL, ip, & |
---|
[2920] | 7493 | wdisp, wcount, MPI_REAL, win_lad, ierr) |
---|
| 7494 | IF ( ierr /= 0 ) THEN |
---|
[3337] | 7495 | WRITE(9,*) 'Error MPI_Get2:', ierr, rt2_track_lad(lowest_lad:plantt(ig), i), & |
---|
| 7496 | wcount, ip, wdisp, win_lad |
---|
| 7497 | FLUSH(9) |
---|
[2920] | 7498 | ENDIF |
---|
| 7499 | ENDDO |
---|
| 7500 | |
---|
| 7501 | !-- wait for all pending local requests complete |
---|
| 7502 | ! TODO WAIT selectively for each column later when needed |
---|
| 7503 | CALL MPI_Win_flush_local_all(win_lad, ierr) |
---|
| 7504 | IF ( ierr /= 0 ) THEN |
---|
[3337] | 7505 | WRITE(9,*) 'Error MPI_Win_flush_local_all2:', ierr, win_lad |
---|
| 7506 | FLUSH(9) |
---|
[2920] | 7507 | ENDIF |
---|
| 7508 | !CALL cpu_log( log_point_s(77), 'usm_init_rma', 'stop' ) |
---|
[3337] | 7509 | |
---|
| 7510 | ELSE ! raytrace_mpi_rma = .F. |
---|
| 7511 | DO i = 1, ntrack |
---|
[2920] | 7512 | px = rt2_track(2,i)/nnx |
---|
| 7513 | py = rt2_track(1,i)/nny |
---|
| 7514 | ip = px*pdims(2)+py |
---|
[3014] | 7515 | ig = ip*nnx*nny*nzp + (rt2_track(2,i)-px*nnx)*(nny*nzp) + (rt2_track(1,i)-py*nny)*nzp |
---|
[2920] | 7516 | rt2_track_lad(nzub:plantt_max, i) = sub_lad_g(ig:ig+nly-1) |
---|
| 7517 | ENDDO |
---|
| 7518 | ENDIF |
---|
| 7519 | #else |
---|
[3337] | 7520 | DO i = 1, ntrack |
---|
[2920] | 7521 | rt2_track_lad(nzub:plantt_max, i) = sub_lad(rt2_track(1,i), rt2_track(2,i), nzub:plantt_max) |
---|
| 7522 | ENDDO |
---|
| 7523 | #endif |
---|
[3337] | 7524 | ENDIF ! plant_canopy |
---|
[2920] | 7525 | |
---|
[3337] | 7526 | IF ( rad_angular_discretization .AND. calc_svf ) THEN |
---|
| 7527 | #if defined( __parallel ) |
---|
| 7528 | !-- wait for all gridsurf requests to complete |
---|
| 7529 | CALL MPI_Win_flush_local_all(win_gridsurf, ierr) |
---|
| 7530 | IF ( ierr /= 0 ) THEN |
---|
| 7531 | WRITE(9,*) 'Error MPI_Win_flush_local_all3:', ierr, win_gridsurf |
---|
| 7532 | FLUSH(9) |
---|
| 7533 | ENDIF |
---|
| 7534 | #endif |
---|
| 7535 | ! |
---|
| 7536 | !-- recalculate local surf indices into global ones |
---|
| 7537 | DO i = 1, nrays |
---|
| 7538 | IF ( target_surfl(i) == -1 ) THEN |
---|
| 7539 | itarget(i) = -1 |
---|
| 7540 | ELSE |
---|
| 7541 | itarget(i) = target_surfl(i) + surfstart(target_procs(i)) |
---|
| 7542 | ENDIF |
---|
| 7543 | ENDDO |
---|
| 7544 | |
---|
| 7545 | DEALLOCATE( target_surfl ) |
---|
| 7546 | |
---|
| 7547 | ELSE |
---|
| 7548 | itarget(:) = -1 |
---|
| 7549 | ENDIF ! rad_angular_discretization |
---|
| 7550 | |
---|
| 7551 | IF ( plant_canopy ) THEN |
---|
| 7552 | !-- Skip the PCB around origin if requested (for MRT, the PCB might not be there) |
---|
| 7553 | !-- |
---|
| 7554 | IF ( skip_1st_pcb .AND. NINT(origin(1)) <= plantt_max ) THEN |
---|
[2920] | 7555 | rt2_track_lad(NINT(origin(1), iwp), 1) = 0._wp |
---|
| 7556 | ENDIF |
---|
| 7557 | |
---|
[3337] | 7558 | !-- Assert that we have space allocated for CSFs |
---|
| 7559 | !-- |
---|
| 7560 | maxboxes = (ntrack + MAX(CEILING(origin(1)-.5_wp) - nzub, & |
---|
[3378] | 7561 | nzut - CEILING(origin(1)-.5_wp))) * nrays |
---|
[3272] | 7562 | IF ( ncsfl + maxboxes > ncsfla ) THEN |
---|
| 7563 | !-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1) |
---|
| 7564 | !-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) & |
---|
| 7565 | !-- / log(grow_factor)), kind=wp)) |
---|
| 7566 | !-- or use this code to simply always keep some extra space after growing |
---|
| 7567 | k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor) |
---|
| 7568 | CALL merge_and_grow_csf(k) |
---|
| 7569 | ENDIF |
---|
[2920] | 7570 | |
---|
[3337] | 7571 | !-- Calculate transparencies and store new CSFs |
---|
| 7572 | !-- |
---|
[2920] | 7573 | zbottom = REAL(nzub, wp) - .5_wp |
---|
| 7574 | ztop = REAL(plantt_max, wp) + .5_wp |
---|
| 7575 | |
---|
[3337] | 7576 | !-- Reverse direction of radiation (face->sky), only when calc_svf |
---|
| 7577 | !-- |
---|
| 7578 | IF ( calc_svf ) THEN |
---|
| 7579 | DO i = 1, ntrack ! for each column |
---|
[2920] | 7580 | dxxyy = ((dy*yxdir(1))**2 + (dx*yxdir(2))**2) * (rt2_track_dist(i)-rt2_track_dist(i-1))**2 |
---|
| 7581 | px = rt2_track(2,i)/nnx |
---|
| 7582 | py = rt2_track(1,i)/nny |
---|
| 7583 | ip = px*pdims(2)+py |
---|
| 7584 | |
---|
[3337] | 7585 | DO k = 1, nrays ! for each ray |
---|
| 7586 | ! |
---|
| 7587 | !-- NOTE 6778: |
---|
| 7588 | !-- With traditional svf discretization, CSFs under the horizon |
---|
| 7589 | !-- (i.e. for surface to surface radiation) are created in |
---|
| 7590 | !-- raytrace(). With rad_angular_discretization, we must create |
---|
| 7591 | !-- CSFs under horizon only for one direction, otherwise we would |
---|
| 7592 | !-- have duplicate amount of energy. Although we could choose |
---|
| 7593 | !-- either of the two directions (they differ only by |
---|
| 7594 | !-- discretization error with no bias), we choose the the backward |
---|
| 7595 | !-- direction, because it tends to cumulate high canopy sink |
---|
| 7596 | !-- factors closer to raytrace origin, i.e. it should potentially |
---|
| 7597 | !-- cause less moiree. |
---|
| 7598 | IF ( .NOT. rad_angular_discretization ) THEN |
---|
| 7599 | IF ( zdirs(k) <= horizon ) CYCLE |
---|
[2920] | 7600 | ENDIF |
---|
| 7601 | |
---|
[3337] | 7602 | zorig = origin(1) + zdirs(k) * rt2_track_dist(i-1) |
---|
| 7603 | IF ( zorig <= zbottom .OR. zorig >= ztop ) CYCLE |
---|
[2920] | 7604 | |
---|
| 7605 | zsgn = INT(SIGN(1._wp, zdirs(k)), iwp) |
---|
| 7606 | rt2_dist(1) = 0._wp |
---|
| 7607 | IF ( zdirs(k) == 0._wp ) THEN ! ray is exactly horizontal |
---|
| 7608 | nz = 2 |
---|
| 7609 | rt2_dist(nz) = SQRT(dxxyy) |
---|
[3337] | 7610 | iz = CEILING(-.5_wp + zorig, iwp) |
---|
[2920] | 7611 | ELSE |
---|
[3337] | 7612 | zexit = MIN(MAX(origin(1) + zdirs(k) * rt2_track_dist(i), zbottom), ztop) |
---|
[2920] | 7613 | |
---|
| 7614 | zb0 = FLOOR( zorig * zsgn - .5_wp) + 1 ! because it must be greater than orig |
---|
| 7615 | zb1 = CEILING(zexit * zsgn - .5_wp) - 1 ! because it must be smaller than exit |
---|
| 7616 | nz = MAX(zb1 - zb0 + 3, 2) |
---|
[3065] | 7617 | rt2_dist(nz) = SQRT(((zexit-zorig)*dz(1))**2 + dxxyy) |
---|
[2920] | 7618 | qdist = rt2_dist(nz) / (zexit-zorig) |
---|
| 7619 | rt2_dist(2:nz-1) = (/( ((REAL(l, wp) + .5_wp) * zsgn - zorig) * qdist , l = zb0, zb1 )/) |
---|
| 7620 | iz = zb0 * zsgn |
---|
| 7621 | ENDIF |
---|
| 7622 | |
---|
[3337] | 7623 | DO l = 2, nz |
---|
[2920] | 7624 | IF ( rt2_track_lad(iz, i) > 0._wp ) THEN |
---|
| 7625 | curtrans = exp(-ext_coef * rt2_track_lad(iz, i) * (rt2_dist(l)-rt2_dist(l-1))) |
---|
| 7626 | |
---|
[3337] | 7627 | IF ( create_csf ) THEN |
---|
| 7628 | ncsfl = ncsfl + 1 |
---|
| 7629 | acsf(ncsfl)%ip = ip |
---|
| 7630 | acsf(ncsfl)%itx = rt2_track(2,i) |
---|
| 7631 | acsf(ncsfl)%ity = rt2_track(1,i) |
---|
| 7632 | acsf(ncsfl)%itz = iz |
---|
| 7633 | acsf(ncsfl)%isurfs = iorig |
---|
[3449] | 7634 | acsf(ncsfl)%rcvf = (1._wp - curtrans)*transparency(k)*vffrac(k) |
---|
[3337] | 7635 | ENDIF |
---|
| 7636 | |
---|
[2920] | 7637 | transparency(k) = transparency(k) * curtrans |
---|
| 7638 | ENDIF |
---|
| 7639 | iz = iz + zsgn |
---|
| 7640 | ENDDO ! l = 1, nz - 1 |
---|
[3337] | 7641 | ENDDO ! k = 1, nrays |
---|
[2920] | 7642 | ENDDO ! i = 1, ntrack |
---|
| 7643 | |
---|
[3337] | 7644 | transparency(1:lowest_free_ray) = 1._wp !-- Reset rays above horizon to transparent (see NOTE 6778) |
---|
[2920] | 7645 | ENDIF |
---|
| 7646 | |
---|
[3337] | 7647 | !-- Forward direction of radiation (sky->face), always |
---|
| 7648 | !-- |
---|
| 7649 | DO i = ntrack, 1, -1 ! for each column backwards |
---|
[2920] | 7650 | dxxyy = ((dy*yxdir(1))**2 + (dx*yxdir(2))**2) * (rt2_track_dist(i)-rt2_track_dist(i-1))**2 |
---|
| 7651 | px = rt2_track(2,i)/nnx |
---|
| 7652 | py = rt2_track(1,i)/nny |
---|
| 7653 | ip = px*pdims(2)+py |
---|
| 7654 | |
---|
[3337] | 7655 | DO k = 1, nrays ! for each ray |
---|
| 7656 | ! |
---|
| 7657 | !-- See NOTE 6778 above |
---|
| 7658 | IF ( zdirs(k) <= horizon ) CYCLE |
---|
[2920] | 7659 | |
---|
[3337] | 7660 | zexit = origin(1) + zdirs(k) * rt2_track_dist(i-1) |
---|
| 7661 | IF ( zexit <= zbottom .OR. zexit >= ztop ) CYCLE |
---|
[2920] | 7662 | |
---|
| 7663 | zsgn = -INT(SIGN(1._wp, zdirs(k)), iwp) |
---|
| 7664 | rt2_dist(1) = 0._wp |
---|
| 7665 | IF ( zdirs(k) == 0._wp ) THEN ! ray is exactly horizontal |
---|
| 7666 | nz = 2 |
---|
| 7667 | rt2_dist(nz) = SQRT(dxxyy) |
---|
| 7668 | iz = NINT(zexit, iwp) |
---|
| 7669 | ELSE |
---|
[3337] | 7670 | zorig = MIN(MAX(origin(1) + zdirs(k) * rt2_track_dist(i), zbottom), ztop) |
---|
[2920] | 7671 | |
---|
| 7672 | zb0 = FLOOR( zorig * zsgn - .5_wp) + 1 ! because it must be greater than orig |
---|
| 7673 | zb1 = CEILING(zexit * zsgn - .5_wp) - 1 ! because it must be smaller than exit |
---|
| 7674 | nz = MAX(zb1 - zb0 + 3, 2) |
---|
[3065] | 7675 | rt2_dist(nz) = SQRT(((zexit-zorig)*dz(1))**2 + dxxyy) |
---|
[2920] | 7676 | qdist = rt2_dist(nz) / (zexit-zorig) |
---|
| 7677 | rt2_dist(2:nz-1) = (/( ((REAL(l, wp) + .5_wp) * zsgn - zorig) * qdist , l = zb0, zb1 )/) |
---|
| 7678 | iz = zb0 * zsgn |
---|
| 7679 | ENDIF |
---|
| 7680 | |
---|
[3337] | 7681 | DO l = 2, nz |
---|
[2920] | 7682 | IF ( rt2_track_lad(iz, i) > 0._wp ) THEN |
---|
| 7683 | curtrans = exp(-ext_coef * rt2_track_lad(iz, i) * (rt2_dist(l)-rt2_dist(l-1))) |
---|
| 7684 | |
---|
| 7685 | IF ( create_csf ) THEN |
---|
| 7686 | ncsfl = ncsfl + 1 |
---|
| 7687 | acsf(ncsfl)%ip = ip |
---|
| 7688 | acsf(ncsfl)%itx = rt2_track(2,i) |
---|
| 7689 | acsf(ncsfl)%ity = rt2_track(1,i) |
---|
| 7690 | acsf(ncsfl)%itz = iz |
---|
[3449] | 7691 | IF ( itarget(k) /= -1 ) ERROR STOP !FIXME remove after test |
---|
| 7692 | acsf(ncsfl)%isurfs = -1 |
---|
| 7693 | acsf(ncsfl)%rcvf = (1._wp - curtrans)*transparency(k)*aorig*vffrac(k) |
---|
[3337] | 7694 | ENDIF ! create_csf |
---|
[2920] | 7695 | |
---|
| 7696 | transparency(k) = transparency(k) * curtrans |
---|
| 7697 | ENDIF |
---|
| 7698 | iz = iz + zsgn |
---|
| 7699 | ENDDO ! l = 1, nz - 1 |
---|
[3337] | 7700 | ENDDO ! k = 1, nrays |
---|
[2920] | 7701 | ENDDO ! i = 1, ntrack |
---|
[3337] | 7702 | ENDIF ! plant_canopy |
---|
[2920] | 7703 | |
---|
[3337] | 7704 | IF ( .NOT. (rad_angular_discretization .AND. calc_svf) ) THEN |
---|
| 7705 | ! |
---|
| 7706 | !-- Just update lowest_free_ray according to horizon |
---|
| 7707 | DO WHILE ( lowest_free_ray > 0 ) |
---|
| 7708 | IF ( zdirs(lowest_free_ray) > horizon ) EXIT |
---|
| 7709 | lowest_free_ray = lowest_free_ray - 1 |
---|
[2920] | 7710 | ENDDO |
---|
| 7711 | ENDIF |
---|
| 7712 | |
---|
[3337] | 7713 | CONTAINS |
---|
[3372] | 7714 | |
---|
| 7715 | SUBROUTINE request_itarget( d, z, y, x, isurfl, iproc ) |
---|
| 7716 | |
---|
[3337] | 7717 | INTEGER(iwp), INTENT(in) :: d, z, y, x |
---|
| 7718 | INTEGER(iwp), TARGET, INTENT(out) :: isurfl |
---|
| 7719 | INTEGER(iwp), INTENT(out) :: iproc |
---|
[3449] | 7720 | #if defined( __parallel ) |
---|
| 7721 | #else |
---|
| 7722 | INTEGER(iwp) :: target_displ !< index of the grid in the local gridsurf array |
---|
| 7723 | #endif |
---|
[3337] | 7724 | INTEGER(iwp) :: px, py !< number of processors in x and y direction |
---|
| 7725 | !< before the processor in the question |
---|
[3372] | 7726 | #if defined( __parallel ) |
---|
| 7727 | INTEGER(KIND=MPI_ADDRESS_KIND) :: target_displ !< index of the grid in the local gridsurf array |
---|
[3337] | 7728 | |
---|
[3372] | 7729 | ! |
---|
| 7730 | !-- Calculate target processor and index in the remote local target gridsurf array |
---|
| 7731 | px = x / nnx |
---|
| 7732 | py = y / nny |
---|
| 7733 | iproc = px * pdims(2) + py |
---|
| 7734 | target_displ = ((x-px*nnx) * nny + y - py*nny ) * nzu * nsurf_type_u +& |
---|
| 7735 | ( z-nzub ) * nsurf_type_u + d |
---|
| 7736 | ! |
---|
| 7737 | !-- Send MPI_Get request to obtain index target_surfl(i) |
---|
| 7738 | CALL MPI_GET( isurfl, 1, MPI_INTEGER, iproc, target_displ, & |
---|
| 7739 | 1, MPI_INTEGER, win_gridsurf, ierr) |
---|
[3337] | 7740 | IF ( ierr /= 0 ) THEN |
---|
[3372] | 7741 | WRITE( 9,* ) 'Error MPI_Get3:', ierr, isurfl, iproc, target_displ, & |
---|
| 7742 | win_gridsurf |
---|
| 7743 | FLUSH( 9 ) |
---|
[3337] | 7744 | ENDIF |
---|
| 7745 | #else |
---|
| 7746 | !-- set index target_surfl(i) |
---|
| 7747 | isurfl = gridsurf(d,z,y,x) |
---|
| 7748 | #endif |
---|
[3372] | 7749 | |
---|
[3337] | 7750 | END SUBROUTINE request_itarget |
---|
| 7751 | |
---|
[2920] | 7752 | END SUBROUTINE raytrace_2d |
---|
| 7753 | |
---|
| 7754 | |
---|
[2696] | 7755 | !------------------------------------------------------------------------------! |
---|
[2920] | 7756 | ! |
---|
[2696] | 7757 | ! Description: |
---|
| 7758 | ! ------------ |
---|
[2920] | 7759 | !> Calculates apparent solar positions for all timesteps and stores discretized |
---|
| 7760 | !> positions. |
---|
| 7761 | !------------------------------------------------------------------------------! |
---|
| 7762 | SUBROUTINE radiation_presimulate_solar_pos |
---|
| 7763 | IMPLICIT NONE |
---|
| 7764 | |
---|
| 7765 | INTEGER(iwp) :: it, i, j |
---|
| 7766 | REAL(wp) :: tsrp_prev |
---|
[3495] | 7767 | REAL(wp) :: simulated_time_prev |
---|
[2920] | 7768 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dsidir_tmp !< dsidir_tmp[:,i] = unit vector of i-th |
---|
| 7769 | !< appreant solar direction |
---|
| 7770 | |
---|
| 7771 | ALLOCATE ( dsidir_rev(0:raytrace_discrete_elevs/2-1, & |
---|
| 7772 | 0:raytrace_discrete_azims-1) ) |
---|
| 7773 | dsidir_rev(:,:) = -1 |
---|
| 7774 | ALLOCATE ( dsidir_tmp(3, & |
---|
| 7775 | raytrace_discrete_elevs/2*raytrace_discrete_azims) ) |
---|
| 7776 | ndsidir = 0 |
---|
| 7777 | |
---|
| 7778 | ! |
---|
| 7779 | !-- We will artificialy update time_since_reference_point and return to |
---|
| 7780 | !-- true value later |
---|
| 7781 | tsrp_prev = time_since_reference_point |
---|
[3495] | 7782 | simulated_time_prev = simulated_time |
---|
[2920] | 7783 | sun_direction = .TRUE. |
---|
| 7784 | |
---|
| 7785 | ! |
---|
| 7786 | !-- Process spinup time if configured |
---|
| 7787 | IF ( spinup_time > 0._wp ) THEN |
---|
| 7788 | DO it = 0, CEILING(spinup_time / dt_spinup) |
---|
| 7789 | time_since_reference_point = -spinup_time + REAL(it, wp) * dt_spinup |
---|
[3495] | 7790 | simulated_time = simulated_time + dt_spinup |
---|
[2920] | 7791 | CALL simulate_pos |
---|
| 7792 | ENDDO |
---|
| 7793 | ENDIF |
---|
| 7794 | ! |
---|
| 7795 | !-- Process simulation time |
---|
[2995] | 7796 | DO it = 0, CEILING(( end_time - spinup_time ) / dt_radiation) |
---|
[2920] | 7797 | time_since_reference_point = REAL(it, wp) * dt_radiation |
---|
[3495] | 7798 | simulated_time = simulated_time + dt_spinup |
---|
[2920] | 7799 | CALL simulate_pos |
---|
| 7800 | ENDDO |
---|
| 7801 | |
---|
| 7802 | time_since_reference_point = tsrp_prev |
---|
[3495] | 7803 | simulated_time = simulated_time_prev |
---|
[2920] | 7804 | |
---|
| 7805 | !-- Allocate global vars which depend on ndsidir |
---|
| 7806 | ALLOCATE ( dsidir ( 3, ndsidir ) ) |
---|
| 7807 | dsidir(:,:) = dsidir_tmp(:, 1:ndsidir) |
---|
| 7808 | DEALLOCATE ( dsidir_tmp ) |
---|
[2995] | 7809 | |
---|
[2920] | 7810 | ALLOCATE ( dsitrans(nsurfl, ndsidir) ) |
---|
| 7811 | ALLOCATE ( dsitransc(npcbl, ndsidir) ) |
---|
[3337] | 7812 | IF ( nmrtbl > 0 ) ALLOCATE ( mrtdsit(nmrtbl, ndsidir) ) |
---|
[2920] | 7813 | |
---|
| 7814 | WRITE ( message_string, * ) 'Precalculated', ndsidir, ' solar positions', & |
---|
| 7815 | 'from', it, ' timesteps.' |
---|
| 7816 | CALL message( 'radiation_presimulate_solar_pos', 'UI0013', 0, 0, 0, 6, 0 ) |
---|
| 7817 | |
---|
| 7818 | CONTAINS |
---|
| 7819 | |
---|
| 7820 | !------------------------------------------------------------------------! |
---|
| 7821 | ! Description: |
---|
| 7822 | ! ------------ |
---|
| 7823 | !> Simuates a single position |
---|
| 7824 | !------------------------------------------------------------------------! |
---|
| 7825 | SUBROUTINE simulate_pos |
---|
| 7826 | IMPLICIT NONE |
---|
| 7827 | ! |
---|
| 7828 | !-- Update apparent solar position based on modified t_s_r_p |
---|
| 7829 | CALL calc_zenith |
---|
| 7830 | IF ( zenith(0) > 0 ) THEN |
---|
| 7831 | !-- |
---|
| 7832 | !-- Identify solar direction vector (discretized number) 1) |
---|
| 7833 | i = MODULO(NINT(ATAN2(sun_dir_lon(0), sun_dir_lat(0)) & |
---|
| 7834 | / (2._wp*pi) * raytrace_discrete_azims-.5_wp, iwp), & |
---|
| 7835 | raytrace_discrete_azims) |
---|
| 7836 | j = FLOOR(ACOS(zenith(0)) / pi * raytrace_discrete_elevs) |
---|
| 7837 | IF ( dsidir_rev(j, i) == -1 ) THEN |
---|
| 7838 | ndsidir = ndsidir + 1 |
---|
| 7839 | dsidir_tmp(:, ndsidir) = & |
---|
| 7840 | (/ COS((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs), & |
---|
| 7841 | SIN((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs) & |
---|
| 7842 | * COS((REAL(i,wp)+.5_wp) * 2_wp*pi / raytrace_discrete_azims), & |
---|
| 7843 | SIN((REAL(j,wp)+.5_wp) * pi / raytrace_discrete_elevs) & |
---|
| 7844 | * SIN((REAL(i,wp)+.5_wp) * 2_wp*pi / raytrace_discrete_azims) /) |
---|
| 7845 | dsidir_rev(j, i) = ndsidir |
---|
| 7846 | ENDIF |
---|
| 7847 | ENDIF |
---|
| 7848 | END SUBROUTINE simulate_pos |
---|
| 7849 | |
---|
| 7850 | END SUBROUTINE radiation_presimulate_solar_pos |
---|
| 7851 | |
---|
| 7852 | |
---|
| 7853 | |
---|
| 7854 | !------------------------------------------------------------------------------! |
---|
| 7855 | ! Description: |
---|
| 7856 | ! ------------ |
---|
| 7857 | !> Determines whether two faces are oriented towards each other. Since the |
---|
| 7858 | !> surfaces follow the gird box surfaces, it checks first whether the two surfaces |
---|
| 7859 | !> are directed in the same direction, then it checks if the two surfaces are |
---|
[2696] | 7860 | !> located in confronted direction but facing away from each other, e.g. <--| |--> |
---|
| 7861 | !------------------------------------------------------------------------------! |
---|
| 7862 | PURE LOGICAL FUNCTION surface_facing(x, y, z, d, x2, y2, z2, d2) |
---|
| 7863 | IMPLICIT NONE |
---|
| 7864 | INTEGER(iwp), INTENT(in) :: x, y, z, d, x2, y2, z2, d2 |
---|
| 7865 | |
---|
| 7866 | surface_facing = .FALSE. |
---|
| 7867 | |
---|
| 7868 | !-- first check: are the two surfaces directed in the same direction |
---|
[3337] | 7869 | IF ( (d==iup_u .OR. d==iup_l ) & |
---|
[2696] | 7870 | .AND. (d2==iup_u .OR. d2==iup_l) ) RETURN |
---|
[3337] | 7871 | IF ( (d==isouth_u .OR. d==isouth_l ) & |
---|
[2920] | 7872 | .AND. (d2==isouth_u .OR. d2==isouth_l) ) RETURN |
---|
[3337] | 7873 | IF ( (d==inorth_u .OR. d==inorth_l ) & |
---|
[2920] | 7874 | .AND. (d2==inorth_u .OR. d2==inorth_l) ) RETURN |
---|
[3337] | 7875 | IF ( (d==iwest_u .OR. d==iwest_l ) & |
---|
[2920] | 7876 | .AND. (d2==iwest_u .OR. d2==iwest_l ) ) RETURN |
---|
[3337] | 7877 | IF ( (d==ieast_u .OR. d==ieast_l ) & |
---|
[2920] | 7878 | .AND. (d2==ieast_u .OR. d2==ieast_l ) ) RETURN |
---|
[2696] | 7879 | |
---|
| 7880 | !-- second check: are surfaces facing away from each other |
---|
| 7881 | SELECT CASE (d) |
---|
[3337] | 7882 | CASE (iup_u, iup_l) !< upward facing surfaces |
---|
[2696] | 7883 | IF ( z2 < z ) RETURN |
---|
[3337] | 7884 | CASE (isouth_u, isouth_l) !< southward facing surfaces |
---|
[2696] | 7885 | IF ( y2 > y ) RETURN |
---|
[3337] | 7886 | CASE (inorth_u, inorth_l) !< northward facing surfaces |
---|
[2696] | 7887 | IF ( y2 < y ) RETURN |
---|
[3337] | 7888 | CASE (iwest_u, iwest_l) !< westward facing surfaces |
---|
[2696] | 7889 | IF ( x2 > x ) RETURN |
---|
[3337] | 7890 | CASE (ieast_u, ieast_l) !< eastward facing surfaces |
---|
[2696] | 7891 | IF ( x2 < x ) RETURN |
---|
| 7892 | END SELECT |
---|
| 7893 | |
---|
| 7894 | SELECT CASE (d2) |
---|
[2920] | 7895 | CASE (iup_u) !< ground, roof |
---|
[2696] | 7896 | IF ( z < z2 ) RETURN |
---|
[2920] | 7897 | CASE (isouth_u, isouth_l) !< south facing |
---|
[2696] | 7898 | IF ( y > y2 ) RETURN |
---|
[2920] | 7899 | CASE (inorth_u, inorth_l) !< north facing |
---|
[2696] | 7900 | IF ( y < y2 ) RETURN |
---|
[2920] | 7901 | CASE (iwest_u, iwest_l) !< west facing |
---|
[2696] | 7902 | IF ( x > x2 ) RETURN |
---|
[2920] | 7903 | CASE (ieast_u, ieast_l) !< east facing |
---|
[2696] | 7904 | IF ( x < x2 ) RETURN |
---|
| 7905 | CASE (-1) |
---|
| 7906 | CONTINUE |
---|
| 7907 | END SELECT |
---|
| 7908 | |
---|
| 7909 | surface_facing = .TRUE. |
---|
| 7910 | |
---|
| 7911 | END FUNCTION surface_facing |
---|
| 7912 | |
---|
[2920] | 7913 | |
---|
[2696] | 7914 | !------------------------------------------------------------------------------! |
---|
| 7915 | ! |
---|
| 7916 | ! Description: |
---|
| 7917 | ! ------------ |
---|
| 7918 | !> Soubroutine reads svf and svfsurf data from saved file |
---|
[3046] | 7919 | !> SVF means sky view factors and CSF means canopy sink factors |
---|
[2696] | 7920 | !------------------------------------------------------------------------------! |
---|
| 7921 | SUBROUTINE radiation_read_svf |
---|
| 7922 | |
---|
[3016] | 7923 | IMPLICIT NONE |
---|
| 7924 | |
---|
| 7925 | CHARACTER(rad_version_len) :: rad_version_field |
---|
| 7926 | |
---|
| 7927 | INTEGER(iwp) :: i |
---|
| 7928 | INTEGER(iwp) :: ndsidir_from_file = 0 |
---|
| 7929 | INTEGER(iwp) :: npcbl_from_file = 0 |
---|
| 7930 | INTEGER(iwp) :: nsurfl_from_file = 0 |
---|
| 7931 | |
---|
| 7932 | DO i = 0, io_blocks-1 |
---|
| 7933 | IF ( i == io_group ) THEN |
---|
[2696] | 7934 | |
---|
[3016] | 7935 | ! |
---|
| 7936 | !-- numprocs_previous_run is only known in case of reading restart |
---|
| 7937 | !-- data. If a new initial run which reads svf data is started the |
---|
| 7938 | !-- following query will be skipped |
---|
| 7939 | IF ( initializing_actions == 'read_restart_data' ) THEN |
---|
[2696] | 7940 | |
---|
[3016] | 7941 | IF ( numprocs_previous_run /= numprocs ) THEN |
---|
| 7942 | WRITE( message_string, * ) 'A different number of ', & |
---|
| 7943 | 'processors between the run ', & |
---|
| 7944 | 'that has written the svf data ',& |
---|
| 7945 | 'and the one that will read it ',& |
---|
| 7946 | 'is not allowed' |
---|
| 7947 | CALL message( 'check_open', 'PA0491', 1, 2, 0, 6, 0 ) |
---|
| 7948 | ENDIF |
---|
[2964] | 7949 | |
---|
[3016] | 7950 | ENDIF |
---|
| 7951 | |
---|
| 7952 | ! |
---|
| 7953 | !-- Open binary file |
---|
| 7954 | CALL check_open( 88 ) |
---|
[2964] | 7955 | |
---|
[2906] | 7956 | ! |
---|
[3016] | 7957 | !-- read and check version |
---|
| 7958 | READ ( 88 ) rad_version_field |
---|
| 7959 | IF ( TRIM(rad_version_field) /= TRIM(rad_version) ) THEN |
---|
| 7960 | WRITE( message_string, * ) 'Version of binary SVF file "', & |
---|
| 7961 | TRIM(rad_version_field), '" does not match ', & |
---|
| 7962 | 'the version of model "', TRIM(rad_version), '"' |
---|
| 7963 | CALL message( 'radiation_read_svf', 'PA0482', 1, 2, 0, 6, 0 ) |
---|
| 7964 | ENDIF |
---|
[2964] | 7965 | |
---|
[3016] | 7966 | ! |
---|
| 7967 | !-- read nsvfl, ncsfl, nsurfl |
---|
| 7968 | READ ( 88 ) nsvfl, ncsfl, nsurfl_from_file, npcbl_from_file, & |
---|
| 7969 | ndsidir_from_file |
---|
| 7970 | |
---|
| 7971 | IF ( nsvfl < 0 .OR. ncsfl < 0 ) THEN |
---|
| 7972 | WRITE( message_string, * ) 'Wrong number of SVF or CSF' |
---|
| 7973 | CALL message( 'radiation_read_svf', 'PA0483', 1, 2, 0, 6, 0 ) |
---|
| 7974 | ELSE |
---|
| 7975 | WRITE(message_string,*) ' Number of SVF, CSF, and nsurfl ',& |
---|
| 7976 | 'to read', nsvfl, ncsfl, & |
---|
| 7977 | nsurfl_from_file |
---|
| 7978 | CALL location_message( message_string, .TRUE. ) |
---|
| 7979 | ENDIF |
---|
| 7980 | |
---|
| 7981 | IF ( nsurfl_from_file /= nsurfl ) THEN |
---|
| 7982 | WRITE( message_string, * ) 'nsurfl from SVF file does not ', & |
---|
| 7983 | 'match calculated nsurfl from ', & |
---|
| 7984 | 'radiation_interaction_init' |
---|
| 7985 | CALL message( 'radiation_read_svf', 'PA0490', 1, 2, 0, 6, 0 ) |
---|
| 7986 | ENDIF |
---|
| 7987 | |
---|
| 7988 | IF ( npcbl_from_file /= npcbl ) THEN |
---|
| 7989 | WRITE( message_string, * ) 'npcbl from SVF file does not ', & |
---|
| 7990 | 'match calculated npcbl from ', & |
---|
| 7991 | 'radiation_interaction_init' |
---|
| 7992 | CALL message( 'radiation_read_svf', 'PA0493', 1, 2, 0, 6, 0 ) |
---|
| 7993 | ENDIF |
---|
| 7994 | |
---|
| 7995 | IF ( ndsidir_from_file /= ndsidir ) THEN |
---|
| 7996 | WRITE( message_string, * ) 'ndsidir from SVF file does not ', & |
---|
| 7997 | 'match calculated ndsidir from ', & |
---|
| 7998 | 'radiation_presimulate_solar_pos' |
---|
| 7999 | CALL message( 'radiation_read_svf', 'PA0494', 1, 2, 0, 6, 0 ) |
---|
| 8000 | ENDIF |
---|
[2995] | 8001 | |
---|
[3016] | 8002 | ! |
---|
| 8003 | !-- Arrays skyvf, skyvft, dsitrans and dsitransc are allready |
---|
| 8004 | !-- allocated in radiation_interaction_init and |
---|
| 8005 | !-- radiation_presimulate_solar_pos |
---|
| 8006 | IF ( nsurfl > 0 ) THEN |
---|
| 8007 | READ(88) skyvf |
---|
| 8008 | READ(88) skyvft |
---|
| 8009 | READ(88) dsitrans |
---|
| 8010 | ENDIF |
---|
| 8011 | |
---|
| 8012 | IF ( plant_canopy .AND. npcbl > 0 ) THEN |
---|
| 8013 | READ ( 88 ) dsitransc |
---|
| 8014 | ENDIF |
---|
| 8015 | |
---|
| 8016 | ! |
---|
| 8017 | !-- The allocation of svf, svfsurf, csf and csfsurf happens in routine |
---|
| 8018 | !-- radiation_calc_svf which is not called if the program enters |
---|
| 8019 | !-- radiation_read_svf. Therefore these arrays has to allocate in the |
---|
| 8020 | !-- following |
---|
| 8021 | IF ( nsvfl > 0 ) THEN |
---|
| 8022 | ALLOCATE( svf(ndsvf,nsvfl) ) |
---|
| 8023 | ALLOCATE( svfsurf(idsvf,nsvfl) ) |
---|
| 8024 | READ(88) svf |
---|
| 8025 | READ(88) svfsurf |
---|
| 8026 | ENDIF |
---|
[2977] | 8027 | |
---|
[3016] | 8028 | IF ( plant_canopy .AND. ncsfl > 0 ) THEN |
---|
| 8029 | ALLOCATE( csf(ndcsf,ncsfl) ) |
---|
| 8030 | ALLOCATE( csfsurf(idcsf,ncsfl) ) |
---|
| 8031 | READ(88) csf |
---|
| 8032 | READ(88) csfsurf |
---|
| 8033 | ENDIF |
---|
| 8034 | |
---|
[2906] | 8035 | ! |
---|
[3016] | 8036 | !-- Close binary file |
---|
| 8037 | CALL close_file( 88 ) |
---|
[2696] | 8038 | |
---|
[3016] | 8039 | ENDIF |
---|
[2696] | 8040 | #if defined( __parallel ) |
---|
[3016] | 8041 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[2696] | 8042 | #endif |
---|
[3016] | 8043 | ENDDO |
---|
[2696] | 8044 | |
---|
| 8045 | END SUBROUTINE radiation_read_svf |
---|
| 8046 | |
---|
| 8047 | |
---|
| 8048 | !------------------------------------------------------------------------------! |
---|
| 8049 | ! |
---|
| 8050 | ! Description: |
---|
| 8051 | ! ------------ |
---|
| 8052 | !> Subroutine stores svf, svfsurf, csf and csfsurf data to a file. |
---|
| 8053 | !------------------------------------------------------------------------------! |
---|
| 8054 | SUBROUTINE radiation_write_svf |
---|
| 8055 | |
---|
[3016] | 8056 | IMPLICIT NONE |
---|
| 8057 | |
---|
| 8058 | INTEGER(iwp) :: i |
---|
[2696] | 8059 | |
---|
[3016] | 8060 | DO i = 0, io_blocks-1 |
---|
| 8061 | IF ( i == io_group ) THEN |
---|
[2906] | 8062 | ! |
---|
| 8063 | !-- Open binary file |
---|
[3016] | 8064 | CALL check_open( 89 ) |
---|
[2906] | 8065 | |
---|
[3016] | 8066 | WRITE ( 89 ) rad_version |
---|
| 8067 | WRITE ( 89 ) nsvfl, ncsfl, nsurfl, npcbl, ndsidir |
---|
| 8068 | IF ( nsurfl > 0 ) THEN |
---|
| 8069 | WRITE ( 89 ) skyvf |
---|
| 8070 | WRITE ( 89 ) skyvft |
---|
| 8071 | WRITE ( 89 ) dsitrans |
---|
| 8072 | ENDIF |
---|
| 8073 | IF ( npcbl > 0 ) THEN |
---|
| 8074 | WRITE ( 89 ) dsitransc |
---|
| 8075 | ENDIF |
---|
| 8076 | IF ( nsvfl > 0 ) THEN |
---|
| 8077 | WRITE ( 89 ) svf |
---|
| 8078 | WRITE ( 89 ) svfsurf |
---|
| 8079 | ENDIF |
---|
| 8080 | IF ( plant_canopy .AND. ncsfl > 0 ) THEN |
---|
| 8081 | WRITE ( 89 ) csf |
---|
| 8082 | WRITE ( 89 ) csfsurf |
---|
| 8083 | ENDIF |
---|
| 8084 | |
---|
[2906] | 8085 | ! |
---|
| 8086 | !-- Close binary file |
---|
[3016] | 8087 | CALL close_file( 89 ) |
---|
[2906] | 8088 | |
---|
| 8089 | ENDIF |
---|
[2696] | 8090 | #if defined( __parallel ) |
---|
[3016] | 8091 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
[2696] | 8092 | #endif |
---|
[3016] | 8093 | ENDDO |
---|
[2696] | 8094 | END SUBROUTINE radiation_write_svf |
---|
| 8095 | |
---|
| 8096 | !------------------------------------------------------------------------------! |
---|
| 8097 | ! |
---|
| 8098 | ! Description: |
---|
| 8099 | ! ------------ |
---|
| 8100 | !> Block of auxiliary subroutines: |
---|
| 8101 | !> 1. quicksort and corresponding comparison |
---|
| 8102 | !> 2. merge_and_grow_csf for implementation of "dynamical growing" |
---|
| 8103 | !> array for csf |
---|
[2920] | 8104 | !------------------------------------------------------------------------------! |
---|
[3337] | 8105 | !-- quicksort.f -*-f90-*- |
---|
| 8106 | !-- Author: t-nissie, adaptation J.Resler |
---|
| 8107 | !-- License: GPLv3 |
---|
| 8108 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
| 8109 | RECURSIVE SUBROUTINE quicksort_itarget(itarget, vffrac, ztransp, first, last) |
---|
| 8110 | IMPLICIT NONE |
---|
| 8111 | INTEGER(iwp), DIMENSION(:), INTENT(INOUT) :: itarget |
---|
| 8112 | REAL(wp), DIMENSION(:), INTENT(INOUT) :: vffrac, ztransp |
---|
| 8113 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
| 8114 | INTEGER(iwp) :: x, t |
---|
| 8115 | INTEGER(iwp) :: i, j |
---|
| 8116 | REAL(wp) :: tr |
---|
| 8117 | |
---|
| 8118 | IF ( first>=last ) RETURN |
---|
| 8119 | x = itarget((first+last)/2) |
---|
| 8120 | i = first |
---|
| 8121 | j = last |
---|
| 8122 | DO |
---|
| 8123 | DO WHILE ( itarget(i) < x ) |
---|
| 8124 | i=i+1 |
---|
| 8125 | ENDDO |
---|
| 8126 | DO WHILE ( x < itarget(j) ) |
---|
| 8127 | j=j-1 |
---|
| 8128 | ENDDO |
---|
| 8129 | IF ( i >= j ) EXIT |
---|
| 8130 | t = itarget(i); itarget(i) = itarget(j); itarget(j) = t |
---|
| 8131 | tr = vffrac(i); vffrac(i) = vffrac(j); vffrac(j) = tr |
---|
| 8132 | tr = ztransp(i); ztransp(i) = ztransp(j); ztransp(j) = tr |
---|
| 8133 | i=i+1 |
---|
| 8134 | j=j-1 |
---|
| 8135 | ENDDO |
---|
| 8136 | IF ( first < i-1 ) CALL quicksort_itarget(itarget, vffrac, ztransp, first, i-1) |
---|
| 8137 | IF ( j+1 < last ) CALL quicksort_itarget(itarget, vffrac, ztransp, j+1, last) |
---|
| 8138 | END SUBROUTINE quicksort_itarget |
---|
| 8139 | |
---|
[2696] | 8140 | PURE FUNCTION svf_lt(svf1,svf2) result (res) |
---|
| 8141 | TYPE (t_svf), INTENT(in) :: svf1,svf2 |
---|
| 8142 | LOGICAL :: res |
---|
| 8143 | IF ( svf1%isurflt < svf2%isurflt .OR. & |
---|
| 8144 | (svf1%isurflt == svf2%isurflt .AND. svf1%isurfs < svf2%isurfs) ) THEN |
---|
| 8145 | res = .TRUE. |
---|
| 8146 | ELSE |
---|
| 8147 | res = .FALSE. |
---|
| 8148 | ENDIF |
---|
| 8149 | END FUNCTION svf_lt |
---|
[3337] | 8150 | |
---|
| 8151 | |
---|
[2696] | 8152 | !-- quicksort.f -*-f90-*- |
---|
| 8153 | !-- Author: t-nissie, adaptation J.Resler |
---|
| 8154 | !-- License: GPLv3 |
---|
| 8155 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
| 8156 | RECURSIVE SUBROUTINE quicksort_svf(svfl, first, last) |
---|
| 8157 | IMPLICIT NONE |
---|
| 8158 | TYPE(t_svf), DIMENSION(:), INTENT(INOUT) :: svfl |
---|
| 8159 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
| 8160 | TYPE(t_svf) :: x, t |
---|
| 8161 | INTEGER(iwp) :: i, j |
---|
| 8162 | |
---|
| 8163 | IF ( first>=last ) RETURN |
---|
| 8164 | x = svfl( (first+last) / 2 ) |
---|
| 8165 | i = first |
---|
| 8166 | j = last |
---|
| 8167 | DO |
---|
| 8168 | DO while ( svf_lt(svfl(i),x) ) |
---|
[2920] | 8169 | i=i+1 |
---|
[2696] | 8170 | ENDDO |
---|
| 8171 | DO while ( svf_lt(x,svfl(j)) ) |
---|
| 8172 | j=j-1 |
---|
| 8173 | ENDDO |
---|
| 8174 | IF ( i >= j ) EXIT |
---|
| 8175 | t = svfl(i); svfl(i) = svfl(j); svfl(j) = t |
---|
| 8176 | i=i+1 |
---|
| 8177 | j=j-1 |
---|
| 8178 | ENDDO |
---|
| 8179 | IF ( first < i-1 ) CALL quicksort_svf(svfl, first, i-1) |
---|
| 8180 | IF ( j+1 < last ) CALL quicksort_svf(svfl, j+1, last) |
---|
| 8181 | END SUBROUTINE quicksort_svf |
---|
| 8182 | |
---|
| 8183 | PURE FUNCTION csf_lt(csf1,csf2) result (res) |
---|
| 8184 | TYPE (t_csf), INTENT(in) :: csf1,csf2 |
---|
| 8185 | LOGICAL :: res |
---|
| 8186 | IF ( csf1%ip < csf2%ip .OR. & |
---|
| 8187 | (csf1%ip == csf2%ip .AND. csf1%itx < csf2%itx) .OR. & |
---|
| 8188 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity < csf2%ity) .OR. & |
---|
| 8189 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & |
---|
| 8190 | csf1%itz < csf2%itz) .OR. & |
---|
| 8191 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & |
---|
| 8192 | csf1%itz == csf2%itz .AND. csf1%isurfs < csf2%isurfs) ) THEN |
---|
| 8193 | res = .TRUE. |
---|
| 8194 | ELSE |
---|
| 8195 | res = .FALSE. |
---|
| 8196 | ENDIF |
---|
| 8197 | END FUNCTION csf_lt |
---|
| 8198 | |
---|
| 8199 | |
---|
| 8200 | !-- quicksort.f -*-f90-*- |
---|
| 8201 | !-- Author: t-nissie, adaptation J.Resler |
---|
| 8202 | !-- License: GPLv3 |
---|
| 8203 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
| 8204 | RECURSIVE SUBROUTINE quicksort_csf(csfl, first, last) |
---|
| 8205 | IMPLICIT NONE |
---|
| 8206 | TYPE(t_csf), DIMENSION(:), INTENT(INOUT) :: csfl |
---|
| 8207 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
| 8208 | TYPE(t_csf) :: x, t |
---|
| 8209 | INTEGER(iwp) :: i, j |
---|
| 8210 | |
---|
| 8211 | IF ( first>=last ) RETURN |
---|
| 8212 | x = csfl( (first+last)/2 ) |
---|
| 8213 | i = first |
---|
| 8214 | j = last |
---|
| 8215 | DO |
---|
| 8216 | DO while ( csf_lt(csfl(i),x) ) |
---|
| 8217 | i=i+1 |
---|
| 8218 | ENDDO |
---|
| 8219 | DO while ( csf_lt(x,csfl(j)) ) |
---|
| 8220 | j=j-1 |
---|
| 8221 | ENDDO |
---|
| 8222 | IF ( i >= j ) EXIT |
---|
| 8223 | t = csfl(i); csfl(i) = csfl(j); csfl(j) = t |
---|
| 8224 | i=i+1 |
---|
| 8225 | j=j-1 |
---|
| 8226 | ENDDO |
---|
| 8227 | IF ( first < i-1 ) CALL quicksort_csf(csfl, first, i-1) |
---|
| 8228 | IF ( j+1 < last ) CALL quicksort_csf(csfl, j+1, last) |
---|
| 8229 | END SUBROUTINE quicksort_csf |
---|
| 8230 | |
---|
| 8231 | |
---|
| 8232 | SUBROUTINE merge_and_grow_csf(newsize) |
---|
| 8233 | INTEGER(iwp), INTENT(in) :: newsize !< new array size after grow, must be >= ncsfl |
---|
| 8234 | !< or -1 to shrink to minimum |
---|
| 8235 | INTEGER(iwp) :: iread, iwrite |
---|
| 8236 | TYPE(t_csf), DIMENSION(:), POINTER :: acsfnew |
---|
[3337] | 8237 | CHARACTER(100) :: msg |
---|
[2696] | 8238 | |
---|
| 8239 | IF ( newsize == -1 ) THEN |
---|
| 8240 | !-- merge in-place |
---|
| 8241 | acsfnew => acsf |
---|
| 8242 | ELSE |
---|
| 8243 | !-- allocate new array |
---|
| 8244 | IF ( mcsf == 0 ) THEN |
---|
| 8245 | ALLOCATE( acsf1(newsize) ) |
---|
| 8246 | acsfnew => acsf1 |
---|
| 8247 | ELSE |
---|
| 8248 | ALLOCATE( acsf2(newsize) ) |
---|
| 8249 | acsfnew => acsf2 |
---|
| 8250 | ENDIF |
---|
| 8251 | ENDIF |
---|
| 8252 | |
---|
| 8253 | IF ( ncsfl >= 1 ) THEN |
---|
| 8254 | !-- sort csf in place (quicksort) |
---|
| 8255 | CALL quicksort_csf(acsf,1,ncsfl) |
---|
| 8256 | |
---|
| 8257 | !-- while moving to a new array, aggregate canopy sink factor records with identical box & source |
---|
| 8258 | acsfnew(1) = acsf(1) |
---|
| 8259 | iwrite = 1 |
---|
| 8260 | DO iread = 2, ncsfl |
---|
| 8261 | !-- here acsf(kcsf) already has values from acsf(icsf) |
---|
| 8262 | IF ( acsfnew(iwrite)%itx == acsf(iread)%itx & |
---|
| 8263 | .AND. acsfnew(iwrite)%ity == acsf(iread)%ity & |
---|
| 8264 | .AND. acsfnew(iwrite)%itz == acsf(iread)%itz & |
---|
| 8265 | .AND. acsfnew(iwrite)%isurfs == acsf(iread)%isurfs ) THEN |
---|
[3337] | 8266 | |
---|
[3449] | 8267 | acsfnew(iwrite)%rcvf = acsfnew(iwrite)%rcvf + acsf(iread)%rcvf |
---|
[2696] | 8268 | !-- advance reading index, keep writing index |
---|
| 8269 | ELSE |
---|
| 8270 | !-- not identical, just advance and copy |
---|
| 8271 | iwrite = iwrite + 1 |
---|
| 8272 | acsfnew(iwrite) = acsf(iread) |
---|
| 8273 | ENDIF |
---|
| 8274 | ENDDO |
---|
| 8275 | ncsfl = iwrite |
---|
| 8276 | ENDIF |
---|
| 8277 | |
---|
| 8278 | IF ( newsize == -1 ) THEN |
---|
| 8279 | !-- allocate new array and copy shrinked data |
---|
| 8280 | IF ( mcsf == 0 ) THEN |
---|
| 8281 | ALLOCATE( acsf1(ncsfl) ) |
---|
| 8282 | acsf1(1:ncsfl) = acsf2(1:ncsfl) |
---|
| 8283 | ELSE |
---|
| 8284 | ALLOCATE( acsf2(ncsfl) ) |
---|
| 8285 | acsf2(1:ncsfl) = acsf1(1:ncsfl) |
---|
| 8286 | ENDIF |
---|
| 8287 | ENDIF |
---|
| 8288 | |
---|
| 8289 | !-- deallocate old array |
---|
| 8290 | IF ( mcsf == 0 ) THEN |
---|
| 8291 | mcsf = 1 |
---|
| 8292 | acsf => acsf1 |
---|
| 8293 | DEALLOCATE( acsf2 ) |
---|
| 8294 | ELSE |
---|
| 8295 | mcsf = 0 |
---|
| 8296 | acsf => acsf2 |
---|
| 8297 | DEALLOCATE( acsf1 ) |
---|
| 8298 | ENDIF |
---|
| 8299 | ncsfla = newsize |
---|
[2920] | 8300 | |
---|
[3337] | 8301 | WRITE(msg,'(A,2I12)') 'Grow acsf2:',ncsfl,ncsfla |
---|
| 8302 | CALL radiation_write_debug_log( msg ) |
---|
[2920] | 8303 | |
---|
[2696] | 8304 | END SUBROUTINE merge_and_grow_csf |
---|
| 8305 | |
---|
| 8306 | |
---|
| 8307 | !-- quicksort.f -*-f90-*- |
---|
| 8308 | !-- Author: t-nissie, adaptation J.Resler |
---|
| 8309 | !-- License: GPLv3 |
---|
| 8310 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
| 8311 | RECURSIVE SUBROUTINE quicksort_csf2(kpcsflt, pcsflt, first, last) |
---|
| 8312 | IMPLICIT NONE |
---|
| 8313 | INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: kpcsflt |
---|
| 8314 | REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: pcsflt |
---|
| 8315 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
| 8316 | REAL(wp), DIMENSION(ndcsf) :: t2 |
---|
| 8317 | INTEGER(iwp), DIMENSION(kdcsf) :: x, t1 |
---|
| 8318 | INTEGER(iwp) :: i, j |
---|
| 8319 | |
---|
| 8320 | IF ( first>=last ) RETURN |
---|
| 8321 | x = kpcsflt(:, (first+last)/2 ) |
---|
| 8322 | i = first |
---|
| 8323 | j = last |
---|
| 8324 | DO |
---|
| 8325 | DO while ( csf_lt2(kpcsflt(:,i),x) ) |
---|
| 8326 | i=i+1 |
---|
| 8327 | ENDDO |
---|
| 8328 | DO while ( csf_lt2(x,kpcsflt(:,j)) ) |
---|
| 8329 | j=j-1 |
---|
| 8330 | ENDDO |
---|
| 8331 | IF ( i >= j ) EXIT |
---|
| 8332 | t1 = kpcsflt(:,i); kpcsflt(:,i) = kpcsflt(:,j); kpcsflt(:,j) = t1 |
---|
| 8333 | t2 = pcsflt(:,i); pcsflt(:,i) = pcsflt(:,j); pcsflt(:,j) = t2 |
---|
| 8334 | i=i+1 |
---|
| 8335 | j=j-1 |
---|
| 8336 | ENDDO |
---|
| 8337 | IF ( first < i-1 ) CALL quicksort_csf2(kpcsflt, pcsflt, first, i-1) |
---|
| 8338 | IF ( j+1 < last ) CALL quicksort_csf2(kpcsflt, pcsflt, j+1, last) |
---|
| 8339 | END SUBROUTINE quicksort_csf2 |
---|
| 8340 | |
---|
| 8341 | |
---|
| 8342 | PURE FUNCTION csf_lt2(item1, item2) result(res) |
---|
| 8343 | INTEGER(iwp), DIMENSION(kdcsf), INTENT(in) :: item1, item2 |
---|
| 8344 | LOGICAL :: res |
---|
| 8345 | res = ( (item1(3) < item2(3)) & |
---|
| 8346 | .OR. (item1(3) == item2(3) .AND. item1(2) < item2(2)) & |
---|
| 8347 | .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) < item2(1)) & |
---|
| 8348 | .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) == item2(1) & |
---|
| 8349 | .AND. item1(4) < item2(4)) ) |
---|
| 8350 | END FUNCTION csf_lt2 |
---|
| 8351 | |
---|
[2920] | 8352 | PURE FUNCTION searchsorted(athresh, val) result(ind) |
---|
| 8353 | REAL(wp), DIMENSION(:), INTENT(IN) :: athresh |
---|
| 8354 | REAL(wp), INTENT(IN) :: val |
---|
| 8355 | INTEGER(iwp) :: ind |
---|
| 8356 | INTEGER(iwp) :: i |
---|
| 8357 | |
---|
| 8358 | DO i = LBOUND(athresh, 1), UBOUND(athresh, 1) |
---|
| 8359 | IF ( val < athresh(i) ) THEN |
---|
| 8360 | ind = i - 1 |
---|
| 8361 | RETURN |
---|
| 8362 | ENDIF |
---|
| 8363 | ENDDO |
---|
| 8364 | ind = UBOUND(athresh, 1) |
---|
| 8365 | END FUNCTION searchsorted |
---|
| 8366 | |
---|
[2696] | 8367 | !------------------------------------------------------------------------------! |
---|
[2920] | 8368 | ! Description: |
---|
| 8369 | ! ------------ |
---|
[2696] | 8370 | ! |
---|
[2920] | 8371 | !> radiation_radflux_gridbox subroutine gives the sw and lw radiation fluxes at the |
---|
| 8372 | !> faces of a gridbox defined at i,j,k and located in the urban layer. |
---|
| 8373 | !> The total sw and the diffuse sw radiation as well as the lw radiation fluxes at |
---|
| 8374 | !> the gridbox 6 faces are stored in sw_gridbox, swd_gridbox, and lw_gridbox arrays, |
---|
| 8375 | !> respectively, in the following order: |
---|
| 8376 | !> up_face, down_face, north_face, south_face, east_face, west_face |
---|
| 8377 | !> |
---|
| 8378 | !> The subroutine reports also how successful was the search process via the parameter |
---|
| 8379 | !> i_feedback as follow: |
---|
| 8380 | !> - i_feedback = 1 : successful |
---|
| 8381 | !> - i_feedback = -1 : unsuccessful; the requisted point is outside the urban domain |
---|
| 8382 | !> - i_feedback = 0 : uncomplete; some gridbox faces fluxes are missing |
---|
| 8383 | !> |
---|
| 8384 | !> |
---|
| 8385 | !> It is called outside from usm_urban_surface_mod whenever the radiation fluxes |
---|
| 8386 | !> are needed. |
---|
| 8387 | !> |
---|
[3378] | 8388 | !> This routine is not used so far. However, it may serve as an interface for radiation |
---|
| 8389 | !> fluxes of urban and land surfaces |
---|
| 8390 | !> |
---|
[2920] | 8391 | !> TODO: |
---|
| 8392 | !> - Compare performance when using some combination of the Fortran intrinsic |
---|
| 8393 | !> functions, e.g. MINLOC, MAXLOC, ALL, ANY and COUNT functions, which search |
---|
| 8394 | !> surfl array for elements meeting user-specified criterion, i.e. i,j,k |
---|
| 8395 | !> - Report non-found or incomplete radiation fluxes arrays , if any, at the |
---|
| 8396 | !> gridbox faces in an error message form |
---|
| 8397 | !> |
---|
| 8398 | !------------------------------------------------------------------------------! |
---|
| 8399 | SUBROUTINE radiation_radflux_gridbox(i,j,k,sw_gridbox,swd_gridbox,lw_gridbox,i_feedback) |
---|
| 8400 | |
---|
| 8401 | IMPLICIT NONE |
---|
| 8402 | |
---|
| 8403 | INTEGER(iwp), INTENT(in) :: i,j,k !< gridbox indices at which fluxes are required |
---|
| 8404 | INTEGER(iwp) :: ii,jj,kk,d !< surface indices and type |
---|
| 8405 | INTEGER(iwp) :: l !< surface id |
---|
| 8406 | REAL(wp) , DIMENSION(1:6), INTENT(out) :: sw_gridbox,lw_gridbox !< total sw and lw radiation fluxes of 6 faces of a gridbox, w/m2 |
---|
| 8407 | REAL(wp) , DIMENSION(1:6), INTENT(out) :: swd_gridbox !< diffuse sw radiation from sky and model boundary of 6 faces of a gridbox, w/m2 |
---|
| 8408 | INTEGER(iwp), INTENT(out) :: i_feedback !< feedback to report how the search was successful |
---|
| 8409 | |
---|
| 8410 | |
---|
| 8411 | !-- initialize variables |
---|
| 8412 | i_feedback = -999999 |
---|
| 8413 | sw_gridbox = -999999.9_wp |
---|
| 8414 | lw_gridbox = -999999.9_wp |
---|
| 8415 | swd_gridbox = -999999.9_wp |
---|
| 8416 | |
---|
| 8417 | !-- check the requisted grid indices |
---|
| 8418 | IF ( k < nzb .OR. k > nzut .OR. & |
---|
| 8419 | j < nysg .OR. j > nyng .OR. & |
---|
| 8420 | i < nxlg .OR. i > nxrg & |
---|
| 8421 | ) THEN |
---|
| 8422 | i_feedback = -1 |
---|
| 8423 | RETURN |
---|
| 8424 | ENDIF |
---|
| 8425 | |
---|
| 8426 | !-- search for the required grid and formulate the fluxes at the 6 gridbox faces |
---|
| 8427 | DO l = 1, nsurfl |
---|
| 8428 | ii = surfl(ix,l) |
---|
| 8429 | jj = surfl(iy,l) |
---|
| 8430 | kk = surfl(iz,l) |
---|
| 8431 | |
---|
| 8432 | IF ( ii == i .AND. jj == j .AND. kk == k ) THEN |
---|
| 8433 | d = surfl(id,l) |
---|
| 8434 | |
---|
| 8435 | SELECT CASE ( d ) |
---|
| 8436 | |
---|
[3337] | 8437 | CASE (iup_u,iup_l) !- gridbox up_facing face |
---|
[2920] | 8438 | sw_gridbox(1) = surfinsw(l) |
---|
| 8439 | lw_gridbox(1) = surfinlw(l) |
---|
| 8440 | swd_gridbox(1) = surfinswdif(l) |
---|
| 8441 | |
---|
[3337] | 8442 | CASE (inorth_u,inorth_l) !- gridbox north_facing face |
---|
[2920] | 8443 | sw_gridbox(3) = surfinsw(l) |
---|
| 8444 | lw_gridbox(3) = surfinlw(l) |
---|
| 8445 | swd_gridbox(3) = surfinswdif(l) |
---|
| 8446 | |
---|
[3337] | 8447 | CASE (isouth_u,isouth_l) !- gridbox south_facing face |
---|
[2920] | 8448 | sw_gridbox(4) = surfinsw(l) |
---|
| 8449 | lw_gridbox(4) = surfinlw(l) |
---|
| 8450 | swd_gridbox(4) = surfinswdif(l) |
---|
| 8451 | |
---|
[3337] | 8452 | CASE (ieast_u,ieast_l) !- gridbox east_facing face |
---|
[2920] | 8453 | sw_gridbox(5) = surfinsw(l) |
---|
| 8454 | lw_gridbox(5) = surfinlw(l) |
---|
| 8455 | swd_gridbox(5) = surfinswdif(l) |
---|
| 8456 | |
---|
[3337] | 8457 | CASE (iwest_u,iwest_l) !- gridbox west_facing face |
---|
[2920] | 8458 | sw_gridbox(6) = surfinsw(l) |
---|
| 8459 | lw_gridbox(6) = surfinlw(l) |
---|
| 8460 | swd_gridbox(6) = surfinswdif(l) |
---|
| 8461 | |
---|
| 8462 | END SELECT |
---|
| 8463 | |
---|
| 8464 | ENDIF |
---|
| 8465 | |
---|
| 8466 | IF ( ALL( sw_gridbox(:) /= -999999.9_wp ) ) EXIT |
---|
| 8467 | ENDDO |
---|
| 8468 | |
---|
| 8469 | !-- check the completeness of the fluxes at all gidbox faces |
---|
| 8470 | !-- TODO: report non-found or incomplete rad fluxes arrays in an error message form |
---|
| 8471 | IF ( ANY( sw_gridbox(:) <= -999999.9_wp ) .OR. & |
---|
| 8472 | ANY( swd_gridbox(:) <= -999999.9_wp ) .OR. & |
---|
| 8473 | ANY( lw_gridbox(:) <= -999999.9_wp ) ) THEN |
---|
| 8474 | i_feedback = 0 |
---|
| 8475 | ELSE |
---|
| 8476 | i_feedback = 1 |
---|
| 8477 | ENDIF |
---|
| 8478 | |
---|
| 8479 | RETURN |
---|
| 8480 | |
---|
| 8481 | END SUBROUTINE radiation_radflux_gridbox |
---|
| 8482 | |
---|
| 8483 | !------------------------------------------------------------------------------! |
---|
| 8484 | ! |
---|
[2696] | 8485 | ! Description: |
---|
| 8486 | ! ------------ |
---|
[1976] | 8487 | !> Subroutine for averaging 3D data |
---|
| 8488 | !------------------------------------------------------------------------------! |
---|
| 8489 | SUBROUTINE radiation_3d_data_averaging( mode, variable ) |
---|
| 8490 | |
---|
| 8491 | |
---|
| 8492 | USE control_parameters |
---|
| 8493 | |
---|
| 8494 | USE indices |
---|
| 8495 | |
---|
| 8496 | USE kinds |
---|
| 8497 | |
---|
| 8498 | IMPLICIT NONE |
---|
| 8499 | |
---|
| 8500 | CHARACTER (LEN=*) :: mode !< |
---|
| 8501 | CHARACTER (LEN=*) :: variable !< |
---|
| 8502 | |
---|
[3173] | 8503 | LOGICAL :: match_lsm !< flag indicating natural-type surface |
---|
| 8504 | LOGICAL :: match_usm !< flag indicating urban-type surface |
---|
| 8505 | |
---|
[1976] | 8506 | INTEGER(iwp) :: i !< |
---|
| 8507 | INTEGER(iwp) :: j !< |
---|
| 8508 | INTEGER(iwp) :: k !< |
---|
[3337] | 8509 | INTEGER(iwp) :: l, m !< index of current surface element |
---|
[1976] | 8510 | |
---|
| 8511 | IF ( mode == 'allocate' ) THEN |
---|
| 8512 | |
---|
| 8513 | SELECT CASE ( TRIM( variable ) ) |
---|
| 8514 | |
---|
| 8515 | CASE ( 'rad_net*' ) |
---|
| 8516 | IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN |
---|
| 8517 | ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 8518 | ENDIF |
---|
| 8519 | rad_net_av = 0.0_wp |
---|
[3116] | 8520 | |
---|
| 8521 | CASE ( 'rad_lw_in*' ) |
---|
| 8522 | IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
| 8523 | ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 8524 | ENDIF |
---|
| 8525 | rad_lw_in_xy_av = 0.0_wp |
---|
| 8526 | |
---|
| 8527 | CASE ( 'rad_lw_out*' ) |
---|
| 8528 | IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
| 8529 | ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 8530 | ENDIF |
---|
| 8531 | rad_lw_out_xy_av = 0.0_wp |
---|
| 8532 | |
---|
| 8533 | CASE ( 'rad_sw_in*' ) |
---|
| 8534 | IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
| 8535 | ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 8536 | ENDIF |
---|
| 8537 | rad_sw_in_xy_av = 0.0_wp |
---|
| 8538 | |
---|
| 8539 | CASE ( 'rad_sw_out*' ) |
---|
| 8540 | IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
| 8541 | ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 8542 | ENDIF |
---|
| 8543 | rad_sw_out_xy_av = 0.0_wp |
---|
[1976] | 8544 | |
---|
| 8545 | CASE ( 'rad_lw_in' ) |
---|
| 8546 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 8547 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8548 | ENDIF |
---|
| 8549 | rad_lw_in_av = 0.0_wp |
---|
| 8550 | |
---|
| 8551 | CASE ( 'rad_lw_out' ) |
---|
| 8552 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
| 8553 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8554 | ENDIF |
---|
| 8555 | rad_lw_out_av = 0.0_wp |
---|
| 8556 | |
---|
| 8557 | CASE ( 'rad_lw_cs_hr' ) |
---|
| 8558 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
| 8559 | ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8560 | ENDIF |
---|
| 8561 | rad_lw_cs_hr_av = 0.0_wp |
---|
| 8562 | |
---|
| 8563 | CASE ( 'rad_lw_hr' ) |
---|
| 8564 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
| 8565 | ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8566 | ENDIF |
---|
| 8567 | rad_lw_hr_av = 0.0_wp |
---|
| 8568 | |
---|
| 8569 | CASE ( 'rad_sw_in' ) |
---|
| 8570 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
| 8571 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8572 | ENDIF |
---|
| 8573 | rad_sw_in_av = 0.0_wp |
---|
| 8574 | |
---|
| 8575 | CASE ( 'rad_sw_out' ) |
---|
| 8576 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
| 8577 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8578 | ENDIF |
---|
| 8579 | rad_sw_out_av = 0.0_wp |
---|
| 8580 | |
---|
| 8581 | CASE ( 'rad_sw_cs_hr' ) |
---|
| 8582 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
| 8583 | ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8584 | ENDIF |
---|
| 8585 | rad_sw_cs_hr_av = 0.0_wp |
---|
| 8586 | |
---|
| 8587 | CASE ( 'rad_sw_hr' ) |
---|
| 8588 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
| 8589 | ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 8590 | ENDIF |
---|
| 8591 | rad_sw_hr_av = 0.0_wp |
---|
| 8592 | |
---|
[3337] | 8593 | CASE ( 'rad_mrt_sw' ) |
---|
| 8594 | IF ( .NOT. ALLOCATED( mrtinsw_av ) ) THEN |
---|
| 8595 | ALLOCATE( mrtinsw_av(nmrtbl) ) |
---|
| 8596 | ENDIF |
---|
| 8597 | mrtinsw_av = 0.0_wp |
---|
| 8598 | |
---|
| 8599 | CASE ( 'rad_mrt_lw' ) |
---|
| 8600 | IF ( .NOT. ALLOCATED( mrtinlw_av ) ) THEN |
---|
| 8601 | ALLOCATE( mrtinlw_av(nmrtbl) ) |
---|
| 8602 | ENDIF |
---|
| 8603 | mrtinlw_av = 0.0_wp |
---|
| 8604 | |
---|
| 8605 | CASE ( 'rad_mrt' ) |
---|
| 8606 | IF ( .NOT. ALLOCATED( mrt_av ) ) THEN |
---|
| 8607 | ALLOCATE( mrt_av(nmrtbl) ) |
---|
| 8608 | ENDIF |
---|
| 8609 | mrt_av = 0.0_wp |
---|
| 8610 | |
---|
[1976] | 8611 | CASE DEFAULT |
---|
| 8612 | CONTINUE |
---|
| 8613 | |
---|
| 8614 | END SELECT |
---|
| 8615 | |
---|
| 8616 | ELSEIF ( mode == 'sum' ) THEN |
---|
| 8617 | |
---|
| 8618 | SELECT CASE ( TRIM( variable ) ) |
---|
| 8619 | |
---|
| 8620 | CASE ( 'rad_net*' ) |
---|
[3004] | 8621 | IF ( ALLOCATED( rad_net_av ) ) THEN |
---|
| 8622 | DO i = nxl, nxr |
---|
| 8623 | DO j = nys, nyn |
---|
[3173] | 8624 | match_lsm = surf_lsm_h%start_index(j,i) <= & |
---|
| 8625 | surf_lsm_h%end_index(j,i) |
---|
| 8626 | match_usm = surf_usm_h%start_index(j,i) <= & |
---|
| 8627 | surf_usm_h%end_index(j,i) |
---|
| 8628 | |
---|
| 8629 | IF ( match_lsm .AND. .NOT. match_usm ) THEN |
---|
| 8630 | m = surf_lsm_h%end_index(j,i) |
---|
[3116] | 8631 | rad_net_av(j,i) = rad_net_av(j,i) + & |
---|
[3173] | 8632 | surf_lsm_h%rad_net(m) |
---|
| 8633 | ELSEIF ( match_usm ) THEN |
---|
| 8634 | m = surf_usm_h%end_index(j,i) |
---|
[3116] | 8635 | rad_net_av(j,i) = rad_net_av(j,i) + & |
---|
[3173] | 8636 | surf_usm_h%rad_net(m) |
---|
| 8637 | ENDIF |
---|
[2696] | 8638 | ENDDO |
---|
[1976] | 8639 | ENDDO |
---|
[3004] | 8640 | ENDIF |
---|
[1976] | 8641 | |
---|
[3116] | 8642 | CASE ( 'rad_lw_in*' ) |
---|
| 8643 | IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
| 8644 | DO i = nxl, nxr |
---|
| 8645 | DO j = nys, nyn |
---|
[3173] | 8646 | match_lsm = surf_lsm_h%start_index(j,i) <= & |
---|
| 8647 | surf_lsm_h%end_index(j,i) |
---|
| 8648 | match_usm = surf_usm_h%start_index(j,i) <= & |
---|
| 8649 | surf_usm_h%end_index(j,i) |
---|
| 8650 | |
---|
| 8651 | IF ( match_lsm .AND. .NOT. match_usm ) THEN |
---|
| 8652 | m = surf_lsm_h%end_index(j,i) |
---|
[3116] | 8653 | rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) + & |
---|
[3173] | 8654 | surf_lsm_h%rad_lw_in(m) |
---|
| 8655 | ELSEIF ( match_usm ) THEN |
---|
| 8656 | m = surf_usm_h%end_index(j,i) |
---|
[3116] | 8657 | rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) + & |
---|
[3173] | 8658 | surf_usm_h%rad_lw_in(m) |
---|
| 8659 | ENDIF |
---|
[3116] | 8660 | ENDDO |
---|
| 8661 | ENDDO |
---|
| 8662 | ENDIF |
---|
| 8663 | |
---|
| 8664 | CASE ( 'rad_lw_out*' ) |
---|
| 8665 | IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
| 8666 | DO i = nxl, nxr |
---|
| 8667 | DO j = nys, nyn |
---|
[3173] | 8668 | match_lsm = surf_lsm_h%start_index(j,i) <= & |
---|
| 8669 | surf_lsm_h%end_index(j,i) |
---|
| 8670 | match_usm = surf_usm_h%start_index(j,i) <= & |
---|
| 8671 | surf_usm_h%end_index(j,i) |
---|
| 8672 | |
---|
| 8673 | IF ( match_lsm .AND. .NOT. match_usm ) THEN |
---|
| 8674 | m = surf_lsm_h%end_index(j,i) |
---|
[3116] | 8675 | rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) + & |
---|
[3173] | 8676 | surf_lsm_h%rad_lw_out(m) |
---|
| 8677 | ELSEIF ( match_usm ) THEN |
---|
| 8678 | m = surf_usm_h%end_index(j,i) |
---|
[3116] | 8679 | rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) + & |
---|
[3173] | 8680 | surf_usm_h%rad_lw_out(m) |
---|
| 8681 | ENDIF |
---|
[3116] | 8682 | ENDDO |
---|
| 8683 | ENDDO |
---|
| 8684 | ENDIF |
---|
| 8685 | |
---|
| 8686 | CASE ( 'rad_sw_in*' ) |
---|
| 8687 | IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
| 8688 | DO i = nxl, nxr |
---|
| 8689 | DO j = nys, nyn |
---|
[3173] | 8690 | match_lsm = surf_lsm_h%start_index(j,i) <= & |
---|
| 8691 | surf_lsm_h%end_index(j,i) |
---|
| 8692 | match_usm = surf_usm_h%start_index(j,i) <= & |
---|
| 8693 | surf_usm_h%end_index(j,i) |
---|
| 8694 | |
---|
| 8695 | IF ( match_lsm .AND. .NOT. match_usm ) THEN |
---|
| 8696 | m = surf_lsm_h%end_index(j,i) |
---|
[3116] | 8697 | rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) + & |
---|
[3173] | 8698 | surf_lsm_h%rad_sw_in(m) |
---|
| 8699 | ELSEIF ( match_usm ) THEN |
---|
| 8700 | m = surf_usm_h%end_index(j,i) |
---|
[3116] | 8701 | rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) + & |
---|
| 8702 | surf_usm_h%rad_sw_in(m) |
---|
[3173] | 8703 | ENDIF |
---|
[3116] | 8704 | ENDDO |
---|
| 8705 | ENDDO |
---|
| 8706 | ENDIF |
---|
| 8707 | |
---|
| 8708 | CASE ( 'rad_sw_out*' ) |
---|
| 8709 | IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
| 8710 | DO i = nxl, nxr |
---|
| 8711 | DO j = nys, nyn |
---|
[3173] | 8712 | match_lsm = surf_lsm_h%start_index(j,i) <= & |
---|
| 8713 | surf_lsm_h%end_index(j,i) |
---|
| 8714 | match_usm = surf_usm_h%start_index(j,i) <= & |
---|
| 8715 | surf_usm_h%end_index(j,i) |
---|
| 8716 | |
---|
| 8717 | IF ( match_lsm .AND. .NOT. match_usm ) THEN |
---|
| 8718 | m = surf_lsm_h%end_index(j,i) |
---|
[3116] | 8719 | rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) + & |
---|
[3173] | 8720 | surf_lsm_h%rad_sw_out(m) |
---|
| 8721 | ELSEIF ( match_usm ) THEN |
---|
| 8722 | m = surf_usm_h%end_index(j,i) |
---|
[3116] | 8723 | rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) + & |
---|
[3173] | 8724 | surf_usm_h%rad_sw_out(m) |
---|
| 8725 | ENDIF |
---|
[3116] | 8726 | ENDDO |
---|
| 8727 | ENDDO |
---|
| 8728 | ENDIF |
---|
| 8729 | |
---|
[1976] | 8730 | CASE ( 'rad_lw_in' ) |
---|
[3004] | 8731 | IF ( ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 8732 | DO i = nxlg, nxrg |
---|
| 8733 | DO j = nysg, nyng |
---|
| 8734 | DO k = nzb, nzt+1 |
---|
| 8735 | rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) & |
---|
| 8736 | + rad_lw_in(k,j,i) |
---|
| 8737 | ENDDO |
---|
[1976] | 8738 | ENDDO |
---|
| 8739 | ENDDO |
---|
[3004] | 8740 | ENDIF |
---|
[1976] | 8741 | |
---|
| 8742 | CASE ( 'rad_lw_out' ) |
---|
[3004] | 8743 | IF ( ALLOCATED( rad_lw_out_av ) ) THEN |
---|
| 8744 | DO i = nxlg, nxrg |
---|
| 8745 | DO j = nysg, nyng |
---|
| 8746 | DO k = nzb, nzt+1 |
---|
| 8747 | rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) & |
---|
| 8748 | + rad_lw_out(k,j,i) |
---|
| 8749 | ENDDO |
---|
[1976] | 8750 | ENDDO |
---|
| 8751 | ENDDO |
---|
[3004] | 8752 | ENDIF |
---|
[1976] | 8753 | |
---|
| 8754 | CASE ( 'rad_lw_cs_hr' ) |
---|
[3004] | 8755 | IF ( ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
| 8756 | DO i = nxlg, nxrg |
---|
| 8757 | DO j = nysg, nyng |
---|
| 8758 | DO k = nzb, nzt+1 |
---|
| 8759 | rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) & |
---|
| 8760 | + rad_lw_cs_hr(k,j,i) |
---|
| 8761 | ENDDO |
---|
[1976] | 8762 | ENDDO |
---|
| 8763 | ENDDO |
---|
[3004] | 8764 | ENDIF |
---|
[1976] | 8765 | |
---|
| 8766 | CASE ( 'rad_lw_hr' ) |
---|
[3004] | 8767 | IF ( ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
| 8768 | DO i = nxlg, nxrg |
---|
| 8769 | DO j = nysg, nyng |
---|
| 8770 | DO k = nzb, nzt+1 |
---|
| 8771 | rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) & |
---|
| 8772 | + rad_lw_hr(k,j,i) |
---|
| 8773 | ENDDO |
---|
[1976] | 8774 | ENDDO |
---|
| 8775 | ENDDO |
---|
[3004] | 8776 | ENDIF |
---|
[1976] | 8777 | |
---|
| 8778 | CASE ( 'rad_sw_in' ) |
---|
[3004] | 8779 | IF ( ALLOCATED( rad_sw_in_av ) ) THEN |
---|
| 8780 | DO i = nxlg, nxrg |
---|
| 8781 | DO j = nysg, nyng |
---|
| 8782 | DO k = nzb, nzt+1 |
---|
| 8783 | rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) & |
---|
| 8784 | + rad_sw_in(k,j,i) |
---|
| 8785 | ENDDO |
---|
[1976] | 8786 | ENDDO |
---|
| 8787 | ENDDO |
---|
[3004] | 8788 | ENDIF |
---|
[1976] | 8789 | |
---|
| 8790 | CASE ( 'rad_sw_out' ) |
---|
[3004] | 8791 | IF ( ALLOCATED( rad_sw_out_av ) ) THEN |
---|
| 8792 | DO i = nxlg, nxrg |
---|
| 8793 | DO j = nysg, nyng |
---|
| 8794 | DO k = nzb, nzt+1 |
---|
| 8795 | rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) & |
---|
| 8796 | + rad_sw_out(k,j,i) |
---|
| 8797 | ENDDO |
---|
[1976] | 8798 | ENDDO |
---|
| 8799 | ENDDO |
---|
[3004] | 8800 | ENDIF |
---|
[1976] | 8801 | |
---|
| 8802 | CASE ( 'rad_sw_cs_hr' ) |
---|
[3004] | 8803 | IF ( ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
| 8804 | DO i = nxlg, nxrg |
---|
| 8805 | DO j = nysg, nyng |
---|
| 8806 | DO k = nzb, nzt+1 |
---|
| 8807 | rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) & |
---|
| 8808 | + rad_sw_cs_hr(k,j,i) |
---|
| 8809 | ENDDO |
---|
[1976] | 8810 | ENDDO |
---|
| 8811 | ENDDO |
---|
[3004] | 8812 | ENDIF |
---|
[1976] | 8813 | |
---|
| 8814 | CASE ( 'rad_sw_hr' ) |
---|
[3004] | 8815 | IF ( ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
| 8816 | DO i = nxlg, nxrg |
---|
| 8817 | DO j = nysg, nyng |
---|
| 8818 | DO k = nzb, nzt+1 |
---|
| 8819 | rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) & |
---|
| 8820 | + rad_sw_hr(k,j,i) |
---|
| 8821 | ENDDO |
---|
[1976] | 8822 | ENDDO |
---|
| 8823 | ENDDO |
---|
[3004] | 8824 | ENDIF |
---|
[1976] | 8825 | |
---|
[3337] | 8826 | CASE ( 'rad_mrt_sw' ) |
---|
| 8827 | IF ( ALLOCATED( mrtinsw_av ) ) THEN |
---|
| 8828 | mrtinsw_av(:) = mrtinsw_av(:) + mrtinsw(:) |
---|
| 8829 | ENDIF |
---|
| 8830 | |
---|
| 8831 | CASE ( 'rad_mrt_lw' ) |
---|
| 8832 | IF ( ALLOCATED( mrtinlw_av ) ) THEN |
---|
| 8833 | mrtinlw_av(:) = mrtinlw_av(:) + mrtinlw(:) |
---|
| 8834 | ENDIF |
---|
| 8835 | |
---|
| 8836 | CASE ( 'rad_mrt' ) |
---|
| 8837 | IF ( ALLOCATED( mrt_av ) ) THEN |
---|
| 8838 | mrt_av(:) = mrt_av(:) + mrt(:) |
---|
| 8839 | ENDIF |
---|
| 8840 | |
---|
[1976] | 8841 | CASE DEFAULT |
---|
| 8842 | CONTINUE |
---|
| 8843 | |
---|
| 8844 | END SELECT |
---|
| 8845 | |
---|
| 8846 | ELSEIF ( mode == 'average' ) THEN |
---|
| 8847 | |
---|
| 8848 | SELECT CASE ( TRIM( variable ) ) |
---|
| 8849 | |
---|
[3337] | 8850 | CASE ( 'rad_net*' ) |
---|
[3004] | 8851 | IF ( ALLOCATED( rad_net_av ) ) THEN |
---|
| 8852 | DO i = nxlg, nxrg |
---|
| 8853 | DO j = nysg, nyng |
---|
| 8854 | rad_net_av(j,i) = rad_net_av(j,i) & |
---|
| 8855 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8856 | ENDDO |
---|
[1976] | 8857 | ENDDO |
---|
[3004] | 8858 | ENDIF |
---|
[3116] | 8859 | |
---|
| 8860 | CASE ( 'rad_lw_in*' ) |
---|
| 8861 | IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
| 8862 | DO i = nxlg, nxrg |
---|
| 8863 | DO j = nysg, nyng |
---|
| 8864 | rad_lw_in_xy_av(j,i) = rad_lw_in_xy_av(j,i) & |
---|
| 8865 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8866 | ENDDO |
---|
| 8867 | ENDDO |
---|
| 8868 | ENDIF |
---|
| 8869 | |
---|
| 8870 | CASE ( 'rad_lw_out*' ) |
---|
| 8871 | IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
| 8872 | DO i = nxlg, nxrg |
---|
| 8873 | DO j = nysg, nyng |
---|
| 8874 | rad_lw_out_xy_av(j,i) = rad_lw_out_xy_av(j,i) & |
---|
| 8875 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8876 | ENDDO |
---|
| 8877 | ENDDO |
---|
| 8878 | ENDIF |
---|
| 8879 | |
---|
| 8880 | CASE ( 'rad_sw_in*' ) |
---|
| 8881 | IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
| 8882 | DO i = nxlg, nxrg |
---|
| 8883 | DO j = nysg, nyng |
---|
| 8884 | rad_sw_in_xy_av(j,i) = rad_sw_in_xy_av(j,i) & |
---|
| 8885 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8886 | ENDDO |
---|
| 8887 | ENDDO |
---|
| 8888 | ENDIF |
---|
| 8889 | |
---|
| 8890 | CASE ( 'rad_sw_out*' ) |
---|
| 8891 | IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
| 8892 | DO i = nxlg, nxrg |
---|
| 8893 | DO j = nysg, nyng |
---|
| 8894 | rad_sw_out_xy_av(j,i) = rad_sw_out_xy_av(j,i) & |
---|
| 8895 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8896 | ENDDO |
---|
| 8897 | ENDDO |
---|
| 8898 | ENDIF |
---|
[1976] | 8899 | |
---|
| 8900 | CASE ( 'rad_lw_in' ) |
---|
[3004] | 8901 | IF ( ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 8902 | DO i = nxlg, nxrg |
---|
| 8903 | DO j = nysg, nyng |
---|
| 8904 | DO k = nzb, nzt+1 |
---|
| 8905 | rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) & |
---|
| 8906 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8907 | ENDDO |
---|
[1976] | 8908 | ENDDO |
---|
| 8909 | ENDDO |
---|
[3004] | 8910 | ENDIF |
---|
[1976] | 8911 | |
---|
| 8912 | CASE ( 'rad_lw_out' ) |
---|
[3004] | 8913 | IF ( ALLOCATED( rad_lw_out_av ) ) THEN |
---|
| 8914 | DO i = nxlg, nxrg |
---|
| 8915 | DO j = nysg, nyng |
---|
| 8916 | DO k = nzb, nzt+1 |
---|
| 8917 | rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) & |
---|
| 8918 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8919 | ENDDO |
---|
[1976] | 8920 | ENDDO |
---|
| 8921 | ENDDO |
---|
[3004] | 8922 | ENDIF |
---|
[1976] | 8923 | |
---|
| 8924 | CASE ( 'rad_lw_cs_hr' ) |
---|
[3004] | 8925 | IF ( ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
| 8926 | DO i = nxlg, nxrg |
---|
| 8927 | DO j = nysg, nyng |
---|
| 8928 | DO k = nzb, nzt+1 |
---|
| 8929 | rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) & |
---|
| 8930 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8931 | ENDDO |
---|
[1976] | 8932 | ENDDO |
---|
| 8933 | ENDDO |
---|
[3004] | 8934 | ENDIF |
---|
[1976] | 8935 | |
---|
| 8936 | CASE ( 'rad_lw_hr' ) |
---|
[3004] | 8937 | IF ( ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
| 8938 | DO i = nxlg, nxrg |
---|
| 8939 | DO j = nysg, nyng |
---|
| 8940 | DO k = nzb, nzt+1 |
---|
| 8941 | rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) & |
---|
| 8942 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8943 | ENDDO |
---|
[1976] | 8944 | ENDDO |
---|
| 8945 | ENDDO |
---|
[3004] | 8946 | ENDIF |
---|
[1976] | 8947 | |
---|
| 8948 | CASE ( 'rad_sw_in' ) |
---|
[3004] | 8949 | IF ( ALLOCATED( rad_sw_in_av ) ) THEN |
---|
| 8950 | DO i = nxlg, nxrg |
---|
| 8951 | DO j = nysg, nyng |
---|
| 8952 | DO k = nzb, nzt+1 |
---|
| 8953 | rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) & |
---|
| 8954 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8955 | ENDDO |
---|
[1976] | 8956 | ENDDO |
---|
| 8957 | ENDDO |
---|
[3004] | 8958 | ENDIF |
---|
[1976] | 8959 | |
---|
| 8960 | CASE ( 'rad_sw_out' ) |
---|
[3004] | 8961 | IF ( ALLOCATED( rad_sw_out_av ) ) THEN |
---|
| 8962 | DO i = nxlg, nxrg |
---|
| 8963 | DO j = nysg, nyng |
---|
| 8964 | DO k = nzb, nzt+1 |
---|
| 8965 | rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) & |
---|
| 8966 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8967 | ENDDO |
---|
[1976] | 8968 | ENDDO |
---|
| 8969 | ENDDO |
---|
[3004] | 8970 | ENDIF |
---|
[1976] | 8971 | |
---|
| 8972 | CASE ( 'rad_sw_cs_hr' ) |
---|
[3004] | 8973 | IF ( ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
| 8974 | DO i = nxlg, nxrg |
---|
| 8975 | DO j = nysg, nyng |
---|
| 8976 | DO k = nzb, nzt+1 |
---|
| 8977 | rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) & |
---|
| 8978 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8979 | ENDDO |
---|
[1976] | 8980 | ENDDO |
---|
| 8981 | ENDDO |
---|
[3004] | 8982 | ENDIF |
---|
[1976] | 8983 | |
---|
| 8984 | CASE ( 'rad_sw_hr' ) |
---|
[3004] | 8985 | IF ( ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
| 8986 | DO i = nxlg, nxrg |
---|
| 8987 | DO j = nysg, nyng |
---|
| 8988 | DO k = nzb, nzt+1 |
---|
| 8989 | rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) & |
---|
| 8990 | / REAL( average_count_3d, KIND=wp ) |
---|
| 8991 | ENDDO |
---|
[1976] | 8992 | ENDDO |
---|
| 8993 | ENDDO |
---|
[3004] | 8994 | ENDIF |
---|
[1976] | 8995 | |
---|
[3337] | 8996 | CASE ( 'rad_mrt_sw' ) |
---|
| 8997 | IF ( ALLOCATED( mrtinsw_av ) ) THEN |
---|
| 8998 | mrtinsw_av(:) = mrtinsw_av(:) / REAL( average_count_3d, KIND=wp ) |
---|
| 8999 | ENDIF |
---|
| 9000 | |
---|
| 9001 | CASE ( 'rad_mrt_lw' ) |
---|
| 9002 | IF ( ALLOCATED( mrtinlw_av ) ) THEN |
---|
| 9003 | mrtinlw_av(:) = mrtinlw_av(:) / REAL( average_count_3d, KIND=wp ) |
---|
| 9004 | ENDIF |
---|
| 9005 | |
---|
| 9006 | CASE ( 'rad_mrt' ) |
---|
| 9007 | IF ( ALLOCATED( mrt_av ) ) THEN |
---|
| 9008 | mrt_av(:) = mrt_av(:) / REAL( average_count_3d, KIND=wp ) |
---|
| 9009 | ENDIF |
---|
| 9010 | |
---|
[1976] | 9011 | END SELECT |
---|
| 9012 | |
---|
| 9013 | ENDIF |
---|
| 9014 | |
---|
| 9015 | END SUBROUTINE radiation_3d_data_averaging |
---|
| 9016 | |
---|
| 9017 | |
---|
| 9018 | !------------------------------------------------------------------------------! |
---|
| 9019 | ! |
---|
| 9020 | ! Description: |
---|
| 9021 | ! ------------ |
---|
| 9022 | !> Subroutine defining appropriate grid for netcdf variables. |
---|
| 9023 | !> It is called out from subroutine netcdf. |
---|
| 9024 | !------------------------------------------------------------------------------! |
---|
| 9025 | SUBROUTINE radiation_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
| 9026 | |
---|
| 9027 | IMPLICIT NONE |
---|
| 9028 | |
---|
| 9029 | CHARACTER (LEN=*), INTENT(IN) :: var !< |
---|
| 9030 | LOGICAL, INTENT(OUT) :: found !< |
---|
| 9031 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< |
---|
| 9032 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< |
---|
| 9033 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< |
---|
| 9034 | |
---|
| 9035 | found = .TRUE. |
---|
| 9036 | |
---|
| 9037 | ! |
---|
| 9038 | !-- Check for the grid |
---|
| 9039 | SELECT CASE ( TRIM( var ) ) |
---|
| 9040 | |
---|
| 9041 | CASE ( 'rad_lw_cs_hr', 'rad_lw_hr', 'rad_sw_cs_hr', 'rad_sw_hr', & |
---|
| 9042 | 'rad_lw_cs_hr_xy', 'rad_lw_hr_xy', 'rad_sw_cs_hr_xy', & |
---|
| 9043 | 'rad_sw_hr_xy', 'rad_lw_cs_hr_xz', 'rad_lw_hr_xz', & |
---|
| 9044 | 'rad_sw_cs_hr_xz', 'rad_sw_hr_xz', 'rad_lw_cs_hr_yz', & |
---|
[3337] | 9045 | 'rad_lw_hr_yz', 'rad_sw_cs_hr_yz', 'rad_sw_hr_yz', & |
---|
| 9046 | 'rad_mrt', 'rad_mrt_sw', 'rad_mrt_lw' ) |
---|
[1976] | 9047 | grid_x = 'x' |
---|
| 9048 | grid_y = 'y' |
---|
| 9049 | grid_z = 'zu' |
---|
| 9050 | |
---|
| 9051 | CASE ( 'rad_lw_in', 'rad_lw_out', 'rad_sw_in', 'rad_sw_out', & |
---|
| 9052 | 'rad_lw_in_xy', 'rad_lw_out_xy', 'rad_sw_in_xy','rad_sw_out_xy', & |
---|
| 9053 | 'rad_lw_in_xz', 'rad_lw_out_xz', 'rad_sw_in_xz','rad_sw_out_xz', & |
---|
| 9054 | 'rad_lw_in_yz', 'rad_lw_out_yz', 'rad_sw_in_yz','rad_sw_out_yz' ) |
---|
| 9055 | grid_x = 'x' |
---|
| 9056 | grid_y = 'y' |
---|
| 9057 | grid_z = 'zw' |
---|
| 9058 | |
---|
| 9059 | |
---|
| 9060 | CASE DEFAULT |
---|
| 9061 | found = .FALSE. |
---|
| 9062 | grid_x = 'none' |
---|
| 9063 | grid_y = 'none' |
---|
| 9064 | grid_z = 'none' |
---|
| 9065 | |
---|
| 9066 | END SELECT |
---|
| 9067 | |
---|
| 9068 | END SUBROUTINE radiation_define_netcdf_grid |
---|
| 9069 | |
---|
| 9070 | !------------------------------------------------------------------------------! |
---|
| 9071 | ! |
---|
| 9072 | ! Description: |
---|
| 9073 | ! ------------ |
---|
[3337] | 9074 | !> Subroutine defining 2D output variables |
---|
[1976] | 9075 | !------------------------------------------------------------------------------! |
---|
| 9076 | SUBROUTINE radiation_data_output_2d( av, variable, found, grid, mode, & |
---|
[3014] | 9077 | local_pf, two_d, nzb_do, nzt_do ) |
---|
[1976] | 9078 | |
---|
| 9079 | USE indices |
---|
| 9080 | |
---|
| 9081 | USE kinds |
---|
| 9082 | |
---|
| 9083 | |
---|
| 9084 | IMPLICIT NONE |
---|
| 9085 | |
---|
| 9086 | CHARACTER (LEN=*) :: grid !< |
---|
| 9087 | CHARACTER (LEN=*) :: mode !< |
---|
| 9088 | CHARACTER (LEN=*) :: variable !< |
---|
| 9089 | |
---|
| 9090 | INTEGER(iwp) :: av !< |
---|
| 9091 | INTEGER(iwp) :: i !< |
---|
| 9092 | INTEGER(iwp) :: j !< |
---|
| 9093 | INTEGER(iwp) :: k !< |
---|
[2696] | 9094 | INTEGER(iwp) :: m !< index of surface element at grid point (j,i) |
---|
[3014] | 9095 | INTEGER(iwp) :: nzb_do !< |
---|
| 9096 | INTEGER(iwp) :: nzt_do !< |
---|
[1976] | 9097 | |
---|
| 9098 | LOGICAL :: found !< |
---|
| 9099 | LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections) |
---|
| 9100 | |
---|
[3004] | 9101 | REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute |
---|
| 9102 | |
---|
[3014] | 9103 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
[1976] | 9104 | |
---|
| 9105 | found = .TRUE. |
---|
| 9106 | |
---|
| 9107 | SELECT CASE ( TRIM( variable ) ) |
---|
| 9108 | |
---|
| 9109 | CASE ( 'rad_net*_xy' ) ! 2d-array |
---|
| 9110 | IF ( av == 0 ) THEN |
---|
[2512] | 9111 | DO i = nxl, nxr |
---|
| 9112 | DO j = nys, nyn |
---|
[2696] | 9113 | ! |
---|
| 9114 | !-- Obtain rad_net from its respective surface type |
---|
| 9115 | !-- Natural-type surfaces |
---|
| 9116 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 9117 | surf_lsm_h%end_index(j,i) |
---|
| 9118 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_net(m) |
---|
| 9119 | ENDDO |
---|
| 9120 | ! |
---|
| 9121 | !-- Urban-type surfaces |
---|
| 9122 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 9123 | surf_usm_h%end_index(j,i) |
---|
| 9124 | local_pf(i,j,nzb+1) = surf_usm_h%rad_net(m) |
---|
| 9125 | ENDDO |
---|
[1976] | 9126 | ENDDO |
---|
| 9127 | ENDDO |
---|
| 9128 | ELSE |
---|
[3116] | 9129 | IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN |
---|
| 9130 | ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 9131 | rad_net_av = REAL( fill_value, KIND = wp ) |
---|
| 9132 | ENDIF |
---|
[2512] | 9133 | DO i = nxl, nxr |
---|
| 9134 | DO j = nys, nyn |
---|
[1976] | 9135 | local_pf(i,j,nzb+1) = rad_net_av(j,i) |
---|
| 9136 | ENDDO |
---|
| 9137 | ENDDO |
---|
| 9138 | ENDIF |
---|
| 9139 | two_d = .TRUE. |
---|
| 9140 | grid = 'zu1' |
---|
[3116] | 9141 | |
---|
| 9142 | CASE ( 'rad_lw_in*_xy' ) ! 2d-array |
---|
| 9143 | IF ( av == 0 ) THEN |
---|
| 9144 | DO i = nxl, nxr |
---|
| 9145 | DO j = nys, nyn |
---|
| 9146 | ! |
---|
| 9147 | !-- Obtain rad_net from its respective surface type |
---|
| 9148 | !-- Natural-type surfaces |
---|
| 9149 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 9150 | surf_lsm_h%end_index(j,i) |
---|
| 9151 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_lw_in(m) |
---|
| 9152 | ENDDO |
---|
| 9153 | ! |
---|
| 9154 | !-- Urban-type surfaces |
---|
| 9155 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 9156 | surf_usm_h%end_index(j,i) |
---|
| 9157 | local_pf(i,j,nzb+1) = surf_usm_h%rad_lw_in(m) |
---|
| 9158 | ENDDO |
---|
| 9159 | ENDDO |
---|
| 9160 | ENDDO |
---|
| 9161 | ELSE |
---|
| 9162 | IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
| 9163 | ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 9164 | rad_lw_in_xy_av = REAL( fill_value, KIND = wp ) |
---|
| 9165 | ENDIF |
---|
| 9166 | DO i = nxl, nxr |
---|
| 9167 | DO j = nys, nyn |
---|
| 9168 | local_pf(i,j,nzb+1) = rad_lw_in_xy_av(j,i) |
---|
| 9169 | ENDDO |
---|
| 9170 | ENDDO |
---|
| 9171 | ENDIF |
---|
| 9172 | two_d = .TRUE. |
---|
| 9173 | grid = 'zu1' |
---|
| 9174 | |
---|
| 9175 | CASE ( 'rad_lw_out*_xy' ) ! 2d-array |
---|
| 9176 | IF ( av == 0 ) THEN |
---|
| 9177 | DO i = nxl, nxr |
---|
| 9178 | DO j = nys, nyn |
---|
| 9179 | ! |
---|
| 9180 | !-- Obtain rad_net from its respective surface type |
---|
| 9181 | !-- Natural-type surfaces |
---|
| 9182 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 9183 | surf_lsm_h%end_index(j,i) |
---|
| 9184 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_lw_out(m) |
---|
| 9185 | ENDDO |
---|
| 9186 | ! |
---|
| 9187 | !-- Urban-type surfaces |
---|
| 9188 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 9189 | surf_usm_h%end_index(j,i) |
---|
| 9190 | local_pf(i,j,nzb+1) = surf_usm_h%rad_lw_out(m) |
---|
| 9191 | ENDDO |
---|
| 9192 | ENDDO |
---|
| 9193 | ENDDO |
---|
| 9194 | ELSE |
---|
| 9195 | IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
| 9196 | ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 9197 | rad_lw_out_xy_av = REAL( fill_value, KIND = wp ) |
---|
| 9198 | ENDIF |
---|
| 9199 | DO i = nxl, nxr |
---|
| 9200 | DO j = nys, nyn |
---|
| 9201 | local_pf(i,j,nzb+1) = rad_lw_out_xy_av(j,i) |
---|
| 9202 | ENDDO |
---|
| 9203 | ENDDO |
---|
| 9204 | ENDIF |
---|
| 9205 | two_d = .TRUE. |
---|
| 9206 | grid = 'zu1' |
---|
| 9207 | |
---|
| 9208 | CASE ( 'rad_sw_in*_xy' ) ! 2d-array |
---|
| 9209 | IF ( av == 0 ) THEN |
---|
| 9210 | DO i = nxl, nxr |
---|
| 9211 | DO j = nys, nyn |
---|
| 9212 | ! |
---|
| 9213 | !-- Obtain rad_net from its respective surface type |
---|
| 9214 | !-- Natural-type surfaces |
---|
| 9215 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 9216 | surf_lsm_h%end_index(j,i) |
---|
| 9217 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_sw_in(m) |
---|
| 9218 | ENDDO |
---|
| 9219 | ! |
---|
| 9220 | !-- Urban-type surfaces |
---|
| 9221 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 9222 | surf_usm_h%end_index(j,i) |
---|
| 9223 | local_pf(i,j,nzb+1) = surf_usm_h%rad_sw_in(m) |
---|
| 9224 | ENDDO |
---|
| 9225 | ENDDO |
---|
| 9226 | ENDDO |
---|
| 9227 | ELSE |
---|
| 9228 | IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
| 9229 | ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 9230 | rad_sw_in_xy_av = REAL( fill_value, KIND = wp ) |
---|
| 9231 | ENDIF |
---|
| 9232 | DO i = nxl, nxr |
---|
| 9233 | DO j = nys, nyn |
---|
| 9234 | local_pf(i,j,nzb+1) = rad_sw_in_xy_av(j,i) |
---|
| 9235 | ENDDO |
---|
| 9236 | ENDDO |
---|
| 9237 | ENDIF |
---|
| 9238 | two_d = .TRUE. |
---|
| 9239 | grid = 'zu1' |
---|
| 9240 | |
---|
| 9241 | CASE ( 'rad_sw_out*_xy' ) ! 2d-array |
---|
| 9242 | IF ( av == 0 ) THEN |
---|
| 9243 | DO i = nxl, nxr |
---|
| 9244 | DO j = nys, nyn |
---|
| 9245 | ! |
---|
| 9246 | !-- Obtain rad_net from its respective surface type |
---|
| 9247 | !-- Natural-type surfaces |
---|
| 9248 | DO m = surf_lsm_h%start_index(j,i), & |
---|
| 9249 | surf_lsm_h%end_index(j,i) |
---|
| 9250 | local_pf(i,j,nzb+1) = surf_lsm_h%rad_sw_out(m) |
---|
| 9251 | ENDDO |
---|
| 9252 | ! |
---|
| 9253 | !-- Urban-type surfaces |
---|
| 9254 | DO m = surf_usm_h%start_index(j,i), & |
---|
| 9255 | surf_usm_h%end_index(j,i) |
---|
| 9256 | local_pf(i,j,nzb+1) = surf_usm_h%rad_sw_out(m) |
---|
| 9257 | ENDDO |
---|
| 9258 | ENDDO |
---|
| 9259 | ENDDO |
---|
| 9260 | ELSE |
---|
| 9261 | IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
| 9262 | ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 9263 | rad_sw_out_xy_av = REAL( fill_value, KIND = wp ) |
---|
| 9264 | ENDIF |
---|
| 9265 | DO i = nxl, nxr |
---|
| 9266 | DO j = nys, nyn |
---|
| 9267 | local_pf(i,j,nzb+1) = rad_sw_out_xy_av(j,i) |
---|
| 9268 | ENDDO |
---|
| 9269 | ENDDO |
---|
| 9270 | ENDIF |
---|
| 9271 | two_d = .TRUE. |
---|
| 9272 | grid = 'zu1' |
---|
| 9273 | |
---|
[1976] | 9274 | CASE ( 'rad_lw_in_xy', 'rad_lw_in_xz', 'rad_lw_in_yz' ) |
---|
| 9275 | IF ( av == 0 ) THEN |
---|
[2512] | 9276 | DO i = nxl, nxr |
---|
| 9277 | DO j = nys, nyn |
---|
[3014] | 9278 | DO k = nzb_do, nzt_do |
---|
[1976] | 9279 | local_pf(i,j,k) = rad_lw_in(k,j,i) |
---|
| 9280 | ENDDO |
---|
| 9281 | ENDDO |
---|
| 9282 | ENDDO |
---|
| 9283 | ELSE |
---|
[3004] | 9284 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 9285 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9286 | rad_lw_in_av = REAL( fill_value, KIND = wp ) |
---|
| 9287 | ENDIF |
---|
[2512] | 9288 | DO i = nxl, nxr |
---|
| 9289 | DO j = nys, nyn |
---|
[3014] | 9290 | DO k = nzb_do, nzt_do |
---|
[1976] | 9291 | local_pf(i,j,k) = rad_lw_in_av(k,j,i) |
---|
| 9292 | ENDDO |
---|
| 9293 | ENDDO |
---|
| 9294 | ENDDO |
---|
| 9295 | ENDIF |
---|
| 9296 | IF ( mode == 'xy' ) grid = 'zu' |
---|
| 9297 | |
---|
| 9298 | CASE ( 'rad_lw_out_xy', 'rad_lw_out_xz', 'rad_lw_out_yz' ) |
---|
| 9299 | IF ( av == 0 ) THEN |
---|
[2512] | 9300 | DO i = nxl, nxr |
---|
| 9301 | DO j = nys, nyn |
---|
[3014] | 9302 | DO k = nzb_do, nzt_do |
---|
[1976] | 9303 | local_pf(i,j,k) = rad_lw_out(k,j,i) |
---|
| 9304 | ENDDO |
---|
| 9305 | ENDDO |
---|
| 9306 | ENDDO |
---|
| 9307 | ELSE |
---|
[3004] | 9308 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
| 9309 | ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9310 | rad_lw_out_av = REAL( fill_value, KIND = wp ) |
---|
| 9311 | ENDIF |
---|
[2512] | 9312 | DO i = nxl, nxr |
---|
| 9313 | DO j = nys, nyn |
---|
[3014] | 9314 | DO k = nzb_do, nzt_do |
---|
[1976] | 9315 | local_pf(i,j,k) = rad_lw_out_av(k,j,i) |
---|
| 9316 | ENDDO |
---|
| 9317 | ENDDO |
---|
| 9318 | ENDDO |
---|
| 9319 | ENDIF |
---|
| 9320 | IF ( mode == 'xy' ) grid = 'zu' |
---|
| 9321 | |
---|
| 9322 | CASE ( 'rad_lw_cs_hr_xy', 'rad_lw_cs_hr_xz', 'rad_lw_cs_hr_yz' ) |
---|
| 9323 | IF ( av == 0 ) THEN |
---|
[2512] | 9324 | DO i = nxl, nxr |
---|
| 9325 | DO j = nys, nyn |
---|
[3014] | 9326 | DO k = nzb_do, nzt_do |
---|
[1976] | 9327 | local_pf(i,j,k) = rad_lw_cs_hr(k,j,i) |
---|
| 9328 | ENDDO |
---|
| 9329 | ENDDO |
---|
| 9330 | ENDDO |
---|
| 9331 | ELSE |
---|
[3004] | 9332 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
| 9333 | ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9334 | rad_lw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9335 | ENDIF |
---|
[2512] | 9336 | DO i = nxl, nxr |
---|
| 9337 | DO j = nys, nyn |
---|
[3014] | 9338 | DO k = nzb_do, nzt_do |
---|
[1976] | 9339 | local_pf(i,j,k) = rad_lw_cs_hr_av(k,j,i) |
---|
| 9340 | ENDDO |
---|
| 9341 | ENDDO |
---|
| 9342 | ENDDO |
---|
| 9343 | ENDIF |
---|
| 9344 | IF ( mode == 'xy' ) grid = 'zw' |
---|
| 9345 | |
---|
| 9346 | CASE ( 'rad_lw_hr_xy', 'rad_lw_hr_xz', 'rad_lw_hr_yz' ) |
---|
| 9347 | IF ( av == 0 ) THEN |
---|
[2512] | 9348 | DO i = nxl, nxr |
---|
| 9349 | DO j = nys, nyn |
---|
[3014] | 9350 | DO k = nzb_do, nzt_do |
---|
[1976] | 9351 | local_pf(i,j,k) = rad_lw_hr(k,j,i) |
---|
| 9352 | ENDDO |
---|
| 9353 | ENDDO |
---|
| 9354 | ENDDO |
---|
| 9355 | ELSE |
---|
[3004] | 9356 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
| 9357 | ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9358 | rad_lw_hr_av= REAL( fill_value, KIND = wp ) |
---|
| 9359 | ENDIF |
---|
[2512] | 9360 | DO i = nxl, nxr |
---|
| 9361 | DO j = nys, nyn |
---|
[3014] | 9362 | DO k = nzb_do, nzt_do |
---|
[1976] | 9363 | local_pf(i,j,k) = rad_lw_hr_av(k,j,i) |
---|
| 9364 | ENDDO |
---|
| 9365 | ENDDO |
---|
| 9366 | ENDDO |
---|
| 9367 | ENDIF |
---|
| 9368 | IF ( mode == 'xy' ) grid = 'zw' |
---|
| 9369 | |
---|
| 9370 | CASE ( 'rad_sw_in_xy', 'rad_sw_in_xz', 'rad_sw_in_yz' ) |
---|
| 9371 | IF ( av == 0 ) THEN |
---|
[2512] | 9372 | DO i = nxl, nxr |
---|
| 9373 | DO j = nys, nyn |
---|
[3014] | 9374 | DO k = nzb_do, nzt_do |
---|
[1976] | 9375 | local_pf(i,j,k) = rad_sw_in(k,j,i) |
---|
| 9376 | ENDDO |
---|
| 9377 | ENDDO |
---|
| 9378 | ENDDO |
---|
| 9379 | ELSE |
---|
[3004] | 9380 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
| 9381 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9382 | rad_sw_in_av = REAL( fill_value, KIND = wp ) |
---|
| 9383 | ENDIF |
---|
[2512] | 9384 | DO i = nxl, nxr |
---|
| 9385 | DO j = nys, nyn |
---|
[3014] | 9386 | DO k = nzb_do, nzt_do |
---|
[1976] | 9387 | local_pf(i,j,k) = rad_sw_in_av(k,j,i) |
---|
| 9388 | ENDDO |
---|
| 9389 | ENDDO |
---|
| 9390 | ENDDO |
---|
| 9391 | ENDIF |
---|
| 9392 | IF ( mode == 'xy' ) grid = 'zu' |
---|
| 9393 | |
---|
| 9394 | CASE ( 'rad_sw_out_xy', 'rad_sw_out_xz', 'rad_sw_out_yz' ) |
---|
| 9395 | IF ( av == 0 ) THEN |
---|
[2512] | 9396 | DO i = nxl, nxr |
---|
| 9397 | DO j = nys, nyn |
---|
[3014] | 9398 | DO k = nzb_do, nzt_do |
---|
[1976] | 9399 | local_pf(i,j,k) = rad_sw_out(k,j,i) |
---|
| 9400 | ENDDO |
---|
| 9401 | ENDDO |
---|
| 9402 | ENDDO |
---|
| 9403 | ELSE |
---|
[3004] | 9404 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
| 9405 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9406 | rad_sw_out_av = REAL( fill_value, KIND = wp ) |
---|
| 9407 | ENDIF |
---|
[2512] | 9408 | DO i = nxl, nxr |
---|
| 9409 | DO j = nys, nyn |
---|
[1976] | 9410 | DO k = nzb, nzt+1 |
---|
| 9411 | local_pf(i,j,k) = rad_sw_out_av(k,j,i) |
---|
| 9412 | ENDDO |
---|
| 9413 | ENDDO |
---|
| 9414 | ENDDO |
---|
| 9415 | ENDIF |
---|
| 9416 | IF ( mode == 'xy' ) grid = 'zu' |
---|
| 9417 | |
---|
| 9418 | CASE ( 'rad_sw_cs_hr_xy', 'rad_sw_cs_hr_xz', 'rad_sw_cs_hr_yz' ) |
---|
| 9419 | IF ( av == 0 ) THEN |
---|
[2512] | 9420 | DO i = nxl, nxr |
---|
| 9421 | DO j = nys, nyn |
---|
[3014] | 9422 | DO k = nzb_do, nzt_do |
---|
[1976] | 9423 | local_pf(i,j,k) = rad_sw_cs_hr(k,j,i) |
---|
| 9424 | ENDDO |
---|
| 9425 | ENDDO |
---|
| 9426 | ENDDO |
---|
| 9427 | ELSE |
---|
[3004] | 9428 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
| 9429 | ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9430 | rad_sw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9431 | ENDIF |
---|
[2512] | 9432 | DO i = nxl, nxr |
---|
| 9433 | DO j = nys, nyn |
---|
[3014] | 9434 | DO k = nzb_do, nzt_do |
---|
[1976] | 9435 | local_pf(i,j,k) = rad_sw_cs_hr_av(k,j,i) |
---|
| 9436 | ENDDO |
---|
| 9437 | ENDDO |
---|
| 9438 | ENDDO |
---|
| 9439 | ENDIF |
---|
| 9440 | IF ( mode == 'xy' ) grid = 'zw' |
---|
| 9441 | |
---|
| 9442 | CASE ( 'rad_sw_hr_xy', 'rad_sw_hr_xz', 'rad_sw_hr_yz' ) |
---|
| 9443 | IF ( av == 0 ) THEN |
---|
[2512] | 9444 | DO i = nxl, nxr |
---|
| 9445 | DO j = nys, nyn |
---|
[3014] | 9446 | DO k = nzb_do, nzt_do |
---|
[1976] | 9447 | local_pf(i,j,k) = rad_sw_hr(k,j,i) |
---|
| 9448 | ENDDO |
---|
| 9449 | ENDDO |
---|
| 9450 | ENDDO |
---|
| 9451 | ELSE |
---|
[3004] | 9452 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
| 9453 | ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9454 | rad_sw_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9455 | ENDIF |
---|
[2512] | 9456 | DO i = nxl, nxr |
---|
| 9457 | DO j = nys, nyn |
---|
[3014] | 9458 | DO k = nzb_do, nzt_do |
---|
[1976] | 9459 | local_pf(i,j,k) = rad_sw_hr_av(k,j,i) |
---|
| 9460 | ENDDO |
---|
| 9461 | ENDDO |
---|
| 9462 | ENDDO |
---|
| 9463 | ENDIF |
---|
| 9464 | IF ( mode == 'xy' ) grid = 'zw' |
---|
| 9465 | |
---|
| 9466 | CASE DEFAULT |
---|
| 9467 | found = .FALSE. |
---|
| 9468 | grid = 'none' |
---|
| 9469 | |
---|
| 9470 | END SELECT |
---|
| 9471 | |
---|
| 9472 | END SUBROUTINE radiation_data_output_2d |
---|
| 9473 | |
---|
| 9474 | |
---|
| 9475 | !------------------------------------------------------------------------------! |
---|
| 9476 | ! |
---|
| 9477 | ! Description: |
---|
| 9478 | ! ------------ |
---|
| 9479 | !> Subroutine defining 3D output variables |
---|
| 9480 | !------------------------------------------------------------------------------! |
---|
[3014] | 9481 | SUBROUTINE radiation_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) |
---|
[1976] | 9482 | |
---|
| 9483 | |
---|
| 9484 | USE indices |
---|
| 9485 | |
---|
| 9486 | USE kinds |
---|
| 9487 | |
---|
| 9488 | |
---|
| 9489 | IMPLICIT NONE |
---|
| 9490 | |
---|
| 9491 | CHARACTER (LEN=*) :: variable !< |
---|
| 9492 | |
---|
[3337] | 9493 | INTEGER(iwp) :: av !< |
---|
| 9494 | INTEGER(iwp) :: i, j, k, l !< |
---|
| 9495 | INTEGER(iwp) :: nzb_do !< |
---|
| 9496 | INTEGER(iwp) :: nzt_do !< |
---|
[1976] | 9497 | |
---|
[3337] | 9498 | LOGICAL :: found !< |
---|
[1976] | 9499 | |
---|
[3337] | 9500 | REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute |
---|
[3004] | 9501 | |
---|
[3337] | 9502 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< |
---|
[1976] | 9503 | |
---|
| 9504 | found = .TRUE. |
---|
| 9505 | |
---|
| 9506 | |
---|
| 9507 | SELECT CASE ( TRIM( variable ) ) |
---|
| 9508 | |
---|
| 9509 | CASE ( 'rad_sw_in' ) |
---|
| 9510 | IF ( av == 0 ) THEN |
---|
[2512] | 9511 | DO i = nxl, nxr |
---|
| 9512 | DO j = nys, nyn |
---|
[3014] | 9513 | DO k = nzb_do, nzt_do |
---|
[1976] | 9514 | local_pf(i,j,k) = rad_sw_in(k,j,i) |
---|
| 9515 | ENDDO |
---|
| 9516 | ENDDO |
---|
| 9517 | ENDDO |
---|
| 9518 | ELSE |
---|
[3004] | 9519 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
| 9520 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9521 | rad_sw_in_av = REAL( fill_value, KIND = wp ) |
---|
| 9522 | ENDIF |
---|
[2512] | 9523 | DO i = nxl, nxr |
---|
| 9524 | DO j = nys, nyn |
---|
[3014] | 9525 | DO k = nzb_do, nzt_do |
---|
[1976] | 9526 | local_pf(i,j,k) = rad_sw_in_av(k,j,i) |
---|
| 9527 | ENDDO |
---|
| 9528 | ENDDO |
---|
| 9529 | ENDDO |
---|
| 9530 | ENDIF |
---|
| 9531 | |
---|
| 9532 | CASE ( 'rad_sw_out' ) |
---|
| 9533 | IF ( av == 0 ) THEN |
---|
[2512] | 9534 | DO i = nxl, nxr |
---|
| 9535 | DO j = nys, nyn |
---|
[3014] | 9536 | DO k = nzb_do, nzt_do |
---|
[1976] | 9537 | local_pf(i,j,k) = rad_sw_out(k,j,i) |
---|
| 9538 | ENDDO |
---|
| 9539 | ENDDO |
---|
| 9540 | ENDDO |
---|
| 9541 | ELSE |
---|
[3004] | 9542 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
| 9543 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9544 | rad_sw_out_av = REAL( fill_value, KIND = wp ) |
---|
| 9545 | ENDIF |
---|
[2512] | 9546 | DO i = nxl, nxr |
---|
| 9547 | DO j = nys, nyn |
---|
[3014] | 9548 | DO k = nzb_do, nzt_do |
---|
[1976] | 9549 | local_pf(i,j,k) = rad_sw_out_av(k,j,i) |
---|
| 9550 | ENDDO |
---|
| 9551 | ENDDO |
---|
| 9552 | ENDDO |
---|
| 9553 | ENDIF |
---|
| 9554 | |
---|
| 9555 | CASE ( 'rad_sw_cs_hr' ) |
---|
| 9556 | IF ( av == 0 ) THEN |
---|
[2512] | 9557 | DO i = nxl, nxr |
---|
| 9558 | DO j = nys, nyn |
---|
[3014] | 9559 | DO k = nzb_do, nzt_do |
---|
[1976] | 9560 | local_pf(i,j,k) = rad_sw_cs_hr(k,j,i) |
---|
| 9561 | ENDDO |
---|
| 9562 | ENDDO |
---|
| 9563 | ENDDO |
---|
| 9564 | ELSE |
---|
[3004] | 9565 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
| 9566 | ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9567 | rad_sw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9568 | ENDIF |
---|
[2512] | 9569 | DO i = nxl, nxr |
---|
| 9570 | DO j = nys, nyn |
---|
[3014] | 9571 | DO k = nzb_do, nzt_do |
---|
[1976] | 9572 | local_pf(i,j,k) = rad_sw_cs_hr_av(k,j,i) |
---|
| 9573 | ENDDO |
---|
| 9574 | ENDDO |
---|
| 9575 | ENDDO |
---|
| 9576 | ENDIF |
---|
| 9577 | |
---|
| 9578 | CASE ( 'rad_sw_hr' ) |
---|
| 9579 | IF ( av == 0 ) THEN |
---|
[2512] | 9580 | DO i = nxl, nxr |
---|
| 9581 | DO j = nys, nyn |
---|
[3014] | 9582 | DO k = nzb_do, nzt_do |
---|
[1976] | 9583 | local_pf(i,j,k) = rad_sw_hr(k,j,i) |
---|
| 9584 | ENDDO |
---|
| 9585 | ENDDO |
---|
| 9586 | ENDDO |
---|
| 9587 | ELSE |
---|
[3004] | 9588 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
| 9589 | ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9590 | rad_sw_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9591 | ENDIF |
---|
[2512] | 9592 | DO i = nxl, nxr |
---|
| 9593 | DO j = nys, nyn |
---|
[3014] | 9594 | DO k = nzb_do, nzt_do |
---|
[1976] | 9595 | local_pf(i,j,k) = rad_sw_hr_av(k,j,i) |
---|
| 9596 | ENDDO |
---|
| 9597 | ENDDO |
---|
| 9598 | ENDDO |
---|
| 9599 | ENDIF |
---|
| 9600 | |
---|
| 9601 | CASE ( 'rad_lw_in' ) |
---|
| 9602 | IF ( av == 0 ) THEN |
---|
[2512] | 9603 | DO i = nxl, nxr |
---|
| 9604 | DO j = nys, nyn |
---|
[3014] | 9605 | DO k = nzb_do, nzt_do |
---|
[1976] | 9606 | local_pf(i,j,k) = rad_lw_in(k,j,i) |
---|
| 9607 | ENDDO |
---|
| 9608 | ENDDO |
---|
| 9609 | ENDDO |
---|
| 9610 | ELSE |
---|
[3004] | 9611 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 9612 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9613 | rad_lw_in_av = REAL( fill_value, KIND = wp ) |
---|
| 9614 | ENDIF |
---|
[2512] | 9615 | DO i = nxl, nxr |
---|
| 9616 | DO j = nys, nyn |
---|
[3014] | 9617 | DO k = nzb_do, nzt_do |
---|
[1976] | 9618 | local_pf(i,j,k) = rad_lw_in_av(k,j,i) |
---|
| 9619 | ENDDO |
---|
| 9620 | ENDDO |
---|
| 9621 | ENDDO |
---|
| 9622 | ENDIF |
---|
| 9623 | |
---|
| 9624 | CASE ( 'rad_lw_out' ) |
---|
| 9625 | IF ( av == 0 ) THEN |
---|
[2512] | 9626 | DO i = nxl, nxr |
---|
| 9627 | DO j = nys, nyn |
---|
[3014] | 9628 | DO k = nzb_do, nzt_do |
---|
[1976] | 9629 | local_pf(i,j,k) = rad_lw_out(k,j,i) |
---|
| 9630 | ENDDO |
---|
| 9631 | ENDDO |
---|
| 9632 | ENDDO |
---|
| 9633 | ELSE |
---|
[3004] | 9634 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
| 9635 | ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9636 | rad_lw_out_av = REAL( fill_value, KIND = wp ) |
---|
| 9637 | ENDIF |
---|
[2512] | 9638 | DO i = nxl, nxr |
---|
| 9639 | DO j = nys, nyn |
---|
[3014] | 9640 | DO k = nzb_do, nzt_do |
---|
[1976] | 9641 | local_pf(i,j,k) = rad_lw_out_av(k,j,i) |
---|
| 9642 | ENDDO |
---|
| 9643 | ENDDO |
---|
| 9644 | ENDDO |
---|
| 9645 | ENDIF |
---|
| 9646 | |
---|
| 9647 | CASE ( 'rad_lw_cs_hr' ) |
---|
| 9648 | IF ( av == 0 ) THEN |
---|
[2512] | 9649 | DO i = nxl, nxr |
---|
| 9650 | DO j = nys, nyn |
---|
[3014] | 9651 | DO k = nzb_do, nzt_do |
---|
[1976] | 9652 | local_pf(i,j,k) = rad_lw_cs_hr(k,j,i) |
---|
| 9653 | ENDDO |
---|
| 9654 | ENDDO |
---|
| 9655 | ENDDO |
---|
| 9656 | ELSE |
---|
[3004] | 9657 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
| 9658 | ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9659 | rad_lw_cs_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9660 | ENDIF |
---|
[2512] | 9661 | DO i = nxl, nxr |
---|
| 9662 | DO j = nys, nyn |
---|
[3014] | 9663 | DO k = nzb_do, nzt_do |
---|
[1976] | 9664 | local_pf(i,j,k) = rad_lw_cs_hr_av(k,j,i) |
---|
| 9665 | ENDDO |
---|
| 9666 | ENDDO |
---|
| 9667 | ENDDO |
---|
| 9668 | ENDIF |
---|
| 9669 | |
---|
| 9670 | CASE ( 'rad_lw_hr' ) |
---|
| 9671 | IF ( av == 0 ) THEN |
---|
[2512] | 9672 | DO i = nxl, nxr |
---|
| 9673 | DO j = nys, nyn |
---|
[3014] | 9674 | DO k = nzb_do, nzt_do |
---|
[1976] | 9675 | local_pf(i,j,k) = rad_lw_hr(k,j,i) |
---|
| 9676 | ENDDO |
---|
| 9677 | ENDDO |
---|
| 9678 | ENDDO |
---|
| 9679 | ELSE |
---|
[3004] | 9680 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
| 9681 | ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 9682 | rad_lw_hr_av = REAL( fill_value, KIND = wp ) |
---|
| 9683 | ENDIF |
---|
[2512] | 9684 | DO i = nxl, nxr |
---|
| 9685 | DO j = nys, nyn |
---|
[3014] | 9686 | DO k = nzb_do, nzt_do |
---|
[1976] | 9687 | local_pf(i,j,k) = rad_lw_hr_av(k,j,i) |
---|
| 9688 | ENDDO |
---|
| 9689 | ENDDO |
---|
| 9690 | ENDDO |
---|
| 9691 | ENDIF |
---|
| 9692 | |
---|
[3337] | 9693 | CASE ( 'rad_mrt_sw' ) |
---|
| 9694 | local_pf = REAL( fill_value, KIND = wp ) |
---|
| 9695 | IF ( av == 0 ) THEN |
---|
| 9696 | DO l = 1, nmrtbl |
---|
| 9697 | i = mrtbl(ix,l) |
---|
| 9698 | j = mrtbl(iy,l) |
---|
| 9699 | k = mrtbl(iz,l) |
---|
| 9700 | local_pf(i,j,k) = mrtinsw(l) |
---|
| 9701 | ENDDO |
---|
| 9702 | ELSE |
---|
| 9703 | IF ( ALLOCATED( mrtinsw_av ) ) THEN |
---|
| 9704 | DO l = 1, nmrtbl |
---|
| 9705 | i = mrtbl(ix,l) |
---|
| 9706 | j = mrtbl(iy,l) |
---|
| 9707 | k = mrtbl(iz,l) |
---|
| 9708 | local_pf(i,j,k) = mrtinsw_av(l) |
---|
| 9709 | ENDDO |
---|
| 9710 | ENDIF |
---|
| 9711 | ENDIF |
---|
| 9712 | |
---|
| 9713 | CASE ( 'rad_mrt_lw' ) |
---|
| 9714 | local_pf = REAL( fill_value, KIND = wp ) |
---|
| 9715 | IF ( av == 0 ) THEN |
---|
| 9716 | DO l = 1, nmrtbl |
---|
| 9717 | i = mrtbl(ix,l) |
---|
| 9718 | j = mrtbl(iy,l) |
---|
| 9719 | k = mrtbl(iz,l) |
---|
| 9720 | local_pf(i,j,k) = mrtinlw(l) |
---|
| 9721 | ENDDO |
---|
| 9722 | ELSE |
---|
| 9723 | IF ( ALLOCATED( mrtinlw_av ) ) THEN |
---|
| 9724 | DO l = 1, nmrtbl |
---|
| 9725 | i = mrtbl(ix,l) |
---|
| 9726 | j = mrtbl(iy,l) |
---|
| 9727 | k = mrtbl(iz,l) |
---|
| 9728 | local_pf(i,j,k) = mrtinlw_av(l) |
---|
| 9729 | ENDDO |
---|
| 9730 | ENDIF |
---|
| 9731 | ENDIF |
---|
| 9732 | |
---|
| 9733 | CASE ( 'rad_mrt' ) |
---|
| 9734 | local_pf = REAL( fill_value, KIND = wp ) |
---|
| 9735 | IF ( av == 0 ) THEN |
---|
| 9736 | DO l = 1, nmrtbl |
---|
| 9737 | i = mrtbl(ix,l) |
---|
| 9738 | j = mrtbl(iy,l) |
---|
| 9739 | k = mrtbl(iz,l) |
---|
| 9740 | local_pf(i,j,k) = mrt(l) |
---|
| 9741 | ENDDO |
---|
| 9742 | ELSE |
---|
| 9743 | IF ( ALLOCATED( mrt_av ) ) THEN |
---|
| 9744 | DO l = 1, nmrtbl |
---|
| 9745 | i = mrtbl(ix,l) |
---|
| 9746 | j = mrtbl(iy,l) |
---|
| 9747 | k = mrtbl(iz,l) |
---|
| 9748 | local_pf(i,j,k) = mrt_av(l) |
---|
| 9749 | ENDDO |
---|
| 9750 | ENDIF |
---|
| 9751 | ENDIF |
---|
| 9752 | |
---|
[1976] | 9753 | CASE DEFAULT |
---|
| 9754 | found = .FALSE. |
---|
| 9755 | |
---|
| 9756 | END SELECT |
---|
| 9757 | |
---|
| 9758 | |
---|
| 9759 | END SUBROUTINE radiation_data_output_3d |
---|
| 9760 | |
---|
| 9761 | !------------------------------------------------------------------------------! |
---|
| 9762 | ! |
---|
| 9763 | ! Description: |
---|
| 9764 | ! ------------ |
---|
| 9765 | !> Subroutine defining masked data output |
---|
| 9766 | !------------------------------------------------------------------------------! |
---|
| 9767 | SUBROUTINE radiation_data_output_mask( av, variable, found, local_pf ) |
---|
| 9768 | |
---|
| 9769 | USE control_parameters |
---|
| 9770 | |
---|
| 9771 | USE indices |
---|
| 9772 | |
---|
| 9773 | USE kinds |
---|
| 9774 | |
---|
| 9775 | |
---|
| 9776 | IMPLICIT NONE |
---|
| 9777 | |
---|
| 9778 | CHARACTER (LEN=*) :: variable !< |
---|
| 9779 | |
---|
[3435] | 9780 | CHARACTER(LEN=5) :: grid !< flag to distinquish between staggered grids |
---|
[1976] | 9781 | |
---|
[3435] | 9782 | INTEGER(iwp) :: av !< |
---|
| 9783 | INTEGER(iwp) :: i !< |
---|
| 9784 | INTEGER(iwp) :: j !< |
---|
| 9785 | INTEGER(iwp) :: k !< |
---|
| 9786 | INTEGER(iwp) :: topo_top_ind !< k index of highest horizontal surface |
---|
[1976] | 9787 | |
---|
[3435] | 9788 | LOGICAL :: found !< true if output array was found |
---|
| 9789 | LOGICAL :: resorted !< true if array is resorted |
---|
| 9790 | |
---|
| 9791 | |
---|
[1976] | 9792 | REAL(wp), & |
---|
| 9793 | DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: & |
---|
| 9794 | local_pf !< |
---|
| 9795 | |
---|
[3435] | 9796 | REAL(wp), DIMENSION(:,:,:), POINTER :: to_be_resorted !< points to array which needs to be resorted for output |
---|
[1976] | 9797 | |
---|
| 9798 | |
---|
[3435] | 9799 | found = .TRUE. |
---|
| 9800 | grid = 's' |
---|
| 9801 | resorted = .FALSE. |
---|
| 9802 | |
---|
[1976] | 9803 | SELECT CASE ( TRIM( variable ) ) |
---|
| 9804 | |
---|
| 9805 | |
---|
| 9806 | CASE ( 'rad_lw_in' ) |
---|
| 9807 | IF ( av == 0 ) THEN |
---|
[3435] | 9808 | to_be_resorted => rad_lw_in |
---|
[1976] | 9809 | ELSE |
---|
[3435] | 9810 | to_be_resorted => rad_lw_in_av |
---|
[1976] | 9811 | ENDIF |
---|
| 9812 | |
---|
| 9813 | CASE ( 'rad_lw_out' ) |
---|
| 9814 | IF ( av == 0 ) THEN |
---|
[3435] | 9815 | to_be_resorted => rad_lw_out |
---|
[1976] | 9816 | ELSE |
---|
[3435] | 9817 | to_be_resorted => rad_lw_out_av |
---|
[1976] | 9818 | ENDIF |
---|
| 9819 | |
---|
| 9820 | CASE ( 'rad_lw_cs_hr' ) |
---|
| 9821 | IF ( av == 0 ) THEN |
---|
[3435] | 9822 | to_be_resorted => rad_lw_cs_hr |
---|
[1976] | 9823 | ELSE |
---|
[3435] | 9824 | to_be_resorted => rad_lw_cs_hr_av |
---|
[1976] | 9825 | ENDIF |
---|
| 9826 | |
---|
| 9827 | CASE ( 'rad_lw_hr' ) |
---|
| 9828 | IF ( av == 0 ) THEN |
---|
[3435] | 9829 | to_be_resorted => rad_lw_hr |
---|
[1976] | 9830 | ELSE |
---|
[3435] | 9831 | to_be_resorted => rad_lw_hr_av |
---|
[1976] | 9832 | ENDIF |
---|
| 9833 | |
---|
| 9834 | CASE ( 'rad_sw_in' ) |
---|
| 9835 | IF ( av == 0 ) THEN |
---|
[3435] | 9836 | to_be_resorted => rad_sw_in |
---|
[1976] | 9837 | ELSE |
---|
[3435] | 9838 | to_be_resorted => rad_sw_in_av |
---|
[1976] | 9839 | ENDIF |
---|
| 9840 | |
---|
| 9841 | CASE ( 'rad_sw_out' ) |
---|
| 9842 | IF ( av == 0 ) THEN |
---|
[3435] | 9843 | to_be_resorted => rad_sw_out |
---|
[1976] | 9844 | ELSE |
---|
[3435] | 9845 | to_be_resorted => rad_sw_out_av |
---|
[1976] | 9846 | ENDIF |
---|
| 9847 | |
---|
| 9848 | CASE ( 'rad_sw_cs_hr' ) |
---|
| 9849 | IF ( av == 0 ) THEN |
---|
[3435] | 9850 | to_be_resorted => rad_sw_cs_hr |
---|
[1976] | 9851 | ELSE |
---|
[3435] | 9852 | to_be_resorted => rad_sw_cs_hr_av |
---|
[1976] | 9853 | ENDIF |
---|
| 9854 | |
---|
| 9855 | CASE ( 'rad_sw_hr' ) |
---|
| 9856 | IF ( av == 0 ) THEN |
---|
[3435] | 9857 | to_be_resorted => rad_sw_hr |
---|
[1976] | 9858 | ELSE |
---|
[3435] | 9859 | to_be_resorted => rad_sw_hr_av |
---|
[1976] | 9860 | ENDIF |
---|
| 9861 | |
---|
| 9862 | CASE DEFAULT |
---|
| 9863 | found = .FALSE. |
---|
| 9864 | |
---|
| 9865 | END SELECT |
---|
| 9866 | |
---|
[3435] | 9867 | ! |
---|
| 9868 | !-- Resort the array to be output, if not done above |
---|
| 9869 | IF ( .NOT. resorted ) THEN |
---|
| 9870 | IF ( .NOT. mask_surface(mid) ) THEN |
---|
| 9871 | ! |
---|
| 9872 | !-- Default masked output |
---|
| 9873 | DO i = 1, mask_size_l(mid,1) |
---|
| 9874 | DO j = 1, mask_size_l(mid,2) |
---|
| 9875 | DO k = 1, mask_size_l(mid,3) |
---|
| 9876 | local_pf(i,j,k) = to_be_resorted(mask_k(mid,k), & |
---|
| 9877 | mask_j(mid,j),mask_i(mid,i)) |
---|
| 9878 | ENDDO |
---|
| 9879 | ENDDO |
---|
| 9880 | ENDDO |
---|
[1976] | 9881 | |
---|
[3435] | 9882 | ELSE |
---|
| 9883 | ! |
---|
| 9884 | !-- Terrain-following masked output |
---|
| 9885 | DO i = 1, mask_size_l(mid,1) |
---|
| 9886 | DO j = 1, mask_size_l(mid,2) |
---|
| 9887 | ! |
---|
| 9888 | !-- Get k index of highest horizontal surface |
---|
| 9889 | topo_top_ind = get_topography_top_index_ji( mask_j(mid,j), & |
---|
| 9890 | mask_i(mid,i), & |
---|
| 9891 | grid ) |
---|
| 9892 | ! |
---|
| 9893 | !-- Save output array |
---|
| 9894 | DO k = 1, mask_size_l(mid,3) |
---|
| 9895 | local_pf(i,j,k) = to_be_resorted( & |
---|
| 9896 | MIN( topo_top_ind+mask_k(mid,k), & |
---|
| 9897 | nzt+1 ), & |
---|
| 9898 | mask_j(mid,j), & |
---|
| 9899 | mask_i(mid,i) ) |
---|
| 9900 | ENDDO |
---|
| 9901 | ENDDO |
---|
| 9902 | ENDDO |
---|
| 9903 | |
---|
| 9904 | ENDIF |
---|
| 9905 | ENDIF |
---|
| 9906 | |
---|
| 9907 | |
---|
| 9908 | |
---|
[1976] | 9909 | END SUBROUTINE radiation_data_output_mask |
---|
| 9910 | |
---|
| 9911 | |
---|
| 9912 | !------------------------------------------------------------------------------! |
---|
| 9913 | ! Description: |
---|
| 9914 | ! ------------ |
---|
[2920] | 9915 | !> Subroutine writes local (subdomain) restart data |
---|
[1976] | 9916 | !------------------------------------------------------------------------------! |
---|
[2894] | 9917 | SUBROUTINE radiation_wrd_local |
---|
[1976] | 9918 | |
---|
| 9919 | |
---|
| 9920 | IMPLICIT NONE |
---|
| 9921 | |
---|
| 9922 | |
---|
[2894] | 9923 | IF ( ALLOCATED( rad_net_av ) ) THEN |
---|
| 9924 | CALL wrd_write_string( 'rad_net_av' ) |
---|
| 9925 | WRITE ( 14 ) rad_net_av |
---|
| 9926 | ENDIF |
---|
[3116] | 9927 | |
---|
| 9928 | IF ( ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
| 9929 | CALL wrd_write_string( 'rad_lw_in_xy_av' ) |
---|
| 9930 | WRITE ( 14 ) rad_lw_in_xy_av |
---|
| 9931 | ENDIF |
---|
| 9932 | |
---|
| 9933 | IF ( ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
| 9934 | CALL wrd_write_string( 'rad_lw_out_xy_av' ) |
---|
| 9935 | WRITE ( 14 ) rad_lw_out_xy_av |
---|
| 9936 | ENDIF |
---|
| 9937 | |
---|
| 9938 | IF ( ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
| 9939 | CALL wrd_write_string( 'rad_sw_in_xy_av' ) |
---|
| 9940 | WRITE ( 14 ) rad_sw_in_xy_av |
---|
| 9941 | ENDIF |
---|
| 9942 | |
---|
| 9943 | IF ( ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
| 9944 | CALL wrd_write_string( 'rad_sw_out_xy_av' ) |
---|
| 9945 | WRITE ( 14 ) rad_sw_out_xy_av |
---|
| 9946 | ENDIF |
---|
[1976] | 9947 | |
---|
[2894] | 9948 | IF ( ALLOCATED( rad_lw_in ) ) THEN |
---|
| 9949 | CALL wrd_write_string( 'rad_lw_in' ) |
---|
| 9950 | WRITE ( 14 ) rad_lw_in |
---|
[1976] | 9951 | ENDIF |
---|
| 9952 | |
---|
[2894] | 9953 | IF ( ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 9954 | CALL wrd_write_string( 'rad_lw_in_av' ) |
---|
| 9955 | WRITE ( 14 ) rad_lw_in_av |
---|
| 9956 | ENDIF |
---|
[1976] | 9957 | |
---|
[2894] | 9958 | IF ( ALLOCATED( rad_lw_out ) ) THEN |
---|
| 9959 | CALL wrd_write_string( 'rad_lw_out' ) |
---|
| 9960 | WRITE ( 14 ) rad_lw_out |
---|
| 9961 | ENDIF |
---|
[1976] | 9962 | |
---|
[2894] | 9963 | IF ( ALLOCATED( rad_lw_out_av) ) THEN |
---|
| 9964 | CALL wrd_write_string( 'rad_lw_out_av' ) |
---|
| 9965 | WRITE ( 14 ) rad_lw_out_av |
---|
| 9966 | ENDIF |
---|
| 9967 | |
---|
| 9968 | IF ( ALLOCATED( rad_lw_cs_hr) ) THEN |
---|
| 9969 | CALL wrd_write_string( 'rad_lw_cs_hr' ) |
---|
| 9970 | WRITE ( 14 ) rad_lw_cs_hr |
---|
| 9971 | ENDIF |
---|
| 9972 | |
---|
| 9973 | IF ( ALLOCATED( rad_lw_cs_hr_av) ) THEN |
---|
| 9974 | CALL wrd_write_string( 'rad_lw_cs_hr_av' ) |
---|
| 9975 | WRITE ( 14 ) rad_lw_cs_hr_av |
---|
| 9976 | ENDIF |
---|
| 9977 | |
---|
| 9978 | IF ( ALLOCATED( rad_lw_hr) ) THEN |
---|
| 9979 | CALL wrd_write_string( 'rad_lw_hr' ) |
---|
| 9980 | WRITE ( 14 ) rad_lw_hr |
---|
| 9981 | ENDIF |
---|
| 9982 | |
---|
| 9983 | IF ( ALLOCATED( rad_lw_hr_av) ) THEN |
---|
| 9984 | CALL wrd_write_string( 'rad_lw_hr_av' ) |
---|
| 9985 | WRITE ( 14 ) rad_lw_hr_av |
---|
| 9986 | ENDIF |
---|
| 9987 | |
---|
| 9988 | IF ( ALLOCATED( rad_sw_in) ) THEN |
---|
| 9989 | CALL wrd_write_string( 'rad_sw_in' ) |
---|
| 9990 | WRITE ( 14 ) rad_sw_in |
---|
| 9991 | ENDIF |
---|
| 9992 | |
---|
| 9993 | IF ( ALLOCATED( rad_sw_in_av) ) THEN |
---|
| 9994 | CALL wrd_write_string( 'rad_sw_in_av' ) |
---|
| 9995 | WRITE ( 14 ) rad_sw_in_av |
---|
| 9996 | ENDIF |
---|
| 9997 | |
---|
| 9998 | IF ( ALLOCATED( rad_sw_out) ) THEN |
---|
| 9999 | CALL wrd_write_string( 'rad_sw_out' ) |
---|
| 10000 | WRITE ( 14 ) rad_sw_out |
---|
| 10001 | ENDIF |
---|
| 10002 | |
---|
| 10003 | IF ( ALLOCATED( rad_sw_out_av) ) THEN |
---|
| 10004 | CALL wrd_write_string( 'rad_sw_out_av' ) |
---|
| 10005 | WRITE ( 14 ) rad_sw_out_av |
---|
| 10006 | ENDIF |
---|
| 10007 | |
---|
| 10008 | IF ( ALLOCATED( rad_sw_cs_hr) ) THEN |
---|
| 10009 | CALL wrd_write_string( 'rad_sw_cs_hr' ) |
---|
| 10010 | WRITE ( 14 ) rad_sw_cs_hr |
---|
| 10011 | ENDIF |
---|
| 10012 | |
---|
| 10013 | IF ( ALLOCATED( rad_sw_cs_hr_av) ) THEN |
---|
| 10014 | CALL wrd_write_string( 'rad_sw_cs_hr_av' ) |
---|
| 10015 | WRITE ( 14 ) rad_sw_cs_hr_av |
---|
| 10016 | ENDIF |
---|
| 10017 | |
---|
| 10018 | IF ( ALLOCATED( rad_sw_hr) ) THEN |
---|
| 10019 | CALL wrd_write_string( 'rad_sw_hr' ) |
---|
| 10020 | WRITE ( 14 ) rad_sw_hr |
---|
| 10021 | ENDIF |
---|
| 10022 | |
---|
| 10023 | IF ( ALLOCATED( rad_sw_hr_av) ) THEN |
---|
| 10024 | CALL wrd_write_string( 'rad_sw_hr_av' ) |
---|
| 10025 | WRITE ( 14 ) rad_sw_hr_av |
---|
| 10026 | ENDIF |
---|
| 10027 | |
---|
| 10028 | |
---|
| 10029 | END SUBROUTINE radiation_wrd_local |
---|
| 10030 | |
---|
[2920] | 10031 | !------------------------------------------------------------------------------! |
---|
| 10032 | ! Description: |
---|
| 10033 | ! ------------ |
---|
| 10034 | !> Subroutine reads local (subdomain) restart data |
---|
| 10035 | !------------------------------------------------------------------------------! |
---|
| 10036 | SUBROUTINE radiation_rrd_local( i, k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & |
---|
[2894] | 10037 | nxr_on_file, nynf, nync, nyn_on_file, nysf, & |
---|
| 10038 | nysc, nys_on_file, tmp_2d, tmp_3d, found ) |
---|
[1976] | 10039 | |
---|
| 10040 | |
---|
| 10041 | USE control_parameters |
---|
| 10042 | |
---|
| 10043 | USE indices |
---|
| 10044 | |
---|
| 10045 | USE kinds |
---|
| 10046 | |
---|
| 10047 | USE pegrid |
---|
| 10048 | |
---|
[2894] | 10049 | |
---|
[1976] | 10050 | IMPLICIT NONE |
---|
| 10051 | |
---|
| 10052 | INTEGER(iwp) :: i !< |
---|
| 10053 | INTEGER(iwp) :: k !< |
---|
| 10054 | INTEGER(iwp) :: nxlc !< |
---|
| 10055 | INTEGER(iwp) :: nxlf !< |
---|
| 10056 | INTEGER(iwp) :: nxl_on_file !< |
---|
| 10057 | INTEGER(iwp) :: nxrc !< |
---|
| 10058 | INTEGER(iwp) :: nxrf !< |
---|
| 10059 | INTEGER(iwp) :: nxr_on_file !< |
---|
| 10060 | INTEGER(iwp) :: nync !< |
---|
| 10061 | INTEGER(iwp) :: nynf !< |
---|
| 10062 | INTEGER(iwp) :: nyn_on_file !< |
---|
| 10063 | INTEGER(iwp) :: nysc !< |
---|
| 10064 | INTEGER(iwp) :: nysf !< |
---|
| 10065 | INTEGER(iwp) :: nys_on_file !< |
---|
| 10066 | |
---|
[2894] | 10067 | LOGICAL, INTENT(OUT) :: found |
---|
[1976] | 10068 | |
---|
[2894] | 10069 | REAL(wp), DIMENSION(nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_2d !< |
---|
[1976] | 10070 | |
---|
[2894] | 10071 | REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
[1976] | 10072 | |
---|
[2894] | 10073 | REAL(wp), DIMENSION(0:0,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !< |
---|
[1976] | 10074 | |
---|
| 10075 | |
---|
[2894] | 10076 | found = .TRUE. |
---|
[2157] | 10077 | |
---|
[1976] | 10078 | |
---|
[2920] | 10079 | SELECT CASE ( restart_string(1:length) ) |
---|
[1976] | 10080 | |
---|
[2920] | 10081 | CASE ( 'rad_net_av' ) |
---|
| 10082 | IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN |
---|
| 10083 | ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 10084 | ENDIF |
---|
| 10085 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
| 10086 | rad_net_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10087 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[3116] | 10088 | |
---|
| 10089 | CASE ( 'rad_lw_in_xy_av' ) |
---|
| 10090 | IF ( .NOT. ALLOCATED( rad_lw_in_xy_av ) ) THEN |
---|
| 10091 | ALLOCATE( rad_lw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 10092 | ENDIF |
---|
| 10093 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
| 10094 | rad_lw_in_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10095 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10096 | |
---|
| 10097 | CASE ( 'rad_lw_out_xy_av' ) |
---|
| 10098 | IF ( .NOT. ALLOCATED( rad_lw_out_xy_av ) ) THEN |
---|
| 10099 | ALLOCATE( rad_lw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 10100 | ENDIF |
---|
| 10101 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
| 10102 | rad_lw_out_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10103 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10104 | |
---|
| 10105 | CASE ( 'rad_sw_in_xy_av' ) |
---|
| 10106 | IF ( .NOT. ALLOCATED( rad_sw_in_xy_av ) ) THEN |
---|
| 10107 | ALLOCATE( rad_sw_in_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 10108 | ENDIF |
---|
| 10109 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
| 10110 | rad_sw_in_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10111 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10112 | |
---|
| 10113 | CASE ( 'rad_sw_out_xy_av' ) |
---|
| 10114 | IF ( .NOT. ALLOCATED( rad_sw_out_xy_av ) ) THEN |
---|
| 10115 | ALLOCATE( rad_sw_out_xy_av(nysg:nyng,nxlg:nxrg) ) |
---|
| 10116 | ENDIF |
---|
| 10117 | IF ( k == 1 ) READ ( 13 ) tmp_2d |
---|
| 10118 | rad_sw_out_xy_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10119 | tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10120 | |
---|
[2920] | 10121 | CASE ( 'rad_lw_in' ) |
---|
| 10122 | IF ( .NOT. ALLOCATED( rad_lw_in ) ) THEN |
---|
| 10123 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10124 | radiation_scheme == 'constant') THEN |
---|
| 10125 | ALLOCATE( rad_lw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10126 | ELSE |
---|
| 10127 | ALLOCATE( rad_lw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10128 | ENDIF |
---|
| 10129 | ENDIF |
---|
| 10130 | IF ( k == 1 ) THEN |
---|
| 10131 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10132 | radiation_scheme == 'constant') THEN |
---|
| 10133 | READ ( 13 ) tmp_3d2 |
---|
| 10134 | rad_lw_in(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10135 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10136 | ELSE |
---|
| 10137 | READ ( 13 ) tmp_3d |
---|
| 10138 | rad_lw_in(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10139 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10140 | ENDIF |
---|
| 10141 | ENDIF |
---|
[1976] | 10142 | |
---|
[2920] | 10143 | CASE ( 'rad_lw_in_av' ) |
---|
| 10144 | IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN |
---|
| 10145 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10146 | radiation_scheme == 'constant') THEN |
---|
| 10147 | ALLOCATE( rad_lw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10148 | ELSE |
---|
| 10149 | ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10150 | ENDIF |
---|
| 10151 | ENDIF |
---|
| 10152 | IF ( k == 1 ) THEN |
---|
| 10153 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10154 | radiation_scheme == 'constant') THEN |
---|
| 10155 | READ ( 13 ) tmp_3d2 |
---|
| 10156 | rad_lw_in_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) =& |
---|
| 10157 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10158 | ELSE |
---|
| 10159 | READ ( 13 ) tmp_3d |
---|
| 10160 | rad_lw_in_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10161 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10162 | ENDIF |
---|
| 10163 | ENDIF |
---|
[1976] | 10164 | |
---|
[2920] | 10165 | CASE ( 'rad_lw_out' ) |
---|
| 10166 | IF ( .NOT. ALLOCATED( rad_lw_out ) ) THEN |
---|
| 10167 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10168 | radiation_scheme == 'constant') THEN |
---|
| 10169 | ALLOCATE( rad_lw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10170 | ELSE |
---|
| 10171 | ALLOCATE( rad_lw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10172 | ENDIF |
---|
| 10173 | ENDIF |
---|
| 10174 | IF ( k == 1 ) THEN |
---|
| 10175 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10176 | radiation_scheme == 'constant') THEN |
---|
| 10177 | READ ( 13 ) tmp_3d2 |
---|
| 10178 | rad_lw_out(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10179 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10180 | ELSE |
---|
| 10181 | READ ( 13 ) tmp_3d |
---|
| 10182 | rad_lw_out(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10183 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10184 | ENDIF |
---|
| 10185 | ENDIF |
---|
[1976] | 10186 | |
---|
[2920] | 10187 | CASE ( 'rad_lw_out_av' ) |
---|
| 10188 | IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN |
---|
| 10189 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10190 | radiation_scheme == 'constant') THEN |
---|
| 10191 | ALLOCATE( rad_lw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10192 | ELSE |
---|
| 10193 | ALLOCATE( rad_lw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10194 | ENDIF |
---|
| 10195 | ENDIF |
---|
| 10196 | IF ( k == 1 ) THEN |
---|
| 10197 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10198 | radiation_scheme == 'constant') THEN |
---|
| 10199 | READ ( 13 ) tmp_3d2 |
---|
| 10200 | rad_lw_out_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) & |
---|
| 10201 | = tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10202 | ELSE |
---|
| 10203 | READ ( 13 ) tmp_3d |
---|
| 10204 | rad_lw_out_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10205 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10206 | ENDIF |
---|
| 10207 | ENDIF |
---|
[1976] | 10208 | |
---|
[2920] | 10209 | CASE ( 'rad_lw_cs_hr' ) |
---|
| 10210 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr ) ) THEN |
---|
| 10211 | ALLOCATE( rad_lw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10212 | ENDIF |
---|
| 10213 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10214 | rad_lw_cs_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10215 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10216 | |
---|
[2920] | 10217 | CASE ( 'rad_lw_cs_hr_av' ) |
---|
| 10218 | IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN |
---|
| 10219 | ALLOCATE( rad_lw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10220 | ENDIF |
---|
| 10221 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10222 | rad_lw_cs_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10223 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10224 | |
---|
[2920] | 10225 | CASE ( 'rad_lw_hr' ) |
---|
| 10226 | IF ( .NOT. ALLOCATED( rad_lw_hr ) ) THEN |
---|
| 10227 | ALLOCATE( rad_lw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10228 | ENDIF |
---|
| 10229 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10230 | rad_lw_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10231 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10232 | |
---|
[2920] | 10233 | CASE ( 'rad_lw_hr_av' ) |
---|
| 10234 | IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN |
---|
| 10235 | ALLOCATE( rad_lw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10236 | ENDIF |
---|
| 10237 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10238 | rad_lw_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10239 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10240 | |
---|
[2920] | 10241 | CASE ( 'rad_sw_in' ) |
---|
| 10242 | IF ( .NOT. ALLOCATED( rad_sw_in ) ) THEN |
---|
| 10243 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10244 | radiation_scheme == 'constant') THEN |
---|
| 10245 | ALLOCATE( rad_sw_in(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10246 | ELSE |
---|
| 10247 | ALLOCATE( rad_sw_in(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10248 | ENDIF |
---|
| 10249 | ENDIF |
---|
| 10250 | IF ( k == 1 ) THEN |
---|
| 10251 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10252 | radiation_scheme == 'constant') THEN |
---|
| 10253 | READ ( 13 ) tmp_3d2 |
---|
| 10254 | rad_sw_in(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10255 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10256 | ELSE |
---|
| 10257 | READ ( 13 ) tmp_3d |
---|
| 10258 | rad_sw_in(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10259 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10260 | ENDIF |
---|
| 10261 | ENDIF |
---|
[1976] | 10262 | |
---|
[2920] | 10263 | CASE ( 'rad_sw_in_av' ) |
---|
| 10264 | IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN |
---|
| 10265 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10266 | radiation_scheme == 'constant') THEN |
---|
| 10267 | ALLOCATE( rad_sw_in_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10268 | ELSE |
---|
| 10269 | ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10270 | ENDIF |
---|
| 10271 | ENDIF |
---|
| 10272 | IF ( k == 1 ) THEN |
---|
| 10273 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10274 | radiation_scheme == 'constant') THEN |
---|
| 10275 | READ ( 13 ) tmp_3d2 |
---|
| 10276 | rad_sw_in_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) =& |
---|
| 10277 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10278 | ELSE |
---|
| 10279 | READ ( 13 ) tmp_3d |
---|
| 10280 | rad_sw_in_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10281 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10282 | ENDIF |
---|
| 10283 | ENDIF |
---|
[1976] | 10284 | |
---|
[2920] | 10285 | CASE ( 'rad_sw_out' ) |
---|
| 10286 | IF ( .NOT. ALLOCATED( rad_sw_out ) ) THEN |
---|
| 10287 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10288 | radiation_scheme == 'constant') THEN |
---|
| 10289 | ALLOCATE( rad_sw_out(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10290 | ELSE |
---|
| 10291 | ALLOCATE( rad_sw_out(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10292 | ENDIF |
---|
| 10293 | ENDIF |
---|
| 10294 | IF ( k == 1 ) THEN |
---|
| 10295 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10296 | radiation_scheme == 'constant') THEN |
---|
| 10297 | READ ( 13 ) tmp_3d2 |
---|
| 10298 | rad_sw_out(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10299 | tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10300 | ELSE |
---|
| 10301 | READ ( 13 ) tmp_3d |
---|
| 10302 | rad_sw_out(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10303 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10304 | ENDIF |
---|
| 10305 | ENDIF |
---|
[1976] | 10306 | |
---|
[2920] | 10307 | CASE ( 'rad_sw_out_av' ) |
---|
| 10308 | IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN |
---|
| 10309 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10310 | radiation_scheme == 'constant') THEN |
---|
| 10311 | ALLOCATE( rad_sw_out_av(0:0,nysg:nyng,nxlg:nxrg) ) |
---|
| 10312 | ELSE |
---|
| 10313 | ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10314 | ENDIF |
---|
| 10315 | ENDIF |
---|
| 10316 | IF ( k == 1 ) THEN |
---|
| 10317 | IF ( radiation_scheme == 'clear-sky' .OR. & |
---|
| 10318 | radiation_scheme == 'constant') THEN |
---|
| 10319 | READ ( 13 ) tmp_3d2 |
---|
| 10320 | rad_sw_out_av(0:0,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) & |
---|
| 10321 | = tmp_3d2(0:0,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10322 | ELSE |
---|
| 10323 | READ ( 13 ) tmp_3d |
---|
| 10324 | rad_sw_out_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10325 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
| 10326 | ENDIF |
---|
| 10327 | ENDIF |
---|
[1976] | 10328 | |
---|
[2920] | 10329 | CASE ( 'rad_sw_cs_hr' ) |
---|
| 10330 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr ) ) THEN |
---|
| 10331 | ALLOCATE( rad_sw_cs_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10332 | ENDIF |
---|
| 10333 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10334 | rad_sw_cs_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10335 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10336 | |
---|
[2920] | 10337 | CASE ( 'rad_sw_cs_hr_av' ) |
---|
| 10338 | IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN |
---|
| 10339 | ALLOCATE( rad_sw_cs_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10340 | ENDIF |
---|
| 10341 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10342 | rad_sw_cs_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10343 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10344 | |
---|
[2920] | 10345 | CASE ( 'rad_sw_hr' ) |
---|
| 10346 | IF ( .NOT. ALLOCATED( rad_sw_hr ) ) THEN |
---|
| 10347 | ALLOCATE( rad_sw_hr(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10348 | ENDIF |
---|
| 10349 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10350 | rad_sw_hr(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10351 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10352 | |
---|
[2920] | 10353 | CASE ( 'rad_sw_hr_av' ) |
---|
| 10354 | IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN |
---|
| 10355 | ALLOCATE( rad_sw_hr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 10356 | ENDIF |
---|
| 10357 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
| 10358 | rad_lw_hr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
| 10359 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
[1976] | 10360 | |
---|
[2920] | 10361 | CASE DEFAULT |
---|
[1976] | 10362 | |
---|
[2920] | 10363 | found = .FALSE. |
---|
[1976] | 10364 | |
---|
[2920] | 10365 | END SELECT |
---|
[1976] | 10366 | |
---|
[2894] | 10367 | END SUBROUTINE radiation_rrd_local |
---|
[1976] | 10368 | |
---|
[2920] | 10369 | !------------------------------------------------------------------------------! |
---|
| 10370 | ! Description: |
---|
| 10371 | ! ------------ |
---|
| 10372 | !> Subroutine writes debug information |
---|
| 10373 | !------------------------------------------------------------------------------! |
---|
[3337] | 10374 | SUBROUTINE radiation_write_debug_log ( message ) |
---|
[2920] | 10375 | !> it writes debug log with time stamp |
---|
[3337] | 10376 | CHARACTER(*) :: message |
---|
| 10377 | CHARACTER(15) :: dtc |
---|
| 10378 | CHARACTER(8) :: date |
---|
| 10379 | CHARACTER(10) :: time |
---|
| 10380 | CHARACTER(5) :: zone |
---|
| 10381 | CALL date_and_time(date, time, zone) |
---|
| 10382 | dtc = date(7:8)//','//time(1:2)//':'//time(3:4)//':'//time(5:10) |
---|
| 10383 | WRITE(9,'(2A)') dtc, TRIM(message) |
---|
| 10384 | FLUSH(9) |
---|
| 10385 | END SUBROUTINE radiation_write_debug_log |
---|
[1976] | 10386 | |
---|
[1496] | 10387 | END MODULE radiation_model_mod |
---|